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Chapter 1 

Introduction 

Glycosylphosphatidylinositol Anchoring: An Essential Post-Translational 

Modification Mediated by GPI-T 

1.INTRODUCTION 

Glycosylphosphatidylinositol transamidase (GPI-T) is a multi-subunit, 

membrane-bound enzyme localized in the endoplasmic reticulum (ER) (1). In 

eukaryotes, this enzyme mediates GPI (glycosylphosphatidylinositol) transamidation, 

an essential post-translational protein modification (2-4). GPI-T utilizes a proprotein 

substrate with a C-terminal GPI-T signal sequence and a nucleophilic substrate (the 

GPI anchor) to mediate the GPI transamidation reaction (Figure 1.1).  

During this process, GPI-T first recognizes and cleaves the C-terminal signal 

sequence of the proprotein substrate. Next GPI-T mediates the attachment of the 

GPI anchor to the new C-terminus of the protein substrate to produce the GPI 

anchored protein (GPI-AP) (1). During this process, a new amide linkage is formed 

between the protein and the GPI anchor. GPI-APs are then transported from the ER 

to extracellular membranes/cell wall via intracellular secretory pathways. 

 



2 

 

 

 

Roughly, 0.5% of proteins encoded in eukaryotes (10–20% of all membrane 

proteins) are predicted to be GPI anchored (5,6). GPI-APs perform a wide variety of 

functions essential for the well-being of eukaryotic organisms (e.g. enzymes, 

receptors, etc). In yeast, GPI anchored cell wall proteins are necessary for cell 

viability and cellular morphology (4,7). In parasitic protozoa, the high density of GPI-

anchored glycoproteins acts as a protective coat against host specific immune 

responses (8). In addition to GPI-APs contributions towards the well-being of 

eukaryotic organisms, GPI-T itself and several GPI-APs are associated with various 

disorders and diseases. For instance, overexpression of certain GPI-T subunits 

induces tumorigenesis (9-11) and deficiencies in GPI transamidation lead to 

paroxysmal nocturnal hemoglobinuria, an acquired hemolytic disease (12,13).  

 
 
Figure 1.1 The GPI transamidation reaction. GPI-T mediates the 
attachment of a GPI anchor to a protein based on recognition and cleavage of 
the C-terminal GPI-T signal sequence to produce GPI-APs. 
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GPI transamidation is an essential reaction for eukaryotic organisms (2-4). 

However, because of being a structurally complicated, multi-subunit, transmembrane 

protein complex, little is known about GPI-T at a molecular level. So far five subunits 

have been identified which make the putative GPI-T complex (1). In yeast, these 

subunits are Gpi8, Gpi16, Gaa1, Gpi17 and Gab1. The corresponding human 

homologues are PIG-K, PIG-T, GPAA1, PIG-S and PIG-U respectively. Gpi8/PIG-K 

is the catalytically active subunit; functions for the other subunits are not well 

established. Therefore, it is important to conduct further research to obtain a clear 

picture of the structure, stoichiometry, and the functions of the GPI-T subunits and 

hence the overall GPI-T complex. 

 

1.1 The Substrates for GPI-T 

1.1.1 GPI Anchor - the Nucleophilic Substrate for GPI-T 

GPI anchors are group of complex glycolipids found in eukaryotic organisms. 

These anchors are essential for well being of eukaryotic organisms (2,4,7,13-15). In 

eukaryotic cell, one major role of GPI anchors is as a substrate for GPI-T that is 

used to produce GPI-APs. These GPI-APs are ultimately tethered to extracellular 

membranes as peripheral proteins via their attached GPI anchor. In addition, GPI 

anchors are involved in a plethora of other biological roles. Such roles of GPI anchor 

include structural and conformational changes of GPI anchored proteins (16,17), 

signal transduction (18,19), cellular communication (20), sorting of GPI-APs to 

different domains of cell membrane (21,22), etc.  
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1.1.1a The Discovery of GPI anchor 

 The pathway to the discovery of the GPI anchor was initiated in 1976, when a 

new phospholipase was purified from Bacillus cereus by Ikezawa and coworkers 

(23). This phospholipase, named phosphatidylinositol phospholipase C (PI-PLC), 

converts alkaline phosphatase (APase) from a membrane-anchored form to a 

completely soluble protein (24). Following this discovery, several other isoforms of 

PI-PLC, all capable of releasing soluble APase from the membrane, were identified 

from different bacteria including Staphylococcus aureus, Clostridium novyi and 

Bacillus thuringiensis (25-27). In addition to APase, treatment with PI-PLC converted 

other membrane-anchored proteins, including 5‟-nucleotidase and erythrocyte 

acetylcholinesterase (AChE) into soluble forms (28,29) Interestingly, PI-PLC specific 

substrate proteins were not substrates for other phospholipases (30). This 

observation indicated that the PI-PLC sensitive proteins were attached to the plasma 

membrane via an anchor containing phosphatidylinositol (PI).  

The identification of other PI-PLC specific proteins, including variant surface 

glycoprotein (VSG) of Trypanosoma brucei (31,32); rat brain and thymocyte Thy-1 

(33,34); Torpedo electric ray organ AChE (35); and human erythrocyte AChE (36); 

revealed many important aspects of the GPI anchor. For instance, analysis of the 

linkage and the membrane anchor of the rat brain and thymocyte Thy-1 revealed 

that this protein‟s C-terminal cysteine was connected to an ethanolamine (EtN) via 

an amide bond. Further, it also revealed that the membrane anchor of Thy-1 

contained a glycan core and a phospholipid tail. This glycan core consists of 

glucosamine, galactosamine, mannose and myo-inositol residues and the 
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phospholipid tail consists of phosphate, glycerol and a stearic acid. Based on these 

findings and in combination with exoglycosidase digestions and structure analysis 

techniques such as nuclear magnetic spectroscopy (NMR), the first complete 

structure of the membrane anchor (GPI) of Trypanosoma brucei VSG (37) and the 

rat brain and thymocyte Thy-1(38) was elucidated in 1988 (Figure 1.2). 

 

 

 

 
 
Figure 1.2 The structure of the rat brain and thymocyte Thy-1 GPI anchor. 
Phosphatidylinositol (black), glucosamine (orange), mannose 1, 2 and 3 (blue) 
and ethanolamine phosphate (red) represents the core GPI anchor of eukaryotic 
organisms. The structure of the lipid portion of the phosphatidylinositol can varied 
according to species and tissue of origin. Molecules highlighted in magenta are 
only part of Thy-1 GPI anchor and do not represents the eukaryotic GPI anchor 
core. The circled free amine group represents the nucleophile donor. 
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1.1.1b The Structural Diversity of GPI anchor 

 To date, complete structures of a diverse set of GPI anchors have been 

identified (Figure 1.3) (39-44). All GPI anchors characterized so far have a common 

core structure: H2N-(CH2)2-PO4-6Man-(α1-2)-Man-(α1-6)-Man-(α1-4)-GlcNH2-(α1-6)-

myo-inositol-1-PO4-lipid (Figure 1.2) (45,46). Further modifications to this common 

core structure based on its protein, tissue, or species-specificity result in the 

structural diversity of GPI anchors (30). Modifications occur frequently on the 

tetrasaccharide glycan core and the phospholipid tail of the GPI anchor, during its 

biosynthesis or after attachment to GPI anchoring proteins (47). Attachment of 

additional carbohydrate side chains such as mannose, galactose and sialic acid, and 

extra phosphoethanolamine (EtNP) groups, are also known (46,48-50). For most 

GPI anchors, the phospholipid tail contains a diacylglycerol (31,51). However, in 

certain GPI anchors the phospholipid tail contains an alkylacylglycerol (52-55) or a 

ceramide moiety (39,48,56,57). The length of the carbon chain and the level of 

saturation of these lipids vary based on the protein attached, and with tissue and 

species specificity (48). Lipidation (acylation) at the 2‟-hydroxyl position of the myo-

inositol ring is also known (58). This modification is significant, as it eliminates PI-

PLC specificity. 
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Figure 1.3 Structural diversity of GPI anchors. GPI-Aps of (A) T.brucei 
variant surface glycoprotein (VSG) (B) human erythrocyte 
acetylcholinesterase (AChE) (C) rat brain Thy-1 cell surface antigen (Thy-1) 
(D) Leishmania major gp63 surface protein (gp63) and (E) S.cerevisiae 
glycophospholipid-anchored surface protein (Gas1).  
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1.1.1c The Biosynthesis of GPI anchor 

 The assembly of the GPI anchor (Figure 1.4) is initiated at the cytoplasmic 

leaflet of the ER membrane. 

 

 

 First, an N-acetylglucosamine (GlcNAc) is added to phosphatidylinositol (PI). 

The PI is anchored to the cytoplasmic surface of the ER membrane via a 

 
 
Figure 1.4 The GPI anchor biosynthetic pathway. This figure illustrates the 
general steps involved in GPI anchor biosynthesis in yeast and mammals. 
See text for further details. 
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diacylglycerol (59). This reaction is the first committed step in GPI anchor 

biosynthesis and generates N-acetylglucosaminylphosphatidylinositol  (GlcNAc-PI). 

GlcNAc-PI production is mediated by GPI-N-acetylglucosaminyltransferase (GPI-

GnT) (60).  The GlcNAc-PI is next deacetylated by GlcNAc-PI de-N-acetylase to 

generate glucosaminylphosphatidylinositol (GlcN-PI) (61,62). In mammals and yeast, 

a flipping reaction, mediate by flippase, inverts GlcN-PI so that the GlcN is on the 

luminal side of the ER membrane (63). The identity of this flippase has remained 

elusive. Interestingly, in T. brucei, flipping of GlcN-PI to ER lumen is not required. 

Instead, the last step in trypanosomal GPI anchor biosynthesis requires the 

corresponding intermediate to flip to the ER lumen to in order to undergo GPI 

transamidation (64,65). 

Next, the 2‟-hydroxyl position of the inositol in GlcN-PI undergoes an acylation 

reaction (palmitoylation is most common) to produce GlcN-(acyl)-PI (66-68). This 

reaction is mediated by an inositol acyltransferase and produces PI-PLC-resistant 

GPI anchors. Acylation enhances the efficiency of consequent mannosylation 

reactions (66,69). The isoprenoid Dolicholphosphomanose (Dol-P-Man) provides the 

mannose residues required to construct the GPI glycan core (70). A series of distinct 

mannosyltransferases (GPI-MT I-IV) (71-79) sequentially add each mannose to 

GlcN-(acyl)-PI. The first mannose (Man1) is attached to GlcN-(acyl) PI via α1-4 

linkage to produce Man1-GlcN-(acyl)-PI; this reaction is mediated by α1-4 

mannosyltransferase (GPI-MT I) (71). In yeast and mammalian cells, the catalytically 

active site of GPI-MT I complex is on the luminal side of the ER. This enzyme 

indicates the importance of an early flipping of GlcN-(acyl) PI complex from the 
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cytosolic surface of the ER membrane to that of the lumenal surface (43). The 

second mannose (Man2) is attached to Man1-GlcN-(acyl)-PI via α1-6 linkage to 

produce Man2-Man1-GlcN-(acyl)-PI. This reaction is mediated by α1-6 

mannosyltransferase (GPI-MT II) (74,75). The third mannose (Man3) addition is 

mediated by α1-2 mannosyltransferase (GPI-MT III) that produces Man3-Man2-Man1-

GlcN-(acyl)-PI (76,77).  

Mutagenic studies revealed the existence of a Man2-(EtNP)-Man1-GlcN-

(acyl)-PI, in which, an ethanolamine phosphate (EtNP) is attached to the Man1 of the 

GPI glycan core. This modification, mediated by GPI-ethanolamine phosphate 

transferase (GPI-ET I), occurs prior to the attachment of the Man3 to GPI glycan core 

(50,80,81). This Man1 modification is essential for GPI transamidation in yeast (81) 

but not in mammals or T. brucei (80,82). A second EtNP is attached to the Man3 of 

the glycan core to produce (EtNP)-Man3-Man2-(EtNP)-Man1-GlcN-(acyl)-PI (83,84). 

The free amine group (Figure 1.1, circled amine group) of this final EtNP attached to 

Man3 is the nucleophile donor used in the GPI transamidation reaction. In yeast and 

certain mammalian cell lines, there is a stringent requirement for a fourth mannose 

group before addition of the EtNP to the Man3 (78,85). The enzyme α1-2 

mannosyltransferase (GPI-MT IV) (78,79) mediates this reaction to produce Man4-

Man3-Man2-(EtNP)-Man1-GlcN-(acyl)-PI. This reaction is followed by the addition of 

EtNP moiety to the Man3 of the GPI anchor to produce the Man4-(EtNP)-Man3-Man2-

(EtNP)-Man1-GlcN-(acyl)-PI. In addition to the EtNP groups attached to the Man1 

and Man3 of the GPI anchor, a third EtNP is attached to the Man2 (86,87). In yeast, 
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this modification is important for ER to Golgi transport of GPI-APs, ceramide 

remodeling of the GPI phospholipid tail and to maintain cell wall integrity (88). 

 The two structures, (EtNP)-Man3-Man2-(EtNP)-Man1-GlcN-(acyl)-PI and 

Man4-(EtNP)-Man3-Man2-(EtNP)-Man1-GlcN-(acyl)-PI represent the minimalist GPI 

anchors of eukaryotic organisms. These structures can act as nucleophilic 

substrates for GPI transamidase to produce GPI-APs or can exist as free GPIs on 

extracellular membranes (89). Further modifications can be introduced to the GPI 

anchor, even after its attachment to proteins. Such modifications, including inositol 

deacylation and lipid remodeling, will be discussed later in this chapter. 

 

 1.1.1d GPI Anchor Mimics to Substitute the GPI Anchor 

GPI anchors are ubiquitous to eukaryotic systems. However, the extraction of 

GPI anchors from biological systems with high yield and purity is very challenging. 

As an alternative, currently there exist several synthetic pathways to construct GPI 

anchors and various derivatives in vitro (90-101).These synthetic strategies provide 

an invaluable approach to successfully construct full-length GPI anchors and 

anchored peptides. However, large-scale production of GPI anchored products is 

challenging and still an ongoing problem. Further, the amphipathic nature of both 

natural and synthetic full-length GPI anchors restricts their use in soluble in vitro 

experiments. 

Due to the challenges associated with the use of full-length GPI anchors, 

GPI-T researches seek GPI anchor mimics to substitute the GPI anchor. Inspired 

from the work of S. S. Tate and A. Meister (102), in 1995, Udenfriend and co-
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workers employed small nitrogen nucleophiles, such as hydrazine and 

hydroxylamine, to mimic the GPI anchor (103,104). In in vitro assay systems, high 

concentrations of these mimics were successfully used as substrates in the GPI 

transamidation reaction. These small compounds were attached to the correct amino 

acid in the protein substrate in a manner that was analogous to that of the GPI 

anchor (105).This discovery opened up a new avenue to characterize various 

aspects of GPI transamidation using more convenient soluble assay systems. The 

awareness that small molecules can substitute for the GPI anchor opened doors for 

the synthesis of simplified, but more realistic, soluble GPI anchor mimics to replace 

GPI anchors in in vitro studies (97,106).  

 

 1.1.2 The Protein Substrate for GPI-T 

The discovery of proteins post-translationaly modified with C-terminal GPI 

anchors was initiated in the late 1970s, when two research groups independently 

demonstrated the release of membrane bound alkaline phosphatase by bacterial PI-

PLC treatment (23,24). As detailed in section 1.1.1a, this experiment ultimately led to 

the identification of GPI anchor and the discovery of a diverse set of GPI-APs. 

Hundreds of proteins have been identified or predicted to be GPI anchored to date 

(5,6). These proteins are first synthesized in the cytosol, as a preproprotein with a 

canonical N-terminal ER localizing signal sequence and a C-terminal GPI-T signal 

sequence (107). The N-terminal signal sequence directs co-translational 

translocation of the precursor preproprotein to the ER lumen (108,109). This 

localizing signal sequence is then cleaved by signal peptidases and the 
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preproprotein is converted to a proprotein. The cleaved N-terminal sequence is not a 

prerequisite for consequent GPI anchor attachment (110). The C-terminal GPI-T 

signal sequence is important to target the proprotein substrate to the GPI-T and for 

GPI-T to recognize it‟s substrate proteins (107,109).  This signal sequence is not a 

consensus sequence. However, it can be divided into three key identity regions 

(Figure 1.5). These regions include the GPI-T cleavage and anchor attachment 

region (the so-called ω region, 3 amino acids), a hydrophilic spacer region (10-12 

amino acids) and a terminal hydrophobic region (12-20 amino acids). 

 

 

1.1.2a The ω Region 

The ω region begins with a ω amino acid followed c-terminally by the ω+1 

and ω+2 residues. GPI-T cleaves the amide bond between the ω and ω+1 positions, 

replacing the C-terminal peptide (from the ω+1 position to the C-terminus) with the 

GPI anchor. Site directed mutagenesis experiments to characterize the ω site were 

performed by various research groups (111-118). Using nascent human placental 

 
 
Figure 1.5 The protein substrate for GPI-T. The C-terminal GPI signal sequence 
begins at the ω site and is followed by stretches of hydrophilic and hydrophobic 
amino acids. 
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alkaline phosphatase (PLAP) and a minimalistic version of PLAP called miniPLAP, 

Udenfriend and co-workers evaluated the amino acid requirements at the ω site. The 

native ω site in wild-type PLAP is Asp484 (Asp179 in miniPLAP). When this position 

was mutated to glycine, alanine, cysteine, serine, or asparagine, the mutants were 

expressed well and the resultant protein was GPI anchored. However, mutation to 

glutamic acid, glutamine, proline, tryptophan, leucine, valine, phenylalanine, 

threonine, methionine, and tyrosine produced proproteins that were not converted to 

GPI-APs (111-114).These results suggested that the ω site residue must be 

relatively small. 

A similar set of experiments were carried out by Caras and co-workers 

(115,116). They developed the fusion protein hGH-DAF, by appending the C-

terminal GPI signal sequence of human decay accelerating factor (DAF) onto the C 

terminus of human growth hormone (hGH), a secretory protein. Site directed 

mutagenesis of the Ser319 ω site of DAF to alanine, aspartate, asparagine and 

glycine allowed for efficient GPI anchoring compared to mutations to either valine or 

glutamate. However, in contrast to the results of Udenfriend and co-workers, 

mutation to cysteine completely abolished GPI anchoring of hGH-DAF. In summary, 

these and other experiments led to the conclusion that the ω site amino acid should 

be a small and relatively hydrophobic amino acid for recognition by GPI-T.  

A similar approach was used to characterize the amino acid specificity at the 

ω+1 and ω+2 residues (117-120). In 1992, the amino acid specificity at ω+1 site 

was investigated using an in vitro cell free system built from rabbit reticulocyte 

lysates and rough microsomes (RM), using preprominiPLAP as the protein substrate 
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(120).This preprominiPLAP construct was designed by removing a significant 

amount (2/3) of internal sequence of humanPLAP. However, the N and C-terminal 

regions, which represent the pre and pro regions of hPLAP was retained as it is on 

preprominiPLAP. In the natural construct of preprominiPLAP, Asp179, Ala180 and 

Ala181 represent the ω, ω+1 and ω+2 sites, respectively. Mutations at Ala180 to 

Asp, Ser, Cys, Met, Thr, Glu, Arg, and Trp were well tolerated; however, mutation to 

proline eliminated GPI-T recognition and processing. Mutational studies at ω+1 and 

ω+2 were also carried out in vivo using wild type PLAP cDNA transfected to COS 

cells (119). In conclusion, all of these studies revealed that the ω + 1 site tolerates 

all amino acids except proline, with a preference for small amino acids (117,118). 

