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PREFACE 

In this dissertation, I have presented my work on Modeling of an eye and aberrations in ocular 

parameters affecting refractive state. In the first part of the dissertation, Modeling of an eye using 

sophisticated algorithms is performed and model is authenticated by verifying the model. Second 

part of dissertation discussed the Ray tracing models using concepts of geometry. In the final 

part of my dissertation I have performed Variational Analysis to validate the model qualitatively 

as well as quantitatively.   

 Chapter 1 begins with the introduction of an Eye, its optical properties and formation of 

image from optics point of view. Subsequently we have overviewed the different methodologies 

adopted by researchers to obtain ocular parameters and observed errors in the refractive state of 

an eye. In the later parts we have introduced the concept of modeling of an eye, extraction of 

ocular components followed by verification of the model. Concept of ray tracing using these 

ocular parameters was introduced. In the last part of chapter 1 the idea of variational analysis 

would explains the procedure of how the targeted work was achieved.  

Chapter 2 describes the process of Modeling of an eye. In this chapter the raw data 

provided by School of Medicine was used to build the model of an eye using state of the art 

algorithms. Ocular parameters and schematics of an eye consisted of different layers were 

generated. The statistical data was generated as well, which helped in validation of the model.    

Chapter 3 deals with the Image processing part, in which MRI images of an Eye was 

overlapped with the respective schematics of an eye, resulting in a composite image of an eye. 

This was performed further to validate the model of an eye.  

In chapter 4 the introduction of concept of Ray tracing using Ocular parameters, became 

inevitable because of the nature of research performed. In this part the ocular parameters just 
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generated while performing Modeling of an Eye, were inserted in the mathematical equations for 

rat racing. This would give us a virtual eye in 2 dimensions in paraxial approximation, in which 

it is shown that paraxial rays after entering the eye and traveling a certain distance meets at focal 

point. Depending upon the focal point, disorder (myopia or hyperopia) of how much magnitude 

could be calculated.  

Chapter 5 eventually proceeds to complement our work by qualitatively as well 

quantitatively analyzing the result. In this chapter we would analyze those ocular parameters 

which have stronger or weaker impact on the refractive state of an eye and are categorized 

accordingly in critical or non-critical category.  

Chapter 6, 7 and 8 discusses the results of the work performed by us, discussion of the 

results and conclusion respectively.   

Sincerely, 

Gurinder Bawa. 
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 CHAPTER 1 

INTRODUCTION 

Eyes, the smallest part, yet the imperative organ of a body give a sense of vision to living 

creatures. The light rays that enter through pupil of an eye, travelling through different layers, 

consisting of different refractive indices, converges at a far end point of an eye. This point of 

convergence of light rays is called as focal point of an eye and usually lies at the posterior part of 

retina or more precisely sensory part of retina. This sensory part relays signal to optic nerves 

located next to retina which in turn acts as messenger and sends the signal to brain [1]. Finally 

we see image after the processing of signal is completed by brain.  

While we talk about image formation, it is necessary that the focal point should be in the 

neighborhood of photoreceptive layer of retina, where later senses the light signal and sends the 

information to optics nerve. Sometimes the image formation is perfect and is distinguishable for 

its character, but sometimes the image is blurred due to number of reasons. Hence there is a 

certain disorder related with the power of an eye, named as “Refractive Error” or “Ametropia” of 

an eye [2]. Those refractive errors lead many researchers [3-5, 7, 8-12, 16-26] to put significant 

efforts to understand the factors that contribute towards the refractive error. Different animal 

models, such as Rodents [3-24], Chicken [25, 26], Avian [27] and Rabbit [28] have been used to 

understand the behavior.  

Amongst all the above mentioned animal models, Rodents (Mouse and Rat) model has 

been under extensive study because of the fact that it is easy to be affordable in terms of fast 

reproduction, cost-effective, variable models and its acceptance towards genetic mutation. 

Besides above explained reason these models are studied also for, normal development of eye 

and other pathological conditions that affects visual system, because of the analogy of 
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physiological and genetically similar organization to those of humans. The experiments on mice 

eyes have shown that they are the most suitable models for the calculation of refractive eye 

development.  

Many researchers not only have contributed towards the anatomy and physiology of an 

eye but various optical models have been proposed to understand the schematics. They had also 

reported ocular parameters such as radii of curvature, thicknesses and refractive indices of mouse 

eyes. Despite of the efforts put forth these models are considered to be less reliable due to 

variability in reported ocular parameters. Due to variability in the reported ocular parameters the 

refractive error of a mouse eye suffers.  

Several experiments have been conducted on mouse and rat eyes using preserved sections 

and refractive indices that are obtained from ray tracing experiments. These experiments are 

eventually used to study the biometry and schematics of eyes. Hughes [3], Campbell and Hughes 

[4] and Chaudhari et al [5] put forth the schematics of rat eye model and calculated the ocular 

parameters as well. Similarly Remtulla and Hallet [6] and Schmucker and Schaeffel [7] 

conducted experiments on mouse eye and proposed model for schematic of eye. Those studies 

have reported averages of radii of curvatures, thicknesses of different layers of an eye and 

refractive indices at different wavelengths. Further they have also calculated refractive errors 

using ray tracing models at different wavelengths. In addition to that Remtulla and Hallet [6] 

have compared other parameters of mouse eye to rat eye, such as linear scale, magnification 

factor and refractive indices. X. Zhou et al. [8] and E. G. de la Cera et al. [9] predicted that 

imaging at high resolution of rodent eyes, is complicated by high optical power and high 

spherical aberrations of an eye, using adaptive optics. However Geng et al [10] found that optical 
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quality is better in mouse eye as compared to that of human eyes because of larger numerical 

aperture and similar magnitude of RMS higher order aberrations.  

Although above mentioned studies have been acknowledged for providing basic 

information about optical properties of rodent eyes as well as schematics of an eye, yet there is 

great uncertainty while validating the refractive error of the eye due to variability in the reported 

ocular parameters. Variability prevails even in the reported data for the same strains of mice as is 

shown by G. Zhou, and R. W. Williams [11], A. V. Tkatchenko et al. [12] and M. T. Pardue et 

al. [13]. Such a similar case is reported in [12], where significant differences are reported 

between C57BL/6J, C57L/J and CZECHII/EiJ mice strains for corneal radius of curvature, 

Vitreous chamber depth and refractive error. There is also variability in refractive errors reported 

in most commonly C57BL/6 mice. Even though different experiments predicted that, refractive 

error reported in C57BL/6 mice are close to zero [14-21], still other studies reported either 

hyperopia (4.1-6.4 D) or myopia (5.6-9.2 D) in same strain of mice [7, 10, 22-24].  

 

1.1 Motivation  

Despite of the fact that there is variability in reported optical properties of an eye, yet 

these models holds valid and are contributing significantly in their respective areas. But none to 

our knowledge had ever tried to analyze the factors that are affecting the calculations of 

refractive errors and which particular ocular parameter is responsible for incorporating difference 

in refractive error. Such a model which could qualitatively predict the abnormal behavior of an 

eye would not only help us in understanding the optics of an eye but would also help us predict 

the aberrations due to single parameter. This challenge motivated us to conduct the experiments 

on mouse eyes from above described animal models. The reason that we have chosen mouse 
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eyes from rodents family instead of rat or other species because of the fact that mice models are 

genetically engineered models with enough variance. Also the genetic organization is similar to 

that of humans. Hence this project is a part of research ultimately aimed at understanding genetic 

predisposition for myopia in humans. 

In our work we had emphasized the importance of small aberrations in optical 

parameters, which could lead to significant changes in refractive error of mouse eye. We have 

built a model for a mouse eye that is smart enough to calculate the optical parameters of an eye 

such as thicknesses and radii of curvatures of different surfaces of an eye. The calculated optical 

parameters are then used to draw the schematics of an eye. Also the refractive error of an eye is 

calculated using those optical parameters. Finally to meet the challenge Variational analysis is 

performed in order to study the effects on the refractive error of an eye if an optical parameter is 

changed by the smallest possible value. This variational analysis helped us to identify those 

ocular parameters which have higher impact as well as those parameters which are having 

smaller influence on refractive state and refractive error of rodent eyes.   

 

1.2 Schematics of an eye  

Above stated work was performed with the help of School of Medicine, Wayne State 

University. Dr. Andrei Tkatchenko, from department of Ophthalmology provided us the 

necessary data required for the modeling. X and Y coordinates from MRI images of a mouse eye, 

using Image J software, were extracted which served as the basic building block of our work. X-

Y coordinates define different layers that are present in the mouse eye. Ocular dimensions of 

four strains of mouse eye were given to us, viz. a viz. C57BL, C57L, CE and CZECH. Strain is 

defined as the genetically mutated species. Further each strain has number of specimens that 
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contain ocular data. Table 1.1 summarizes the different strains and names of their corresponding 

specimens used in our work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1: Summary of Different Strains of Mice used in Experiment. 

 

In order to make schematics as well as to obtain the ocular parameters of each specimen 

of strain of the mouse eye we have to build a model that is capable of inputting the ocular 

dimensions and performs the former task. This tedious job was performed by writing number of 

programs using MATLAB. Those programs written in MATLAB are smart enough that they are 

able to locate the file where all the ocular dimensions of the different specimens of all the strains 

are present. After locating files, the data for each surface of an eye is fetched and schematic of an 

Strains of 

Mice Eye 

Number of 

Specimens 

Names of the 

Specimens 

 

C57 BL 

 

 

6 

1. M1_L     2. M2_L 

3. M3_L     4. L1_L 

5. L4_L      6. # M1_L 

 

C57 L 

 

 

5 

1. 10-1        2. 23-1 

3. 28-1        4. 33-1 

5. 38-1    

 

CE 

 

4 

1. 14-1        2. 27-1 

3. 36-1        4. 43-1 

 

CZECH 

 

4 

1. 11-1        2. 15-1 

3. 22-1        4. 28-1 
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eye with 6 refractive surfaces is plotted with the help of sophisticated code. Figure 1.1 below 

shows the schematic of an eye drawn from the ocular coordinates of an eye. Not only the image 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic of an eye with all 6 refractive surfaces. From left to right the name of 

the surfaces are anterior cornea, posterior cornea, anterior lens, posterior lens, anterior 

retina and posterior retina respectively.  

 

containing 6 layers is drawn but also other important ocular parameters, such as radii of 

curvature, center points of curvature, thicknesses of different surfaces etc., required for the ray 

tracing were obtained. Circular points overlaying on each surface represents the actual raw points 

or we can say the X-Y coordinates of an eye. Dashed line passing through all surfaces is an 

optical axis and dotted colored points on optical axis represent centers of curvature of 

corresponding layers. With the help of algorithms we have performed the following steps in 

sequence: 
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1. Plot the X-Y coordinates. 

2. Smooth curve fitting. 

3. Calculated goodness of the curve fitting.  

4. Calculated ocular parameters (Radii of Curvature, Thicknesses of surfaces, Center Points) 

5. Average
*
 of radii of curvature and thicknesses of surfaces. 

6. Schematic of an eye averaged over all specimens of single strains.  

Note: *As already mentioned that we have 4 strains of mice and each strain has number of 

specimens. In step 5 we have averaged all the specimens of corresponding single strain.  

 

1.3 Image processing 

 Now we have drawn the schematics of an eye using the X-Y coordinates of ocular 

parameters, next thing to do is validate the model that is built with the help of code using 

sophisticated algorithm. As already mentioned, that these ocular coordinates were extracted from 

the MRI images of a mouse eye, so we can compare the original MRI images with the images 

that were drawn by our model. For that purpose we wrote program that could overlap the image 

of the schematic that we built and the MRI image of the corresponding specimen of the mouse 

eye.  

The concept of overlapping of the two images helped us to visually analyze and detect if 

the model built for the schematic of an eye from ocular coordinates suffices or not. Figure 1.2 

shows the overlapped image of MRI image of an eye with different layers and the schematic of 

an eye of that is generated from the simulation of our model. We can see that both the images are 

overlapping perfectly with minor offset at the edges which could be accounted for the error while 

extracted ocular coordinates.      



8 
 

 
 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Overlapping of two Images. Red part shows the layers generated by our model 

and behind that is MRI image of a mouse eye.  

 

1.4 Ray Tracing 

Ray tracing is a method used to determine paths traveled by waves or particles. These 

waves travel with certain velocity while passing through different media. These media could 

more precisely be characterized by refractive indices. The media are separated by different 

refractive surfaces. One is able to see an object, when beams of light hit an object and after 

adhering to basic laws of reflection as well refractions, the rays enter in our eyes through pupil. 

The light rays that are going to enter in our eyes are about to follow the laws of optics and hence 

we would be able to see the object. As the behavior of perception of eyes of all living creatures is 

similar, so is the case of mice eyes. There are three different models of a mice eye that are 



9 
 

 
 

proposed by Remtulla and Hallet [6]. Those three models of mouse eye are “Homogeneous” 

Model, “Heterogeneous” Model and “Core” Model. All three models are responsive to small 

errors in r, tt, and n. The ametropia of an eye and geometrical parameters as well are calculated. 

