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Early Scholars 
Improved Multiple Comparisons With 

The Best In Response Surface Methodology 
 

Laura K. Miller        Ping Sa 
University of North Florida 

 
A method to construct simultaneous confidence intervals about the difference in mean responses at the 
stationary point and at x for all x within a sphere with radius IR  is proposed. Results of an efficiency study to 
compare the new method and the existing method by Moore and Sa (1999) are provided.   
 
Key words: Comparison with the best, response surface methodology, bounding algorithm. 
 

Introduction 
 
Response surface methodology uses a polynomial 
response function to explain and analyze the 
relationship between a response variable y and 
several predictor variables 1( ,..., ) 'kξ ξ=ξ .  

Usually the iξ  will be converted to coded 

variables ix  by 0( )/( )i i i ix scξ ξ= − , where 0iξ  is 

a centering constant and ( ) 0isc >  is a scaling 
constant, 1,2,...,i k= .  The mean response at 

)',...,,( 21 kxxx=x , ( | )E y x , can be 
approximated using the quadratic polynomial 
model with k  predictor variables 
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where iji βββ ,,0  are unknown constants, 

, 1,2,...,i j k=  and random error 
2~ (0, )NIDε σ . 

The mean response is optimized at the 
stationary point that may be a minimum, 
maximum, or a saddle point.  After determining 
the levels of the predictor variables where the 
mean response is optimized, it is possible that this 
point is not a reasonable option due to practical 
considerations, such as expense.  In this situation, 
multiple comparisons can be performed with other 
points in the region to determine if some other 
points provide responses that are not significantly 
different from the optimal point. 

This problem will subsequently be 
referred to as multiple comparisons with the best 
(MCB) in response surface methodology (RSM).  
The MCB problem was first approached by Hsu 
(1984) in design of experiments where he 
considered the problem of comparing the 
treatment means under study with the “best” 
treatment mean.  Moore and Sa (1999) first 
approached the MCB problem in the RSM setting.  
There has also been other substantial work on 
related problems within the field of response 
surface methodology.  Sa and Edwards (1993) and 
Merchant, McCann, and Edwards (1998) 
investigated the multiple comparisons with the 
control (MCC) problem. 

Sa and Edwards (1993) first addressed the 
MCC in RSM problem by constructing 
simultaneous confidence intervals for 

( ) ( | ) ( | )C E y E yδ = − 0x x  for all x within a 
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pre-specified distance IR  of the origin, such that 

for all x, 2 2
1

k
i Ii

x R
=

= ≤∑x'x , where IR  is the 

“radius of inference.”  They showed that for a 

rotatable design, the bounds of δ C x( ) ∈ $ ( )δ C x  ± 
(rFα,r,ν)1/2s(x) can be improved using a result of 
Casella and Strawderman (1980) where the 
Scheffé critical point, 1/2

, ,( )rrFα υ  can be replaced 

by a smaller value cα  depending on ,α  ,υ  and 
the nature of the predictor constraints as 
summarized by two other constraints, an integer m 
and a distance 2 0.q >  

Because the design used in practice is 
often not rotatable, Merchant, McCann, and 
Edwards (1998) introduced a new method which 
combined the Bonferroni method and the McCann 
and Edwards (1996) algorithm for two or more 
predictors that gives much sharper intervals than 
the Scheffé and also the Sa and Edwards (1993) 
adaptation of the Casella and Strawderman 
method.  Merchant, McCann, and Edwards’ 
method does not require a rotatable design and 
allows for one-sided bounds for ( )Cδ x . They 
generated a critical point d with simultaneous 
confidence bounds for 

 
( ) ( | ) ( | )C E y E yδ = − 0x x  

 
for all x within a specified distance of 0 via a 
bounding algorithm that requires only a few 
seconds to a few minutes of computer time. 

Closely related and within the field of 
RSM, Moore and Sa (1999) addressed the MCB 
problem.  They constructed confidence intervals 
about the difference in mean responses at the 
stationary point and alternate points over the entire 
k  dimensional hyperplane based on a theory that 
does not depend on the design of the experiment.  
To solve the MCB problem, they utilized the delta 
method to approximate the variance of the 
estimated difference for 
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where ( )Βδ x  represents the difference between 
the mean response at the stationary point 

11
2

−= −0x B b  and the mean response at any other 
point x , b = (β1, β2,..., βk)′, and 
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This confidence interval is useful in 

determining whether an alternate point could be 
substituted for the stationary point as an optimizer.  
Furthermore, it provides how much loss in the 
mean response can be expected if x is moved away 
from 0x .  They investigated both Bonferroni and 
Scheffé type confidence intervals for the MCB 
problem.  They also investigated Scheffé’s F-
projection method of constructing conservative 
confidence intervals.  However, the delta method 
is much less conservative than the F-projection 
method and of course, much easier to use. 