The amino acid specificity at ω+2 site is more stringent and restricted to very small 

amino acids including Ala, Gly, Ser and Cys (117-120). In fact, alanine and glycine 

are optimal at ω+2 site although trace activity was observed with cysteine and serine 

(120). 

 

1.1.2b The Spacer Region 

 The ω region is followed by a stretch of hydrophilic amino acids also known 

as the spacer region. Mutational analysis of the GPI-T signal sequences of human 

DAF (116,121), bovine liver 5'-nucleotidase (122), S. cerevisiae Gas1(57),(118), and 

the unnatural signal sequence Ser3-Thr8-Leu14 appended to cluster of differentiation 

46 protein (CD46) (117) revealed much about this spacer region. According to those 

facts, the spacer region does not contain any consensus sequence. However, the 

length (6-14 amino acids) and the relative hydrophilicity of this region is important for 

https://en.wikipedia.org/wiki/Cluster_of_differentiation
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both GPI-T recognition and consequent GPI anchoring (111,115-117,121,122). In 

addition, spacer region may have a role in locating the ω site to the active site of 

GPI-T(122). 

 

1.1.2c The Hydrophobic Region 

The C-terminal hydrophobic region is the third key element of the GPI-T 

signal sequence. The overall hydrophobicity and the length of this region are critical 

parameters for the proprotein substrate to be recognized and anchored by GPI-T 

(123-126). Truncations and point mutations that diminished the hydrophobicity of the 

C-terminal region both eliminated GPI anchoring (57,117,124,125). The remarkable 

ability of the Ser3-Thr8-Leu14 to direct GPI anchoring further revealed that 

hydrophobicity is the driving feature of this region (117,127). In addition to the 

importance of this region for GPI-T to recognize the proprotein substrate, it is also 

involved in targeting the propeptide to GPI-T. For this purpose, during the GPI 

transamidation, the C-terminal hydrophobic region temporally anchored to the inner 

leaflet of the ER membrane. This attachment facilitates the proper orientation of the 

ω region residues at the active site of GPI transamidase (122,127). 

Overall, the complete GPI-T signal sequence is not a consensus sequence 

but rather a pattern of small, hydrophilic and hydrophobic residues. However, amino 

acid variations in the GPI signal sequence of GPI-APs and along with active site 

variations in GPI-T likely contribute to the apparent substrate and species specificity 

exerted by GPI-T (128-131). In addition to the role of this signal sequence for 

directing the attachment of precursor proteins to the GPI anchor, GPI-T signal 
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sequence also have a role in regulating the confirmation and function of its precursor 

proteins (132). This phenomenon was investigated using Als5 protein of Candida 

albicans, a GPI anchoring protein. The study revealed that the Als5 proteins with 

and without GPI signal sequence acquire two different confirmations with functional 

variations (132).  

 

1.2 The GPI Transamidase Complex 

The discovery of GPI anchors and GPI-APs was followed by an array of 

investigations to elucidate the GPI anchoring process and to identify the enzyme that 

mediates it. Evidence suggesting that the putative enzyme is a transamidase arose 

from a series of in vivo and in vitro experiments (103-105,133-136). These findings 

revealed that the enzyme, now called GPI transamidase or GPI-T, proceeds via 

formation of  an activated carbonyl intermediate, like a protease. The  intermediate is 

susceptible to immediate nucleophilic attack by a GPI anchor (or a suitable 

nucleophile donor under artificial conditions) and reaction happens without any 

energy source. Further, the process required only a single enzyme confirming that 

GPI-T is indeed a transamidase.  

GPI-T is localized in the ER as multimeric protein complex (137). There are 

five protein components that make up the GPI-T complex (Figure 1.6) (1,138). 
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The subunits Gpi8, Gpi16, Gaa1, Gpi17, and Gab1 are found in yeast and 

their respective homologues, PIG-K, PIG-T, GPAA1, PIG-S and PIG–U, are found in 

humans (1). The subunits, Gpi8, Gpi16, and Gaa1, are ubiquitous in eukaryotes, 

however, Gpi17 and Gab1 are absent from trypanosomes (139), where they are 

replaced by two unique subunits - TTA1 and TTA2 (139). TTA1 and TTA2 have no 

sequence homology to Gpi17 and Gab1. However, they possess similar membrane 

topologies. 

 

1.2.1 The Subunits of GPI-T 

Identification of the GPI-T subunits was challenging and utilized a 

combination of genetic, molecular biology and biochemical approaches. Gaa1 and 

Gpi8 were the first subunits identified. Co-immunoprecipitation experiments lead to 

the identification of rest of the GPI-T subunits including Gpi17, Gab1 and Gpi16 

(138,140,141).  In S. cerevisiae the subunits Gaa1 and Gpi16 co-immunoprecipitate 

with GST tagged Gpi8 forming a heterotrimeric complex (138). The subunits Gpi17 

 
Figure 1.6 The GPI-T complex. The predicted transmembrane domains for 
each subunit are shown as rectangles spanning the ER membrane bilayer, which 
is represented in light grey. The subunits in black are found in all eukaryotes, 
whereas the subunits in dark grey are found in humans and yeast, but not in 
trypanosomes.  
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and Gab1 of S.cerevisiae do not interact with the heterotrimeric complex and exist 

as a heterodimer (140). In humans expression of FLAG-GST-hGPI8 lead to co-

immunoprecipitation of subunits GPAA1, PIG-S and PIG-T (141). Further, in humans 

it is also revealed (via mutational analysis) that the GPI-T complex to be functional it 

should also associate with PIG-U. Thus, in contrast to S.cerevisiae GPI-T, human 

GPI-T exists as a heteropentamer. 

 The gene GPI8, which encodes for Gpi8, was first identified from 

Saccharomyces cerevisiae using a temperature-sensitive (TS) mutant strain (142). 

This strain is unable to express GPI anchored proteins on the cell surface but 

produced full-length GPI anchors. However, when transformed with yeast 

chromosomal DNA, GPI anchoring activity was restored and the complementing 

gene was identified as yGPI8 (143). In yeast, deletion of this gene is indicating that 

GPI anchoring is an essential function in yeast (143).The human homologue of 

GPI8, hGPI8 was isolated using a similar genetic approach to that of yGPI8 (143). 

The class K mutant strain, lacking a functional hGPI8 gene, efficiently expressed 

mature GPI anchors but was unable to produce GPI-APs (144,145). yGPI8 was able 

to restore GPI anchoring activity in the class K cell line, indicating that yGPI8 and 

hGPI8 are homologues (145). A forward genetic approach was used to identify the 

corresponding GPI8 gene in trypanosomes. Mutation of trypanosomal GPI8 was not 

lethal; however, it affected pathogenesis (146) due to the lack of GPI anchored 

protein procyclin. In T.brucei GPI anchored procyclin act as a protease-resistant 

protective coat against enzymes secreted from the midgut of tsetse fly. This 

protection is important for T.brucei survival and to establish infections (14,146,147). 
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In yeast and humans, Gpi8 is a type I transmembrane protein with a large 

lumenal domain and a single transmembrane (TM) domain (138,143,145). In 

protozoans, Gpi8 is soluble and does not contain a TM domain (148,149), hinting 

that the Gpi8 TM domain is not involved in Gpi8‟s function (150). Gpi8 is a 47 kD 

protein with 25–28% sequence homology to a family of cysteine proteases, 

especially to that of C13 family (138,151). In addition, the active site of Gpi8 shows 

weak sequence similarity to caspases, especially to caspase-1 (151). Recent work 

by our group demonstrated that Gpi8 has organizational similarity to caspases as 

well as it undergoes homodimerization (152). The enzymatic contribution of Gpi8 

towards GPI transamidation was investigated using several reporter assays 

(150,153-155). The production of GPI-anchored VSG was restored in Gpi8-depleted 

T. brucei ER membranes by the addition of recombinant Leishmania mexicana Gpi8 

(150), indicating the direct contribution of Gpi8 towards GPI anchoring of 

proproteins. Gpi8‟s role in the proteolytic processing of proprotein substrates was 

confirmed in an in vitro fluorescence assay, which utilized a fluorogenic peptide 

substrate acetyl-S-V-L-N-aminomethyl-coumarine (153). Recombinant TbGpi8 was 

able to process this synthetic substrate, causing an increase in coumarine 

fluorescence. Gpi8 was also observed to be physically associated with precursor 

protein substrate prominiPLAP in an assay performed with semi-permeabilized K562 

cells. This association was not observed when the assay performed with GPI8 

knockdown class K mutant cell line (155).  

The active site of Gpi8 was preliminarily identified based on its sequence 

homology to cysteine proteases (the C13 family of cysteine proteases and caspase-
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1). These proteases carry a cysteine:histidine catalytic dyad and use a general 

acid/base catalytic mechanism to cleave substrate proteins (156,157). All forms of 

eukaryotic Gpi8, including yGpi8, hGpi8 and LmGpi8, had conserved cysteine and 

histidine residues (148,151,158). The conserved residues were investigated using 

mutagenic analysis to identify the putative Cys:His pair for catalysis. For instance, 

yGpi8 contains two conserved cysteine residues (C85 and C199) and two histidine 

residues (H57 and H54) (151). These residues were individually mutated to alanine 

and analyzed for their ability to promote GPI anchoring activity in GPI8 depleted cell 

lines or in TS strains. The expression of yGpi8, containing C199A or H57A point 

mutations, did not have GPI anchoring activity, suggesting that these positions make 

up the putative catalytic dyad. Similarly, in human cells, mutation at the potential 

amino acids C92, H164 and C206 revealed that H164 and C206 comprised the 

catalytic dyad (158). In trypanosomes, conserved residues H174 and C216 are 

responsible for catalysis (148). These results revealed that Gpi8 is the catalytically 

active subunit of GPI-T. However, it is catalytically inert in the absence of other GPI-

T subunits (152). 

The gene encoding Gaa1, GAA1, was first identified from a temperature 

sensitive S. cerevisiae strain using similar methods as described for yGPI8 (159). 

These strains were unable to incorporate metabolically labeled GPI (containing [3H] 

inositol) onto Gas1p, a known GPI-AP. Complementation with a plasmid carrying 

yGAA1 restored GPI anchoring activity and mature Gas1-GPI was detected by SDS-

PAGE. Based on these evidences, Gaa1 is important to incorporate GPI anchor to 
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GPI anchoring proteins. The corresponding human (158,160,161) and trypanosomal 

(139) GAA1 were identified based on sequence similarities to that of yGAA1. 

Gaa1 is an ER-oriented protein with several C-terminal transmembrane 

domains (TM), a large lumenal domain and a single N-terminal transmembrane 

domain (Figure 1.6) (149). Yeast Gaa1 is a 70 kD protein with six TM domains, while 

human Gaa1 is a 68 kD protein with seven TM domains (149). The structure-

function relationship of different Gaa1 domains were analyzed using C-terminally 

truncated human Gaa1 mutants (162,163). According to these studies, the large 

lumenal domain of Gaa1 is sufficient to interact with other subunits in the GPI-T 

complex. However, the assembled GPI-T complex was functionally defective in the 

absence of the C-terminal TM domains of Gaa1. Immunoprecipitation studies also 

revealed that this GPI-T complex could still interact with proprotein substrates but 

not with the GPI anchor (162). Further experiments revealed that the last TM domain 

of Gaa1 likely interacts directly with the GPI anchor. This interaction is important as 

it facilitate recruitment of GPI to GPI-T in order to participate in GPI transamidation. 

A conserved proline residue in this last Gaa1 TM domain has been proposed to act 

as a dynamic hinge during requirement of the GPI anchor (163). 

In 2001, two new GPI-T subunits, named Gpi16/PIG-T and Gpi17/PIG-S were 

identified from yeast and humans (138,141). The expression of a glutathione-S-

transferase (GST) tagged GPI8 in a GPI8 knockout S. cerevisiae strain enabled 

affinity purification and characterization of GPI-T (138). SDS-PAGE analyses of this 

protein complex, followed by silver nitrate staining, revealed three distinct bands 

(138). Tryptic digestion followed by mass spectroscopy identified these bands 
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correspond to proteins GST-Gpi8, Gaa1, and a new protein YHR188c, which was 

later named Gpi16 in yeast. In a similar manner, the expression and affinity 

purification of FLAG-GST-hGPI8 in GPI8-depleted class K mutant cells led to the co-

precipitation of four proteins (141). The proteins co-precipitated with Gpi8 include 

Gaa1 and two new proteins. The two new proteins were later named PIG-S and 

PIG-T (141).  

Gpi16/PIG-T is a type 1 transmembrane protein with an N-terminal ER 

localizing sequence, a large lumenal domain, and a C-terminal transmembrane 

(138). Yeast Gpi16 is a 69 kD protein (138). Its homologues from other eukaryotic 

organisms have a similar hydrophobicity profile with amino acid lengths that vary 

from 531-639 amino acids (141,164). Treatment of Gpi16 with endoglycosidase H 

(Endo H) caused a decrease in observed mass revealing that Gpi16 is a 

glycoprotein with two N-glycosylation sites (138). Mutational studies with human 

GPI8 and PIG-T (the human GPI16 homolog) revealed the existence of a disulfide 

linkage between these two subunits (164). Upon expression of GST- GPI8C92S in 

GPI8-deficient class K mutant cells, co-immunoprecipitation of PIG-T with Gpi8 was 

disrupted. Similarly the mutant PIG-TC182S did not interact with Gpi8 indicating the 

existence of a disulfide linkage between Cys192 of Gpi8 and Cys182 of PIG-T. This 

disulfide bond might form a funnel that gates the access of proteins to the active 

site of Gpi8 (164). However, GPI-T containing either GPI8C92S or PIG-TC182S in 

ΔGPI8 or ΔPIG-T mutant cell lines, respectively, was capable of producing trace 

amounts of mature, GPI-anchored miniPLAP (164). Hence, this covalent interaction 

is important, but not essential for GPI anchoring activity. Further Gpi16 is involved 
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in stabilizing the GPI-T as depletion of Gpi16 led to reduced expression of GPI-T 

subunits, Gaa1 and Gpi8 (141). 

Gpi17 is a 61 kD, glycosylated transmembrane protein (140). Its large soluble 

domain is lumenally oriented (140) and flanked by two transmembrane domains so 

that both the N and C termini of Gpi17 are cytosolically oriented (140). In humans, 

PIG-S (the human GPI17 homolog) is associated with the rest of the GPI-T subunits 

in stoichiometric ratios (141). In contrast, no stoichiometric level association is 

observed between yeast Gpi17 with subunits Gpi8, Gaa1 and Gpi16 (140). 

Even though the exact functions of Gpi16/PIG-T and Gpi17/PIG-S are not 

known, these two subunits are essential to the GPI anchoring process (141). 

Depletion of either subunit causes accumulation of GPI anchor and proprotein, 

indicating a dramatic reduction in GPI-T activity. Gpi16 is sensitive to depletion of 

other GPI-T subunits (140). Further Gpi16 and Gpi8 depend on each other for 

stability (138). In contrast, Gpi17/PIG-S stability and its GPI anchoring function is 

slightly affected only with Gaa1 depletion (140). These observations suggest that 

Gpi17 might not be part of the catalytically functional unit of yeast GPI-T.  

PIG-U/Gab1 is the fifth GPI-T subunit. PIG-U was first identified from a 

chemically mutated Chinese hamster ovary (CHO) cell line that was deficient in cell 

surface expression of GPI anchored proteins (165). Transfection with genes 

corresponding to any of the known human GPI-T subunits did not restore the GPI 

anchoring activity. This observation indicated the need for another subunit. 

Complementation with a rat cDNA expression library led to the identification of the 

complementing gene PIG-U and hence the fifth subunit of GPI-T. Nearly 
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simultaneously, the corresponding yeast subunit Gab1 was identified from a yeast 

strain defective in cellular morphogenesis (166).  

Gab1 is a 38 kD, highly hydrophobic protein with several transmembrane 

domains and a very small putative soluble domain (~50 amino acids). The number of 

estimated TM domains varies between 8 and 10. Due to the high hydrophobicity of 

Gab1 and its sequence similarity to that of fatty acid elongase, it has been 

speculated that Gab1 might be involved in recognizing the fatty acid in the GPI 

anchor, presenting it to the active site of Gpi8 (165). This was supported by the fact 

that in humans, the GPI-T complex can assemble in the absence of PIG-U, but it is 

non-functional in GPI anchoring of proprotein substrates (165).  

With the identification of the subunit Gab1, we now able to predict the 

structural arrangement of GPI-T complex to a certain extent. In humans expression, 

and two step affinity purification of FLAG-GST-hGPI8 revealed that the subunits, 

PIG-T, GAA1, PIG-U and PIG-S co-immunoprecipitate with PIG-K confirming  

human GPI-T is a pentamer. In contrast, yeast GPI-T complex composed of two sub 

complexes a heterotrimer (138) and a heterodimer (140,166). In trypanosomes, GPI-

T consists of five subunits. Three of the trypanosomal subunits are homologues to 

subunits Gpi8, Gaa1 and Gpi16 while Gab1 and Gpi17 are replaced with two 

unrelated subunits TTA1 and TTA2 (139). Overall, the subunits Gpi8, Gaa1 and 

Gpi16 are found in all forms of GPI-T. Therefore, we can speculate that these 

subunits are the core components of GPI-T complex. However, in the absence of 

experimental data with a pure soluble form of GPI-T we cannot draw conclusions 

about the GPI-T structure. 
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1.2.2 The Mechanism of GPI Transamidation 

Gpi8/PIG-K is the catalytically active subunit and its sequence homology to 

cysteine proteases led to propose the mechanism of GPI transamidation. 

Mutagenetic studies revealed that Gpi8/PIG-K contains conserved cysteine and 

histidine residues that are essential for activity and presumably comprise the 

catalytic dyad (148,151,158). In addition, different experiments revealed that the 

Gpi8 is physically interacting with the proprotein substrate via a thioester 

intermediate (150). For instance, the conversion of pro-VSG to VSG-hydrazine by L. 

mexicana His-tagged Gpi8 in a cell free system was abolished by treatment with the 

thiol alkylating reagent iodoacetamide providing evidence for the formation of a 

thioester intermediate (150). These results supported the similarity between 

mechanisms of cysteine protease with that of GPI-T. The only difference is that GPI-

T uses the GPI anchor instead of water to complete the reaction (Figure 1.7).  

According to the proposed mechanism, the histidine residue acts as a base to 

deprotonate the cysteine thiol. The thiolate nucleophilically attacks the carbonyl 

carbon of the ω amino acid, forming a thioester and releasing the C-terminal signal 

sequence. Consequently, a second nucleophilic attack, by the free amine of the 

ethanolamine in the GPI anchor, cleaves the thioester bond to form an amide 

linkage between the GPI anchor and the protein. 
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1.3 The GPI Anchored Proteins (GPI-APs) 

 In eukaryotes, proteins can associate with the extracellular membrane via 

different means. GPI anchoring of proteins offers one method that is distinct from 

lipidation or the addition of transmembrane domains GPI anchoring proteins are co-

translationally translocated to the ER lumen as preproproteins. At ER the N-terminal 

ER localizing signal sequence is cleaved by signal peptidase. The resulted 

proprotein then undergo GPI transamidation at the inner leaflet of the ER to produce 

GPI anchored proteins (107-110). GPI-APs are typically transported through the 

 
 

 
 
Figure 1.7 The proposed reaction mechanism for GPI-T. Deprotonation of 
the catalytic cysteine residue by histidine facilitates the nucleophilic attack, 
formation of a thioester bond and release of the C-terminal GPI-T signal 
sequence. A secondary nucleophilic attack by the free amine of EtNP cleaves 
the thioester bond and forms a new amide bond between the protein and the 
GPI anchor. 
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secretory pathway to the extracellular membrane and perform a diverse set of 

physiological functions as detailed below. 