Out of those above mentioned models we have considered homogeneous model as it is less 

complicated and requires fewer measurements. 

A homogeneous model of an eye has 6 refractive surfaces. The name of the layers from 

front to back of an eye are arranged in the order of anterior cornea, posterior cornea, anterior 

lens, posterior lens, anterior retina and posterior cornea. The main volume of an eye is occupied 

by lens, followed by vitreous chamber, aqueous chamber and retina respectively. As image 

formation principle applies to any combination of convex lenses or any living creature so is the 

case with rodents. Snell’s law comes into play as we talk of image formation through different 

planes with different refractive indices. After obeying all the physical laws of optics the rays 

finally meet at the back surface of retina or more precisely sensory part of retina. The optic 

nerves carry the information to central processing unit of brain and after processing the 

information rodents can finally see the image formation 

A cone of rays emanating from source, which is at infinite distance from the lenses and 

the rays that travel parallel to optical axis are called as paraxial rays. Paraxial rays after travelling 

through different surfaces of any eye meets at a focal point of an eye. For a perfect eye (A=0 

diopters) all the rays converge at sensory point of posterior retina and that eye is free of any 

refractive error. In myopic eye (A<0 diopters) the rays converge in front of retina, whereas in 

case of hyperopic eye (A>0 diopters) rays meet behind the retina. Figure 1.3 shows the 

schematic of a perfect eye where paraxial rays are entering an eye and after refractions through 

different surfaces the rays are focusing at focal point of an eye.  
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Figure 1.3: Paraxial rays that are entering in an eye are finally focusing at focal point. The 

origin of paraxial rays is at -∞. 

 

The ray tracing model in our studies is based on exact solutions for the rays in accordance 

with Snell’s law of refraction and it is not limited to paraxial rays only. With properly quantified 

output the same ray tracing core is suitable for studying wide-angle aberrations, image distortion, 

and other imaging imperfections. A particular task at the moment was to study eye ametropia in 

paraxial approximation, so only close-to-axis rays were considered. 

 

1.5 Variational Analysis 

We know that how the rays ideally would converge at the focal point of an eye and hence 

a sharp image is formed. But ideal condition is just an imagination and we have to go beyond 
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this imagination as ideal conditions do not prevail all the time. As we had calculated ocular 

parameters from the schematics of an eye and also we know how the ray tracing is performed, 

the next task to be performed is to analyze that how the rays would be focused if we would 

incorporate all those calculated parameters. The rays can focus at the retina which we say is an 

ideal condition, but sometimes it could be in front of retina (photoreceptor area) or behind the 

retina.  

The rays that converge in front of retina or had a focal point in front of retina is 

associated with the defect known as myopia (short sightedness). Hyper-myopia is a condition 

when the focal point is behind the retina. We can notice that there is some error associated with 

an eye which is usually called as a refractive error of an eye. In other words we can also call it as 

“Ametropia”. Using all the 16 ocular parameters which are summarized in table 1.2 we can 

calculate Ametropia (A) or refractive error of an eye.  

Ametropia as a function of 

Radii of Curvature of Thickness or Depth of Refractive Index of 

1. Anterior Cornea (rac) 

2. Posterior Cornea (rpc) 

3. Anterior Lens (ral) 

4. Posterior Lens (rpl) 

5. Anterior Retina (rar) 

6. Posterior Retina (rpr) 

1. Cornea (ttc) 

2. Aqueous Chamber (ttaqc) 

3. Lens (ttl) 

4. Vitreous Chamber (ttvc) 

5. Retina (ttr) 

1. Cornea (nc) 

2. Aqueous Chamber (naqc) 

3. Lens (nl) 

4. Vitreous Chamber (nvc) 

5. Retina (nr) 

 

Table 1.2: Tabulated above are ocular parameters that are used for calculation of 

Refractive error. 
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Hence we can say that ametropia is a function of 16 parameters and can be represented by 

notation as shown below in Eq. 1.1.  

A = f (rac, rpc, ral, rpl, rar, rpr, ttc, ttaqc, ttl, ttvc, ttr, nc, naqc, nl, nvc, nr)  (1.1) 

 

In literature, as already discussed everyone had experimented on different animal models 

and discussed about the refractive error and mostly the work is done on mice models [3-22]. The 

values of refractive error calculated are not same even in the same strains of mice. Some of the 

researchers say that C57BL/6 mice have refractive errors close to zero diopters [12-19] while 

others say that mice of same strain are myopic or hyperopic [5, 8, 20-22]. Even though there is 

so much variability in the refractive errors no one has ever tried to qualitatively analyze the 

factors that are affecting the refractive state of an eye. This qualitative analysis will not only 

allow us to detect the parameters which are responsible for variable refractive error but it would 

also help us in better understanding the optics of an eye as well as refractive state. 

 This concept leads us to do “Variational analysis”. As the name indicates ocular 

parameters are varied and the results for ametropia are obtained as a result of this variation. In 

variational analysis one out of the 16 above tabulated ocular parameters is incremented by a 

small variable value, while keeping all other fixed. Let us assume that the ametropia calculated 

by above step is called as A1 and the original ametropia is A. Thus the difference between 

original ametropia A and A1 gives us the change in value of ametropia due to increment of 

single ocular parameter. This change in value of ametropia is called as the derivative of that 

ocular parameter. For better understanding we can assume that we are incrementing the radius of 

curvature of anterior cornea by a small value. Thus the derivative for radius of curvature anterior 

cornea can be represented by Eq. 1.2. 
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dA_drac = A1 – A    1.2 

 

  Ocular Parameters   of                                                    DERIVATIVES 

 

 

 

Radius of curvature of 

1. Anterior Cornea 

2. Posterior Cornea 

3. Anterior Lens  

4. Posterior Lens 

5. Anterior Retina 

6. Posterior Retina 

dA_drac 

dA_drpc 

dA_dral 

dA_drpl 

dA_drar 

dA_drpr 

 

 

Thicknesses or depths 

of 

1. Cornea 

2. Aqueous Chamber 

3. Lens  

4. Vitreous Chamber 

5. Retina 

dA_dttc 

dA_dtaqc 

dA_dttl 

dA_dttvc 

dA_dttr 

 

 

Refractive Index of 

1. Cornea 

2. Aqueous Chamber 

3. Lens 

4. Vitreous Chamber  

5. Retina 

dA_dnc 

dA_dnaqc 

dA_dnl 

dA_dnvc 

dA_dnr 

 

Table 1.3: Summary of representation of derivatives of ocular parameters.  
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This variational analysis allowed us to thoroughly investigate the parameters that have great 

impact on ametropia and can be categorized as crucial or critical parameters. Also we can detect those 

ocular parameters which have little or practically no impact on ametropia and are less critical. Table 1.3 is 

constructed to represent all the possible derivatives of an eye for the respective ocular parameter.  
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CHAPTER 2 

SCHEMATICS AND GEOMETRY OF EYE 

A schematic of an eye represents the geometrical aspect where all the information regarding 

radius of curvature, center of radius of curvature, thicknesses of different surfaces and other 

optical properties can be acknowledged. It refers to the mathematical model that is built on the 

basis of optical features of an eye. A simple basic model is deprived of all the complex situations 

such as aspheric surfaces and is built on few assumptions. Schematic of an eye models are mere 

approximations to real eyes as they only use spherical surfaces and constant refractive indices of 

lens. However a real eye has aspheric surfaces and gradient refractive index of a lens. “Finite 

aperture” or “wide angle” schematic eyes are those in which schematic of eyes are made accurate 

by introducing one or more aspheric surfaces along with a lens having gradient refractive index.  

Based on all those assumption many models of schematic of eye are present in literature and 

some of the models are discussed in the preceding section.   

 

2.1 History of Eye Modeling 

 Ever since the first model of an eye which was given by Christian Huygens, many models 

of an eye have been proposed till date. The simplified Gullstrand model, theoretical eye of 

LeGrand and simplified theoretical eye of LeGrand [29] are considered to be simple models 

representing an eye.  All three models are alike in terms of radii of curvatures, thicknesses of 

surfaces and refractive indices of medium except few changes. In first two models cornea and 

anterior chamber have a distinguishable boundary and lens is represented by simple pair of 

surfaces having finite thickness, whereas in later case the cornea and anterior chamber are fused 

having finite thickness and is considered to have an ideal disappearing thickness.  
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In full Gullstrand eye model [30] the lens is consisted of a kernel and a shell capsule and 

it is characterized by four refracting surfaces. The refractive power is changed by variations in 

radii and distances. The eye model of Walker [31] is similar to simple Gullstrand model with 

minor changes in the values of ocular parameters. Generalized reduced eye [30] is a continuation 

of the early work of reduced eye model of Emsley [32], where in later case it was assumed that 

only one refracting surface is required to explain the behavior of an eye. In generalized reduced 

eye front surface is made aspherical in addition to introduction of pupil to realize the field effects 

description.     

Models given by Kooijman [33] and Navarro [34] consist of four aspherical surfaces and 

with the help of this model they were able to explain accommodation, chromatic behavior and 

spherical aberrations. In extended work of I. Escudero-Sanz [35], the wide angle properties of an 

eye were also considered. The eye model given by Liou-Brennan [36] also uses aspherical 

surfaces along with dual gradient media and described spherical aberration and disorder of eye, 

astigmatism flawlessly. Although all the above mentioned models have difference in their 

overlay but still there is uniqueness in terms of the dimensions of ocular parameters that are cited 

by everyone.   

Most of the models which are discussed above have mentioned four refractive surfaces, 

i.e., two for cornea as well as two for lens. We have worked on a model that is similar to 

Gullstrand eye, where we had elaborated the model by distinguishing the anterior and posterior 

parts of every surface. Each surface of an eye has finite thickness and is separable by definite 

boundary. Also there is retinal part that is included in order to accurately observe the behavior of 

an eye and hence the defects associated with that. Figure 2.1 shows the structure of an eye with 

all the 6 layers that are used in our case. 
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Figure 2.1: Schematic of a human eye consisting of different surfaces and other parts [40]. 

[Image taken from Optics of Human Eye by W.N. Charman and later edited] 

 

2.2 Schematic of an eye 

 An eye is considered to be the most complex organ of a body where so many functions 

are performed by different parts of an eye in order to see an Image of an object. Talking about 

the vision the main parts of an eye that are responsible are cornea, lens and retina. In figure 2.1 

we have mentioned anterior and posterior part of each layer. Anterior means the first part of 

layer and the posterior refers to the later part.  

Cornea is the outer most and transparent part of an eye that contains iris, pupil and 

anterior chamber. Along with the help of anterior chamber and lens the light is refracted. Around 
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2/3 of the total refractive power is accounted by cornea. The radius of curvature of cornea is 

positive with variable thickness in different animal models. For an instance the corneal thickness 

of rat eye and radius of curvature of anterior cornea, reported by Chaudhuri et al [5] is 156µm 

and 3052µm respectively, whereas for mouse eye the thickness of cornea and radius of curvature 

is 93µm and 1517µm respectively as reported by Remtulla and Hallett [6]. Cornea has a 

refractive index which is higher than air, thus light coming from outside bends towards optical 

axis of an eye. 

Generally speaking lens of an eye is biconvex crystalline structure by nature and is 

transparent to light. Lens has an ability to change the shape which accounts for change in the 

focal distance of the eye. This ability allows it to focus on distant objects. A real sharp image 

could be then realized at retina. Accommodation can be described as analogous to camera, where 

by adjusting the lens we can see distant object clearly. The Anterior lens is more flat than the 

posterior side of the lens. Anterior side has a positive radius of curvature whereas posterior side 

has negative radius of curvature.  

Retina is the innermost light sensitive layer of the eye and is mostly build of layers of 

neurons. When the light falls on this layer, electrical and chemical events are initiated and nerve 

impulses are triggered. Optic nerves present next to retinal layer acts as a messenger and send the 

information to visual area of the brain. The visual cortex or visual part of the brain then 

processes the image and finally we are able to see the image. Likewise all the other surfaces have 

definite thickness, radii of curvature and refractive index so is the case of retina. Anterior as well 

as posterior retina has negative radius of curvature.   
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2.3 Modeling of an eye 

 In the preceding sections we have discussed different models of an eye and structure of 

an eye. Now we are ready to make a model that would appropriately draw all the 6 layers present 

in the eye. The most important part and beauty of the model lies in the fact that along with the 

schematic of an eye it also calculates the ocular parameters, i.e., radii of curvatures, centers of 

radii of curvatures, thicknesses of all the surfaces, averages of radii of curvatures, averages of 

depths of different chambers of eye. The above mentioned information is also written in a text 

file, all the images of plots are auto saved in the respective directory. The modeling of an eye is 

explained in a sequential manner as below.  

 

2.3.1 Plot X-Y Coordinates 

We were given ocular coordinates or X-Y coordinates of different layers of an eye in an 

excel sheet. Once we had defined the target eye to be plotted, the custom made program in 

MATLAB, will fetch the co-ordinate points from the respective excel sheet for each layer of an 

eye. For illustration table 2.1 below shows data (coordinates) for one of the layers that is present 

in the file. The specimen is M2_L taken from C57BL strain of mice. The data in table 2.1 

represents the X-Y coordinates of posterior corneal layer.  