It is the purpose of this article to address 
the MCB problem in RSM, but instead of 
considering the entire k-dimensional space, it 
would be more realistic to restrict the region to 
provide confidence bounds for ( )Bδ x within a 
sphere with radius IR  for all x such that 

2
IR≤x'x .  The method proposed by Merchant, 

McCann, and Edwards (1998) for the MCC 
problem should be adaptable to the MCB problem 
since the requirement for using this method is that 
the covariance matrix of the estimators must be 
known. 

The delta method will be used to 

approximate the variance of $ ( )δ B x for the MCB 
problem.  The next section explains the theory and 
the bounding algorithm used to generate the 
critical point for the MCB problem. The algorithm 
is design free, that is, it does not depend on the 
design of the experiment and should therefore 
provide consistent results regardless of the design. 
 
 



249                                                               MILLER & SA 
 

 

Theory Behind the Method 
The method proposed by Merchant, 

McCann, and Edwards (1998) will be adapted to 
solve the MCB problem.  The goal is to generate 
an improved critical point d with simultaneous 
upper confidence bounds of the form  
 

ˆ ( ) ( )B dsδ +x x        (1) 
 
where 
 

11
) =

4BΒδ −= − − −ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ( , ) ' ' ' ,x x x b x Bx b B bδ β  

such that $b  = ( $ , $ ,..., $β β β1 2 k )′ where the $βi ’s are 

the least square estimators for s'ß i  and B̂  is the 

matrix such that ijß̂  is substituted into the matrix 

B. The estimated standard error of )(ˆ xBδ  is s(x) 
2/1)s( ll' Σ=  derived by Moore and Sa (1999) 

where 2s  is the mean square error which satisfies 

)(~ 2
2

2
υχ

σ
υs  for integer 0>υ  and is 

independent of all $βi ’s, ∑  is the 1( ' )X X −  
matrix with the first row and the first column 
deleted and l is the vector of partial derivatives of 

( )Bδ βx, with respect to β  such that  
 

21 1 1
1 1 12 2 4

2 2 21 1
1 1 2 1 24 4
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1 14
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where -1=m B b  such that im  is the ith 

component of m and 1 2( , ,..., )kx x xx = ′ is any 

point satisfying x′x ≤ RI
2 .   

In order to approximate the entire set of 
interest, we adapt the fine grid of inference IG , 
suggested by Merchant, McCann, and Edwards 
(1998) of individual xj points for pj ,...,2 ,1=  in 
the region.  This grid is constructed by user 
defined multiples of these x values within a radius 

IR  radiating from the center 0.  This matrix is 

defined as rp ×:L  whose thj  row is ( )j j= ''l l x  

where a simultaneous bound over this finite 
collection is calculated. 

The critical point d must satisfy 

           
1 /2

ˆ ( ) ( )
max 1

( )I

B B

G
P d

s
δ δ

α
∈

 −
≤ ≥ − 

 x

x x
l' l∑

.    (2) 

 

For each x, 
1/2

ˆ ( ) ( )
~

( )
B B t
s υ

δ δ−x x
l' l∑

, where 

tυ  is the univariate-t distribution with υ  degrees 
of freedom.  Equation (2) can be rewritten as 

 

, 1,2,..., 1jP T d j p α ≤ = ≥ −   

 
or 
 

, 1,2,...,jP T d j p α > = ≤   

 
where 1 2, ,..., pT T T  have a multivariate t 
distribution (Dunnett & Sobel 1954) with υ  
degrees of freedom and underlying correlation 
matrix R derived from 2 'σ ∑L L .  The critical 
point d is then solved by the following equation, 
 

1/

0

{
d

P∫ E(t)} ( )Tf t dt  = α  for 

E(t) '

1

( )
p

j
j

td
=

= >∪ a U ,  (Brown,1984) 

 
where Tf  is the probability density function of T, a 

random variable such that 2rT  is distributed as 
( , )F rυ ; U is a random vector independent of T, 

distributed uniformly on the r-dimensional sphere; 

and '
ja  are the rows of the full rank matrix 

: p r×A  such that '=R AA .   
 Finally, the probability P{E(t)}for the 
MCB problem can be calculated using the same 
bounding algorithm proposed by Merchant, 
McCann, and Edwards (1998) for the MCC 
problem. This bounding algorithm is a 
combination of Bonferroni method and the 
McCann and Edwards algorithm (1996) and is for 
upper bound only.  If a lower bound is required 
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over this region, that is )()(ˆ xx dsB −δ , it can be 
computed by constructing the upper bound for 