 

1.3.1 Intracellular Transport of GPI-APs 

GPI-APs attached to the inner leaflet of the ER membrane, exit the ER and 

are transferred to the extracellular membrane via the Golgi network. During this 

journey, the GPI anchor plays a major role as a sorting signal. First, it functions as 

an ER exit signal (167-169). Next, in the Golgi, it acts as a sorting signal in 

combination with other sorting signals from the attached protein to direct the GPI-

APs to different domains of the cell membrane. In order to act as a signal, the GPI 

anchor in GPI-APs undergoes two structural modifications (170). These include the 

removal of the acyl chain linked to the inositol ring of the GPI anchor (a reaction 

catalyzed by inositol deacylase) and the removal of the EtNP attached to the second 

mannose in the anchor (171,172). Inability to perform either of these modifications 

lead GPI-APs to accumulate in the lumen of the ER followed by degradation.  

GPI-APs with suitable export signals leave the ER at ER-exit sites (ERES) 

and are transported to the Golgi via coat protein complex II (COPII) vesicles (173). 

GPI-APs lack transmembranes; as a result, there is no direct loading of GPI-APs to 

COPII vesicles. Hence, cargo receptors (p24 family protein complex) are needed 

(174). These receptors first interact with GPI-APs at ERES. Then these GPI-AP 

loaded cargo receptors concentrate into COPII vesicles. Upon transportation to the 

cis-Golgi compartment the cargo receptors load GPI-APs into the golgi complex and 

then they dissociate from the GPI-APs, a process that is mediated by pH changes. 
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The cargo receptors are then recycled back to ERES via coat protein complex I 

(COPI) vesicles (173) to initiate another cycle.  

The sorting mechanisms in the trans Golgi network determine the final 

destinations of different GPI-Aps (apical vs. basolateral domains of the plasma 

membrane) (175-177). However, this process remains poorly understood. Most GPI-

APs are ultimately localized to the apical domains of the plasma membrane (177). 

Originally it was suggested that the GPI anchors of GPI-APs act alone as apical 

sorting signals (175,176). Later it was shown that at trans Golgi network fatty acid 

remodeled GPI-APs are recruited to the lipid micro domains/lipid rafts. This lipid 

raft/GPI-AP combination may act as an apical sorting signal (178). Here, saturated 

fatty acid chains in the PI of the GPI anchor interact with ceramides in the lipid rafts. 

Recently it was shown that recruitment of GPI-APs to lipid rafts further facilitate the 

oligomerization of GPI-APs via its protein domains and hence provide a combined 

effect for apical sorting machinery operated within the trans golgi network (179,180). 

It has also been proposed that the N-glycans and O-glycans on GPI-APs also can 

act as apical sorting signals to direct GPI-APs from the Golgi to plasma membrane 

(181,182). However there exist contradictory opinions towards the roles of these 

glycans (183).  

In fungi, certain GPI-APs are ultimately covalently integrated into the cell wall 

(7). For instance, in S. cerevisiae, the first mannose (Man1) residue, immediately 

adjacent to the GlcN-PI in the GPI anchor, forms a new glycosidic linkage with β1-6 

glucan in the yeast cell wall (184). This process removes the GlcN-PI of the GPI 

anchor. As a result, the cell wall anchored protein has a common core structure of 
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protein-CO-NH-(CH2)2-PO4-(Man4)-Man3-Man2-(EtNP)-Man1-glucan. Certain amino 

acids N-terminal to the ω site residue participate in determining whether or not a 

fungal GPI-AP remains in the plasma membrane or is transferred to the cell wall. 

Basic amino acids close to and upstream of the ω site direct the GPI-APs to the 

plasma membrane (185,186). However, the presence of valine, isoleucine, or 

leucine at ω-4 or ω-5 and tyrosine or asparagine at ω-2 directs yeast GPI-APs to the 

cell wall (186). In addition, serine/threonine rich regions further upstream to the ω 

site also favor cell wall integration of yeast GPI-APs (187). 

 

1.3.2 Functions of GPI-APs 

In eukaryotic organisms GPI-APs perform a wide variety of roles as enzymes, 

structural components (188,189), complement regulators (190), adhesion molecules 

(191), receptors (192,193), signaling molecules,(194-196) etc. In yeast, GPI-APs are 

important to maintain cell wall stability and cell morphology. The S. cerevisiae 

protein Gas1p is a β1, 3-glucan specific transglucosidase that is essential for cell 

wall assembly (188). Further many GPI-APs are attached to the yeast cell wall and 

contribute to maintain stretch resistance and osmotic stability (189). GPI-APs also 

function as cell surface receptors, including nutrient uptake receptors, toxin 

receptors, etc. In humans, the uptake of folate is performed by GPI anchored folate 

receptors. However, the folate receptors also function as receptors for viruses such 

as Ebola virus (EBV) (192). In parasitic protozoa, the high density of GPI-anchored 

glycoproteins acts as a protective coat to protect parasites against the immune 

responses from the host (8). GPI-APs are engaged in mediating the immune 
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response. For instance, the GPI anchored protein DAF regulates the T cell mediated 

immune response. DAF also acts as complement regulator, to prevent complement 

activation and hence to protect cells from complement attack (197).  

 

1.4 The Role of GPI-T in Disease Progression 

GPI-T mediates important post-translational modifications in eukaryotic 

organisms to produce GPI-APs. In addition to this primary role, GPI-T is also 

involved in disease progression, especially in relevance to cancer. In humans, the 

non-catalytic GPI-T subunits, PIG-U, GPAA1 and PIG-T, have been identified as 

oncogenic (9-11,198). Overexpression and copy number variations have been 

observed for these subunits in a wide variety of cancer tissue samples including 

breast, bladder, ovarian, colon, lung, head and neck cancers (11,198). These 

subunits may be involved in cancer progression as individual subunits or as a group 

with variable composition. For instance, PIG-U was identified as oncogenic in human 

bladder cancer (11). In addition, overexpression of PIG-U with other oncogenic GPI-

T subunits, Gaa1 and PIG-T induced tumorigenesis and invasion of human breast 

cancer in mice, suggesting a combined contribution of these subunits (10,198). 

However, despite these observations, GPI-T‟s role in cancer progression is not yet 

resolved.  

GPI-T also plays a very important role in pathogenic diseases. In parasitic 

protozoa, the VSG is presented at the outer leaflet of the cellular membrane via its 

GPI anchor. VSG helps parasites evade the host immune system (199). Because 

parasitic protozoan carry two different GPI-T subunits instead of Gab1 and Gpi17 
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(TTA1 and TTA2), these differences could be useful to develop therapeutic agents 

against pathogenic diseases such as African sleeping sickness and leishmaniasis 

(199,200). GPI-T also has a role in prion disease pathogenesis. GPI-anchored 

normal prion proteins (PrPc) are located on the host cell surface. These PrPcs 

interact with aggregates of disease associated prion proteins (PrPsc) (201). This 

interaction converts normal host cell PrPc to pathogenic PrPSC, leading to the 

progression of prion and related diseases (201). However, contradictory evidence 

from cell free assays and transgenic mice studies reveal that non-GPI-anchored 

PrPc can also be converted to PrPsc (202-204). Hence, this phenomenon needs to 

be further investigated.  

 

1.5 Dissertation Research Summary 

This dissertation describes our efforts towards understanding various aspects 

of S. cerevisiae GPI-T and its transamidation reaction. In this research, for the first 

time in the GPI-T field, a pure solubilized form of S. cerevisiae GPI-T was used 

(instead of crude microsomes) in an in vitro assay to characterize GPI-T.  

Chapter 2 details the development and optimization of a in vitro kinetic 

fluorescence resonance energy transfer (FRET) assay for GPI-T. A time dependent 

fluorescence response was observed upon incubating the proprotein substrate with 

pure, solubilized S. cerevisiae GPI-T in a nucleophile-dependent manner. Various 

optimization experiments were used to further enhance the observed fluorescence 

response. In addition, experiments were conducted to identify and analyze GPI-T 

cleaved assay products. 
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Chapter 3 explains the use of this FRET assay for GPI-T to characterize 

various aspects of GPI transamidation. Experiments were performed to understand 

the effect of identity elements in the GPI signal sequence towards peptide substrate 

recognition by GPI-T. The assay was also utilized to investigate the species-specific 

substrate selectivity of GPI-T Further; the new assay was utilized to identify 

cofactors and inhibitors affecting the catalytic activity of GPI-T. 
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Chapter 2 

Development and optimization of an in vitro FRET assay to characterize the 

Saccharomyces cerevisiae GPI-T 

2.1 INTRODUCTION 

 The formation of glycosylphosphatidylinositol (GPI) anchored proteins (GPI-

APs) is an important post-translational modification mediated by GPI-T. Many 

methods including in vivo, in vitro and computational analyses are being utilized to 

elucidate various aspects of GPI-T and its transamidation reaction 

(103,104,111,112,114,115,119,120,123,131,137-

143,145,146,148,150,151,153,154,158-162,165,166,205-214). Experiments based 

on these methods facilitated the identification of the GPI-T subunits (138-

143,145,146,148,151,158-162,165,166,205)(20) and defined the protein substrate 

parameters (111,119,131,206,208) the GPI anchoring mechanism 

(103,104,111,114,120,137,150,153,154,209-215), etc. However, the majority of 

these experiments used qualitative approaches. So far, only one quantitative in vitro 

assay has been developed to characterize GPI-T (153). However this assay is 

accompanied with serious limitations (refer to section 2.1.2.b). To date no one has 

successfully reconstituted GPI anchoring activity in vitro using a pure solubilized 

GPI-T. Further, quantitative assays to kinetically analyze the catalytic activity of GPI-

T have not been reported. As a solution to this ongoing problem, this chapter 

describes the development and optimization of the first high-throughput, in vitro 

fluorescence resonance energy transfer (FRET) assay to characterize the catalytic 

activity of GPI-T.  
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2.1.1 In Vivo Assays for GPI-T 

 Most of the in vivo assays developed so far have been based on genetic 

methods (139,142,143,145,146,148,151,158-161,165,166,205), co-

immunoprecipitation (138,140,141,162), flow cytometry (165) and 

immunofluorescence microscopy (124) (see Chapter 1). The major drawback of 

these in vivo assays is the inability to study GPI transamidation alone without impact 

or contribution from other cellular components. This issue limits the types of 

experimental questions that can be addressed. The following sections present brief 

descriptions of the in vivo assay methods that have been most successfully applied 

to the study of GPI transamidation.  

 

2.1.1a The PreproPLAP Assay 

  In vivo assays were conducted with placental alkaline phosphatase (PLAP), a 

human GPI anchored protein, to elucidate various aspects of GPI-T catalysis. COS 

cells were transfected with wild type and mutant cDNA copies of the ALPP gene 

(encoding PLAP). GPI anchoring of the expressed PLAP protein was analyzed by 

SDS-PAGE, Western blots and for its sensitivity to phosphatidylinositol specific 

phospholipase C (PI-PLC). PLAP was used to identify the key identity elements in 

the GPI-T signal sequence, amongst other significant discoveries 

(111,119,206,208). Overall, these experiments revealed that the C-terminal GPI-T 

signal sequence is not a consensus sequence and the amino acid composition can 

vary as long as it meets general charge, hydrophobicity and length requirements. 
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2.1.1b The Invertase Assay 

 Recently, a novel in vivo assay was developed by members of the 

Hendrickson group to investigate GPI-T and the possibility of species specificity 

(131). The C-terminal GPI signal sequence of two human GPI-APs, the campath-1 

antigen (CA26) and the urokinase-type plasminogen-activated receptor (UP30) and 

an S. cerevisiae GPI-AP, Yapsin 2 (Y21), were appended individually onto the C-

terminus of the yeast secretory protein invertase (INV) (Figure 2.1, (131)).  

 

 

 Cell (S. cerevisiae) surface expression levels of GPI anchored INV were 

monitored using a colorimetric assay and biochemical partitioning. This assay 

demonstrated that GPI anchoring of human-INV constructs were diminished 

       
Figure 2.1 Species specificity of S. cerevisiae GPI-T. (A) Strategy to produce 
invertase reporter proteins as substrates for S. cerevisiae GPI-T. The C-terminus of 
full-length soluble invertase (INV) was modified by appending GPI-T signal 
sequences from yeast Y21, human CA25 and human UP30 separately. (B) An in vitro 
colorimetric assay was used to measure the S. cerevisiae cell surface expression of 
invertase (INV-Y21, INV-CD52 and INV-UP30). The construct INV-Y21 demonstrated 
the highest level of cell surface invertase activity, consistent with yeast GPI-T favoring 
the fungal Y21 signal sequence. Figure courtesy of Dr. Rachel Morissette 



37 

 

 

compared to that of INV with the yeast GPI signal sequence. Although only a small 

number of signal sequences were tested, these results suggested that GPI-T has 

some ability to recognize sequences according to species. 

 

2.1.2 In Vitro GPI-T Assays 

 In vivo assays contributed greatly to our understanding of GPI-T and its 

transamidation reaction as detailed in section 2.1.1. and as reviewed in Chapter 1. 

However, in vivo experiments performed in intact cells obscure a mechanistic view 

of the GPI-T reaction, due to the complicated nature of the cellular environment. To 

overcome this challenge, several efforts have been made to develop cell free 

methodologies to study the catalytic activity of GPI-T 

(103,104,111,114,120,137,150,153,154,209-215). The following sections provide 

brief descriptions of theses assays and how they have contributed to GPI-T 

research. 

 

2.1.2a The PreprominiPLAP Assay 

 The preprominiPLAP assay is the most widely used in vitro assay to study 

GPI-T (Figure 2.2, (114,216)) (103,104,114,120,137,154,211-213). This cell free 

assay was developed by coupling rough microsomes (RMs) to an in vitro translation 

system, which translates preprominiPLAP mRNA. As in intact cells, the N-terminal 

signal peptide is cleaved from preprominiPLAP to produce prominiPLAP, the 

substrate for GPI-T. The processing of prominiPLAP by GPI-T, to GPI anchored 

miniPLAP, is monitored by SDS-PAGE and Western blot.  
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 This miniPLAP assay was utilized extensively to investigate many aspects of 

the GPI transamidation reaction. Some of these findings include the analysis of the 

sequential conversion of the preproprotein to a mature GPI anchored protein 

(103,104,114), the cellular localization of GPI-T (137), GPI-T signal sequence 

requirements (114,120,211) and the interaction of GPI-T subunits with proprotein 

substrates (154,212). Despite these credible efforts, the miniPLAP assay is also 

 
 
Figure 2.2 The miniPLAP assay to monitor GPI-T activity in vitro. (A) The crystal 
structure of the full length PLAP (PDB ID: 1ZEB).NTS and GPI-T-S represent the N-
terminal ER localizing and C-terminal GPI-T recognition signal sequences, respectively. 
(B) A cartoon schematic representing the stepwise conversion of preproPLAP to 
different miniPLAP derivatives, including free miniPLAP and the GPI anchored, mature 
miniPLAP. The preprominiPLAP construct was designed by deleting a majority of the 
protein‟s internal sequence. A poly methionine (Poly-Met) region was incorporated for 
35S labeling. (C) A cartoon schematic of an SDS-PAGE gel showing the stepwise 
conversion of preprominiPLAP to different forms of miniPLAP.  
Adapted with permission from Varma, Y., and Hendrickson, T., Chembiochem, (2010), 
11, 623-636, with permission from John Wiley and Sons.  
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accompanied with limitations such as the use of crude RMs instead of pure GPI-T 

and the inability to use synthetic peptide substrates. Thus, the preprominiPLAP 

assay remains fairly qualitative as a method to analyze GPI-T.  

 

2.1.2b A Fluorescence Assay for GPI-T  

 The ability of T. brucei Gpi8 to mediate the transamidation reaction (150), the 

acceptability of small nitrogen nucleophiles (214) and a short, synthetic peptide 

substrate for GPI-T were critical in the development of the first specific cell free 

assay (Figure 2.3,(153)) (153).  

 

 
 
 
Figure 2.3 An in vitro assay to quantitatively characterize GPI-T activity. Incubation of 
a fluorescently labeled, synthetic tetrapeptide (Ac-SVLN-AMC) with trypanosomal lysates 
results in enhanced fluorescence with a shift in the emission maximum. (A) Ac-SVLN-AMC 
is based on the cleavage and anchor attachment site of VSG. (B) Incubation with 
trypanosomal lysates leads to cleavage of the terminal amide bond in the peptide substrate, 
resulting in a shift in emission maximum from 400 nm to 440 nm (▼), compared to peptide 
alone (▲), lysate alone (●), or buffer alone (■). (C) The addition of 10 mM hydrazine 
enhances AMC release (■), compared to lysate with substrate alone (●) or peptide 
substrate alone (▲). Incubation was for 24 hours. Adapted with permission from kang et al., 
J. Cell. Sci. (2002) 115, 2529-2539 with permission from the Company of 
Biologists.  
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 A fluorescently labeled synthetic tetra peptide (Ac-SVLN-AMC; 

AMC=aminomethylcoumarin), based on the ω-3 to ω region amino acids of T. brucei 

VSG, was used as the peptide substrate for this assay. Incubation of this peptide 

with either trypanosomal lysates or pure T. brucei Gpi8 alone resulted in cleavage of 

the C-terminal amide bond, releasing aminomethylcoumarin. Cleavage was 

monitored by following the shift in fluorescence emission maximum for free AMC 

compared to the stating peptide. Addition of hydrazine further enhanced the 

fluorescence intensity, while a sulfhydryl-alkylating agent, p-

chloromercuriphenylsulfate (pCMPSA) abolished the reaction, presumably by 

modifying the active site cysteine in Gpi8. Even though this assay laid the foundation 

for the development of more quantitative GPI-T in vitro assays, it is also associated 

with serious limitations including an apparent requirement for a long incubation 

period (24 hours) and the use of a minimalistic version of a proprotein substrate that 

lacks the GPI-T signal sequence. In theory, a significant feature of this assay is the 

ability to measure changes in fluorescence over time, which gives quantitative 

results, compared to the qualitative in vitro assays discussed so far. In practice, the 

small fluorescence change over time is expected to limit its application. In fact, the 

2002 publication describing this assay (153) remains the only application of this 

method to the study of GPI-T. 
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2.1.3 A New High Throughput In Vitro FRET Assay for GPI-T 

 As detailed in sections 2.1.1 and 2.1.2, previous efforts to characterize the 

structure and catalytic activity of GPI-T were mostly limited to qualitative analyses 

(129,138). Efforts to study GPI-T in a quantitative way have been very limited (153). 

These discoveries alleviated the challenges faced when using co-translational 

systems and rough microsomes. Despite these forays, no one has yet successfully 

reconstituted the GPI anchoring activity in vitro with purified enzyme. In addition, no 

high throughput quantitative methods are available to analyze pure GPI-T in vitro. 