 If we carefully look at the data which is provided to us is humungous. There are total of 

19 eyes of different mice strains and in each schematic of an eye we have 6 layers. In total we 

have 114 layers that need to be plotted. Each layer has at least 28 numbers of rows. In order to 

process such a large data we have come up with an algorithm, which automatically takes data of 

6 layers for particular specimen of an eye and then plot the schematic of an eye based on that 

data.  
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No Eye X Y 

1 M2_L_TIF.tif 8868.6 4773.6 

2 M2_L_TIF.tif 8798.4 4703.4 

3 M2_L_TIF.tif 8704.8 4609.8 

4 M2_L_TIF.tif 8611.2 4539.6 

5 M2_L_TIF.tif 8494.2 4469.4 

6 M2_L_TIF.tif 8353.8 4422.6 

7 M2_L_TIF.tif 8190.0 4352.4 

8 M2_L_TIF.tif 8073.0 4329.0 

9 M2_L_TIF.tif 7932.6 4282.2 

10 M2_L_TIF.tif 7815.6 4282.2 

11 M2_L_TIF.tif 7698.6 4282.2 

12 M2_L_TIF.tif 7558.2 4282.2 

13 M2_L_TIF.tif 7464.6 4305.6 

14 M2_L_TIF.tif 7371.0 4329.0 

15 M2_L_TIF.tif 7254.0 4375.8 

16 M2_L_TIF.tif 7137.0 4422.6 

17 M2_L_TIF.tif 7020.0 4492.8 

18 M2_L_TIF.tif 6926.4 4563.0 

19 M2_L_TIF.tif 6832.8 4609.8 

20 M2_L_TIF.tif 6786.0 4656.6 

21 M2_L_TIF.tif 6739.2 4703.4 

22 M2_L_TIF.tif 6669.0 4797.0 

23 M2_L_TIF.tif 6598.8 4890.6 

24 M2_L_TIF.tif 6528.6 5007.6 

25 M2_L_TIF.tif 6481.8 5124.6 

26 M2_L_TIF.tif 6435.0 5218.2 

27 M2_L_TIF.tif 6388.2 5311.8 

 

Table 2.1: X-Y coordinates of Posterior Corneal Layer of M2_L mice of C57BL. 
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Figure 2.2 shows the plotting of X-Y coordinates of 6 layers representing schematic of an eye. 

Also if we notice the plot is tilted as it is drawn as per the ocular coordinates and this could be 

accounted of the fact that the data extracted from MRI images could be in any orientation.  

Figure 2.2: Schematic of an eye of #M1_L specimen of mice strain C57BL. 

 

Along with the layers the small circular points on top of each layer represents the X-Y 

coordinates (raw points) of the respective layer. The first layer i.e., anterior cornea does not have 

any raw points, instead only thickness of the cornea is given to us. The raw points for the anterior 

cornea cannot be extracted because the outer layer is exposed to air and thus while taking MRI 

image the contrast ratio is very poor. The dotted line passing though the center of each layer is 

the optical axis of an eye.  
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 We can see that image in figure 2.2 is disoriented and in order to change the orientation 

of the schematic, so that it looks like as if this is a virtual eye, we have to transform it from one 

co-ordinate to another. For that purpose we have calculated the angle by which it has to be 

shifted. After calculating the angle we have to estimate translation in terms of coordinates. 

Figure 2.3 shows an image of schematic of an eye after transformation. Also the first layer is at 

origin of the co-ordinate system i.e., coordinates of anterior cornea are (0, 0). The overall size of 

an eye is approximately 3000µm.  

  

Figure 2.3: Image of an eye of #M1_L specimen of mice strain C57BL after transformation. 

 

2.3.2 Smooth Curve Fitting 

 While plotting the schematics of an eye, in figure 2.3 we can see that some of the circular 

points are not lying exactly over the layer. The reason being, that we need maximum points to be 
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covered by the line and that two in curvy manner. In order to accomplish this task we followed 

least square regression approach. Linear regression is used to obtain best fit between the points.  

 

2.3.3 Goodness of Curve 

 Least square fitting was used for plotting the raw data points. To verify how good the fit 

is we have calculated R
2 

of arc. R
2 

of arc returns a real value whose value is ≤ 1. If the fitting of 

the curve is good its value comes out be very close to 1 approximately .99 and for bad curve 

fitting its value could fall way behind one. Eq. 2.1 shows the formula calculate R
2 

of arc. 

R
2
 = 1  

     

     
     (2.1) 

Where SSerr is Sum of Squares for error and is given by Eq. (2.2) 

SSerr = (   ) (  
   

   
 

  
 )   (2.2) 

Sy
2
, Sx

2
 is variance of y and x respectively and Sxy

2
 is covariance of x and y.  

SStot is total sum of all the events of squared difference between each event from overall mean 

and is represented by Eq. (2.3) 

SStot = ∑ (      ̅)
 
   

2    
(2.3) 

Where   ̅is the mean calculated over all values of Yi.  

 

2.3.4 Centers of Curvature, Radii and other Ocular Parameters 

 In preceding steps we have drawn the schematics of an eye, performed smooth curve 

fitting and then calculated R
2
 of arc to find how good the fit is. The next step that would be 

required for the modeling of an eye and ray tracing in the proceeding chapters is calculation of 

radii of curvature, center of radii of curvature and distances between successive layers of an eye 
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(depths of different surfaces). All these steps are realized using different equations of geometry 

and mathematical calculation.  

A) Center of curvature 

 We have number of points through which the line is passing resulting in an arc and using 

sophisticated code we had calculated center of curvature from all these points. But to better 

illustrate the process of calculation of center of curvature we are assuming three points as of now 

i.e. initial point (Xo, Y0), middle point (Xn/2, Yn/2) and last point (Xn, Yn).  

If we draw a normal from center of the curve of circle, then the point lying at the normal 

far away from the center of the curve is called as the center of curvature. In figure 2.4 point Pc is 

center of curvature. The approach below shows the calculation of center of curvature. 

 

             

 

 

 

 

Figure 2.4: Arc from where co-ordinate points (Xc, Yc) for center of radii of curvature are 

calculated using geometry. 

 

First bisecting Point or midpoint Pb1 through points (X0, Y0) and (Xn/2, Yn/2) is given as  

Pb1 = (
      

 ⁄

 
 
      

 ⁄

 
) = (Xb1, Yb1)  (2.4) 

Second bisecting Point or midpoint Pb2 through points (Xn/2, Yn/2) and (Xn, Yn) is given as  
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Pb2 = (
  

 ⁄
    

 
 
  

 ⁄
    

 
) = (Xb2, Yb2)  (2.5) 

Slopes of lines L1 and L2 are represented by ML1 and ML2 is given by Eq. (2.6) and Eq. (2.7) 

respectively: 

ML1 = 
  

 ⁄
    

  
 ⁄
    

    (2.6) 

ML2 = 
      

 ⁄

      
 ⁄

    (2.7) 

In order to calculate equations for lines or to plot lines Lb1 and Lb2 we would first find the slopes 

of the lines Lb1 and Lb2 which is inverse to the negative of slope ML1 and ML2 respectively.  

These slopes are represented by notation MLb1 and MLb2 and are given by Eq. (2.8) and Eq. (2.9) 

respectively: 

MLb1 =   
 

   
    

  
 ⁄
    

  
 ⁄
    

 =  
      

 ⁄

  
 ⁄
    

  (2.8)  

  

MLb2 =   
 

   
    

      
 ⁄

      
 ⁄

 =  
  

 ⁄
    

      
 ⁄

 (2.9) 

Once we have the slopes by using equation of line we can find center coordinates which are X-Y 

coordinates of curvature. In other we call it as center of curvature. Equation of lines for Lb1 and 

Lb2 are given by Eq. (2.10) and Eq. (2.11) respectively.  

 

Lb1(X): Y = MLb1(X – Xb1) + Yb1   (2.10) 

    Lb2(X): Y = MLb2(X – Xb2) + Yb2   (2.11) 

At X = Xc;  
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Y = MLb1(Xc – Xb1) + Yb1 = Y = MLb2(Xc – Xb2) + Yb2  (2.12) 

Xc(MLb1 – MLb2) = - MLb2Xb2 + Yb2 + MLb1Xb1 – Yb1   (2.13) 

Xc = (MLb1Xb1 – Yb1) – (MLb2Xb2 – Yb2) / (MLb1 – MLb2)  (2.14) 

Thus Eq. (2.14) gives value for center of coordinates for X. Inserting values for XC in Eq. (2.15) 

would give values for Yc.  

Lb1(Xc): Yc = MLb1(Xc – Xb1) + Yb1   (2.15) 

 

B. Radius of Curvature 

 Radius of curvature is defined as the measurement of radius of the circular arc of curve, 

which defines the curve appropriately. If we know the locations of X-Y coordinates then we can 

calculate radius of curvature. Radius of curvature could be negative towards the concave side of 

lens and is positive towards the convex side of lens. Referring figure 2.4 and using mathematical 

equations of circle, we can find the radius of curvature as represented in Eq. (2.17).  

Provided the X and Y coordinates equation of circle is given as: 

 

R
2
 = X

2
 + Y

2
       (2.16) 

R = √           (2.17) 

 

C. Depths of Surfaces 

 Depth of the surface or thickness of surface is defined as the distance between successive 

surfaces. Or we can say that depth is defined as the distance between locations, when the arc of 

first surface bisects the optical axis and the arc of second surface bisects the optical axis. For 

better illustration if we look at the figure 2.5 we have surfaces from S0 to S5 which corresponds to 
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6 layers of eye. Starting from first layer S0 which represents first layer i.e., anterior cornea, 

distance between anterior cornea S0 and posterior cornea S1 is called as “Corneal Depth”. 

Similarly distance between S1 (posterior cornea) and S2 (anterior lens) is known as “Aqueous 

Chamber Depth”. If we keep on going like this the respective depths would be “Depth of Lens” 

or thickness of lens, “Vitreous Chamber Depth” and “Retinal Depth” or thickness of cornea.  

  

  

 

 

 

 

 

 

 

 

 

Figure 2.5: Schematic and Summary of an eye with ocular parameters. Surfaces are 

notated by letter S. S0, S1, S2, S3, S4, S5, are Surfaces of anterior cornea, posterior cornea, 

anterior lens, posterior lens, anterior retina and posterior retina respectively. Thickness or 

depths are represented by tt and tt1, tt2, tt3, tt4, tt5 are thicknesses of cornea, aqueous 

chamber, lens, vitreous chamber and retina respectively. C represents center of curvature 

and is clear from subscript Cc, Cal, Cpl, Car, Cpr and center of curvatures for cornea, 

anterior lens, posterior lens, anterior retina and posterior retina. 

 

Note: We can see that there are no separate centers for anterior and posterior cornea because for 

anterior cornea we don’t have ocular coordinates but just thickness that is provided to us.  
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Table 2.2 gives an overview and representation of all the ocular parameters that are calculated in 

the modeling of an eye. 

 

 

Properties 

NOTATIONS FOR SURFACES 

Anterior 

Cornea 

Posterior 

Cornea 

Anterior 

Lens 

Posterior 

Lens 

Anterior 

Retina 

Posterior 

Retina 

Center of 

Curvature 

 

                   Cc 

   Cal      Cpl      Car       Cpr 

Radius of 

Curvature 

rac rpc   ral      rpl      rar       rpr 

Surfaces S0 S1     S2       S3       S4      S5 

Thickness 

Or Depth 

                  tt1                            tt2                               tt3                             tt4                            tt5  

         tt1 = S1 – S0         tt2 = S2 – S1         tt3 = S3 – S2         tt4 = S4 – S3        tt1 = S5 – S4                                                                                                                  

 

Table 2.2: Summary of notations used in the model. 

 

2.3.5 Average of Ocular Parameters 

 Meanwhile geometry of an eye has been built for each specimen of mice strain using 

mathematical approach, the next step to be performed is average of all ocular data for each strain 

over all specimen of an eye. This step is incited by the fact that that there are different numbers 

of specimens for same strain of mice for which the schematics are plotted and we can average all 

the data and can plot one eye for single strain. Thus averages of radii of curvatures, centers of 

curvatures and depths of the surfaces are calculated.  

Average over any set of numbers (n1, n2 … ni) is given as sum of values of all numbers 

(n1 + n2 + …. + ni) in a set divided by the total number present (m) and is given by Eq. (2.18) 

Average = 
 

 
∑   

 
       (2.18) 
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As an example we can take first strain (C57BL) of mice where we have 6 specimen of eye and 

the layer for which we would elaborate the concept of average for ocular surfaces is “Anterior 

Cornea”.  

The radius of curvature of anterior cornea rac averaged over all specimen of the first strain of 

mice can be expressed as shown in Eq. (2.19) and Eq. (2.20) 

Average (rac) = 
                              

 
  (2.19) 

Average (rac) = 
 

 
∑     

 
       (2.20) 

Similarly we can obtain radius of curvatures for other 5 surfaces viz. z viz. rpc, ral, rpl, rar and rpr 

for posterior cornea, anterior lens, posterior lens, anterior retina and posterior retina respectively. 