)(xBδ−  = )|( xyE  )|( 0xyE−  because an 

upper bound for )(xBδ−  is equivalent to a lower 

bound for )(xBδ .   
The critical points for the MCB problem 

were computed using a Fortran program and 
routines from the IMSL Fortran Numerical 
Libraries (1997).  These included calling the 
routines DLINRG to calculate the inverse of a 
matrix, DLFTDS to compute the Cholesky 
factorization of a matrix, DFDF to evaluate the F 
distribution function, and DQDAGS to perform 

the numerical integration.  The Fortran program is 
available from the first author. 
Examples and comparisons 

Box and Draper (1987) give an example 
from an investigation by Derringer and Suich 
(1980) in which RSM is used to analyze the 
effects of 1ξ = hydrated silica level in phr (parts 

per hundred) and 2ξ = silane coupling agent level 
in phr on the elongation at break of a tire tread 
compound.  One of the goals was to maximize y = 
elongation at break.  Convert 1ξ  to the coded 

variable 1x  = 1( 1.2)/0.5ξ −  and 2ξ  to the coded 
variable 2x  = 2(  - 50)/10ξ .  The design points 

ix  and the responses iy  are listed in Table 1.  
  

Table 1.  Experimental Results:  Elongation at break y of a tire tread compound Versus 1x =(phr silica – 
1.2)/0.5 and 2x = (phr silane – 50)/10 (Source:   Derringer 1980) 
 

Run 1x  2x  y 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

-1 
 1 
-1 
 1 
-1 
 1 
-1 
 1 
-1.633 
1.633 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
-1 
 1 
 1 
-1 
-1 
 1 
 1 
 0 
 0 
-1.633 
1.633 
0 
0 
0 
0 
0 
0 
0 
0 

900 
860 
800 
2294 
490 
1289 
1270 
1090 
770 
1690 
700 
1540 
2184 
1784 
1300 
1300 
1145 
1090 
1260 
1344 

 
The estimated polynomial response function is 
 

$ . . . . . .y x x x x x x= + + − − +1412 892 268151 246 503 97 794 139 044 69 3751 2 1
2

2
2

1 2  . 
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The vector $ ( . , . )b = ′268 151 246 503 , the matrix $ . .
. .

B =
−

−
L
NM

O
QP

97 794 34 688
34 688 139 044

, and the matrix 

 
.075 0 0 0 0
0 .075 0 0 0

0 0 .075 .005 0
0 0 .005 .075 0
0 0 0 0 .125

 
 
 
 
 
 
  

∑ =  

 
are calculated. 
 The estimated stationary point for this surface where elongation at break (y) is maximized is 
ˆ (1.849, 1.348 )=0x  yielding an estimated response of 1826.91.   Figure 1 gives the estimated surface plot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Estimated Surface Plot for the Tire Tread Compound Example. 
 

As one can see, the stationary point is out 
of the experimental region and it may not be a 
reasonable option due to practical considerations 
or expense.  Therefore, multiple comparisons can 
be performed with other points in a region to 
determine if any other point within the region of 
operability will produce a response that is not 
significantly different from the point that 
maximizes elongation at break (y).  Since the 
optimal point was a maximum, this suggests that 
lower bounds for ( ) ( | ) ( | )B E y E yδ = −0x x x  
are more important than upper bounds.  

 
 Simultaneous 90% lower confidence 
bounds are constructed for ( )Bδ x  for all x whose 
values are on the grid defined by multiples of .2 

with a radius of 2IR =  radiating from the 
center of the region of interest.  Figure 2 shows the 
contours for the estimated difference and the 
simultaneous lower confidence bounds L(x) = 
$ ( )δ B x - ds(x) for generated 2d =  6.871607 by 

the method detailed in the previous section. 

-1.65

-0.55

0.55

1.65

X2

-1.65
-0.55

0.55
1.65

X1

Y

107

679

1251

1823
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Figure 2.  Contour Plots 
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 In Figure 2 (above), the contour plots are 

for the estimated difference ˆ ( )Bδ x  (top) and the 
simultaneous 90% lower confidence bounds 
(bottom) for the Tire Tread Compound Example 
with generated 2 6.871607d = . The points that 
lie inside the negative contour lines indicate 
possible alternate points that will produce 
responses that are not significantly different from 
the point that maximizes elongation at break (y). 
The region inside the negative contour lines 
indicates possible region that will produce 
responses that are not significantly different from 
the point that maximizes elongation at break (y). 

The squared critical constant 2d =  
6.871607 compares very favorably to that of the 

Scheffé method, rFα(r,υ ) = 2
.10( 5 (5,14))F  = 

11.534702. Therefore, an experimenter using the 
Scheffé method would have to increase the 
experiment size by a factor of approximately 

 2
.10( 5 (5,14))F /d2 = 11.534702 / 6.871607 = 

1.6786, in other words, by 67.86% in order to 
achieve a precision of estimation (interval  
width) equal to what would be obtained using the 
adapted method’s critical constant. 