For this reason, many questions remain with respect to understanding GPI-T, its 

catalytic function, and its physiological roles in healthy and abnormal cells. For 

instance, we cannot be certain how many subunits are necessary for GPI-T to exert 

catalytic activity. In other words, is GPI-T the heterotrimer that can be co-purified 

from yeast (138) , or is it the heteropentamer that is isolated from human cells (141) 

? Hence, the Hendrickson lab stepped forward to develop a high throughput in vitro 

FRET assay for GPI-T.  

 Our GPI-T assay was designed to measure the restored fluorescence of a 

fluorophore upon hydrolysis of the scissile amide bond at the ω site in a synthetic 

proprotein substrate. This substrate was designed so that the proprotein would have 

minimal fluorescence based on the presence of an appropriate quencher; upon 

cleavage by GPI-T, the fluorophore and quencher would be separated, enhancing 

fluorescence. We choose aminobenzoic acid (Abz) as the fluorophore and a 3-

nitrotyrosine (Y*) as the quencher (Figure 2.4). We envisioned that incubation of this 
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peptide with a source of GPI-T and a nucleophile donor would result in an increase 

in fluorescence over time in a manner that would correlate to GPI-T activity.  

 

 

2.2 RESULTS  

2.2.1 Design and Synthesis of Peptide Substrates for the In Vitro Assay 

 The human Campath–1 (CD52) antigen was chosen as the basis for a 

synthetic peptide substrate for GPI-T. This 37 amino acid peptide is the smallest 

known eukaryotic substrate for GPI-T; after processing, the GPI anchored peptide is 

only 12 amino acids long (217-219) . The wild type sequence of the CD52 proprotein 

is shown in Table 2.1. Certain modifications were introduced into this sequence to 

 
Figure 2.4 Cartoon schematic of our GPI-T fluorescence assay. GPI-T is expected 
to cleave the scissile amide bond in the synthetic, propeptide substrate to restore Abz 
fluorescence. This assay could use full-length GPI anchor or small GPI anchor mimics 
like hydroxylamine or hydrazine as the nucleophile donor. 
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avoid adverse effects of N-linked glycosylation with crude microsomes and oxidation 

during peptide synthesis. Both Asn3 and Asn16 were changed to lysine avoid N-

linked glycosylation issues and to increase the solubility of the peptide (220). The C-

terminal Cys35 was mutated to histidine to avoid peptide oxidation via disulfide bond 

formation. Cysteine was mutated to histidine, as His frequently appears in the 

hydrophobic region of GPI anchoring proteins(129). Peptide 1 (Table 2.1) was 

capped with Abz and the 3-nitrotyrosine quencher was added in place of Ile17.  

 Peptide 1 (Table 2.1) had more than one potential ω site leading to concerns 

about ambiguity in product formation during our GPI-T assay. Therefore, peptide 2 

(Table 2.1) was designed by replacing Thr8 and Ser15 with lysines, optimizing 

Ser12 as the most viable ω site. Finally, in order to evaluate the peptide products 

from our assay, a biotinylated version of peptide 2 (peptide 3, Table 2.1) was also 

synthesized; the biotin was attached to the side chain of Lys3. For peptides 1, 2 and 

3 Abz (fluorophore) was coupled to the N terminus Gly1 and Ile17 was replaced by 

3-nitrotyrosine (quencher). Peptides 1 and 2 were first synthesized using automated 

peptide synthesis as per the standard protocols of Fmoc solid phase peptide 

synthesis. Peptides 2 and 3 were also synthesized by manual peptide synthesis. 

Digestion of peptide 1, 2 and 3  with Trypsin revealed that peptides are internally 

quenched; hence sufficient to produce a readily visible fluorescence change upon 

incubation with GPI-T(221).  
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Table 2.1 Peptide substrates for the GPI-T assay with pure GPI-T 

Peptide N-terminus N-terminal seq. ω GPI-T Signal sequence 

WT CD52 Abz GQNDTSETSSP S ASSNISGGIFLFFVANAIIHLFCFS 

1 Abz GQNDTSETSSP S ASSNISGGIFLFFVANAIIHLFCFS 

2 Abz GQKDTSEKSSP S ASKN*YSGGIFLFFVANAIIHLFHFS 

3 Abz GQK(Biotin)DTSEKSSP S ASKN*YSGGIFLFFVANAIIHLFHFS 

Abz; 2-aminobenzoic acid, *Y: 3-nitrotyrosine. Bold residue indicates the site of 
biotin attachment. Underlined residues were modified from the native CD52 
sequence as described in the text  
 

2.2.2 Preparation of Crude Microsomes Containing GPI-T 

 Crude microsomes were prepared  using the yeast strain YDR331W (YDC1178, 

Open Biosystems) which encodes Gpi8 with an appended tandem affinity 

purification (TAP) tag {Rigaut, 1999 #47;Puig, 2001 #48;Morissette, 2007 #710}. The 

TAP tag is composed of a calmodulin-binding peptide (CBP), a TEV protease 

cleavage site, and Protein A, which enables the  two-step purification of Gpi8 and 

visualization by Western blot. Crude microsomal extracts were prepared based on a 

protocol developed by Conzelmann and coworkers (138). Briefly, cells were grown 

to mid-log phase and lysed with liquid nitrogen; the cell lysate was centrifuged at 

high velocity to obtain the microsomes. Several nonionic detergents were tested to 

obtained the best detergent solubilized microsomes as shown in an anti-Protein A 

Western blot (Figure 2.5, Dr. Tamara L. Hendrickson). Igepal, triton X-100, and 

digitonin successfully solubilized Gpi8. Igepal was chosen as the detergent to 

solubilize crude yeast microsomes.  
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2.2.3 Initial In Vitro Assay with Crude Yeast Microsomes 

  Initial assay development efforts were initiated by Dr. R. Morissette (221), 

using solubilized, crude yeast microsomes containing GPI-T. A time-dependent 

increase in Abz fluorescence was observed when peptide 1 was incubated overnight 

in Hepes pH 7.0 buffer, with solubilized microsomes, with and without hydroxylamine 

(Figure 2.6, (221)). The observed fluorescence response was higher in the presence 

of hydroxylamine (NH2OH) as predicted, suggesting that hydroxylamine is serving as 

a GPI anchor mimic as previously reported (105,153). Thus, these results offered 

the first indication that this new GPI-T assay was, in fact, measuring GPI-T 

transamidation of the substrate peptide. An initial burst in fluorescence response 

was observed that was independent of hydroxylamine. 

 
Figure 2.5 Effect of various non-ionic detergents on solubilizing S.cerevisiae 
microsomes carrying TAP tagged Gpi8. TAP-tagged Gpi8 was visualized in an 
anti-protein A Western blot. MW: Molecular weight markers  Figure courtesy of Dr. 
T. Hendrickson.   

~ 90 kDa 
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2.2.4 Extraction and Purification of GPI-T 

 The enzyme for GPI-T assay was expressed using yeast strain FBY656, 

kindly provided by Prof. Conzelmann (138). The FBY656 strain is a GPI8 knockout 

strain (MATa ade2-1 ura3-1 leu2-3, 112 trp1-1 his3-11,15lys- GPI8Δ::kanMX2) and 

contains plasmid YCplac22-GST-GPI8, encoding for a GST tag on the N-terminus of 

Gpi8. Membrane solubilization and purification of the GST-tagged GPI-T complex 

was performed essentially as previously reported (138), with only a few 

modifications. A cocktail of protease inhibitors was added through the membrane 

isolation step; after which, all inhibitors were omitted, except phenylmethylsulfonyl 

fluoride (PMSF) to avoid inadvertent inhibition of GPI-T. Protein elution conditions 

(from glutathione resin) were also optimized iteratively based on observable activity 

 
Figure 2.6 An in vitro GPI-T assay using solubilized microsomes. (A) A time-
dependent fluorescence response was observed upon incubation of peptide 1 with 
crude solubilized yeast microsomes. The observed fluorescence intensity was 
higher for the assay with hydroxylamine (NH2OH). (B) The nucleophile dependent 
fluorescence response calculated from (A). The nucleophile dependence was 
obtained by subtracting the signal without hydroxylamine from the NH2OH-
containing signal. Figure courtesy of Dr. R. Morissette 
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with our FRET assay. Optimal activity was obtained when the enzyme was eluted 

once with buffer containing 0.3 % digitonin, 20 mM reduced glutathione (RG), and 

PMSF as the only protease inhibitor. Due to poor yield of purified enzyme, the 

concentration of GPI-T was not determined. Purified, heterotrimeric GPI-T was 

examined by SDS-PAGE with Silver staining (not shown) and by Western blot 

(Figure 2.7) with anti GST polyclonal antibodies. These analyses verified the 

presence of Gpi8 in this enzyme mixture but the co-purification of Gaa1 and Gpi16 

was not confirmed. However, since we used the same yeast strain (FBY656) and 

same purification protocol published by conzelmann and co workers, who previously 

reported the co-precipitation of yeast Gpi16 and Gaa1 with Gpi8 (138) we proceeded 

to assay this enzyme preparation assuming that both Gaa1 and Gpi16 are present in 

our enzyme source in addition to GST tagged Gpi8.  

 

 

 
 
Figure 2.7 Affinity purification of GST tagged GPI-T. Western blot with anti GST 
polyclonal antibody revealed the presence of GST tagged Gpi8. MW - molecular weight 
markers Lane 1 - Elution of GST tagged GPI-T from FBY656 strain. Figure courtesy of 
Dilani Gamage  

(≅72 kDa) 

(≅25 kDa) 
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2.2.5 Initial In Vitro Assay with Affinity Purified Solubilized GPI-T 

 Upon obtaining affinity purified GST-tagged GPI-T, another initial in vitro 

assay was performed (Figure 2.8). Peptide 2 was incubated with affinity purified 

GPI-T with and without hydroxylamine in the GPI-T assay buffer, pH 7.0. This assay 

yielded a significant faster increase in Abz fluorescence compared to the original 

assay that used crude yeast microsomes, reducing the necessary assay time from 

hours to minutes. Further, no initial burst was observed for no hydroxylamine assay 

similar to that of assay with crude microsomes. Instead a slight increase in 

fluorescence was observed for no nucleophile assay. This slight increase in 

fluorescence response is probably due to the hydrolysis of the amide bond at the ω 

site as previously reported (105). 
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2.2.6 Assay Optimization 

 As mentioned in section 2.2.3, our first FRET assay was developed by Dr. R. 

Morissette using crude yeast microsomes, containing GPI-T (221). With peptide 1, 

she observed a significant, time-dependent and hydroxylamine-dependent 

fluorescence response suggestive of GPI-T activity. One of the major drawbacks of 

this assay was the requirement for a long incubation period (up to 12 hours) to 

 
Figure 2.8. FRET assay with GPI-T. (A) Peptide 2 fluorescence increases over time 
in the presence of NH2OH, indicating peptide cleavage and transamidation, 
presumably to produce the hydroxamide peptide product. Magenta: 10 mM NH2OH 
and 10 µM peptide 2; Maroon: 10 µM peptide 2; Purple: No enzyme control (10 mM 
NH2OH and 10 µM peptide 2). (B) Relative rates for the data from panel (A). 
Fluorescence intensities were normalized with a GPI-T unit correction factor. The red 
dashed line indicates the background fluorescence (no enzyme assay, relative rate = 
0.192±0.0216), Data above this line is considered relevant. Data represents the 

mean ± SD, n = 3 and P ≤ 0.05 vs. with NH2OH assay (dark grey). Raw data can be 
found in Appendix A: Figure A1. 
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obtain a significant response. This requirement affects both enzyme viability and 

assay sensitivity. To overcome these problems, we performed another initial assay 

with affinity purified GPI-T. This assay also yielded a hydroxylamine-dependent 

fluorescence response over a significantly shorter time scale. Therefore we decided 

to use affinity purified GPI-T instead of crude microsomes to characterize various 

aspects of GPI-T in vitro with this assay. 

 However, prior to the characterization assays, we set out to further optimize 

this GPI-T assay. For optimization, several parameters were assessed, including the 

impact of different detergents, pH, reducing agents, nucleophiles, peptide 

concentration and enzyme amount. In addition, modifications to the enzyme 

purification process and fluorimeter setup were performed to obtain optimized Abz 

fluorescence over time. These experiments are described in detail in the following 

sections.  

 

2.2.6a The Effect of Different Detergents on GPI-T Activity 

 Detergents are important to solubilize transmembrane proteins and crude 

microsomes and they provide a mechanism to separate membrane-bound proteins 

from soluble proteins. Our initial GPI-T assay with affinity-purified GPI-T was 

performed using digitonin as the solubilizing detergent. However, the GPI-T assay 

performed with crude yeast microsomes used igepal CA-630 (also known as nonidet 

P-40) as the detergent (Refer to Figure 2.5) (221).   

 Hence, we tested igepal CA-630 alone or in combination with digitonin to 

determine which detergent yielded optimal results in terms of enzyme yield and 
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activity. In contrast to the assay with crude yeast microsomes, peptide 2 precipitated 

out of solution in the igepal solubilized assay, leading to a turbidity-induced decrease 

in apparent fluorescence. The addition of 0.1% digitonin with igepal CA-630, slightly 

lowered the turbidity of the assay buffer, but activity was most robust in 0.1% 

digitonin alone (Figure 2.9.). Therefore, we concluded that 0.1% digitonin is the best 

for our assay, at least with peptide 2 as the substrate. 

 

 

 

 
Figure 2.9 The effect of igepal and digitonin on GPI-T activity. The negative 
relative rates are due to precipitation of peptide 2 over time, which impacts the 
observed fluorescence. The red dashed line indicates background fluorescence 

(relative rate = 0.192±0.0216). Data above this line was considered relevant to GPI-T 
transamidation. Experiments were run in duplicate. Relative rates were calculated 
with respect to the 0.1% Digitonin assay (dark gray) and data represents the mean. 
without SD. Raw data can be found in Appendix A: Figure A2. 
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2.2.6b The Effect of Digitonin Concentration on GPI-T Activity 

Next, experiments were conducted to optimize the digitonin concentration in 

the assay buffer (Figure 2.10). We tested the impact of different digitonin 

concentrations on GPI-T activity. producing a robust fluorescence response in our 

GPI-T assay in terms of GPI-T activity.  At low (0.05% w/v) and high (0.3% w/v) 

concentrations, peptide 2 precipitated from solution, increasing turbidity of the assay 

buffer and prohibiting any quantitative assessment of GPI-T activity. The 

intermediate digitonin concentrations (0.1% w/v and 0.2% w/v) yielded optimal GPI-T 

activity, while  alleviating peptide precipitation and turbidity issues. Since 0.1% w/v 

digitonin resulted in the highest GPI-T activity, we decided to use 0.1% w/v as the 

optimized digitonin concentration for our assay.   
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2.2.6c The Effect of pH on GPI-T Activity 

Reaction pH can also be a key factor for enzyme activity. Therefore, we used 

different pH buffer systems (varying from pH 6.0 to 9.0) to find the optimized pH for 

GPI-T activity (Figure 2.11). A pH of 7.0 yielded the best GPI-T relative rates. 

 
Figure 2.10 Optimization of digitonin concentration. Optimal GPI-T activity was 
observed with 0.1% digitonin in assay buffer. The red dashed line indicates 
background fluorescence (relative rate = 0.192±0.0216). Data above this line was 
considered relevant to GPI-T transamidation. Experiments were run in duplicate. 
Relative rates were calculated with respect to the 0.1% Digitonin assay (dark gray) 
and data represents the mean without SD. Raw data can be found in Appendix A: 
Figure A3. 
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2.2.6d The Effect of Reducing Agents on GPI-T Activity 

The catalytically active subunit of GPI-T, Gpi8 contains an apparent cysteine 

histidine catalytic dyad; hence, it is important to maintain a reducing environment in 

our in vitro assay. Therefore the impacts of dithiothreitol (DTT, 1 mM) and reduced 

glutathione (RG, 20 mM) were analysed (Figure 2.12).  

 
Figure 2.11 Effect of pH on GPI-T activity. pH 7.0 was chosen as the optimal pH for 
the assay buffer. Each experiment was run only once, fluorescence intensities were 
normalized with unit correction factor prior to initial rate calculation. Relative rates were 
calculated with respect to the optimal rate observed at pH 7.0 (dark gray). The red 
dashed line indicates background fluorescence (relative rate = 0.192±0.0216). Data 
above this line was considered relevant to GPI-T transamidation. Raw data can be 
found in Appendix A: Figure A4. 
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RG was assessed because it is present in our assay buffer following 

purification of GPI-T by glutathione affinity chromatography. The addition of  DTT 

improved GPI-T acyivity above that of RG alone. Therefore, we decided to keep both 

DTT and RG in our GPI-T assay buffer.  

 

 

 
Figure 2.12 The effect of reducing agents on GPI-T activity. DTT (1 mM) enhances 
the GPI-T activity in the prescence of RG (20 mM). Data represents the mean of 
duplicate assays. Relative rates were calculated with respect to the assay with both 
DTT and RG (dark gray).The red dashed line indicates background fluorescence 
(relative rate = 0.192±0.0216). Data above this line was considered relevant to GPI-T 
transamidation. Raw data can be found in Appendix A: Figure A5. 
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2.2.6e Effect of Enzyme Amount on Optimal Activity of the GPI-T Assay 

 Because we can‟t accurately quantify the low levels of GPI-T in our 

purification preparations, we decided to optimize GPI-T based on a standard 

purification protocol and then to assign a unit definition to the observed 

transamidation rate. Similarly, to our preliminary results, the best initial rates for GPI-

T were obtained when 50 µL of affinity purified GPI-T was used in a 2 mL assay 

(Figure 2.13). At lower enzyme concentrations, peptide precipitation overwhelmed 

fluorescence detection. Unexpectedly, the fluorescence signal was also ablated at 

high GPI-T concentrations (100 µL), perhaps due to turbidity from the enzyme 

preparation itself. 

 

2.2.6f Effect of Peptide Substrate Concentration on GPI-T Activity 

 We also optimized the concentration of peptide 2 for our GPI-T assay (Figure 

2.14) and determined that a concentration of 10 µM peptide 2 produced the highest 

initial rates. Peptide precipitation was observed with increasing turbidity with 20 µM 

of peptide 2.  
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Figure 2.13 Optimizing GPI-T assay with varying amount of GPI-T enzyme. 
Optimal fluorescence response was observed with 50 µL of GPI-T. Data represents 
the mean of duplicate assays. Relative rates were calculated with respect to the 
assay with 50 µL of GPI-T (dark gray).The red dashed line indicates background 
fluorescence (relative rate = 0.192±0.0216). Data above this line was considered 
relevant to GPI-T transamidation. Raw data can be found in Appendix A: Figure A6. 
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2.2.6g Effect of Different Nucleophiles on GPI-T Activity 

 The impact of different nucleophiles was also assessed. Assays discussed to 

this point all used 10 mM hydroxylamine as the GPI mimic/nucleophile donor. 

Hydrazine (N2H2) and ethanolamine phosphate methyl ester (EPME, see appendix 

A8 for the structure) a GPI anchor mimic synthesized by Dr Franklin John (97) were 

also tested as assay substrates to determine if either molecule is a better substrate 

 

 
 
Figure 2.14 Effect of peptide 2 concentration on GPI-T activity. The assay with 10 
µM  of peptide 2 results the optimal activity. Data represents the mean of duplicate 
assays. Relative rates were calculated with respect to the assay with 10 µM of peptide 
2 (dark gray).The red dashed line indicates background fluorescence (relative rate = 

0.192±0.0216). Data above this line was considered relevant to GPI-T 
transamidation. Raw data can be found in Appendix A: Figure A7. 
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than NH2OH (Figure 2.15). Compared to the no nucleophile assay, NH2OH proved to 

be the best GPI anchor mimic substrate. Surprisingly, in contrast to previous 

literature reports (105), NH2NH2 or based on structural similarity to EtNP group of 

GPI anchor, EPME were not a robust substrate to mimic GPI anchor, within the 

context of our assay. 