 

Thickness of Surface of Anterior cornea is averaged over all eyes of the single strain of mice 

and is represented as shown in Eq. (2.21) and Eq. (2.22) 

Average (tt1) = 
                    

 
    (2.21) 

Average (tt1) = 
 

 
∑    

 
       (2.22) 

 

Same approach is followed for centers of curvatures and Cc (Xi, Yi) is given as: 

Average (Cc1) = 
                    

 
   (2.21) 

 

Average (Cc1) = 
 

 
∑    

 
       (2.22) 

 

 



30 
 

 
 

2.3.6 Average Schematic of an Eye 

 Since all the ocular parameters have been averaged over all specimens of single strain, 

we can also draw a single schematic of an eye of one strain. Figure 2.6 below shows one 

schematic of strain C57BL averaged over all the eyes of those specimens.  

Figure 2.6: Schematic of an eye of C57BL mice strain drawn as a result of all the ocular 

parameters averaged over all 6 specimens of the same strain.   
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CHAPTER 3 

IMAGE PROCESSING 

Image processing may be defined as the process in which an image is input and output of an 

image could be in an image itself or data in terms of numbers representing an image. In most of 

the cases image is a 2 dimensional containing data as rows and columns and image processing is 

considered as processing of data in two dimensions. In real world an image can be represented as 

M(X, Y). M is the amplitude of the quantity which is a function of the variables, X and Y co-

ordinates.  The techniques involved in processing of an image are similar as if we have two 

dimensional signals in a space.  

 Image processing in our work is done in terms of superimposing two images. The first 

image is schematics of an eye obtained as a result of modeling of eye which is explained in the 

previous chapter, and the second image is the MRI image of an eye from where the ocular 

parameters (X-Y Co-ordinates) were extracted. We can say that there should not be much 

difference in two images as the former is a result of the second image as schematic is drawn from 

the co-ordinates of MRI image. We have superimposed two images to visually analyze if the 

layers of both the images are coinciding with each other.   

 Many algorithms have been proposed till now for image processing and in particular 

when talking of images having boundaries, as in the case of schematic of an eye that contains 

different layers, edge detection [37, 38, 39] is appropriate way of solving the problem. First and 

the foremost step is to find the Region of Interest (ROI) to be processed in whole object. After 

the boundary of the object is detected, extract the information and then process the extracted 

information. Processing of the extracted information could imply that the boundary of the image 

is achieving certain target set forth in user defined problem.  
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 In our case we have used simple concepts of image processing instead of edge detection 

algorithms to trivialize the problem of overlapping two images. Due to certain limitations of 

available resources we have decided not to approach the problem using complex edge detection 

algorithms. The primary reason was that MRI images of the samples do not have very well 

defined sharp boundaries and the contrast ratio is also very low. Secondly for overlapping of two 

images to get composite image (MRI and generated schematics of an eye with different layers), 

that is bound to yield a secondary confirmation of the correctness of the approach that we have 

followed, we can simply redraw the plots on the original image, of course with the help of 

sophisticated algorithm and bypassing the use of many complex algorithm for the same. The 

algorithm written by us is converting the MRI images into RGB and image for schematic of an 

eye consisting of 6 layers, drawn from raw points is binary.  

Formation of composite image or overlapping of an image is performed with the help of a 

program that is written in MATLAB. It takes the MRI image of the targeted eye of mice strain 

then it looks for the targeted image that is created by modeling of an eye. After loading the 

images, program uses the MRI image as a background and plots the layers of the schematic of 

the model that we built. The process of Image processing was executed step by step in the 

following manner.  

 

3.1 Locate the images   

The MRI images of all the specimens of every strain are given to us by School of 

Medicine, Detroit, for the comparison with the images of schematic of an eye generated by us. 

The program written would map both the images or in other words we can say that program 

would locate the images which are present in their respective folders. For an example if we want 
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to compare the image of schematic of eye #M1_L of C57BL strain it would first scan for the 

directory where our model has auto saved all the images of schematic and tag it. Then it would 

move on to other directory where our MRI images are present and would locate and tag the 

targeted schematic of an eye. 

 

3.2 Rotation of MRI image and overlapping of two Images 

 In the previous chapter we have explained the schematic of an eye was disoriented as it 

was not normal to an eye and for correct orientation we have to apply an algorithm. Images of 

MRI confirm the claim as we can see them.  

 

 

 

 

 

 

 

 

 

Figure 3.1: The MRI image of an eye. Along with the eye ball other surrounding tissues and 

blood vessels are also visible. 

 

One of the images is shown in figure 3.1 where we can see that aperture of an eye faces 

upside and we have to rotate the image by certain degree in order to imagine the eye as is 
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discussed in literature. We can clearly see the six layers of an eye i.e., anterior cornea, posterior 

cornea, anterior lens, posterior lens, anterior retina and posterior retina, which we had defined 

earlier.  After rotating the MRI image by 90 degrees the aperture of an eye is on the left side as 

shown in figure 3.2. We can say that light is entering into eye having an optical axis and the ray 

is originated from x-axis. However for proper orientation there is need of co-ordinate shifting.   

  

 

 

 

 

 

 

 

 

 

Figure 3.2: Image after rotating 90 degrees to the left. 

 

As we have all the algorithms present to generate a smooth curve across the raw points the only 

thing that we are concerned is plotting the layers directly over MRI image. Before we can 

perform this step few challenges has to be met.  

 

1. The pixels size of MRI images and pixels of the images of schematic of an eye, which are 

generated by our model, are different. Dimensions of MRI images are 512 x 512 and images of 
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schematics of an eye are 1200 x 900. We have to match the pixel size to get the sense of 

superimposed image, which is a composite of two images, and also the layers that need to be 

plotted on MRI image exactly overlays. In order to accomplish this we have to shrink the size of 

an image to 512 x 512 so that plots of the schematics are 512 pixels and are thus lying exactly at 

the location where we have the eye ball as shown in figure 3.2.  

 

2. After shrinking the size we would construct the schematic of an eye layer by layer. Figure 3.3 

shows different layers of an eye.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Different plotted layers of an eye. 

 

3. Now we have the layers of an eye present and pixels size is also adjusted in such a way that 

both the images as shown in figures 3.2 and 3.3 are of same dimensions. The next step is to 

overlap both the images. Figure 3.4 shows the resulting image which is a composite of two 
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images and are superimposed on each other. The red layers represent all the 6 layers of an eye 

that has been discussed earlier and the background image is MRI image of an eye.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Overlapping of MRI image and layers drawn from the raw points. MRI image 

served as background and layers drawn in red are on top of that. 

 

4. In the image shown in figure 3.4, red layers lying over the MRI image, gives us an idea about 

the accuracy of our model. Also in image we can see that volume occupied by an eye ball is very 

less and surrounding area is covered with tissues, vessels, neurons and other essential parts. Thus 

region of interest (ROI) is very small and we need to somehow zoom in to see the images to 

visually analyze. It can be done in two ways we can zoom in manually and observe it or 

otherwise we can use two variables which would define the aperture of an eye and then 

accordingly the layers would be drawn with the pre-defined aperture. For example if the aperture 
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size is 2000µm then our program will draw the layers with Y co-ordinates as 1000µm above and 

-1000 below the optical axis. Y co-ordinates define the aperture size or the height of an eye ball 

through which light will enter the eye ball.  The resulting image is shown in figure 3.5 where we 

can see that ROI excluding all other parts of an eye.  

 

 

 

 

Figure 3.5: Composite image of Region of interest in an eye.  

 

3.3 Visual Analysis 

 Besides the low contrast ratio and other limitations we were able to build a composite 

image that is giving us an idea of accuracy of the modeling. We have the final image where we 

can analyze how good the modeling of an eye is. In figure 3.5 we can see that layers shown in 

red colors are exactly lying over the respective layers of an eye in MRI image. There is a part of 

an eye at the edges where the layer of an eye are not perfectly aligned which could be accounted 

for the reason that while extracting the raw points from the MRI images there could be possible 

error. The other reason could be that the least square regression line is not exactly taking the 

points and is drawing the line in neighborhood for good overall fit of the curve around the 

respective layers. But the claim of our correct approach is evident by the fact that while 

modeling of an eye we have calculated the statistical quantity, R
2 

of arc. Closer the value of R
2 

of 

arc to 1 better the curve fitting is and in our case for all the specimens of all 4 mice strains for all 

the layers the number is varying from 0.995 to 0.999.   
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CHAPTER 4 

OPTICAL MODELING AND RAY TRACING 

Ray optics which is a better name to be called upon instead of geometric optics is associated with 

the light ray. However as such entity “Ray” does not exist but it can be realized using the 

fundamentals of geometry which explains the formation of lines along the paths in which light is 

perceived. The concept of rays work in some cases but it fails in others situations, such as 

quantum physics, electromagnetic waves etc. With the help of corpuscular and wave theory rays 

have been defined. In corpuscular theory we talk of path of corpuscles and photons. But the 

difficult situation arises when energy densities approaches to infinity. In wave theory also the 

efforts are put forth to define rays as quantities which are associated with wave theory both as 

scalar as well as electromagnetic. Rays are tried to be explained as wavefront normal, pointing 

vectors, description of wave behavior in high frequency limit [41], quantum mechanical model 

[42], a discontinuity in electromagnetic field [43, 44].  

 In above models where we have tried to define rays, there are always some problems 

associate alongside, as there are many cases where vectors and wavefronts become too 

complicated or meaningless. One of the cases of such complications can be explained as 

interference of two coherent plane waves, where there is no sharp well defined region of 

wavefront at overlapping regions. In order to avoid the complications as a consequence of these 

models we would treat the tracing of rays as a mathematical model where the formations of rays 

is explained by using concepts of geometry and rays are simply lines arrived from equation of 

lines.  

 Geometric optics makes use of some other quantities such as refractive indices of 

surfaces along with other assumptions. Other assumptions could be properties of the surfaces, 
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such as spherical or aspherical and chromatic aberrations etc. Here we are limited to the 

modeling of an eye and we assume the surfaces are spherical. Also we would involve those 

parameters that are associated with the biconvex nature of the lenses. Those parameters are 

related to curvatures of lenses such as radius of curvatures of surfaces, thicknesses of surfaces 

and centers of radii of curvatures. Based on those assumptions we can say that we are going to 

build a ray tracing model in paraxial approximation in which the light would travel through 

different surfaces of the eye. The surfaces have positive as well as negative radii of curvatures as 

is typical in case of biconvex lenses.  

The light rays that are traveling along the optical axis of eye, would go through the 

phenomenon of refraction as well as reflection which is an ideal situation in optics. Along with 

the refraction there would be bending of light towards or away from the optical axis as the 

medium of the eye is not uniform. Talking of medium it specifies different refractive indices that 

are inherent properties of an eye. If we see one of the images of the eye we would see different 

cavities in the eyes and those cavities are filled with liquid which has certain refractive indices. 

This liquid filled in cavity is called as medium. Further following principles of Snell’s law [42, 

43] and equations of geometry the light rays travel the distance. Finally those rays converge at 

one point in an eye which is photoreceptive part of the eye and lies at retina.  

We can hence summarize this paraxial ray tracing as cone of light rays that are emanated 

from source (x = - ∞) and are traveling along the optical axis, enters through pupil into eye and 

passes through first two layers of an eye which are anterior and posterior cornea respectively. In 

conjunction with refractive index of cornea and aqueous chamber the rays refract to lens surface. 

The lens having two parts, anterior as well as posterior, and is filled with refractive index of 

medium along with the vitreous chamber (cavity between posterior lens and anterior retina) 
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focuses the rays at retina. Retina is the photoreceptive part of an eye which consists of neurons 

also has refractive index of medium and contributes in focusing of the light beams. The light 

beams when falls on the photoreceptive part, consisting of neurons, gets activated and sends 

signals to visual cortex of brain. This area then processes the information and we can see the 

image finally. In this image formation also other parameters are involved which are discussed 

later.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Schematic of an eye with different layers and their respective refractive indices.  

 

[Note: In above figure very few lines, before the first interface look not parallel to optical axis, 

because of limitation of drawing tools we have. But this is just an illustration and in real 

paraxial model rays model as shown in figure 4.2 rays are always travelling parallel to optic 

axis until the first interface]  

 

Figure 4.1 shows all the layers present in an eye from outer side to inner side of eye. 

These layers are acting as lenses having curvatures and with the help of refractive indices the 
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rays are bending as well as refracting at successive boundaries of the eye and finally converging 

at one final point which is called as focal point.  

 

4.1 Computational Model for Ray tracing 

 We have discussed above the different theories of defining the ray and the simplest 

approach of defining the ray tracing method. Also we have discussed how the rays enters through 

an eye and after phenomenon of refraction light travels through different surfaces and finally 

meet at a point known as a focal point. Above described model was an approximation of how the 

ideal case behaves. Talking of idealism means that all the parameters are adjusted in such a way 

that there is sharp point at retina i.e., photoreceptive part and hence a sharp image that we see 

after processing of information that is passed from photoreceptive area to visual cortex of brain.  