Next, three different designs will be used 
for an example using the bounding algorithm to 
generate improved critical points for the MCB 
problem where the sample -size savings will be 
compared to the Scheffé and Bonferroni critical 
points.   

Khuri and Cornell (1987) provide an 
example in which they use RSM to investigate the 
effects of the amounts of two fertilizers, 1x  and 

2x , on the yield of peanuts measured in pounds 
per acre.  For the purpose of the efficiency study, 
the estimated parameters from this example will 
be treated as the true parameters of an underlying 
model.  The true quadratic response function is 
given by  

 

1 2

2 2
1 2 1 2

13.85 .90 .56

1.94 .78 .57

y x x

x x x x

= − +

− − − + ε
. 

 
The vector (.90, .56)'b = , the matrix  
 

1.94 .285
.285 .78

− − 
=  − − 

B , and the matrix  

 
.125 0 0 0 0
0 .125 0 0 0

0 0 .144 .019 0
0 0 .019 .144 0
0 0 0 0 .25

 
 
 
 
 
 
  

∑ =  are found. 

 
The stationary point for this surface is 

(.189,  .290)=0x  yielding a response of 13.676.  
Assume that this option is not a reasonable option, 
multiple comparisons are performed to determine 
if alternate points can substitute for the stationary 
point in terms of maximizing peanut yield.  
Therefore, the critical point d is required to 
perform these comparisons.   

Three central composite designs were 
chosen.  The three designs are a rotatable central 
composite design with uniform precision, a 
rotatable central composite design without 
uniform precision, and a central composite design 
with one centerpoint.  These designs will be 
referred to as Design 1, 2, and 3 respectively. 

Table 2 (following References section) 
shows the critical points that were generated for 
one and two replications of the three different 

designs using multiples of .2, RI = 1, and 2  for 
this example using Merchant, McCann, and 
Edwards’ (1998) method in order to compare the 
critical values and the approximate sample-size 
savings for each design.  Because the Bonferroni 
method is conservative due to the large number of 
comparisons , only the approximate sample -size 
savings vs the Scheffé method were calculated. 

Considerable improvement (between 34% 
and 47%) over the Scheffé adaptation for all three 
designs is possible using the new method by 
choosing the radius of inference 1IR = .  For 

2IR =  (which is near the limits of the 
experimental region for Designs 1 and 2), the 
sample-size savings are 26% to 33% over the 
Scheffé method.  Also, as expected, the increased 
sample sizes produced by replicating the designs 
resulted in smaller critical values. 
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Conclusion 
 
In conclusion, this article has addressed the 
problem of multiple comparisons with the best in 
RSM via simultaneous confidence bounds for 

( ) ( | ) ( | )B E y E yδ = −0x x x  for all x such that 
2
IR≤x'x .  The  method  proposed  by Merchant,  
McCann, and Edwards (1998) for the 

MCC problem has been adapted to the MCB 
problem.  It has provided confidence bounds for 
an example for two predictors where the critical 
values compare favorably to the Bonferroni and 
Scheffé methods as shown by Table 2 (following 
page). 

This will also hold true for problems 
containing more than two predictor variables.  For 
the example provided, this method has been shown 
to provide approximate sample -size savings of at 
least 25% for three different central composite 
designs.  In fact, based on the theory behind the 
bounding algorithm, the Merchant, McCann, and 
Edwards' method for the MCB problem will 
always outperform the Scheffé and Bonferroni 
methods (Merchant, McCann, and Edwards, 
1998).  
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Table 2. Generated critical points using the improved method (one-sided bounds) and Scheffé and 
Bonferroni critical points with grid spacing = .2 for each design and approximate Sample -Size Savings of the 
New Method Versus the Scheffé method. 

 
 
  

Design 

 

IR  

 

reps 

 

υ  

Improved 
Critical 
Point d 

Scheffé 
Critical 
Point 

Bonferroni 
Critical 
Point 

Sample-Size 
Savings vs 
Scheffé 

1 1 1 7 3.233020 3.794733 4.605120 37.78% 

  2 20 2.803443 3.286335 3.460804 37.42% 

 2  1 7 3.368990 3.794733 5.207830 26.87% 

  2 20 2.918108 3.286335 3.756539 26.83% 

2 1 1 3 4.423153 5.152669 9.505157 35.71% 

  2 12 2.980882 3.456877 3.813342 34.49% 

 2  1 3 4.576950 5.152669 12.008948 26.74% 

  2 12 3.079915 3.456877 4.195280 25.98% 

3 1 1 3 4.255092 5.152669 9.505157 46.64% 

  2 12 2.875548 3.456877 3.813342 44.52% 

 2  1 3 4.482340 5.152669 12.008948 32.15% 

  2 12 3.018781 3.456877 4.195280 31.13% 
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