 

 

 

 

 

  
Figure 2.15 Effect of different GPI anchor mimics/nucleophiles on GPI-T 
activity. GPI-T assay with 10 mM NH2OH results the highest GPI-T activity. 
Data represents the experiment run in once. Relative rates were calculated 
with respect to the assay with 10 mM of NH2OH (dark gray). The red dashed 

line indicates background fluorescence (relative rate = 0.192±0.0216). Data 
above this line was considered relevant to GPI-T transamidation. Raw data 
can be found in Appendix A: Figure A8. 
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2.2.7 Analysis of GPI-T Cleaved Hydroxylamine Attached Peptide Products 

 As the final step in our GPI-T assay development, we wanted to confirm that 

the observed fluorescence response corresponds to GPI-T-mediated transamidation 

of peptide 2, while simultaneously confirming that the correct ω site was modified. 

To investigate this phenomenon, a biotinylated peptide substrate (peptide 3) was 

used. Peptide 3, differ from the peptide 2 only by the addition of a biotin group 

attached to the side chain of Lys3 (Table 2.1). The presence of biotin allows for 

streptavidin purification of peptide fragments after extended incubation with GPI-T. 

We expected that this purification would isolate peptide 3 and any N-terminal peptide 

products (e.g. the hydroxylamine modified 12 amino acid peptide, hydroxamate 1, 

refer to table 2.2) away from GPI-T and other assay components. Next, the purified 

peptide mixture was was separated by high performance liquid chromatography 

(HPLC). In Figure 2.16, the HPLC trace for peptide 3 (peak 5 b) is shown in green. 

Incubation of this peptide with GPI-T led to a dramatic reduction in the concentration 

of peptide 3 (Figure 2.16, blue trace, peak 5a). Furthermore, four new products 

(Figure 2.16, blue trace, peaks 1-4) were observed; each of which is a potential 

product from the GPI-T reaction.  

 Peaks 1-4 were collected and analyzed by mass spectrometry. Unfortunately, 

this analysis did not reveal the expected product, the hydroxamate 1 (the 12 N-

terminal amino acids of peptide 3, with Ser12 modified to a hydroxamate) (Table 

2.2). Instead, mass spectroscopic analysis of peak 2 revealed presence of two 

products with masses close but not equal to the calculated masses of two GPI-T 

cleaved truncated hydroxamates of peptide 3 (refer to Table 2.2). These truncated 
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hydroxamates represents hydroxamate 2 with 4 N-terminal amino acids, cleaved 

after Asp4 and hydroxamte 3 with 7 N-terminal amino acids, cleaved after Glu7. The 

residues Asp4 and Glu7 also represent alternative ω sites of the peptide 3. Efforts to 

optimize these mass spectrometric experiments are currently being conducted by 

other members of the Hendrickson research group. 

 

Table 2.2 - GPI-T cleaved hydroxylamine attached peptide products 

(hydroxamates) 

Hydroxamate Sequence Calculated MW 

(M+H) 

Observed MW 

(M+H) 

1 Abz -GQK(Biotin)DTSEKSSPS-NHOH  1611 - 

2 Abz -GQK(Biotin)D-NHOH    807 809 

3 Abz -GQK(Biotin)DTSE-NHOH  1124 1122 

Abz; 2-aminobenzoic acid, *Y: 3-nitrotyrosine. Bold residue indicates the site of 
biotin attachment. Underlined residues were modified from the native CD52 (Table 
2.1) as described in the text  
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2.3 DISCUSSION 

 In this chapter, we described the development and optimization of a high 

throughput in vitro assay to kinetically analyze GPI-T. Over three decades of GPI-T 

research, many assays have been developed to elucidate various aspects of GPI-T 

activity. These methods have remained fairly qualitative. Further, no assay 

successfully demonstrated the GPI-T activity in vitro with pure enzyme. However, 

with the emerging importance of GPI-T in cancer (9-11), there is an urgent 

requirement for a high throughput, quantitative in vitro assay for this enzyme. 

 

 

 
Figure 2.16 HPLC analysis of GPI-T treated peptide products. (A) HPLC trace of 
the purrified peptide 3 (green trace). (B) HPLC trace of assay products after 
strepatviadin purification (blue trace). Both traces correspond to equal starting 
amounts of parent peptide 3. Clevage products on trace B (peaks 1-4) indicates new 
assay products were formed. Peaks 5a and 5b represents the parent peptide 3. The 
labeled fractions were analyzed by ESI 
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2.3.1 Initial In Vitro Assay with Crude Yeast Microsomes 

  FRET assay development was initiated by Dr. Rachel Morissette (221). She 

demonstrated a significant nucleophile dependent fluorescence response over time 

upon incubating a peptide substrate with crude yeast microsomes carrying active 

GPI-T. These results offered the first indication that this assay was, in fact, 

measuring GPI-T mediate transamidation of the substrate peptide. However, this 

assay was associated with some limitations. An initial burst in fluorescence response 

was observed that was independent of the hydroxylamine nucleophile. We 

hypothesize that this burst is due to trace amounts of endogenous GPI anchor in the 

crude microsomes. The assay also required a long incubation time (hours), typical of 

most enzyme assays. This will affect both enzyme viability and assay sensitivity. To 

overcome these limitations we decided to further develop and optimize this FRET 

assay. Our goal was to obtain a robust nucleophile dependent fluorescence 

response within a short period time, using a purer form of the enzyme. 

 

2.3.2 Initial In Vitro Assay with Pure GPI-T 

 The first hurdle to overcome was to find a suitable enzyme source for GPI-T. 

We chose to utilize affinity purified GPI-T, based on a purification reported by 

Conzelmann and colleagues (138). This procedure did not provide enough enzyme 

to assess for concentration, but it did provide GST tagged Gpi8 enriched enzyme 

isolated from other microsome components. Assays with affinity purified GPI-T 

remained nucleophile-dependent, lacked the initial nucleophile independent activity 

observed with crude microsomes, and activity was quantifiable on a minute time 
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scale. The significant difference in initial fluorescence response observed for the 

assays with and without hydroxylamine is consistent with a GPI-T mediated 

transamidation reaction. Unexpectedly, a slight increase in fluorescence response 

was also observed for the peptide only control (Figure 2.7.). We do not understand 

this phenomenon. Furthermore, over time, the parent peptide substrate precipitated 

from the assay buffer in the absence of nucleophile or enzyme, causing a significant 

reduction in fluorescence from sample clouding 

 

 2.3.3 Optimization of In Vitro FRET Assay with Purified GPI-T 

 Upon obtaining a significant nucleophile-dependent fluorescence response 

over a short time scale, our next hurdle was to optimize the components of the 

assay buffer with the aim of further enhancing enzyme activity in our assay. 

 

2.3.3a Digitonin is the Optimized Detergent to Solubilize GPI-T 

 Detergents form micelles, which loosely mimic biological membranes. These 

micelles are essential to extract and solubilize membrane proteins in cell free 

systems. The impact of digitonin and igepal on GPI-T activity was assessed, with 

digitonin alone providing the strongest activity (Figure 2.9). We used 0.3% w/v 

digitonin to purify GPI-T by glutathione affinity purification (Gpi8 was modified with a 

GST tag). However, this digitonin concentration induced turbidity under our assay 

conditions, presumably due to the limited solubility of digitonin in aqueous solution 

and its tendency to precipitate over time at 30 °C (the temperature used for our 

FRET assays). Reduction of digitonin to 0.1%-0.2% alleviated this problem (Figure 
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2.10.). On the other hand, further reduction in the concentration of digitonin resulted 

in peptide substrate precipitation and turbidity. Clearly, there is a „Goldilocks Zone‟ 

with respect to digitonin concentration: Too little and the peptide precipitates; too 

much and the digitonin precipitates. In both cases, turbidity eliminated the ability to 

observe GPI-T transamidation of the peptide substrate.  

 

2.3.3b DTT and RG Enhance the GPI-T Activity 

 Incorporation of reducing agents are necessary for GPI-T assay to prevent 

possible cysteine oxidation, particularly in the Gpi8 active site. Reduced glutathione 

was a component of our assay buffer, simply because it was used to elute GPI-T 

from the glutathione affinity column. Addition of DTT caused a further enhancement 

of GPI-T activity, suggesting that insufficient RG remained to maintain a reducing 

environment. We did not analyze the impact of DTT alone because of the 

requirement for RG during GPI-T purification. 

 

2.3.3c Effect of Enzyme Amount and Peptide Concentration  

  We also optimized the impact of enzyme (Figure 2.13) and peptide (Figure 

2.14) concentration. A standard enzyme concentration was selected (50 mL, see 

experimental section for details) for optimal activity and an enzyme unit was defined 

to be 3 a.u./min. Similar to our digitonin experiments, peptide solubility limited the 

applicability of lower enzyme amounts. Unfortunately, this result highlights some of 

the difficulties faced when studying GPI-T. A 5 L cell culture yields only 1 mL of 

affinity purified enzyme (in 50%) glycerol. Thus, the number of assays that can be 
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conducted with a single preparation is severely restricted. Unexpectedly, the 

fluorescence signal was also ablated with higher concentrations of GPI-T, perhaps 

due to effects of one or more of the components in the enzyme preparation (e.g. 

glycerol, digitonin, etc.). A similar trend was observed with different peptide 

concentration. Here again the fluorescence response was relatively low at both low 

and high peptide concentrations, indicating an insufficient amount of substrate and 

excess precipitation, respectively. 

 

2.3.3d Effect of Different GPI Anchor Mimics 

 As the final assay optimization step, we tested different GPI anchor mimics as 

substrates in our assay. Hydroxylamine and hydrazine were chosen as potential 

nucleophile donors due to published evidence that these compounds are suitable 

nucleophiles for GPI-T in in vitro translational assays, in the absence of GPI anchor 

(105).However, hydroxylamine proved to be the best substrate with minimal activity 

with either EPME or hydrazine (Figure 2.15). While at first glance the negative 

results with EPME were surprising because this compound‟s similarity to the GPI 

anchor, EPME is not as potent a nucleophile as hydroxylamine ( which is activated 

by the alpha effect) (224).  Unfortunately, only limited quantities of EPME were 

available so this potential substrate was only assayed once. 

 With these optimization steps, we have developed the first high throughput in 

vitro assay to kinetically analyze the catalytic activity of GPI-T. We are now 

positioned to characterize aspects of GPI-T that were previously inaccessible. Some 

of these efforts will be discussed in detail in chapter 3. In total, these optimization 
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experiments highlight the challenges that have limited GPI-T assay development 

over the past 20+ years. 

 

2.3.4 Analysis of GPI-T Hydrolyzed Peptide Products  

  As discussed in section 2.2.4, efforts were made to isolate and mass 

spectrometrically analyze peptide products from our GPI-T assay. The aim of this 

experiment was to verify that the fluorescence response is due to the GPI 

transamidation reaction, producing a hydroxamate peptide. As shown in Figure 2.16, 

we observed the formation of new products and the loss of starting peptide , when a 

GPI-T assay was analyzed by HPLC. To our surprise, we did not observe the 

expected 12 amino acid length hydroxamate 1 by mass spectrometry. Instead, we 

observed the formation of truncated hydroxamates 2 and 3 with little variations 

between calculated and observed masses (Table 2.2). We believe these truncated 

hydroxamates are formed by GPI-T mediated transamidation. Asp4 and Glu7 are 

weak alternative ω sites present within the sequence of peptide 3, in addition to the 

most probable ω site, Ser 12. May be the presence of biotin tag perturbs the  

identification of Ser12 ω site by GPI-T. Despite the fact that we did not observe the 

desired product, these results confirm GPI-T activity. Unfortunately, our method of 

product isolation was not without weaknesses and requires further optimization. We 

purified the peptide products by streptavidin affinity in order to separate these 

products from GPI-T and components of our assay buffer. Even with this purification 

step, the presence of digitonin complicated mass spectral analysis. To resolve this 

matter, alternative purification scenarios will need to be considered. For example, 



68 

 

 

the streptavidin and HPLC purification methods can be optimized. Alternatively, the 

assay mixture could be extracted with a mixture of chloroform and methanol to 

remove the digitonin. Current efforts in the Hendrickson group are focused on 

resolving this issue. In the near future, results from these experiments will 

presumably confirm that we have successfully reconstituted GPI-T in vitro and have 

demonstrated catalytic activity. 

 

2.4 EXPERIMENTAL PROCEDURES 

2.4.1 Materials and General Instrumentation 

 Peptide synthesis reagents were purchased from Advanced ChemTech, 

including N-α-(9-fluorenylmethoxycarbonyl) (Fmoc)-protected amino acids, 

tertbutoxycarbonyl(Boc)-2-Abz, Fmoc-Ser (tBu)-Wang resin, N, N-

Diisopropylethylamine (DIPEA), N-methyl-2-pyrrolidinone (NMP), O-Benzotriazole-N, 

N, N‟ ,N‟-tetramethyl-uronium-hexafluoro-phosphate (HBTU). HPLC grade 

acetonitrile (ACN), dichloromethane, acetic anhydride, and EZ-Run pre-stained Rec 

protein ladder were purchased from Fisher Bioreagents. Glutathione Sepharose 4B 

resin was purchased from GE-Amersham Biosciences. The rabbit anti-GST 

polyclonal antibody, and Goat anti Rabbit IgG (Hilyte plus 647 labeled) were 

purchased from Genescript and AnaSpec, Inc, respectively. The protease inhibitor 

cocktail was purchased from Roche Biosciences. Piperidine, digitonin, reduced 

glutathione and all other chemicals were purchased from Sigma-Aldrich and used 

without further purification. Centricon centrifugation devices were purchased from 

Millipore Corporation.  
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 Peptides were synthesized both manually and using a Prelude peptide 

synthesizer (Protein Technology, Inc.), based on standard solid phase Fmoc 

synthesis protocols. The glass peptide synthesis vessel for manual peptide 

purification was purchased from ChemGlass Lifesciences. HPLC purification was 

performed using a System Gold HPLC (Beckman Coulter, Inc.). Reversed phase 

analytical columns were from Agilent Inc., and included a Zorbax SB-C3 (4.6 x 250 

mm, 5 μm) used for initial analysis, and a semi-preparative column Zorbax 300SBC3 

(21.2 x 250 mm, 7 μm) for bulk purification. A Zorbax SB-C18 analytical column was 

used for HPLC purification of GPI-T cleaved assay products. A BioFlo 110 fermentor 

(New Brunswick Scientific, Inc.) was used for fermentation growths. Fluorescence 

assays were performed on a Varian Cary Eclipse Fluorometer with a Peltier multicell 

holder (Agilent Inc.). Mass spectra of peptides were obtained by using either 

electrospray mass spectrometry (ESI) or matrix assisted laser desorption/ionization 

time of flight mass spectrometry (MALDI-TOF) in Dr. S. Trimpin‟s lab, Department of 

Chemistry, Wayne State University.  

 

2.4.2 Buffers and Solutions 

 Homogenization buffer: 50 mM Tris HCl, pH 7.5 ,1 mM MgCl2 ,1 mM MnCl2. 

Cell resuspension buffer: 50 mM Tris HCl, pH 7.5, 1 mM MgCl2, 1 mM MnCl2, 1 mM 

dithiothreitol (DTT), 1 mM phenylmethylsulfonylfluoride (PMSF), protease inhibitor 

cocktail (pepstatin A, leupeptin, chymostatin, antipain and aprotinin). Membrane 

buffer: 50 mM Tris HCl, pH 7.5, 1 mM MgCl2,1 mM MnCl2, 1 mM DTT, 35% 

glycerol, 1 mM PMSF, protease inhibitor cocktail. Transmembrane (TM) buffer: 50 
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mM Tris HCl, pH 7.4 ,0.2 M mannitol, 0.1 M NaCl, 1 mM MgCl2, 1 mM CaCl2, 1 mM 

MnCl, 1 mM DTT, 1 mM PMSF and protease inhibitor cocktail. Glycerol TM (GTM) 

buffer: 50 mM Tris HCl, pH 7.4, 0.2 M mannitol, 0.1 M NaCl, 1 mM MgCl2, 1 mM 

CaCl2, 1 mM MnCl2, 1 mM DTT, 1 mM PMSF, protease inhibitor cocktail, and 10% 

glycerol. Column wash buffer: 50 mM Tris HCl, pH 7.4, 0.2 M mannitol, 0.1 M NaCl, 

1 mM MgCl2, 1 mM CaCl2, 1 mM MnCl2, 1 mM DTT, 1 mM PMSF, protease 

inhibitor 

cocktail, and 0.3% digitonin. Elution buffer: 50 mM Tris HCl, pH 7.4, 0.2 M mannitol, 

0.1 M NaCl, 1 mM MgCl2, 1 mM CaCl2, 1 mM MnCl2, 1 mM DTT, 1 mM PMSF, 

0.3% digitonin, and 20 mM reduced glutathione. Optimized assay buffer: 50 mM Tris 

HCl, 0.2 M mannitol, 0.1 M NaCl, 1 mM MgCl2, 1 mM CaCl2, 1 mM MnCl2, 1 mM 

DTT, 1 mM PMSF, 0.1% digitonin, and 20 mM reduced glutathione. On a technical 

note, it is important to prepare the digitonin buffer several days before GPI-T 

purification to allow sufficient time for maximum solubility. Further, during the buffer 

preparation digitonin should solubilize in required amount of water and heat to 95 °C 

to enhance the solubility. Fmoc cleavage solution: 20% piperidine, 80% NMP. 

Activator solution: 200 mM HBTU, 400 mM DIPEA (2.5 mL). Peptide cleavage 

solution: Anisole, thioanisole and trifluoroacetic acid (1: 2: 27 v/v/v). 

 

2.4.3 Yeast Strain and Growth Conditions  

 Yeast strain FBY656 (MATa ade2-1 ura3-1 leu2-3, 112 trp1-1, his3-11, 15lys-

GPI8Δ:kanMX2, containing YCplac22-GST-GPI8) was obtained from Professor 

Andreas Conzelmann (138). Briefly, a single colony of FBY656, chosen from a –Trp 
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SD plate, was used to inoculate 50 mL YPD medium; the culture was incubated 

overnight at 37 °C in an incubator with shaking. The overnight culture was used to 

inoculate 250 mL YPD medium, which was incubated overnight at 30 °C with 

shaking. The 250 mL culture was used as an inoculum for a 5 L fermentation using 

the same growth medium at 30 °C with appropriate dissolved oxygen and pH 

controls. Preautoclaved antifoam A (100 μL/L) was used to prevent foam formation 

during fermentation. The FBY656 cells were collected by centrifugation when they 

reached mid-log phase. 