 We are studying the behavior of mouse eye here, thus in order to do ray tracing we 

should have all the parameters which are essential for the ray tracing. Those parameters are 

Radius of curvatures (r), Thicknesses or depths of surfaces, which we have already calculated 

while doing modeling of an eye, along with Refractive indices of media. These ocular parameters 

inserted in equation for lines, which are described in the later part, explains the paraxial model as 

well as ocular ametropia or refractive error of an eye.  

  

4.1.1 Ocular Parameters of Mouse and Rat eye: 

  Schematics as well as ocular parameters of rat and mouse eye have been given by 

many researchers. Hughes [3], Campbell and Hughes [4] and Chaudhuri et al [5] worked on rat 

schematics using ocular parameters reported in table 4.1. Remtulla and Hallett [6] and 

Schmucker and Schaeffal [7] worked towards schematic of mouse eye using ocular parameters 
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reported in table 4.2. The refractive indices were measured at different wavelengths. These 

ocular parameters would be used for the ray tracing, discussed in the upcoming section, and 

eventually ray tracing would lead us to find the refractive errors of an eye.   

Parameters 

 

Anterior          Posterior         Anterior         Posterior          Anterior         Posterior      

Cornea            Cornea             Lens                Lens                 Retina             Retina 

Radius  

(r, µm) 

 

Thickness 

 (tt, µm) 

 

Refractive 

Index (n) at 

Wavelength 

     (nm) 

  = 475 

 

  = 500 

 

  = 525 

 

  = 550 

 

  = 575 

 

  = 600 

 

  = 625 

 

  = 650 

3051 (rac)         2959 (rpc)          2535 (ral)          -2441 (rpl)         -3543 (rar)        -3706 (rpr) 

 

 

          156 (ttc)           708(ttaqc)           3814 (ttl)          1409 (ttvc)           217 (ttr)     

 

                  nc                       naqc                    nl                      nvc                     nr  

 

              

             1.3882                1.3381              1.6974               1.3379              1.3379    

 

             1.3864                1.3366              1.6925               1.3367              1.3367    

 

             1.3848                1.3355              1.6888               1.3358              1.3358   

  

             1.3838                1.3346              1.6854               1.3349              1.3349    

 

             1.3829                1.3336              1.6825               1.3341              1.3341    

 

             1.3821                1.3329              1.6798               1.3332              1.3332    

 

             1.3812                1.3321              1.6777               1.3322              1.3322    

 

             1.3804                1.3315              1.6761               1.3319              1.3319    

Table 4.1: Summary of Ocular parameters of rat Eye. Values of Refractive indices are 

taken at wavelengths ranging from 475nm to 650nm with regular interval of 25nm. 



43 
 

 
 

Parameters 

 

Anterior          Posterior         Anterior         Posterior          Anterior         Posterior      

Cornea            Cornea             Lens                Lens                 Retina             Retina 

Radius  

(r, µm) 

 

Thickness 

 (tt, µm) 

 

Refractive 

Index (n) at 

Wavelength 

     (nm) 

  = 488 

 

  = 544 

 

  = 596 

 

  = 655 

1517 (rac)         1463 (rpc)          1248 (ral)        -1155 (rpl)          -1643 (rar)         -1666 (rpr) 

 

 

            93 (ttc)             452(ttaqc)        2032 (ttl)           558 (ttvc)             237 (ttr)     

 

                  nc                     naqc                     nl                       nvc                     nr  

 

            

             1.4102               1.3390               1.6952               1.3390               1.3390    

 

             1.4060               1.3376               1.6778               1.3365               1.3365    

   

             1.4030               1.3353               1.6665               1.3343               1.3343 

 

             1.4015               1.3336               1.6590               1.3329               1.3329   

 

Table 4.2: Summary of Ocular parameters of mouse Eye. Values of Refractive indices are 

taken at wavelengths 488nm, 544nm, 596nm and 655nm. 

 

In our case as mentioned earlier we have worked on 4 different strains of mice having number of 

specimens. Similar tables consisting of ocular parameters of mice eyes for all the strains 

averaged over all specimen of each single strain that were calculated while modeling of an eye 

are also shown in table 4.3, table 4.4, table 4.5 and table 4.6. Refractive indices are taken at two 

different wavelengths 500nm and 510nm. 
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Parameters 

 

Anterior          Posterior         Anterior         Posterior          Anterior         Posterior      

Cornea            Cornea             Lens                Lens                 Retina             Retina 

Radius  

(r, µm) 

 

Thickness 

 (tt, µm) 

 

Refractive 

Index (n) at 

Wavelength 

     (nm) 

  = 500 

 

  = 510 

1507 (rac)         1410 (rpc)          1171 (ral)          -1119 (rpl)         -1390 (rar)       -1550 (rpr) 

 

 

               97 (ttc)            308(ttaqc)           1849 (ttl)          659 (ttvc)          239 (ttr)     

 

                 nc                       naqc                    nl                      nvc                     nr  

 

              

             1.4094                1.3387              1.6917               1.3387              1.3500    

 

             1.4085                1.3383              1.6880               1.3378              1.3500    

Table 4.3: Summary of ocular parameters of C57BL mouse strain averaged over all 

specimens  

Parameters 

 

Anterior          Posterior         Anterior         Posterior          Anterior         Posterior      

Cornea            Cornea             Lens                Lens                 Retina             Retina 

Radius  

(r, µm) 

 

Thickness 

 (tt, µm) 

 

Refractive 

Index (n) at 

Wavelength 

     (nm) 

  = 500 

 

  = 510 

1532 (rac)         1431 (rpc)          1144 (ral)          -1141 (rpl)         -1438 (rar)       -1605 (rpr) 

 

 

              101 (ttc)            309 (ttaqc)          1831 (ttl)          706 (ttvc)           233 (ttr)     

 

                 nc                       naqc                    nl                      nvc                     nr  

 

              

             1.4094                1.3387              1.6917               1.3387              1.3500    

 

             1.4085                1.3383              1.6880               1.3378              1.3500    

Table 4.4: Summary of ocular parameters of C57L mouse strain averaged over all 

specimens 
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Parameters 

 

Anterior          Posterior         Anterior         Posterior          Anterior         Posterior      

Cornea            Cornea             Lens                Lens                 Retina             Retina 

Radius  

(r, µm) 

 

Thickness 

 (tt, µm) 

 

Refractive 

Index (n) at 

Wavelength 

     (nm) 

  = 500 

 

  = 510 

1429 (rac)         1318 (rpc)          1200 (ral)          -1137 (rpl)         -1383 (rar)       -1609 (rpr) 

 

 

              111 (ttc)            306 (ttaqc)          1870 (ttl)          593 (ttvc)           239 (ttr)     

 

                 nc                       naqc                    nl                      nvc                     nr  

 

              

             1.4094                1.3387              1.6917               1.3387              1.3500    

 

             1.4085                1.3383              1.6880               1.3378              1.3500    

Table 4.5: Summary of ocular parameters of CE mouse strain averaged over all specimens 

 

Parameters 

 

Anterior          Posterior         Anterior         Posterior          Anterior         Posterior      

Cornea            Cornea             Lens                Lens                 Retina             Retina 

Radius  

(r, µm) 

 

Thickness 

 (tt, µm) 

 

Refractive 

Index (n) at 

Wavelength 

     (nm) 

  = 500 

 

  = 510 

1370 (rac)         1268 (rpc)          1172 (ral)          -1083 (rpl)         -1497 (rar)       -1677 (rpr) 

 

 

              102 (ttc)            267 (ttaqc)          1793 (ttl)          524 (ttvc)           218 (ttr)     

 

                 nc                       naqc                    nl                      nvc                     nr  

 

              

             1.4094                1.3387              1.6917               1.3387              1.3500    

 

             1.4085                1.3383              1.6880               1.3378              1.3500    

Table 4.6: Summary of ocular parameters of CZECH mouse strain averaged over all 

specimens 
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Since we have all the parameters that are required for the ray tracing we can now incorporate all 

those parameters in ray tracing formulae. We have worked on paraxial ray model which is 

characteristic of the incident rays that are coming parallel to the optical axis and the height of 

those rays is very small.  

 

4.1.2 Ray Tracing 

Ray tracing for both animal models rat as well as mouse eyes has been accomplished by 

making use of laws, fundaments and principles of paraxial optics [44] and a custom computer 

program written and run in MATLAB
®

 (The MathWorks, Inc., Natick, MA). Snell’s law [45, 46] 

and principles of optics were applied to obtain ray paths and the optical geometry of eye. The 

forth coming ray tracing model has been described is a result of exact formulae for Snell’s law 

applied at every interface, and thus it is acceptable for wide-angle ray tracing as well. In our 

work, the subject of study is restricted to analysis of paraxial ocular parameters, more precisely 

the ametropia and its dependence on the radii of curvature, relative distances, and refractive 

indices of the eye components.  

As is the requirement of the model and particular numerical implementation, the input ray 

that approaches the eye is parallel to the optical axis, and height of the ray from optical axis, yp, 

is set very small as compared to all the linear dimensions of the ocular components. With the 

help of program written in MATLAB, we have observed that with yp < 25µm, the exact ray 

tracing model begets the values for ametropia, as well as locations of all cardinal points, 

consistent with the models reported in [5-7]. 

 The parameters that are used for ray tracing model are radii of curvatures, thickness of 

ocular components and refractive indices of the ocular refractive media. Fig. 4.2 shows main 
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refracting surfaces, ocular components and paraxial schematic model of the emmetropic rodent 

eye. For the emmetropic eye, which has zero refractive error (ametropia, A), paraxial rays of 

light traveling parallel to the optical axis will converge at the focal point located at the 

photoreceptor layer of the retina. In the case of the myopic eye (A < 0), the focal point will be 

located in front of the retina, whereas in the case of the hyperopic eye (A > 0), the focal point 

will be located behind the retina. 

Paraxial rays that emanates from the source located at x = -∞, refracts through different 

surfaces converges at a particular point, which is defined as the back focal point. The 

corresponding plane to back focal point is known as the back focal plane (Bf). Similarly if the 

source is located at x = +∞ and the paraxial rays after number of refractions through surfaces, 

meet at a point in front of surfaces is called as front focal point and the plane corresponding to it 

is front focal plane (Ff). When the rays from front and back focal points are back-traced and the 

incident rays travel without changing their angles, the incident rays and focal point rays will 

intersect at specific points. These points of intersection are called front principal and back 

principal points respectively. The planes corresponding to the front and back principal points are 

called front principal plane (Fp) and back principal plane (Bp). Nodal Points are points of unit 

angular magnification. Paraxial ray that is entering object space at nodal point appears to leave 

the image space at different point. The planes corresponding to that are called as nodal planes 

(Fn for front nodal point and Bn for Back nodal points). Fig. 4.2 shows all layers and planes with 

the proper notations.  

 All the ocular parameters, i.e., radii of curvature (r), thicknesses of ocular components 

(tt), and refractive indices of ocular media (n), to perform ray tracing are written in the vector 

form as below: 
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r = [rac, rpc, ral, rpl, rar, rpr]; tt = [ttc, ttaqc, ttl, ttvc, ttr]; s
 
= [s1, s2, s3, s4, s5, s6];  

n = [nc, naqc, nl, nvc, nr]; 

 

where s denotes the points in which layers intersect the x plane or, thus, denoting the location of 

the layers on the x-axis. Elements of s can be written as: 

 

s1 = 0; s2 = ttc;  s3 = ttc + ttaqc; s4 = ttc + ttaqc + ttl; s5 = ttc + ttaqc + ttl + ttvc;   

s6 = ttc + ttaqc + ttl + ttvc + ttr 

 

 

 

Figure 4.2: Paraxial schematic model of emmetropic rodent eye. 

 

 

Paraxial rays meet at the focal point located at the level of photoreceptors. The eye consists of 

six main refracting surfaces, i.e., anterior cornea, posterior cornea, anterior lens, posterior lens, 
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anterior retina, and posterior retina. The main volume of a rodent eye is occupied by the 

crystalline lens, followed by the vitreous chamber, anterior chamber, and retina respectively. Fp: 

front principal plane; Bp: back principal plane; Ff: front focal plane; Bf: back focal plane; Fn: 

front nodal point; Bn: back nodal point; nc: refractive index of cornea; naqc: refractive index of 

the aqueous; nl: refractive index of the lens; nvc: refractive index of the vitreous; nr : refractive 

index of the retina; tc: thickness of the cornea; taqc: anterior chamber depth; tl: thickness of the 

lens; tvc: vitreous chamber depth; tr: thickness of the retina. 

Since we have all the necessary elements that are required in order to derive the equations 

of rays as well as ray tracing and eventually would allow us to do the analysis, the next thing is 

to work on ray tracing itself. For forward ray tracing paraxial rays are coming from infinite 

source, thus x0 = - ∞ and height of paraxial rays (yp) is y0 = yp. Slope is given as t0 = - (y0/xo). 

Further for the modeling Xmin = 0 and Xmax = length of surfaces (s). Hence equation of line at 

first surface is given as: 

 

X(1) = Xmin                (4.1) 

      ( )         ( )                 (4.2) 

For 2
nd

 surface the equations for X(2), Y(2) and slope t1 are given as:  

 ( )   
[             √(            )  (    

 ){  
      (     ) }]

(    
 )

 

            (4.3) 

      ( )         ( )                (4.4) 

        [     {(
  

  
)    (             (

 ( )

  
))}       (

 ( )

  
)]                      (   ) 
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If we have N surfaces then equations of ray tracing are given as: 

 ( )   
[ (   )    (   )    (   ) (   )    (   )

  (   )  √    ]

(   (   )
 )

  

            (4.6) 

Where A = [ (   )    (   )    (   ) (   )   (   )
  (   )]

 
   (4.7) 

 

B = (   (   )
 ) {  (   )    (   )

  ( (   )   (   ))
 
  (   )

   (   )   

  (   ) (   ) (   )}             (4.8) 

    ( )    (   )    (   )  ( )    (   )    (4.9) 

    (   )      [     {(
 (   )

  
)    (      (   )       (

 ( )

 (   )
))}       (

 ( )

 (   )
)] 

            (4.10) 

By following the same approach of forward ray tracing we had derived the formulae for 

calculation of Xb, Yb and slope tb for backward ray tracing as shown in eq. (4.11), eq. (4.14) and 

eq. (4.15) respectively.  

 

  ( )   
[ (   )    (   )     (   )  (   )     (   )

   (   )  √      ]

(    (   )
 )

  

                      (4.11) 

Where Ab = [ (   )    (   )     (   )  (   )    (   )
   (   )]

 
   (4.12) 

Bb = (    (   )
 ){   (   )     (   )

    (   )      (   )  (   )  (   )  

 (   )
    (   ) (   )}             (4.13) 
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     ( )     (   )     (   )   (   )     ( )   (4.14) 

 

     (   )      [     {(
 ( )

 (   )
)    (     (

  ( )

 (   )
)         (   ))}       (

  ( )

 (   )
)] 

            (4.15) 

If we keep on coming from positive X axis towards negative axis, equations for initial surfaces at 

the front end are given as: 

                                ( )   
[        ( )       

   ( )  √     ]

     
                     (    ) 

Where  value of Ab when N =2 is given as: 

Ab = [        ( )       
   ( )]

 
   (4.17) 

 

Similarly value of Bb while putting N = 2 is 

 Bb = (     
 )[  ( )     

   ( )     ( )     ( )    
       ]  (4.18) 

 

Yb(2) = Yb(3) – tb(1)[Xb(3) – Xb(1)]   (4.19) 

Slope tb0 for N = 2 is 

        [     {(
  

  
)    (              (

  ( )

  
))}       (

  ( )

  
)] 

            (4.20) 

After forward and backward ray tracing is done we had obtained equations for Principal planes, 

Focal planes and nodal planes which are shown below: 

   (Back Focal Plane)    (   )   [
 (   )

 (   )
]   (4.21) 
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   (Back Principal Plane)    (   )   [
 ( )   (   )

 (   )
]  (4.22) 

 

   (Front Focal Plane)     ( )   [
  ( )

   
]     (4.23) 

 

   (Front Principal Plane)     ( )  [
  (   )   ( )

   
]    (4.24) 

 

   (Front Nodal Plane)                  (4.25) 

 

   (Back Nodal Plane)      (     )       (4.26) 

 

Having all the necessary values of radii of curvature, thicknesses and refractive indices of all 

refracting surfaces allows us to calculate the equations of lines and subsequently focal planes, 

principal planes and nodal planes. Nevertheless, also with the help of r, tt and n we were able to 

draw the schematic of an eye as discussed in chapter 2. By fusing both the above steps we were 

able to build a ray tracing model as shown in figure 4.2. Further with the help of information 

obtained from this model refractive state and variational analysis of an eye is performed and is 

discussed in the next chapter.   
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CHAPTER 5 

REFRACTIVE ERROR AND VARIATIONAL ANALYSIS 

In the previous chapters we have performed the modeling of an eye where we have extracted all 

the ocular parameters of an eye such as radius of curvature, thickness of surface and new co-

ordinates of an eye. After calculating all the above mentioned data, schematic of an eye 

consisting of different layers is plotted for all the specimens of all the strains, as well as average 

eye of one single strain. Further we have derived the formulae for ray tracing in paraxial model 

and explained the model when we have perfect eye having zero diopters refractive error.  

 The next part, which is the most important piece of our work, is to perform ray tracing 

using all the ocular parameters that has been calculated while modeling of an eye so that we can 

see the behavior of an eye in realistic world instead of imaginary. Ray tracing would help us to 

calculate the geometry of an eye, with the help of which we can obtain “Refractive error”. After 

calculating refractive error we would qualitatively analyze the ocular parameters influencing the 

refractive error and hence the ocular parameters are categorized as critical or non-critical 

accordingly.  

 

5.1 Refractive Error  

Refractive Error, which is also called as “Ametropia” is usually defined as the deviation 

of power of an eye from the perfect eye and its value could be zero, positive or negative. 

Although there are many errors or more precisely disorders that are associated with an eye, but in 

our scope of work we limit ourselves only to three states of an eye, based on the refractive 

properties of an eye. Those three conditions are emmetropia, myopia (shortsightedness) and 

hyperopia (farsightedness). 
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 Emmetropia is a condition when the focus is exactly at the desired place or the rays 

converge exactly at the photoreceptive part of retina. Thus the A = 0 diopters.   

 

 Myopia is defined as the disorder associated with an eye where the light rays focuses in 

front of the retina, hence fall short of the focal point for a perfect eye. Myopia can be 

treated if we use the lens having negative curvature or more precisely with the concave 

lens. Figure 5.1 below shows condition of myopia.  

Figure 5.1: Virtual Eye comprising of different layers with condition of myopia. 

 

 Hyperopia or farsightedness on the other hand is the disorder of an eye where light rays 

focuses behind retina. The focal point for this kind of disorder is behind the retina and 
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could be corrected by using series of convex as well as concave lenses. Figure 5.2 below 

shows condition of hyperopia. 

 

Figure 5.2: Virtual Eye comprising of different layers with condition of hyperopia. 

 

As stated above all the necessary information required for the calculation of the refractive 

error was extracted from the ray tracing models. By incorporating known values for the optical 

parameters r, t, s and n in equations (4.1) through (4.20), we were able to calculate X, Y and 

slope t. Further substituting these values in equations (4.21) through (4.26), we had obtained 

principal planes and focal planes, which are required for the calculation of the refractive error. 

Finally, the refractive error of an eye was calculated using Eq. (5.1) below: 

   
   

[
(     )(      )

    ( )
      ]

                                   (   )        
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We can see in Eq. (5.1) that all the planes of the geometry that has been calculated are used in 

calculating the ametropia of an eye and all these planes are calculated from the ocular parameters 

(r, tt, n). For this reason we can say that ametropia is a function of 16 ocular parameters that has 

been already defined in literature and is base line for building our model in order to evaluate 

ametropia of an eye.    

 

5.2 Variational Analysis 

 Variational analysis is a method that we have used to qualitatively analyze the effects of 

minor changes in optical parameters on the refractive error. As the name indicated effects on 

dependent quantity is observed by varying independent variables. Dependent quantity here 

implies to refractive error and independent variables are ocular parameters (r, tt, n). In the 

variational analysis, only one optical parameter out of the possible 16 parameters is changed and 

its effect on the refractive error is observed. In schematic of an eye we have 6 refractive layers 

and other ocular parameters, which are shown in Fig. 4.2. Radius r which is a set of 6 values is 

expressed as shown below by Eq. (5.2): 

 

r = [rac, rpc, ral, rpl, rar, rpr]    (5.2) 

 

 In a similar fashion, thicknesses tt and refractive indices n of the refracting surfaces 

contain 5 elements each and these are represented by Eq. (5.3) and Eq. (5.4) respectively: 

tt = [ttc, ttaqc, ttl, ttvc, ttr]    (5.3) 

 

n = [nc, naqc, nl, nvc, nr]     (5.4) 



57 
 

 
 

 The concept behind variational analysis is to estimate the effects of r, tt and n on the 

refractive error when each parameter is incremented by a small variable value. This incremented 

variable is denoted by “d” for r and tt, and “dn” for n. While performing variational analysis, we 

have set the values of d as 1µm and dn as 0.001. For example, if we would like to estimate the 

effect of the radius of the posterior cornea on refractive state of an eye, the radius of the posterior 

cornea (rpc) will be incremented by d = 1 µm and rest all the parameters will remain unchanged. 

The set of new elements of r, tt and n are expressed by Eq. (5.5), Eq. (5.6), and Eq. (5.7): 

 

r = [rac, rpc +d, ral, rpl, rar, rpr]    (5.5) 

 

tt = [ttc, ttaqc, ttl, ttvc, ttr]    (5.6) 

 

n = [nc, naqc, nl, nvc, nr]     (5.7) 

 

 Now for an instance if we consider the new calculated value of the refractive error or 

ametropia, due to change “d” in the radius of the posterior cornea rpc is A2, then the change in 

the value of the refractive error due to the change in a single optical parameter rpc is called as the 

derivative of radius of Posterior cornea and can be represented by Eq. (5.8): 

 

dA_drpc = A2 – A    (5.8) 

This same approach was used to calculate the derivatives for all ocular parameters and estimate 

the impact of changes in these parameters on the refractive error. Table 5.1 represents all the 

derivatives and their respective notations.  
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Refractive Error Components 

Ocular Parameters Derivatives Derivative of Ametropia over 

1. Anterior Cornea (rac) 

2. Posterior Cornea (rpc) 

3. Anterior Lens (ral) 

4. Posterior Lens (rpl) 

5. Anterior Retina (rar) 

6. Posterior Retina (rpr) 

7. Cornea (ttc) 

8. Aqueous Chamber (ttaqc) 

8. Lens (ttl) 

10. Vitreous Chamber (ttvc) 

11. Retina (ttr) 

12. Cornea (nc) 

13. Aqueous Chamber (naqc) 

14. Lens (nl) 

15. Vitreous Chamber (nvc) 

16. Retina (nr) 

dA_drac  = A1- A  

dA_drpc  = A2- A 

dA_dral = A3- A 

dA_drpl = A4- A 

dA_drar = A5- A 

dA_drpr = A6- A 

dA_dttc = A7- A 

dA_dttaqc = A8- A 

dA_dttl = A9- A 

dA_dttvc = A10- A 

dA_dttr = A11- A 

dA_dnc = A12- A 

dA_dnaqc = A13- A 

dA_dnl = A14- A 

dA_dnvc = A15- A 

dA_dnr = A16- A 

Radius of Anterior Cornea 

Radius of Posterior Cornea 

Radius of Anterior Lens 

Radius of Posterior Lens 

Radius of Anterior Retina 

Radius of Posterior Retina 

Thickness of Corneal 

Thickness of Aqueous chamber 

Thickness of Lens 

Thickness of Vitreous chamber 

Thickness of Retina 

Refractive index of Cornea 

Refractive index aqueous Chamber 

Refractive Index of Lens 

Refractive index Vitreous chamber 

Refractive index of Retina 

 

Table 5.1: Notations for ocular parameters and their respective derivatives. 
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CHAPTER 6 

RESULTS 

The previous chapter “Variational Analysis” has completed the targeted work which we have 

been trying to achieve and set the platform to publish the favorable results. Summarizing our 

work,  

 We have been provided the raw data (X-Y coordinates of different layers of an eye) that 

acted as a foundation for the “Modeling of an Eye” performed by us. Further with the 

help of image processing we had visually verified the correctness of 2 dimensional 

plotting of an eye representing 6 layers of an eye.  

 The modeling of an eye performed was not only responsible for generating the 

schematics but also important ocular parameters (radius of curvature, thicknesses and 

centers of curvatures etc.) were calculated.  

 Ocular parameters in conjunction with the concepts of ray tracing gives us a glimpse of a 

virtual 2 dimensional model of an eye, where the paraxial rays are passing through 

different layers of an eye and are converging at definite focal point. This virtual model of 

an eye helped us to calculate the defects in an eye.  

 At last but not the least, infact the most significant part of our work, “Variational 

Analysis” had been performed, which carved the pathway for performing the 

qualitatively as well as quantitatively analysis for the optics of an eye. 

Since the work was fragmented in sections as summarized above, we would publish our results 

accordingly. The work performed in sections would be complimented by their respective results 

in the coming sections. 
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6.1 Results of Schematic and Geometry of an Eye 

This part of the work, with the help of raw points, acted as a foundation for the 

proceeding chapters. We have generated the schematics of an eye containing 6 layers and all the 

ocular parameters were calculated. As already mentioned earlier that this task was made possible 

by use of sophisticated algorithm and program written in MATLAB, the same program was also 

responsible to store the results in the file in text format automatically. Hence we can say that 

radii of curvatures, centers of radii of curvatures, new X-Y coordinates, thicknesses of surfaces 

etc. not only were calculated but also printed in text file without any other effort except the 

running of program from the MATLAB command window. 