 

2.4.4 Automated Peptide Synthesis  

 Peptide 2 was synthesized on a Prelude peptide synthesizer using 

presubstituted Fmoc-Ser(tBu)-Wang resin (100-200 mesh, 0.10 g, 0.6 mmol/g). The 

amino acids were coupled using HBTU chemistry as per the protocols obtained 

from the peptide synthesizer manual. Each amino acid was coupled three times in 

the presence of activator solution unless otherwise noted. Certain amino acids 

required three to four coupling reactions due to the high hydrophobicity of certain 

regions of the peptides. Before deprotection of each Fmoc protecting group, the 

resin was capped with acetic anhydride. The peptides were cleaved from the resin 

by mixing with 1.5 mL peptide cleavage solution and rotating for 2 hours on a wheel 

at room temperature. The cleaved peptides were precipitated with cold ether. The 

resultant precipitate was lyophilized and purified by reversed phase HPLC. HPLC 

fractions were tested by ESI or MALDI-TOF to verify the identity of desired peptide. 

The pure peptide fractions were lyophilized and stored dry or as a 1 mM DMSO 



72 

 

 

stocks at -20 °C.  

 

2.4.5 Manual Peptide Synthesis 

   Peptides 2 and 3 were also synthesized manually. Pre-substituted 

Fmoc-Ser (tBu)-Wang resin (100-200 mesh, 0.10 g, 0.6 mmol/g) was used for both 

peptides and the amino acids were coupled using HBTU chemistry as per the 

standard protocols of solid phase Fmoc peptide synthesis. A Kaiser test was 

performed after deprotection and after coupling of each amino acid. Based on the 

results of the Kaiser test the amino acid coupling time scale was varied. The 

peptides were cleaved ,purified and stored  as described in section 2.4.4 

 

2.4.6 Extraction and Purification of the GST-tagged GPI-T Complex  

2.4.6a Preparation of Microsomal Membranes and Solubilization of Membrane 

Proteins  

  This process was performed as per the protocols of Conzelmann et al.(138). 

Briefly, FBY656 cells (from a 5 L culture) were harvested, pelleted, and washed in 

homogenization buffer. Next, the cell pellet was lysed with liquid nitrogen and the 

resulting homogenate was resuspended in cell resuspension buffer and clarified by 

centrifugation at 820g for 8 minutes. The membrane fraction was isolated by 

centrifugation at 60,000g for 1 hour. The supernatant was saved for gel analysis and 

the pellet was resuspended in the same buffer and centrifuged again for 1 hour at 

60,000g. The pellet was resuspended in a small amount of membrane buffer (~1 mL 

for cells from a 5 L culture) sufficient to obtain a membrane suspension. The 
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membrane suspension was frozen in liquid nitrogen and stored at -80 °C. The frozen 

membrane suspension was thawed gently on ice, mixed with TM buffer, and treated 

with 0.2 mg/mL DNAse for 45 minutes at 25 °C with shaking. Digitonin was added to 

the mixture until the final concentration was 1.5 % w/v; this mixture was agitated at 4 

°C for 45 minutes and pelleted at 60,000 g for 1 hour. The supernatant (the 

solubilized membrane protein mixture) was diluted to 0.3% digitonin with TM buffer 

and immediately used for affinity purification. 

 

2.4.6b Affinity Chromatography Purification of GST- GPI-T Heterotrimeric 

Complex 

  All purification steps were conducted at 4 °C unless otherwise noted. 

The solubilized membrane protein mixture was diluted to 10 mL with TM buffer and 

mixed with 1 mL glutathione sepharose 4B resin. The mixture was incubated 

overnight on a wheel; then the supernatant (unbound fraction) was removed and 

the protein-bound resin was washed three times with 10 mL column wash buffer for 

15 minutes followed by 1 hour for sedimentation. The supernatants from each wash 

were preserved for gel analysis. The bound protein was first eluted (Eluate 1) by 

adding 1 mL of elution buffer (TM buffer + 0.3 % digitonin + 20 mM reduced 

glutathione) and then eluted a second time (Eluate 2) with another 1 mL of elution 

buffer, containing 100 mM reduced glutathione. The resin was incubated with each 

elution solution for 30 minutes with gentle agitation, followed by 30 minutes 

sedimentation. Each supernatant (eluted protein) was carefully removed and 

concentrated using Centricon centrifugation devices (Millipore Corp., Bedford, MA). 
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For each 5 L enzyme prep the eluted protein samples were concentrated to 500 μL 

and combined with another 500 μL 50 % glycerol before stored at -20 °C. 

 

2.4.6c Detection of GST-Gpi8  

  Affinity purified  GPI-T was loaded onto a 10% polyacrylamide gel for SDS–

PAGE analysis. The gel was stained with silver nitrate to detect the presence of 

GST-Gpi8, Gpi16 and Gaa1, as per the manufacturer‟s instructions. The presence of 

GST-tagged Gpi8 was also confirmed by Western blotting with anti-GST antibody. 

Rabbit anti-GST polyclonal antibody was used as the primary antibody. Goat anti-

Rabbit IgG (Hilyte plus 647 labeled) was used as the secondary antibody. Western 

blotting was performed as per the protocols provided by the manufacturer of the 

antibodies. 

   

2.4.7 Fluorescence Assay  

  All peptides used for the assay were prepared as 1 mM DMSO stocks, sterile 

filtered, aliquoted in 20 μL fractions, and stored at -20 °C. Assay buffers were 

prepared in advance as large-scale stock solutions and stored at 4 °C. For each 

assay, the required amount of peptide and buffers were taken out 15 minutes prior to 

the experiment and equilibrated at room temperature for 10 minutes and then at 30 

°C for 5 minutes. Freshly prepared 1 mM DTT and 1 mM PMSF were added to the 

assay buffers, mixed well and filtered with 0.45 μM sterile filters immediately before 

each assay. Each peptide was mixed with 1.93 mL assay buffer with or without 

nucleophile substrate. Fluorimeter settings were set to the following parameters: 
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excitation wavelength: 321.0 nm; emission wavelength: 417.0 nm; excitation slit 

width: 10 nm; emission slit width: 5 nm; temperature: 30 °C. Assays were initiated by 

the addition of 50 μL of a typical GPI-T enzyme preparation. Assays were mixed 

throughout the kinetic run using small magnetic stir bars. Fluorescence emission 

was monitored over time at 10-second intervals. 

 

2.4.8 Analysis of GPI-T Cleaved Hydroxylamine Attached Peptide Products. 

 The fluorescence assay was performed with biotinylated peptide 3 and GPI-T 

for 3 hours at 30 °C using the fluorimeter parameters specified in section 2.5.6. For 

each assay, 0.05 mg of peptide 3 was incubated with 100 μL GPI-T with 10 mM 

hydroxylamine. Twenty assays were performed simultaneously, utilizing a total of 1 

mg peptide 3 and 2000 μL GPI-T obtained from 2 enzyme purifications that were 

pooled together. Assay samples were frozen at -80 °C immediately after the 

incubation period. Once all samples were obtained, the frozen samples were 

thawed back to room temperature and mixed with protease inhibitor cocktail. 

Meanwhile the streptavidin sepharose resin was washed with assay buffer without 

digitonin. The assay samples were pooled and mixed with this resin (1.5 mL bed 

volume). The mixture was incubated at room temperature for 1 hour with agitation. 

The supernatant was removed and the resin bound peptide was washed with 6 mL 

H2O. The resin was resuspended in 2 mL H2O , and incubated at 70 °C  for exactly 

2 minutes to reversibly broken the biotin-streptavidin interaction (225). The 

supernatant, carrying peptide 3 and any biotinylated peptide fragments, was 

removed immediately to prevent rebinding to the resin. The samples were 
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lyophilized and analyzed by HPLC using a 40-100% ACN/H2O gradient over 41 

minutes. The fractions were collected and analyzed by ESI. 

 

2.4.9 Methods to Calculate GPI-T Activity 

 Each fluorescence assay was run in two or three independent experiments, 

each using a different batch of GPI-T to account for variability between preparations. 

An arbitrary GPI-T unit of 3 a. u./min (a. u. = arbitrary units) was defined and 

fluorescence intensities were normalized with a unit correction factor. The unit  

correction factor was calculated separately for each individual enzyme batch . In 

order to do so, for every enzyme batch purified, first, a standard assay was 

performed with 10 mM NH2OH, 10 μM peptide 2, and 50 μL enzyme. The 

fluorescence intensity obtained over the first 5 minutes of this assay was divided by 

15 a.u./5 min scale (based on defined GPI-T unit 3 a.u./min) to obtain a unit 

correction factor for that particular batch of enzyme. For instance, if an enzyme 

batch produced fluorescence intensity of 30 a.u during the first 5 minutes of the 

assay, then the unit correction factor for that particular enzyme batch would be 2. 

This unit correction factor was used to normalize fluorescence intensity values for 

comparison between different enzyme preparations. Next, initial rates were 

calculated for the fluorescence data normalized with the unit correction factor. Data 

for initial rate determinations was varied from experiment to experiment based on 

the linear range of fluorescence change over time (refer to initial rate calculation 

data in appendix A). Next, each initial rate value for a particular experiment was 

divided by the average initial rate (averaged from triplicate or duplicate assays) of 
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the standard assay to obtain relative rates. Standard assay (represented in dark 

gray in vertical bar graphs) has a relative rate of ≅ 1 and the other assays were 

adjusted accordingly. For example, in Figure A1 (B) of Appendix A, the highest initial 

rate was obtained for the assay with NH2OH. The assay was run in triplicate and the 

three initial rates (3.01, 3.05 and 2.97 a.u./min) were averaged to obtain a mean 

initial rate (3.01 a.u./min). This value was used to divide all the initial rate values 

(2.87, 3.06 and 3.15 a.u./min) obtained for assay with NH2OH to obtain relative rate 

values (1.00, 1.02 and 1.05). The mean±SD value of the three relative rates 

(=0.999±0.00666) corresponding to with NH2OH assay were represented in a 

vertical bar graph. For the same data set, the assay without hydroxylamine and no 

enzyme gave lower initial rates (1.51, 2.01, and 1.41 a.u./min and 0.702, 0.485 and 

0.553 a.u/min respectively). Each initial rate is first divided by the average initial rate 

of with NH2OH assay, 3.01 a.u/min, to obtain relative rate values. For no NH2OH 

assay relative rates are 0.502, 0.668  and 0.468 and the mean±SD  value of three 

relative rates was equal to 0.546±0.0619. For no enzyme assay the relative rates 

are 0.233, 0.161 and 0.184 and the mean±SD  value of three relative rates was 

equal to 0.192±0.0216. obtained to obtain relative rates (0.54, 0.60 and 0.48) for no 

NH2OH assay. The mean±SD values of with NH2OH, no NH2OH  and no enzyme 

assays were represented in a vertical bar graph as shown in Figure 2.7. In this way, 

assays from different enzyme purifications and using different substrates and 

nucleophiles could be directly compared. Background fluorescence was observed 

over time in a no enzyme control assay (10 mM NH2OH and 10 μM peptide 2 and 

assay buffer).This background fluorescence (mean relative rate = 0.192) is 
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represented as a red dashed line in all the plots. The data above this line is 

considered significant and relevant to GPI transamidation.  

 

2.4.10 Statistical Analysis 

 Each independent experimental trial was performed two or three times. The 

relative rates were expressed as the mean±SD for n≥3 and as the mean for n=2. 

Statistical analysis was performed using a two-way, unpaired t-test with 95% 

confidence interval for n≥3. P-Values<0.05 were considered statistically significant. 

GraphPad Prism and KaleidaGraph software packages were used to analyze and 

plot the data. Vertical column bar graphs, representing mean±SD of the relative 

rates were used for assays in triplicate. Vertical column bar graphs and scattered 

plots (Appendix A) were used to represent relative rates for the assays done in 

duplicate. Scattered plots were used specifically to represent the difference in 

individual relative rates from the mean in the absence of p-values and error bars. 
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Chapter 3 

Enzymatic Characterization of the Catalytic Activity of S. cerevisiae GPI-T 

         3.1 INTRODUCTION  

 GPI-T is an important enzyme for eukaryotic organisms. Several in vivo and 

in vitro assays have been developed to investigate GPI-T (see chapter 2). The 

limitations of these assays prevented detailed kinetic analyses and mainly reported 

qualitative information(111,112,115,119,123-125,131,139,142-146,148,151,158-

161,165,166,208). However, with emerging research on GPI-T, especially in the 

medicinal field (9-11,198-200). there is an urgent requirement for a kinetic analysis 

of this enzyme and for rapid methods to screen GPI-T inhibitors. Consequently, our 

new in vitro assay becomes an indispensable tool to characterize GPI-T. This 

chapter describes our efforts towards characterizing GPI-T‟s catalytic activity by 

investigating its peptide substrate recognition requirements, species specificity, GPI-

T inhibitors, and the possibility of cofactor involvement in catalysis. 

 

3.1.1 Recognition of the C-terminal GPI-T Signal Sequence by GPI-T 

 The C-terminal GPI-T signal sequence contains three key identity elements: 

the ω site, the hydrophilic spacer region and the hydrophobic region 

(57,111,112,115,124,125,226). The requirements for these regions were discussed 

in detail in Chapter 1 and are briefly summarized in the following sections. 

 

 

 



80 

 

 

3.1.1a Sequence Requirements for the ω-Site Region 

 The ω site amino acid is always a relatively small, hydrophilic amino acid 

such as Ser, Gly, Ala, Asp, Cys, Leu and Val.(111,112,114,115) Deletion of this 

residue or replacement with a larger amino acid eliminates GPI anchoring (115). 

These results confirmed that ω site residue is a key determinant used by GPI-T to 

identify appropriate substrate proteins. Amino acid specificity at the ω+1 and ω+2 

residues is also important for an effective GPI transamidation reaction. Any amino 

acid other than proline is acceptable at the ω+1 site.(119) However, ω+2 site 

requirements are more stringent; this site should always contain a small amino acid 

such as Gly, Ala and Ser for an effective GPI transamidation.(119,120,227) 

 

3.1.1b Hydrophilic Spacer Region Requirements 

 The spacer region does not contain a consensus sequence and is composed 

of a stretch of mostly hydrophilic amino acids (116,118,121,122). Relative 

hydrophilicity and the length of this region are important determinants in the overall 

GPI-T signal sequence. Furukawa and coworkers showed that truncation of the eight 

amino acid spacer region in bovine 5′-nucleotidase (a GPI anchored protein) to four 

amino acids abrogated GPI anchoring (122). However, elongation with alanines 

back to 14 amino acids restored GPI anchoring. This spacer region may also have a 

role in maintaining the proprotein in a unique conformation for introduction into the 

active site of GPI-T (118). 
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3.1.1c C-terminal Hydrophobic Region Requirements 

 The C-terminal GPI-T signal sequence ends with a hydrophobic stretch of 

amino acids. Like the hydrophilic spacer, this hydrophobic region does not contain a 

consensus sequence but its relative hydrophobicity and length govern GPI 

anchoring efficiency of substrate proteins (57,123-125). For instance, compared to 

wild type PLAP, which has a 23 amino acid GPI-T signal sequence, PLAP mutants 

truncated to a 17 amino acid signal sequence were not GPI anchored and were 

translocated to the cytosol. Further, extension of these PLAP mutants with 

hydrophobic residues restored GPI anchoring, while extension with hydrophilic 

residues did not. Similar results were obtained with S. cerevisiae Gas1p(57) and 

human DAF (124). The hydrophobic domain may also contribute to proper 

orientation of the ω residue in the GPI-T active site by temporarily anchoring the 

substrate protein to the inner leaflet of the ER membrane where GPI-T is localized 

(127). 

 

3.1.2 Species Specificity of GPI-T 

As described in section 3.1.1, GPI-T substrate proteins contain C-terminal 

signal sequences with a pattern of hydrophilic and hydrophobic residues. However, 

even within these minimal sequence requirements, GPI-T exerts apparent species 

specificity (128-131). Presumably, structural variations in the GPI-T active site 

and/or the GPI-T signal sequences between different organisms lead to species-

specific selection of substrate proteins (128,130,131). For example, the gene 

encoding human growth hormone (hGH), a soluble protein, was modified to append 
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three different GPI-T signal sequences onto its C-terminus; the anchoring efficiency 

of each of these recombinant proteins was quantified. The signal sequences came 

from T. brucei VSG, human DAF, and P. berghei circumsporozoite protein (CS). 

Only the human DAF sequence imparted GPI anchoring in mammalian COS cells. 

Sequence analyses suggested that the parasitic ω region is incompatible with 

mammalian GPI-T machinery due to structural variations within the ω residue-

binding pocket of mammalian GPI-T (128). GPI-T species specificity was also 

probed by the Hendrickson lab, by appending two human and one yeast GPI-T 

signal sequences onto the C-terminus of the yeast secretory protein invertase (INV) 

(131). The human sequences were derived from the campath-1 antigen (CA25) and 

the urokinase-type plasminogen-activated receptor (UP30), and the fungal sequence 

was from the S. cerevisiae GPI-AP, yapsin 2 (Y21). They demonstrated that the 

yeast sequence produced the highest levels of GPI-anchored INV on the cell surface 

of S. cerevisiae. A series of chimeric signal sequences, combining portions of the 

Y21 and the CA25 sequences, pinpointed discrimination to a six-residue portion of 

the GPI-T signal sequence; this peptide fell within the hydrophobic region of the 

signal sequence.  

 

3.1.3 Is GPI-T Activity Regulated in vivo? 

 GPI-T is associated with human diseases like cancer (9-11,198). In order to 

develop chemotherapeutics, it is important to identify ways to control GPI-T activity, 

either via inhibitors or at the level of expression. Unfortunately, investigations 

focused on regulating GPI-T activity/expression have been limited. One limit to such 
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research is a lack of background information on GPI-T catalysis from a quantitative, 

mechanistic viewpoint. The structurally complicated nature of GPI-T and absence of 

high throughput quantitative assays with pure solubilize GPI-T account for this 

situation. 

 The only mechanistic information available for GPI-T stems from Gpi8‟s 

sequence and putative structural similarity to cysteine proteases (156,157), 

especially to caspases (143,151,152). The Gpi8 subunit contains a cysteine/histidine 

catalytic dyad similar to that of cysteine proteases (148,151,158). Consistently, 

sulfhydryl alkylating agents like iodoacetamide inhibit GPI-T (150,153). 

  The impact of nucleotide cofactors on GPI-T activity was also investigated. 

The results were contradictory (135,136,228) as some report that nucleotide 

cofactors enhance GPI-T activity while others report no impact. However, this 

question requires further investigation with an assay like ours, which uses affinity-

purified GPI-T (135,136,228). One of the goals of the research described in this 

chapter was to apply our FRET assay for GPI-T (introduced in chapter 2) to answer 

these questions. 

 

3.2 RESULTS 

3.2.1 Design and Synthesis of Peptide Substrates  

 In order to analyze the catalytic activity of purified GPI-T, small propeptides 

(Table 3.1 and Table 3.2) were synthesized based on the human campath–1 (CD52) 

antigen and yeast aspartyl protease (Yapsin 2). As detailed in section 2.2.1 the 

propeptide sequence of wild type CD52 was modified to peptide 2; this peptide was 
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used to develop our GPI-T assay. Peptides 4 and 5 are based on peptide 2 with 

single ω site mutations. These peptides were designed to demonstrate that our 

assay shows the same ω site requirements as more established GPI-T assays. 

Since GPI-T only accepts small amino acid residues at the ω site, we hypothesized 

that peptide 4 would be, at best, a weak substrate for GPI-T while peptide 5 would 

not be a substrate. A series of peptides (6-10) were constructed to determine the 

sensitivity of our assay to C-terminal truncations. Dr. Rachel Morissette 

(Hendrickson lab alumna) synthesized peptides 2, and 4-10 (Table 3.1). 