 

6.1.1 Ocular data 

Due to big size of the generated text file, we cannot show the entire text file comprising 

of results of all the strains for each specimen as such in here, but we would show the results in 

parts. For example figure 6.1 below shows the screenshot for the text file containing the data for 

the image 1 of specimen M1_L for strain C57BL. In figure 6.1 we can see that date, time, 

number of input files and particular file to be processed is printed. In result section centers as 

well as radii of curvatures are printed for all the layers of an eye. New X-Y coordinates are 

printed as a result of shifting process applied to shift the co-ordinates, such that optical axis of an 

eye coincides perfectly to the horizontal axis and gives us a good perception of virtual eye. After 

coordinates comes the R
2
 of arc which gives the meaning of how good the fit is. Finally 

thicknesses or depths of surfaces are printed at the end.   
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Figure 6.1: Summary of the ocular components of specimen M1_L of strain C57BL.    

 

For strain C57BL we have 6 specimen and we shall average the ocular components of all the 6 

specimens in order to get the data for one single strain of mouse eye. For convenience we are 

going to show one more snapshot of the text file representing the ocular parameters. Figure 6.2 

show the summary of ocular components for specimen M2_L for same strain i.e. C57BL.  
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Figure 6.2: Summary of the ocular components of specimen M1_L of strain C57BL. 

 

Similarly the data for rest of 6 specimens for mouse strain C57BL can be viewed in the same 

format. Once we have the ocular data for all the 6 specimens printed, the program would average 

over all the 6 specimens to give us one set of data representing one single eye for the strain 

C57BL. Figure 6.3 below shows the ocular data for C57BL. 
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 Figure 6.3: Summary of the ocular data averaged over all specimens of strain C57BL. 

 

6.1.2 Schematic of an Eye 

 The ocular data that has been generated acted as an input and schematic of an eye is 

drawn as shown in figures 6.4 and 6.5. As discussed earlier the ocular data is calculated for 

individual specimen as well as averaged over all the specimens of single strain, so is the case 

with the schematic. Schematic of single specimen is drawn using respective ocular data and 

schematic of average eye of C57BL is drawn as a result of average data for the same.  
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Figure 6.4: Schematic of an eye for specimen M1_L.    

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Schematic of an eye for C57BL averaged over all the 6 specimens. 
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6.2 Results of Image Processing 

 Image processing was performed to visually analyze, how accurate are our generated 

schematics. In this process drawn schematic of an eye is laid over MRI image of an eye of the 

respective specimen. Figure 6.6 shows the MRI image of an eye which is provided to us by 

“School of Medicine”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: MRI image of an eye.  

 

In figure 6.6 along with eye, also surrounding tissues are visible. So the challenge was to draw 

layers of an eye on top of that image, as we have very poor demarcation of boundaries between 

the layers. The algorithm generated an image containing different layers of an eye as shown in 

figure 6.7. 
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Figure 6.7: 6 different layers of an eye representing schematic of an eye.    

 

Figure 6.8 shows the final outcome of the image processing where layers of an eye (in red) are 

overlapped over the MRI image of an eye. In order to see the eye only, region of interest was 

selected and zoomed automatically by program.  

  

 

 

 

 

Figure 6.8: Composite image showing the overlapped part in red on top of MRI image.    
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6.3 Results of Optical Modeling and Ray Tracing 

 Eventually moving on to next part by confirming our schematics comes the ray tracing. 

The ray tracing as explained in chapter 4, is performed using the ocular parameters extracted 

while performing modeling of an eye. This gives us a kind of virtual eye, as if the actual rays are 

passing through different layers of an eye. By inputting the ocular parameters reported in table 

4.1 [3, 4, 5] and 4.2 [6, 7] results are shown below in figure 6.9, 6.10 respectively. The results 

obtained are eye parameters in paraxial approximation and include front and back focus location, 

front and back principal plane, front and back nodal point, dioptric strength and ametropia.   

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Summary of eye parameters calculated in paraxial approximation for rat eye 

[3, 4, 5]. 
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Figure 6.10: Summary of eye parameters calculated in paraxial approximation for mouse 

eye [6, 7]  

 

The geometrical parameters that are calculated and shown above for mouse eye and rat eye are 

calculated by use of paraxial models. On similar lines we have also used the ocular parameters 

that are calculated by us for different mice strains and geometry of an eye is calculated. Figure 

6.11 below shows the geometrical parameters calculated for C57BL mouse strain. While talking 

of those geometrical parameters, it means for the ametropia (equation 5.1) we need certain planes 

to be calculated and later incorporated into equation 5.1 to obtain values of amtropia.  
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Figure 6.11: Summary of eye parameters calculated in paraxial approximation for C57 

mouse strain.  

 

 

6.4 Results of Variational Analysis 

 The last phase of our work was to conduct qualitatively and quantitatively analysis of 

refractive state of an eye, which was made possible using concept of “Variational Analysis.” As 

explained the concept earlier in the chapter 5, the results are quoted in this section. In figures 6.9, 

6.10 and 6.11 we have seen that eye parameters are calculated in paraxial approximation and 

subsequently ametropia is calculated using those eye parameters. The variational analysis is also 
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performed using ocular parameters, ametropia and the by how much range the ocular parameter 

should be varied. The results for rat eye [3, 4, 5] and mouse eye [6, 7] are shown in table 6.1 and 

6.2 respectively.  

Wavelength (nm) 475 500 525 550 575 600 625 650 

Refractive error (D) 

Chaudhuri et al. [5] 
+ 6.3 +7.7 +8.7 +9.7 +10.5 +11.2 +11.7 +12.2 

Calculated 

Refractive error (D) 
+ 6.3 +7.7 +8.7 + 9.7 + 10.5 +11.2 +11.7 +12.2 
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I 
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E 

S 

 

 

dA_drac 

 

dA_drpc 

 

dA_dral 

 

dA_drpl 

 

dA_drar 

 

dA_drpr 

 

dA_dttc 

 

dA_dttaqc 

 

dA_dttl 

 

dA_dttvc 

 

dA_dttr 

 

dA_dnc 

 

dA_dnaqc 

 

dA_dnl 

 

dA_dnvc 

 

dA_dnr 

 

0.0427 

 

-0.0057 

 

0.0488 

 

-0.0083 

 

0.00 

 

0.00 

 

-0.0131 

 

-0.0104 

 

-0.0370 

 

-0.0697 

 

-0.0697 

 

0.0016 

 

0.0140 

 

-0.3176 

 

0.1290 

 

0.0119 

 

0.0428 

 

-0.0057 

 

0.0485 

 

-0.0082 

 

0.00 

 

0.00 

 

-0.0134 

 

-0.0106 

 

-0.0372 

 

-0.0695 

 

-0.0695 

 

0.0016 

 

0.0137 

 

-0.3182 

 

0.1289 

 

0.0118 

 

0.0427 

 

-0.0056 

 

0.0483 

 

-0.0081 

 

0.00 

 

0.00 

 

-0.0135 

 

-0.0108 

 

-0.0373 

 

-0.0694 

 

-0.0694 

 

0.0015 

 

0.0136 

 

-0.3186 

 

0.1288 

 

0.0117 

 

0.0428 

 

-0.0057 

 

0.0481 

 

-0.0081 

 

0.00 

 

0.00 

 

-0.0137 

 

-0.0109 

 

-0.0374 

 

-0.0693 

 

-0.0693 

 

0.0015 

 

0.0134 

 

-0.3190 

 

0.1287 

 

0.0116 

 

0.0428 

 

-0.0057 

 

0.0480 

 

-0.0080 

 

0.00 

 

0.00 

 

-0.0138 

 

-0.0111 

 

-0.0374 

 

-0.0692 

 

-0.0692 

 

0.0015 

 

0.0132 

 

-0.3194 

 

0.1286 

 

0.0116 

 

0.0428 

 

-0.0057 

 

0.0478 

 

-0.0080 

 

-3.55e
-15 

 

0.00 

 

-0.0139 

 

-0.0112 

 

-0.0375 

 

-0.0692 

 

-0.0692 

 

0.0014 

 

0.0131 

 

-0.3197 

 

0.1286 

 

0.0115 

 

0.0428 

 

-0.0057 

 

0.0477 

 

-0.0079 

 

0.00
 

 

0.00 

 

-0.0140 

 

-0.0112 

 

-0.0376 

 

-0.0691 

 

-0.0691 

 

0.0014 

 

0.0130 

 

-0.3201 

 

0.1286 

 

0.0115 

 

0.0428 

 

-0.0057 

 

0.0476 

 

-0.0079 

 

1.78e
-15 

 

0.00 

 

-0.0141 

 

-0.0113 

 

-0.0376 

 

-0.0691 

 

-0.0691 

 

0.0014 

 

0.0130 

 

-0.3202 

 

0.1285 

 

0.0114 

 

Table 6.1: Variational Analysis [47] for Rat eye at wavelengths ranging from 475-650nm at 

a regular interval of 25 nm.  
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Wavelength (nm)       488                      544                        596                    655 

Refractive error (D) 

Remtulla & Hallett 

[6] 

     -9.4                       0.4                         6.6                     10.8 

Calculated 

Refractive error (D) 

     -9.4                       0.4                         6.6                     10.8 
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S 

 

 

dA_drac 

 

dA_drpc 

 

dA_dral 

 

dA_drpl 

 

dA_drar 

 

dA_drpr 

 

dA_dttc 

 

dA_dtaqc 

 

dA_dttl 

 

dA_dttvc 

 

dA_dttr 

 

dA_dnc 

 

dA_dnaqc 

 

dA_dnl 

 

dA_dnvc 

 

dA_dnr 

 

0.1748 

 

-0.0315 

 

0.1860 

 

-0.0310 

 

3.5e
-15 

 

0.00 

 

-0.0473 

 

-0.0332 

 

-0.1294 

 

-0.2455 

 

-0.2455 

 

0.0041 

 

0.0156 

 

-0.5971 

 

0.1964 

 

0.0496 

 

0.1765 

 

-0.0308 

 

0.1798 

 

-0.0294 

 

5.5e
-17 

 

0.00 

 

-0.0511 

 

-0.0369 

 

-0.1314 

 

-0.2428 

 

-0.2428 

 

0.0037 

 

0.0124 

 

-0.6004 

 

0.1946 

 

0.0493 

 

0.1775 

 

-0.0309 

 

0.1765 

 

-0.0285 

 

0.00
 

 

0.00 

 

-0.0535 

 

-0.0390 

 

-0.1326 

 

-0.2412 

 

-0.2412 

 

0.0034 

 

0.0106 

 

-0.6027 

 

0.1936 

 

0.0489 

 

0.1783 

 

-0.0312 

 

0.1744 

 

-0.0279 

 

0.00
 

 

0.00 

 

-0.0552 

 

-0.0404 

 

-0.1334 

 

-0.2401 

 

-0.2401 

 

0.0032 

 

0.0093 

 

-0.6042 

 

0.1929 

 

0.0486 

 

Table 6.2: Variational Analysis [47] for Mouse eye at wavelengths 488nm, 544nm, 596nm 

and 655nm. 

 

Similarly using the ocular data for C57BL mouse strain, referring to figure 6.11 and table 4.3, 

variational analysis is conducted with the desirable results. Table 6.3 shows the derivatives for 
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C57BL strain as a result of the variation that is performed in same fashion as is done for table 6.1 

and 6.2. We have been given the refractive indices for only two wavelengths (500nm and 

510nm) of different media pertaining to different depths of the surfaces.   

 

Wavelength (nm)                500                                       510                         

Calculated 

Refractive error (D) 

              -21.8                                    -19.7 
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dA_drac 

 

dA_drpc 

 

dA_dral 

 

dA_drpl 

 

dA_drar 

 

dA_drpr 

 

dA_dttc 

 

dA_dtaqc 

 

dA_dttl 

 

dA_dttvc 

 

dA_dttr 

 

dA_dnc 

 

dA_dnaqc 

 

dA_dnl 

 

dA_dnvc 

 

dA_dnr 

 

0.1734 

 

-0.0330 

 

0.2171 

 

-0.0454 

 

6.51e
-5

 

 

0.00 

 

-0.0422 

 

-0.0285 

 

-0.1322 

 

-0.2686 

 

-0.2656 

 

0.0236 

 

0.0083 

 

-0.7192 

 

0.2680 

 

0.0543 

  

0.1737 

 

-0.0329 

 

0.2157 

 

-0.0450 

 

7.08e
-5

 

 

0.00 

 

-0.0430 

 

-0.0292 

 

-0.1326 

 

-0.2680 

 

-0.2647 

 

0.0235 

 

0.0080 

 

-0.7206 

 

0.2677 

 

0.0545 

 

 

Table 6.3: Variational Analysis for C57BL mouse eye strain at wavelengths 500nm and 

510nm. 
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The derivative for each ocular parameter is denoted by a particular notation and is explained in 

table 5.2. Also certain parameters are contained in red boxes which are crucial and the definition 

of crucial in concern to the ongoing work is elaborated in the next chapter.  All derivatives for 

the radii of curvature (r), thickness (tt) and refractive indices (n) of various ocular components 

for the rat and mouse eye at different wavelengths are shown in Tables 6.1, 6.2 and 6.3 

respectively. The calculated refractive error values, which are specific to definite wavelength for 

the rat eye, using ocular parameters from Table 4.1, matches the data reported by Chaudhuri et 

al. [5] (Table 6.1). Also the refractive error values or ametropia for the mouse eye that has been 

calculated using data from Table 4.2 is in accordance with the data reported by Remtulla and 

Hallett [6] (Table 6.2). Similar is the case for C57BL mice strain (data provided by school of 

medicine), where the refractive error is calculated as shown in table 6.3 using ocular parameters 

from table 4.3. 

Variational analysis [47] revealed that different ocular parameters have different effects 

on the refractive state of the eye. The refractive indices of the lens and vitreous, as well as 

vitreous chamber depth and lens thickness have the largest effect on the refractive state of the 

eye in both rats and mice. The radii of the anterior surfaces of the cornea and lens also have 

significant impact on the refractive state, while radii of the posterior surfaces of the cornea and 

lens have much smaller contributions to the refractive state.  The radii of the anterior and 

posterior surfaces of the retina have no effect on the refractive error. 

In the rat [5], the relative contribution of ocular components to the refractive state of the 

eye varied from 0.0697 D per 1 µm for ttr and ttvc to 0 D per 1 µm for rar and rpr: ttr = ttvc > ral > 

rac > ttl > ttc > ttaqc > rpl > rpc > rpr = rar. The relative contribution of refractive indices in the rat 
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varied from 0.3176 D per 0.001 units for nl to 0.0016 D per 0.001 units for nc: nl > nvc > naqc > nr 

> nc. 

 In the mouse [6], the relative contribution of ocular components to the refractive state of 

the eye varied from 0.2455 D per 1 µm for ttr and ttvc to 0 D for rpr: ttr = ttvc > ral > rac > ttl > ttc > 

taqc > rpc > rpl > rar > rpr. The relative contribution of refractive indices in the mouse varied from 

0.5971 D per 0.001 units for nl to 0.0041 D per 0.001 units for nc: nl > nvc > nr > naqc > nc. 

 The variational analysis is performed for C57BL mouse strain on similar lines as well and 

the behavior of the refractive state of an eye is observed. This could be accounted for the 

confirmation for the models built for variational analysis, as is evident by the fact that ametropia 

calculated by us using variational analysis model is same as reported by [5, 6]. The contribution 

of ocular components relative to the refractive state of the eye varied from 0.2686 D per 1 µm for 

ttvc to 0 D for rpr: ttvc > ttr > ral > rac > ttl > rpl  > ttc > rpc > taqc > rar > rpr. The relative contribution 

of refractive indices in the mouse varied from 0.7192 D per 0.001 units for nl to 0.0041 D per 

0.0083 units for naqc: nl > nvc > nr > nc > naqc.   
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CHAPTER 7 

DISCUSSION 

In our studies as already discussed, we are concerned about the optics of an eye and the 

parameters that are responsible for the abnormalities leading to the refractive error. From the 

class of rodents, mice models are used to study this particular behavior because of genetically 

engineered models are present in case of mice. Number of mice models [6, 7, 10, 11] are studied 

and the ocular data has been reported. Also schematics of the mouse eye have been proposed [6]. 

But still there has been wide variability in the ocular data that has been reported by all the 

researchers.  

Variability has been reported in different strains of mice [12] as well as same strain of 

mice [11, 12, 13]. Refractive error documented in C57BL/6 mice are close to zero [14-21], 

where as others say hyperopia or myopia is inherited in same strain of mice [7, 10, 22-24]. 

Though the variability persists, no one has ever tried to study the factors influencing the 

variability. We have build our model based on the data provided by “School of Medicine, Wayne 

state University, Detroit”, for 4 strains of mice C57BL, C57L, CE and CZECH.  

 

7.1 Schematics of an Eye 

 In this section we have calculated the ocular parameters for all the strains of mice, which 

are later used for Ray Tracing, calculation of Ametropia and Variational Analysis models. Along 

with the calculation of parameters also schematics of an eye are generated to give a virtual eye in 

2 dimensions. The composite schematics of an eye (raw points represented by small circles and 

solid line of good curve fitting) generated visually shows that there is minimum error while 

drawing schematics and the line passes through all the raw points. This is again verified by the 
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fact that an algorithm which is calculating ocular parameters and generating schematics is also 

calculating R
2
 of arc, which points to goodness of curve. The closer the number to 1, better the 

fit is. For an instance talking of C57BL mice strain, the data as shown in figure 6.1, those 

numbers are 0.9883, 0.9948, 0.9885, 0.9891 and 0.9941 for cornea, anterior lens, posterior lens, 

anterior retina and posterior retina respectively. Thus the fit based on that algorithm is almost 

perfect.  

 

7.2. Image Processing 

 This part of our work was performed, in order to further verify that the results (ocular 

parameters and schematics) obtained from modeling of an eye are correct. We have been given 

MRI images of different mice strains and were overlapped with the schematics of an eye that are 

generated while doing modeling of an eye. Figure 3.2 shows MRI image for one of the 

specimens of C57BL mice strain and figure 3.3 shows the layers of schematic of an eye for same 

specimen of same strain. A composite image was obtained in which MRI image is used as 

background and then all the layers represented in red, are drawn on the respective layers of an 

eye. The visual analysis of composite image 3.5 also shows that the layers are lying exactly over 

each other with only minor offset at the edges, which could be accounted for the error while 

obtaining raw points.  

 

7.3. Optical Modeling and Ray Tracing 

 To meet the eventual and final target of our work, the intermediate step was optical 

modeling of an eye. In this section the ray tracing is performed using the ocular parameters 

calculated during modeling of eye. Ocular parameters (listed in table 4.3 for C57BL), that acted 
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as foundation for the entire work, were inserted in the mathematical model for ray tracing. This 

ray tracing then calculated the eye parameters, required for obtaining the refractive error or 

ametropia of an eye. The ametropia calculated, pointed out the defects present in an eye (myopia 

or hyperopia). This model was verified using the work of [5, 6] for rat and mouse models, where 

reported ocular parameters (tables 4.1 and 4.2) were inserted in the ray tracing model and the 

exact refractive error was calculated (figures 6.9 and 6.10) 

 Quoting an example, ocular components of C57BL (table 4.3) when inserted in ray 

tracing model, all the eye parameters were obtained (figure 6.11) in paraxial approximation and 

the refractive state of an eye was inferred. The results have shown that the C57BL mouse eye is 

hyperopic.  

 

 7.4 Variational Analysis 

 The final goal of our work was variational analysis. It is already emphasized that due to 

uncertainty that prevails in the available optical models, it is really difficult to quantify the model 

of the rodent eye. This is accounted for significant swerving in the  biometrical parameters even 

for the same strain of mice [13]. Differences in refractive error are even reported in the most 

frequently used mouse strain C57BL/6J [13], making it difficult to reconcile existing optical 

models of the rodent eye with the reported experimental data. Optical modeling of rodents is 

greatly suffered due to the following reasons: 

1. The small size of an eye ball. 

2. High power of the rodent eyes. 

3. Insufficient resolution of available methodologies for measuring both refractive errors 

and biometrical parameters in rodents  
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The challenge that we took in our work is to see that how much changeability in each particular 

ocular component affects the refractive state as well as calculated refractive error of an eye. Later 

the Variational Analysis suggests that different parameters have different impact on the 

refractive state of an eye. The basis of our analysis is as follows. 

 High-resolution photorefraction and high-resolution small animal MRI provide the best 

currently achievable resolution for the rodent eye biometry [18, 20, 22]. The smallest difference 

in the refractive error (  ), which can be identified using high-resolution photorefraction, is 

approximately 1.2 D. The smallest difference in the thickness (  ) of an ocular component, 

which can be detected by the high-resolution MRI, is approximately 23 µm and the smallest 

identifiable difference in the radius (  ) is approximately 26 µm. The variability of the reported 

refractive indices (  ) is approximately 0.02. These data can be used to calculate the critical 

thresholds and identify ocular parameters most affected by the biometrical errors. The critical 

threshold for the thickness/length of ocular components can be calculated using Eq. (7.1): 

 

Threshold (dA_dtt) =   
  ⁄        (7.1) 

 

where    is the ratio of (  ) and the incremented thickness (d) of an ocular parameter and is 

described by Eq. (7.2): 

        =   
 ⁄      (7.2) 

 

Substituting values for    = 23 µm and d = 1 µm in Eq. (7.2), gives     as shown in Eq. (7.3): 

               =   
 ⁄  = 23     (7.3) 
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Substituting values for    = 1.2 D, and    = 23 in Eq. (7.1), gives the critical threshold for 

thickness as shown in Eq. (7.4): 

Threshold (dA_dtt) =    
  ⁄   = 0.0522  (7.4) 

 

Thus, the values of dA_dtt above 0.0522 D will identify ocular parameters critically affected by 

the biometrical errors. Critical thresholds for the radii of curvature and refractive indices can be 

calculated following similar algorithms and are described by Eq. (7.5) and Eq. (7.6) respectively: 

 

Threshold (dA_dr) =   
  ⁄  =    

  ⁄   = 0.0462  (7.5) 

 

Threshold (dA_dn) =   
  ⁄  =    

  ⁄   = 0.06  (7.6) 

 

 In our work for variational analysis, optical parameters r, tt are changed by 1µm and 

change in value of refractive indices n is .001. As shown in Tables 6.1, 6.2 and 6.3, experimental 

errors in ocular biometry and differences in refractive indices for the crystalline lens and vitreous 

would have the largest impact on the calculated refractive error, whereas errors and differences 

in refractive indices for the cornea, aqueous and retina would have less significant impact on the 

refractive error in both mice and rats.  

Variation in the thickness/length of the retina and vitreous chamber, as well as in the 

radius of the anterior surface of the lens, would also significantly affect refractive error in both 

mice and rats. However, the impact of the differences in the thickness of the lens and radius of 

the anterior surface of the cornea would be critical only in mice, while the effect on refraction in 

the rat would be less critical. Changes in other parameters, such as thickness of the cornea, depth 
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of the anterior chamber, radii of the posterior surfaces of the cornea and lens, as well as radii of 

the anterior and posterior surfaces of the retina, have very small impact on the refractive error. 

Variational analysis also revealed that the impact of changes in ocular parameters is substantially 

higher in the mouse eye compared to the rat eye. 
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CHAPTER 8 

CONCLUSION 

There has always been tendency of researchers to look out for the abnormal factors that are 

making their impact on living or non living models and eventually alteration of their characters 

leading to change in behavior in the models to make it desirable. In living beings understanding 

becomes very critical because of the magnitude of masses related directly or indirectly and hence 

deliberate studies are always required. For the obvious reason therefore researchers always look 

for models that are genetically identical in terms of organization and various aspects, so that 

these models acts as a substitute for humans. 

 Our work has been used to study and understand the optics of the living beings thus 

rodent models have been studied extensively. Rat and mouse models are increasingly used to 

study refractive eye development and the development of refractive errors such as myopia. In the 

small and optically powerful rodent eyes, the precision of biometrical measurements and 

refraction plays crucial role for optical modeling and obtaining accurate data for the refractive 

state of the eye.  

Our data suggest that not all ocular parameters are critical. Depth of the vitreous 

chamber, thickness of the lens, radius of the anterior surface of the cornea, radius of the anterior 

surface of the lens, as well as refractive indices for the lens and vitreous, appear to have the most 

significant impact on the refractive state of the rodent eye. Developing new methodologies with 

higher linear resolution for rodent eye biometry and obtaining more accurate data for the 

refractive indices of the lens and vitreous will help to generate better optical models of the rodent 

eye. 
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Rodents eye are particularly used to study refractive error state of an eye and 

development of refractive eye. Genetic organization of rodents is similar to that of humans, 

which makes them interesting candidates to be researched upon. From rodents family mice 

models are encouraged over rats because of availability of genetically engineered models. 

Despite of extensive work that has been performed on mice and rat models, still no one is able to 

quantify an optical model, due to variability in the reported ocular parameters.  

In this Dissertation, we have extracted ocular parameters and generated schematics of eye 

from the raw data from School of Medicine, Detroit. In order to see how the rays would travel 

through an eye and the defects associated with an eye; ray tracing has been performed using 

ocular parameters. Finally we have systematically evaluated the contribution of various ocular 

parameters, such as radii of curvature of ocular surfaces, thicknesses of ocular components, and 

refractive indices of ocular refractive media, using variational analysis and a computational 

model of the rodent eye.  

Variational analysis revealed that variation in all the ocular parameters does affect the 

refractive status of the eye, but depending upon the magnitude of the impact those parameters are 



88 
 

 
 

listed as critical or non critical. Variation in the depth of the vitreous chamber, thickness of the 

lens, radius of the anterior surface of the cornea, radius of the anterior surface of the lens, as well 

as refractive indices for the lens and vitreous, appears to have the largest impact on the refractive 

error and thus are categorized as critical ocular parameters. The radii of the posterior surfaces of 

the cornea and lens have much smaller contributions to the refractive state, while the radii of the 

anterior and posterior surfaces of the retina have no effect on the refractive error. These data 

provide the framework for further refinement of the optical models of the rat and mouse eye and 

suggest that extra efforts should be directed towards increasing the linear resolution of the rodent 

eye biometry and obtaining more accurate data for the refractive indices of the lens and vitreous. 
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