 

Table 3.1 Peptide substrates to study GPI-T signal sequence variations 

Peptide N-

terminus 

N-terminal seq. ω GPI-T Signal sequence 

WT CD52  GQNDTSETSSP S ASSNISGGIFLFFVANAIIHLFCFS 

2 Abz GQKDTSEKSSP S ASKN*YSGGIFLFFVANAIIHLFHFS 

4 Abz GQKDTSEKSSP D ASKN*YSGGIFLFFVANAIIHLFHFS 

5 Abz GQKDTSEKSSP R ASKN*YSGGIFLFFVANAIIHLFHFS 

6 Abz GQKDTSEKSSP S ASKN*YSGGIFLFFVANAIIHL 

7 Abz GQKDTSEKSSP S ASKN*YSGGIFLFFVANA 

8 Abz GQKDTSEKSSP S ASKN*YSGGIFLFF 

9 Abz GQKDTSEKSSP S ASKN*YSGGIFL 

10 Abz GQKDTSEKSSP S ASKN*YS 

Abz; 2 - aminobenzoic acid, *Y: 3-nitrotyrosine. Underlined residues were modified 
from the native, wild-type sequence for CD52, as described in Chapter 2.  
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  Yapsin 2 was selected to analyze the species specificity of GPI-T, in 

comparison to peptide 2 (which is based on the human CD52). Among different S. 

cerevisiae GPI anchored proteins (117,229), we chose Yapsin 2 due to the predicted 

synthetic accessibility/solubility of its C-terminal GPI-T signal sequence. The native 

signal sequence also has useful positions to introduce the Abz fluorophore (on the 

side chain of Lys25) and the 3-nitrotyrosine quencher (in place of Phe14). The N-

terminal threonine was acetylated to avoid attachment of an extra Abz group. Dilani 

Gamage (current Hendrickson lab member) synthesized peptide 11 based on the 

amino acid sequence of WT Yapsin 2 (Table 3.2). 

 

Table 3.2. Peptide substrate based on a fungal substrate for GPI-T 

Peptide N-

terminus 

N-terminal 

seq. 

ω GPI-T Signal sequence 

WT 

Yapsin 2 

 TRKE N GGHNLNPPFFARFITAIFHHI 

11 Ac TRK(Abz)E N GGHNLNPP*YFARFITAIFHHI 

Abz; 2 - aminobenzoic acid, *Y: 3-nitrotyrosine. Underlined residues were 
modified from the wild-type sequence as described in the text 
 

3.2.2 Extraction and Purification of GPI-T 
GPI-T was purified as described in section 2.2.3 of Chapter 2. 

3.2.3 The Effect of ω Site Identity on Substrate Recognition by GPI-T 

 Amino acid specificity at the ω site of the GPI-T signal sequence has been 

analyzed qualitatively using both in cell and cell free assays 

(111,112,114,115,120,227). However, none of these experiments were quantitative 
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and relied on endogenous or crude microsomes as the source of GPI-T. We decided 

to quantitatively analyze the impact of amino acid specificity at the ω site using our 

new GPI-T assay (Figure 3.1). Three CD52 peptides with variations at the ω site 

were tested as substrates for GPI-T (Table 3.1). Peptide 2 contains the wild-type 

Ser12 at the ω site, while peptides 4 and 5 contain Asp12 and Arg12, respectively. 

Consistent with previous results (111,112,114,115) and bioinformatic analyses 

(5,6,230), peptide 2 was the best substrate for GPI-T. These results offer further 

evidence that our assay is monitoring GPI-T directly. 

 

 
Figure 3.1. Effect of the identity of the ω site amino acid on substrate 
recognition by GPI-T. Peptide 2, with serine at the ω site, yields the highest 
initial rate of transamidation. The red dashed line indicates background 
fluorescence (relative rate = 0.192±0.02). Data above this line was considered 
relevant to GPI-T transamidation. Data represent the mean ± SD, n = 3 and 
P<0.05 compared to peptide 2 (ω = serine, dark gray). For raw assay data, 
see Appendix B, Figure B1. 
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3.2.4 The Importance of the Length of the GPI-T Signal Sequence on Substrate 

Recognition 

 The overall hydrophilic and hydrophobic profile as well as the length 

of  the GPI-T signal sequence are key parameters that determine transamidation 

efficiency.(57,111,112,115,124,125,226) Lack of these elements converts a 

substrate protein into a non-substrate (231). Therefore, in accordance with this 

information, we used our in vitro assay to analyze the impact of signal sequence 

length on substrate activity. A series of truncated analogs of peptide 2 (peptides 6 -

10, Table 3.1) were used for this purpose. None of the shortened peptides were 

robust substrates for GPI-T, when compared to full-length peptide 2 (Figure 3.2). In 

fact, the loss in GPI-T activity correlated with the length of each truncation; the 

longest peptide was the best substrate and the shortest two peptides were not 

substrates at all (within the sensitivity limits of our assay). 
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3.2.5 Species Specific Substrate Selectivity of GPI-T 

  GPI-T appears to have different affinities towards peptide substrates from 

different species (128,130,131). To investigate this phenomenon further, we used 

our in vitro FRET assay to examine the species-specific substrate specificity of GPI-

T with two peptide substrates. Our assay development has been based on a human 

 
Figure 3.2 Effect of the length of the C-terminal GPI-T signal sequence on 
substrate recognition by GPI-T. Peptide 2 the wild-type GPI-T signal sequence 
yielded the highest initial rate of transamidation. GPI anchoring activity diminished 
as the length of the signal sequence was shortened. The red dashed line 

indicates background fluorescence (relative rate = 0.192±0.0216). Data above 
this line was considered relevant to GPI-T transamidation. Data represent the 

mean ± SD, n = 3 and P≤0.05 compared to peptide 2 (dark gray). 
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peptide substrate for GPI-T, peptide 2; but our GPI-T was purified from S. 

cerevisiae. We hypothesized that a fungal peptide substrate would be a stronger 

substrate for the fungal GPI-T. We chose to test a yeast peptide substrate (peptide 

11) based on the C-terminus of the aspartyl protease Yapsin 2 (Table 3.2) because 

of synthetic accessibility and the fact that this signal sequence was a robust 

substrate for GPI-T when tested with our in vivo invertase assay (131). Activity was 

compared to our standard CD52 substrate peptide 2 (Table 3.1). Each peptide was 

separately assayed with pure GPI-T. Since both Yapsin 2 and GPI-T are from S. 

cerevisiae, we expected peptide 11 be the stronger substrate. However, the 

fluorescence response produced with peptide 11 was negligible, even at higher 

peptide concentrations (Figure 3.3.). Efforts to optimize assay conditions for this 

substrate were ineffective (not shown).  
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3.2.6 Effect of Transition Metal Ion Cofactors on the Catalytic Activity of GPI-T 

 To our knowledge, the possibility that GPI-T requires a metal cofactor has 

never been evaluated. Given that some caspases bind metal ions (232-240), we 

hypothesized GPI-T might also require a transition metal for activity or regulation. To 

test this hypothesis, we compared GPI-T activity in the presence of various transition 

metals (Figure 3.4.). 

 
Figure 3.3 Species specific substrates and GPI-T. S. cerevisiae GPI-T was 
incubated with different concentrations of peptide 11 versus peptide 2 in the 
presence of 10 mM NH2OH and S. cerevisiae GPI-T. Peptide 11 was not a 
substrate under the assay conditions tested. The red dashed line indicates 

background fluorescence (relative rate = 0.192±0.0216). Data above this line 
was considered relevant to GPI-T transamidation. Data represents the mean 
of experiments run in duplicate. See Appendix B, Figure B3 for raw data. 
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 The presence of Mn2+ and Zn2+ enhanced GPI-T activity, compared to the 

EDTA control; each of the three other metals tested inhibited GPI-T activity. These 

results suggest that the catalytic activity of GPI-T is metal-dependent. Surprisingly, 

however, a combination of Mn2+ and Zn2+ ablated enzyme activity, a result that 

requires further analysis before precise conclusions can be made.  

 

 
Figure 3.4 Effect of different transition metals on GPI-T activity. GPI-T 
activity was measured with peptide 2 and 10 mM NH2OH in the presence of 
different metal ions, each at 1 mM concentrations, and GPI-T. EDTA (1 mM) 
was used in a control assay. The red dashed line indicates background 

fluorescence (relative rate = 0.192±0.0216). Data above this line was 
considered relevant to GPI-T transamidation. Data represent the mean ± SD, 

n = 3 and P≤ 0.05 compared to the assay with 1 mM Mn2+ as the transition 
metal (dark gray). ns: not significant. See Appendix B, Figure B4 for raw data. 
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3.2.7 The Effect of Leupeptin, a Cysteine Protease Inhibitor, on GPI-T Activity 

 

 

 As mentioned above, Gpi8, the active site subunit of GPI-T, has sequence 

homology to caspases and other cysteine proteases (152,156,157). Thus, we 

hypothesized that cysteine protease inhibitors might inhibit the active site of Gpi8. 

We confirmed this hypothesis by testing the impact of leupeptin, a cysteine protease 

 
Figure 3.5 Effect of Leupeptin, a cysteine protease inhibitor, on GPI-T 
activity. GPI-T activity was measured with peptide 2 and 10 mM NH2OH in the 
presence of different protease inhibitors, each at 1 mM concentrations. Presence 
of 1 mM leupeptin completely abolish the GPI-T catalytic activity. The red dashed 

line indicates background fluorescence (relative rate = 0.192±0.0216). Data 
above this line was considered relevant to GPI-T transamidation. Data represent 

the mean ± SD, n = 3 and P≤0.05 compared to assay with 1 mM PMSF as the 
protease inhibitor (dark gray). See Appendix B, Figure B5 for raw data. 
 
 
 
 
 

 

 



93 

 

 

inhibitor, on GPI-T activity (Figure 3.5.). As expected, leupeptin inhibits GPI-T 

activity. 

 

3.2.8 Effect of Nucleotides on Catalytic Activity of GPI-T 

 The impact of ATP and GTP on GPI anchoring has been examined and 

reported with contradictory results (135,136,228). However, these assays were 

performed in an in vitro translation system with crude GPI-T. Thus, we reassessed 

the impact of ATP and GTP using our new in vitro assay (Figure 3.6.). The 

fluorescence response for the control assay (without either NTP) was significantly 

higher than those with either ATP or GTP (Figure 3.6a). The ATP assay showed an 

initial rate that was similar to the control assay; however this assay plateaued at a 

significantly lower level, indicating that less peptide substrate was processed. The 

relative rate data in Figure 3.6b is based only on the initial rate and does not take the 

relative plateau levels into account (Shown in Figure 3.6a). In total, these data 

demonstrate that neither GTP nor ATP have any role in enhancing GPI-T activity; 

however, they may play some sort of regulatory role as both nucleotides diminished 

overall transamidation activity. 
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Figure 3.6 Effect of nucleotides on the catalytic activity of GPI-T. GTP 
and ATP did not enhance GPI-T activity with peptide 2 as the substrate. (A) 
GPI-T activity in terms of fluorescence response. Activity was measured with 
10 µM peptide 2 and 10 mM NH2OH with different nucleotides, each at 10 mM 
concentrations, and GPI-T. A no NTP assay was performed as a control. 
Magenta: no NTP; Purple: 10 mM ATP; Maroon: 10 mM GTP. Error bars 
indicate the standard deviation (SD, n=3). (B) Relative rates were calculated 
from the initial rate data in A. The red dashed line indicates background 
fluorescence (relative rate = 0.192 ± 0.021). Data above this line was 
considered relevant to GPI-T transamidation. Data represent the mean ± SD, 

n = 3 and P ≤0.05 compared to assay with no NTP (dark gray). 
 
 



95 

 

 

3.3 DISCUSSION 

 The lack of quantitative tools and the complexity of GPI-T has limited the type 

of studies that could be conducted to better understand this enzyme. Especially, 

investigations on the catalytic activity of GPI-T with a more quantitative, mechanistic 

approach have been missing. However, our in vitro assay for GPI-T, described in 

Chapter 2, offers a new approach to look at GPI-T. In this chapter we describe the 

use of this assay to investigate certain aspects of GPI-T catalysis, including peptide 

substrate recognition, species specificity and ways to regulate GPI-T catalytic 

activity. 

 

3.3.1 Our in vitro GPI-T Assay Distinguishes Between Different ω site 

Residues 

 For our first efforts to characterize GPI-T with our assay, we decided to 

confirm previous observations made with GPI-T in vivo or in crude in vitro translation 

systems. As detailed in Chapter 1 and section 3.1.1a, the ω amino acid should be a 

relatively small amino acid (e.g. Ser, Gly, Ala, Asp, Asn and Cys) (111,112,114,115). 

We designed three peptide substrates for this experiment with variations at the ω 

site (Ser12, Asp12, and Arg12). As expected, Ser12 was the strongest ω site, 

followed by Asp12, and then Arg12 (see Figure 3.1)..Our results were consistent 

with previous findings as the highest GPI-T activity was observed with the Ser12 ω 

site. GPI anchoring was lower with Asp12 and nearly eliminated with Arg12. These 

results provide further support that our new assay is specific for GPI-T activity, rather 

than for any non-specific protease contaminant. 
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3.3.2 Length of the GPI-T Signal Sequence is Important for Peptide Substrate   

Recognition by GPI-T 

 As described in Chapter 1 and section 3.1.1c above, the hydrophobicity 

profile and the length of the GPI-T signal sequence are critical parameters for GPI-T 

substrate recognition (57,111,112,115,124,125,226,231). We tested the length of the 

C-terminal GPI-T signal sequence using our in vitro assay as a continuation of our 

assay validation process and to investigate GPI-T catalytic activity further. A series 

of C-terminally truncated peptides (peptide 6-10, Table 3.1) were tested as 

substrates for GPI-T. Transamidation activity was completely abolished for peptides 

lacking most of the hydrophobic region of the GPI-T signal sequence. In fact, only 

peptide 6, the peptide with the shortest truncation, showed any substrate activity 

when assayed with GPI-T, compared to that of peptide 2. Overall, these results 

confirmed the contributions of the key identity elements, ω region and hydrophobic 

region, for GPI-T recognition of substrate peptides. 

 In 2007, an in vivo GPI-T assay developed by the Hendrickson group 

revealed that the replacement of the CD52 (Table 3.1) sequence FVANAI with 

Yapsin 2 (Table 3.2) sequence ARFIT enhanced CD52 transamidation (131). For the 

moment, we have not synthesized peptides to demonstrate the impact of this 

sequence perturbation in vitro. We believe that such a replacement will further 

enhance the GPI-T activity of our model peptide substrate. 
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3.3.3 Species-Specific Substrate Selectivity of GPI-T 

 GPI-T appears to exert different affinities towards peptide substrates from 

different species (128,130). To investigate this phenomenon further, we used our in 

vitro assay to compare two GPI-T substrates from different species. Transamidation 

of the yeast peptide substrate based on Yapsin 2 (peptide 11,Table 3.2) was 

compared to that of our standard peptide substrate based on the human CD52 

(peptide 2). We expected to observe optimal activity with the yeast peptide 

substrate, peptide 11, because our assay uses the homologous yeast GPI-T. 

However, the fluorescence response produced with 11 was negligible even at higher 

concentrations (Figure 3.3), despite efforts to optimize assay conditions. This poor 

substrate behavior may be due to the shorter N-terminal region upstream of the ω 

site in peptide 11. Peptide 2 contains eleven residues N-terminal to the ω site; this 

sequence reflects the entire CD52 wild-type sequence, following ER processing of 

the N-terminal signal peptide. In contrast, peptide 11 only contains four amino acids 

N-terminal to the ω-site. Further, the peptide 11 sequence only represent a short 

fragment of the full-length Yapsin 2 propeptide which is 384 amino acids long. In the 

future, a longer Yapsin 2 peptide substrate, with an extended C-terminal GPI-T 

signal sequence, needs to be tested.  

 

3.3.4 External Modulators of GPI-T Activity 

 Due to the highly complicated nature of GPI-T and lack of high throughput 

assays, we still do not have a clear picture of GPI-T structure or catalytic activity. For 

the first time in GPI-T history, we have a high throughput in vitro assay that uses 



98 

 

 

pure, solubilized GPI-T. Further, we recognize the similarities between Gpi8, the 

catalytically active subunit of GPI-T, with that of cysteine proteases. As discussed in 

Chapter 1, Gpi8 demonstrates 25%-28% sequence homology to the C13 family of 

cysteine proteases, with weak sequence similarity at the active site of several 

caspases (138,151). Mn2+ binds to and enhances the activity of certain caspases 

(233,234,241). However, the impact of Zn2+ on caspase activity is less clear. Zn2+ 

allosterically inhibits some caspases (236-238), while activating others (242-244). 

Cu2+ and Fe2+ can also inhibit caspase activity (239,240). It has also been reported 

that low concentrations of Zn2+ (10 - 50 µM) diminished the Mn2+ mediated induction 

of caspase 3 activity (243). Moreover, the Hendrickson group recently demonstrated 

that the soluble domain of S. cerevisiae Gpi8 has a caspase-like domain and 

undergoes homodimerization similar to that of caspases (152). We hypothesized 

that the similarities between GPI-T and caspases might include a requirement for a 

cofactor for activity.  

 

3.3.4a Transition Metal Ion Cofactors Regulate the Catalytic Activity of GPI-T 

 We analyzed GPI-T activity in the presence of various transition metal ions as 

described in section 3.2.6. Our results demonstrated that Mn2+ and Zn2+ ions 

independently enhance the catalytic activity of GPI-T, whereas the combination of 

these two cations is disruptive to activity. Cu2+ and Fe2+ each reduced GPI-T activity, 

compared to that of EDTA control. Unfortunately, due to lack of structural insight into 

GPI-T, a direct explanation of these results is beyond our ability at the present time. 

Hence, we depend on indirect information (e.g. with respect to caspases) to 
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hypothesize how these metals might work with GPI-T. In fact, even speculating as to 

which subunit mind bind a metal cofactor is beyond our current understanding. 

 

3.3.4b Leupeptin Inactivates GPI-T 

 Since Gpi8 has 25-28% sequence similarity to cysteine proteases, we 

investigated the impact of the cysteine protease inhibitor, leupeptin, on GPI-T 

activity. Indeed, Leupeptin inhibited GPI-T, presumably by modification of the 

nucleophilic cysteine in the active site. This observation is the first demonstration of 

direct inhibition of GPI-T in vitro (to our knowledge). GPI-T activity is not inhibited by 

phenylmethylsulfonyl fluoride (PMSF), a serine protease inhibitor, or by EDTA 

(ethylenediaminetetraacetic acid), a metalloprotease inhibitor. Overall, these results 

continue to strengthen the comparison between GPI-T and caspases. 

 

3.3.4c ATP and GTP Diminish GPI-T Activity 

 The importance of nucleotide cofactors on GPI anchoring has been studied 

previously. In cell free systems, the processing of prominiPLAP to miniPLAP was 

enhanced when either ATP or GTP as added (136). It was suggested that ATP 

might enhance the proper folding of proprotein substrates, while GTP might facilitate 

translocation of the folded proprotein to the active site of GPI-T (136,228). However, 

in another cell free assay, in which synthetic GPI anchors were transferred to cell 

membranes carrying VSG, GPI addition was not enhanced by either ATP or GTP 

(135). Due to these contradictory reports, we reassessed the impact of ATP and 

GTP on GPI transamidation in vitro.  
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The initial rate of transamidation of peptide 2 was highest in the absence of 

NTPs. However, there are significant experimental differences between our assay 

conditions and those published in the literature (136). Among them, the use of crude 

soluble microsomes by others (136), versus affinity purified enzyme (this work) and 

the use of small proteins such as preprominiPLAP (136), compared to the full length 

CD52 peptide 2 (this work) are potentially significant. For RM assays, the possibility 

that other cellular components are responsible for NTP dependence cannot be ruled 

out. These differences may account for the observed contradictions. However, our 

results demonstrate that neither GTP nor ATP activates GPI-T. 

 

3.3.5 Conclusions  

 In this work, we utilized our in vitro assay to characterize several aspects 

relevant to the catalytic activity of GPI-T. Our results demonstrate that this assay is 

an indispensable tool to investigate GPI-T from a quantitative viewpoint that was 

previously inaccessible. Further, this new assay opens up a plethora of experiments 

for future research on GPI-T. For instance, even though the Gpi8 subunit catalyzes 

the transamidation reaction, this subunit is not active in the absence of other GPI-T 

subunits (152). We are now poised to assess the impact of each individual subunit 

on Gpi8 activity in order to identify which subunit(s) is necessary to activate Gpi8 for 

transamidation. Results from such experiments will solve three decades of 

discussions about which subunits constitute the catalytically competent GPI-T 

complex. For instance in yeast, GPI-T is divided in to a core heterotrimer, which 

likely dimerizes into a heterohexamer (138,140). In humans, GPI-T can be purified 
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as a heteropentamer (141,165), presumably leading to two copies of all five subunits 

(for a total of 10) in the fully formed GPI-T complex. The assay described herein will 

certainly contribute to elucidating the size of the core GPI-T complex. 

 

3.4 EXPERIMENTAL PROCEDURES 

3.4.1 Materials and General Instrumentation 

 Refer to Chapter 2 Section 2.4.1  

 

3.4.2 Buffers and Solutions 

  Refer to Chapter 2 Section 2.4.2 

 

3.4.3 Yeast Strain and Growth Conditions  

 Refer to Chapter 2 Section 2.4.3 

 

3.4.4 Automated Peptide Synthesis  

 Peptides 2, and 4-10 were synthesized as detailed in the Ph.D. thesis of Dr. 

Rachel Morissette using standard solid-phase Fmoc synthesis protocols and pre-

substituted Wang resins (221). Peptide 11 (synthesized by Dilani Gamage) was 

synthesized on a Prelude peptide synthesizer using pre-substituted Fmoc-Ile-Wang 

resin (100-200 mesh, 0.10 g, 0.6 mmol/g). The amino acids were coupled using 

HBTU chemistry using standard Prelude peptide synthesizer protocols. Each amino 

acid was coupled three times in the presence of activator solution unless otherwise 

noted. Certain amino acids required three to four coupling reactions due to the high 
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hydrophobicity of certain regions of the peptides. The resin was coupled with acetic 

anhydride before Fmoc deprotection. The peptides were cleaved from the resin by 

mixing with 1.5 mL peptide cleavage solution and rotating for 2 hours on a wheel at 

room temperature. The cleaved peptides were precipitated with cold ether. The 

resultant precipitate was lyophilized and purified by reversed phase HPLC. The 

HPLC fractions were tested by ESI or MALDI-TOF to verify the identity of desired 

peptide. The pure peptide fractions were lyophilized and stored dry or as a 1 mM 

DMSO stock at -20 °C.  

 

3.4.5 Manual Peptide Synthesis 

  Peptide 2 was also synthesized manually, using pre-substituted Fmoc-

Ser(tBu)-Wang resin (100-200 mesh, 0.10 g, 0.6 mmol/g) and HBTU chemistry as 

detailed in section 2.4.5 of Chapter 2.  

 

3.4.6 Extraction and Purification of the GST-tagged GPI-T Heterotrimeric 

Complex  

 Preparation of microsomal membranes, solubilization of membrane proteins 

and affinity purification of GST tagged GPI-T were performed as described in section 

2.4.5 of Chapter 2. 
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3.4.7 Fluorescence Assay  

 For each assay detailed in section 3.2, fluorescence response was obtained 

using a Varian Cary Eclipse Fluorometer with a Peltier multicell holder (Agilent Inc.) 

as described in section 2.4.6 of Chapter 2.  

 

3.4.8 Methods to Calculate GPI-T Activity 

 Each fluorescence assay was run in triplicate, unless otherwise noted. GPI-T 

activity was calculated as described in section 2.5.7 of Chapter 2.  

 

3.4.9 Statistical Analyses 

 Each experiment was performed three times unless otherwise noted. The 

relative rates were expressed as the mean ± standard deviation for n ≥ 3. Statistical 

analysis was performed using a two-way, unpaired t-test with 95% confidence 

interval for n ≥ 3. P-values < 0.05 were considered statistically significant. GraphPad 

Prism and KaleidaGraph software packages were used to analyze and plot the data. 

Vertical bar graphs representing mean ± SD were used to represent relative rates. 

Scattered plots were also used to represent relative rates for assays run in duplicate. 

 

3.5 ACKNOWLEDGEMENT 

 Thanks are extended to Dr. Rachel Morissette for peptides 2-10 and Dilani 
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APPENDIX A  

 

 
 
 
Figure A1. Initial fluorescence assay with GPI-T. (A) Summary of effects from 
enzyme and variations of nucleophile dependence on new GPI-T assay based on 
fluorescence response. For all assays, fluorescence intensity was normalized using the 
GPI-T unit definition. See text for details Magenta: 10 mM NH2OH + 50 µL GPI-T; 
Maroon: 50 µL GPI-T; Purple: 10 mM NH2OH + no GPI-T. Error bars indicate the 
standard deviation (n=3). Initial rates of transamidation for the  assays with (B) 10 mM 
NH2OH (C) no NH2OH and (D) no enzyme assay. Refer to table A1 for experimental 
conditions. 
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Figure A2. Effect of various non-ionic detergents on GPI-T activity. (A) 
Summary of effect of non-ionic detergents on GPI-T activity based on 
fluorescence response. For all assays, fluorescence intensity was normalized 
using the GPI-T unit definition. See text for details Magenta: 0.1 % Digitonin; 
Maroon: 24 mM Igepal + 0.1 % Digitonin; Purple: 24 mM Igepal. n = 2 Initial 
rates of transamidation for assay with (B) 0.1% Digitonin.(C) 0.1 % Digitonin 
and 24 mM Igepal (D) 24 mM Igepal. (E) Effect of various non-ionic detergents 
on GPI-T activity based on relative rates. Relative rates were calculated with 
respect to 0.1% Digitonin assay (■).Refer to table A1 for experimental 
conditions. 
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Figure A3. Effect of Digitonin concentration on GPI-T activity.(A) Summary of 
effect of variation in digitonin concentration on GPI-T activity based on fluorescence 
response. For all assays, fluorescence intensity was normalized using the GPI-T unit 
definition. See text for details. n = 2 Initial rates of transamidation for assay with (B)  
0.05% Digitonin (C) 1% Digitonin (D) 2% Digitonin and (E) 0.3% Digitonin (E) Effect of 
Digitonin concentration on GPI-T activity based on Relative rates. Relative rates were 
calculated with respect to 0.1 % Digitonin assay (■). Refer to table A1 for 
experimental conditions. 
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Figure A4. Effect of pH on GPI-T activity. (A) Summary of effect of variation in assay 
buffer pH on GPI-T activity based on fluorescence response. For all assays, 
fluorescence intensity was normalized using the GPI-T unit definition. See text for 
details. n = 1 (B) Initial rates of transamidation for assays with different pH conditions. 
All assays were performed with 10 mM NH2OH, 10 µM peptide 2 and 50 µL GPI-T with 
varion in pH. Refer to table A1 for experimental conditions. 
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Figure A5. Effect of reducing agents on GPI-T activity. (A) Summary of effect of 
variation in reducing agents on assay buffer on GPI-T activity based on fluorescence 
response. For all assays, fluorescence intensity was normalized using the GPI-T unit 
definition. See text for details. n = 2 Initial rates of transamidation for assay with (B) 1 
mM DTT and 20 mM RG and (C) 20 mM RG (D) Effect of agents on GPI-T activity 
based on relative rates. Relative rates were calculated with respect to assay with 1 mM 
DTT and 20 mM RG (■).Refer to table A1 for experimental conditions. 
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Figure A6. Optimizing GPI-T assay with amount of GPI-T enzyme. (A) Summary 
of effect of variation in enzyme amount on GPI-T activity based on fluorescence 
response. For all assays, fluorescence intensity was normalized using the GPI-T 
unit definition. See text for details. n = 2 Initial rates of transamidation for assays 
with (B) 1 µL GPI-T (C) 5 µL GPI-T (D) 50 µL GPI-T and (E) 100 µL GPI-T. (F) 
Effect of enzyme amount on GPI-T activity based on relative rates. Relative rates 
were calculated with respect to assay with 50 µL of GPI-T(■).Refer to table A1 for 
experimental conditions. 
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Figure A7. Effect of peptide 2 concentration on GPI-T activity (A) Summary of 
effect of variation in peptide 2 concentration on GPI-T activity based on fluorescence 
response. For all assays, fluorescence intensity was normalized using the GPI-T unit 
definition. See text for details. n = 2 Initial rates of transamidation for assays with (B) 
5 µM peptide 2 (C) 10 µM peptide 2 and (D) 20 µM GPI-T (E) Effect of peptide 2 
concentration on GPI-T activity based on relative rates. Relative rates were calculated 
with respect to assay with 10 µM of  peptide 2 (■).Refer to table A1 for experimental 
conditions. 
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Figure A8. Effect of different nucleophiles on GPI-T activity (A) Summary of effect 
of different nucleophiles on GPI-T activity based on fluorescence response. For all 
assays, fluorescence intensity was normalized using the GPI-T unit definition. See text 
for details. n = 1 Initial rates of transamidation for assays with (B i) 10 mM NH2OH ,(B 
ii) 10 mM NH2NH2 ,(B iii) 10 mM EPME and (B iv) no nucleophile (C) Structure of 
EPME. Refer to table A1 for experimental conditions. 
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Table A1 Experimental conditions for assays described in appendix A 

 

All experiments were performed with 10 µM peptide 2. Experimental details for the 
assays performed under standard conditions (10 mM NH2OH, 50 µL GPI-T, 10 µM peptide 2 
with GPI-T assay buffer as detailed section 2.4.2 and 2.4.7) were not included in Table A.1.  

 

  

Figure Additives 
Changes to standard Assay/Assay buffer 

conditions * 

A1.C  no 10 mM NH2OH 

A1.D  No GPI-T 

A2.C 24 mM Igepal - 

A2.D 24 mM Igepal no Digitonin 

A3.B - 0.05% Digitonin 

A3.D - 0.2% Digitonin 

A3.E - 0.3% Digitonin 

A5.C  no 1 mM DTT 

A6.B - 1 µL GPI-T 

A6.C - 5 µL GPI-T 

A6.E - 50 µL GPI-T 

A7.B - 5 µM peptide 2 

A7.D - 20 µM peptide 2 

A8.B ii -10 mM NH2NH2 no 10 mM NH2OH 

B8.B iii 10 mM EPME no 10 mM NH2OH 

A8.B iv  no 10 mM NH2OH 
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APPENDIX B 

  

 
Figure B1. Effect of the identity of the ω site amino acid on peptide substrate 
recognition by GPI-T. (A) Summary of effects from variations at the ω site on GPI-
T activity based on fluorescence response. For all assays, fluorescence intensity 
was normalized using the GPI-T unit definition. See text for details. Magenta: 
peptide 2 (ω = Ser); Brown: peptide 4 (ω = Asp); Purple: peptide 5 (ω = Arg). Error 
bars indicate the standard deviation (n=3). (B) Initial rates of transamidation for 
peptide 2 with ω = serine. (C) Initial rates of transamidation for peptide 4 with ω = 
aspartate. (D) Initial rates of transamidation for peptide 5 with ω = arginine. Refer to 
table B1 for experimental conditions. 
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Figure B2. Effect of the length of the C-terminal GPI-T signal sequence on GPI-T 
activity. (A) Summary of effects from variations of the length of the GPI-T signal 
sequence on GPI-T activity based on fluorescence response. For all assays, 
fluorescence intensity was normalized using the GPI-T unit definition. See text for 
details. Magenta: peptide 2 (37 mer); Purple: peptide 6 (33 mer); Maroon: peptide 7 
(29 mer); Orange: peptide 8 (25 mer); Black: peptide 9 (23 mer); Cyan: peptide 10 (18 
mer). Error bars indicate the standard deviation (n=3). (B) Initial rates of 
transamidation for peptide 2. (C) Initial rates of transamidation for peptide 6. (D) Initial 
rates of transamidation for peptide 7. (E) Initial rates of transamidation for peptide 8. 
(F) Initial rates of transamidation for peptide 9. (G) Initial rates of transamidation for 
peptide 10. For each plot (B-G), the peptide sequence is represented at the top of 
plot with the hydrophobic portion highlighted in blue. Refer to table B1 for 
experimental conditions. 
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Figure B3. Species specific substrate selectivity. (A) Summary of effects from 
peptides 2 (CD52) and 11 (Yapsin 2) on GPI-T activity, based on fluorescence 
responses. For all assays, fluorescence intensity was normalized using the GPI-T unit 
definition. See text for details. Magenta: 10 µM peptide 2 (CD52); Orange: 10 µM 
peptide 11 (Yapsin 2); Purple: 20 µM peptide 11 (Yapsin 2); Maroon: 50 µM peptide 
11 (Yapsin 2); n=2. (B) Initial rates of transamidation for 10 µM peptide 2. (C) Initial 
rates of transamidation for 10 µM peptide 11. (D) Initial rates of transamidation for 20 
µM peptide 11. (E) Initial rates of transamidation for 50 µM peptide 11. (F) Species 
specificity of GPI-T in terms of relative rates. Relative rates were calculated with 
respect to the assay with 10 µM peptide 2 (■). For each plot (B-E), the peptide 
sequences is represented at the top of plot. Refer to table B1 for experimental 
conditions. 
 



120 

 

 

  

 
      Continued on next page 



121 

 

 

  

 
Figure B4. Effect of transition metals on GPI-T activity. (A) Summary of effects 
from different transition metals on GPI-T activity, based on fluorescence response. 
For all assays, fluorescence intensity was normalized using the GPI-T unit definition. 
See text for details. Magenta: 1 mM Mn2+; Purple: 1 mM Zn2+; Orange: 1 mM Mn2+ & 1 
mM Zn2+; Gray: 1 mM Cu2+; Cyan: 1 mM Fe2+; Maroon: 1 mM EDTA. Error bars 
indicate the standard deviation (n=3). (B) Initial rates of transamidation for assay with 
1 mM Mn2+. (C) Initial rates of transamidation for assay with 1 mM Zn2+. (D) Initial 
rates of transamidation for assay with 1 mM Mn2+ + 1 mM Zn2+. (E) Initial rates of 
transamidation for assay with 1 mM Cu2+. (F) Initial rates of transamidation for assay 
with 1 mM Fe2+. (G) Initial rates of transamidation for assay with 1 mM EDTA. Refer 
to table B1 for experimental conditions. 
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Figure B5 Effect of Leupeptin on catalytic activity of GPI-T. (A) Summary of 
effects from leupeptin and PMSF on GPI-T activity based on fluorescence response. 
For all assays, fluorescence intensity was normalized using the GPI-T unit definition. 
See text for details. Magenta: 1 mM PMSF; Purple: 1 mM Leupeptin + 1 mM PMSF. 
Error bars indicate the standard deviation (n=3). (B) Initial rates of transamidation for 
assay with 1 mM PMSF. (C) Initial rates of transamidation for assay with 1 mM PMSF 
+ Leupeptin. Refer to table B1 for experimental conditions. 
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Figure B6. Effect of nucleotides on the catalytic activity of GPI-T. (A) Summary 
of effects from different nucleotides on GPI-T based on fluorescence response. For 
all assays, fluorescence intensity was normalized using the GPI-T unit definition. See 
text for details. Magenta: no NTP; Purple: 10 mM ATP; Maroon: 10 mM GTP. Error 
bars indicate the standard deviation (n=3). (A) Initial rates of transamidation for assay 
with no NTP. (B) Initial rates of transamidation for assay with 10 mM ATP. (C) Initial 
rates of transamidation for assay with 10 mM GTP. Refer to table B1 for experimental 
conditions. 
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Table B1. Experimental conditions for assays in appendix B 

Figure Peptide 
Peptide 

concentration 
Additive 

B1.B 2 10 µM - 

B1.C 4 10 µM - 

B1,D 5 10 µM - 

B2.B 2 10 µM - 

B2.C 6 10 µM - 

B2.D 7 10 µM - 

B2.E 8 10 µM - 

B2.F 9 10 µM - 

B2.G 10 10 µM - 

B3.B 2 10 µM - 

B3.C 11 10 µM - 

B3.D 11 20 µM - 

B3.E 11 50 µM - 

B4.B 2 10 µM 1 mM Mn2+ 

B4.C 2 10 µM 1 mM Zn2+ 

B4.D 2 10 µM 1 mM Mn2+ + Zn2+ 

B4.E 2 10 µM 1 mM Cu2+ 

B4.F 2 10 µM 1 mM Fe2+ 

B4.G 2 10 µM 1 mM EDTA 
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B5.B 2 10 µM 1 mM PMSF 

B5.C 2 10 µM 1 mM PMSF + 

1 mM Leupeptin 

B6.A 2 10 µM - 

B6.B 2 10 µM 1 mM ATP 

B6.C 2 10 µM 1 mM GTP 

All experiments were performed with 10 mM NH2OH and 50 µL GPI-T in GPI-T assay buffer 
(total volume 2 mL) unless otherwise noted in the last column.  
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ABSTRACT 
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by 
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Degree: Doctor of Philosophy 

The enzyme glycosylphosphatidylinositol transamidase (GPI-T) mediates the 

attachment of a glycosylphosphatidylinositol (GPI) anchor to the C-terminus of 

specific proteins to produce GPI anchored proteins. This post-translational 

modification is essential for viability of eukaryotic organisms. However, very little is 

known about GPI-T and its catalytic activity. Thus, the research described in this 

abstract was conducted to develop an in vitro assay to monitor GPI-T. A high-

throughput assay for GPI-T will facilitate innumerable new experiments to study this 

complicated enzyme. The three core subunits of GPI-T (Gpi8, Gpi16, and Gaa1) 

were co-purified from a GPI8 knockout Saccharomyces cerevisiae strain containing 

a plasmid that expresses Gpi8 with an appended glutathione-S-transferase (GST) 

domain. Peptide substrates for GPI-T were synthesized and modified to contain a 

pair of chromophores suitable for the development of a fluorescence resonance 
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energy transfer (FRET) assay. GPI-T activity was observed as a time-dependent 

increase in fluorescence by incubating peptides with pure, solubilized GPI-T in the 

presence of hydroxylamine, a small GPI anchor mimic. A FRET assay was 

developed and optimized to monitor GPI anchoring activity in vitro. The assay was 

used to investigate various aspects of GPI-T, including the importance of the C-

terminal hydrophobic region in peptide substrates, the identity of the residue at the 

site of modification, substrate selectivity, and the effect of cofactors, co-substrates 

and inhibitors for GPI-T .To date no one has demonstrated robust GPI-T activity with 

pure solubilized GPI-T. Thus, this new FRET assay represents the first high-

throughput method to quantitatively analyze GPI-T activity in vitro. 
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