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Fitting Generalized Linear Mixed Models For Point-Referenced Spatial Data 
 

    Armin Gemperli        Penelope Vounatsou 
Swiss Tropical Institute 

Basel, Switzerland 
 
 
Non-Gaussian point-referenced spatial data are frequently modeled using generalized linear mixed 
models (GLMM) with location-specific random effects. Spatial dependence can be introduced in the 
covariance matrix of the random effects. Maximum likelihood-based or Bayesian estimation implemented 
via Markov chain Monte Carlo (MCMC) for such models is computationally demanding especially for 
large sample sizes because of the large number of random effects and the inversion of the covariance 
matrix involved in the likelihood. We review three fitting procedures, the Penalized Quasi Likelihood 
method, the MCMC, and the Sampling-Importance-Resampling method. They are assessed in terms of 
estimation accuracy, ease of implementation, and computational efficiency using a spatially structured 
dataset on infant mortality from Mali. 
 
Key words: Geostatistics, infant mortality, kriging, Markov chain Monte Carlo (MCMC), penalized quasi 
likelihood (PQL), risk mapping, sampling-importance-resampling (SIR) 
 
 

Introduction 
 
Point referenced spatial data arise from 
observations collected at geographical locations 
over a fixed continuous space. Proximity in 
space introduces correlations between the 
observations rendering the independence 
assumption of standard statistical methods 
invalid. Ignoring spatial correlation will result in 
underestimation of the standard error of the 
parameter estimates, and therefore liberal 
inference as the null hypothesis is rejected too 
often. A wide range of analytical tools within the 
field of geostatistics have been developed 
concerning with the description and estimation 
of spatial patterns, the modeling of data in the 
presence of spatial correlation and the kriging, 
that is the spatial prediction at unobserved 
locations. 
 
 
Armin Gemperli is completing his PhD at the 
Biostatistics Unit. Penelope Vounatsou is Senior 
Statistician. We are grateful for assistance from 
Macro International Inc., and acknowledge 
discussions with Tom Smith and Marcel Tanner. 
This work was supported by the Swiss National 
Science Foundation grant Nr. 3200-057165.99. 
 

Statistical inference of point referenced 
data often assumes that the observations arise 
from a Gaussian spatial stochastic process and 
introduce covariate information and possibly 
trend surface specification on the mean structure 
while spatial correlation on the variance-
covariance matrix Σ  of the process. Under 
second order stationarity, Σ  determines the 
well-known variogram. When isotropy is also 
assumed, the elements of Σ  are modeled by 
parametric functions of the separation between 
the corresponding locations. For non-Gaussian 
data, the spatial correlation is modeled on the 
covariance structure of location-specific random 
effects introduced into the model and assumed to 
arise from a Gaussian stationary spatial process. 

For Gaussian data, the generalized least 
squares (GLS) approach can be used iteratively 
to obtain estimates β̂  of the regression 
coefficients conditional on the covariance 
parameters. The covariance parameters θ  can 
be estimated conditional on β̂  by fitting the 
semivariogram empirically or by maximum 
likelihood or restricted maximum likelihood 
methods (Zimmerman and Zimmerman, 1991). 

Statistical estimation for non-Gaussian 
data is based on the theory of generalized linear 
mixed models (GLMM). A common approach is 
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to integrate out the random effects and proceed 
with maximum likelihood based approaches for 
estimating the covariate and covariogram 
parameters. This integration can be implemented 
numerically (Anderson and Hinde, 1998; 
Preisler, 1988; Lesaffre and Spiessens, 2001) 
when dimensionality is low or via 
approximations. Breslow and Clayton (1993) 
show, that for known covariance parameters, the 
Laplace approximation leads to the same 
estimator for the fixed and random effects 
parameters as the one arising by maximizing the 
penalized quasi-likelihood (PQL). 
Implementation of this approach requires 
iterating between iterated weighted least squares 
for estimating the fixed and random effects 
parameters and maximizing the profile 
likelihood for estimating the covariance 
parameters. An extension of the PQL procedure 
is discussed by Wolfinger and O’Connell 
(1993). The PQL approach is implemented in 
some statistical packages due to its relative 
simplicity, however it provides biased estimates 
when the number of random effects increases 
(McCulloch, 1997; Booth and Hobert, 1999) or 
when the data are far from normal. 

The generalized estimating equation 
methods developed by Liang and Zeger (1986) 
and Zeger and Liang (1986) estimate covariate 
effects under the assumption of independence, 
but correct their standard error to account for the 
spatial dependence. The method is unable to 
estimate the spatial random effects. The EM 
algorithm (Dempster, Laird and Rubin, 1977) 
has been implemented in model fit by treating 
the spatial random effects as "missing" data. The 
intractable integration of the random effects 
which is required in the E-step is overcome by 
simulation, such as Metropolis-Hastings 
algorithm (McCulloch, 1997) or importance 
sampling/rejection sampling method (Booth and 
Hobert, 1999). For spatial settings, particular 
Pseudo-Likelihood approaches have been 
established which capture solely the site to site 
variation between pairs or groups of 
observations (Besag, 1974). For the special case 
of a binary outcome, Heagerty and Lele (1998) 
have proposed a thresholding model using a 
composite likelihood approach. 

A drawback of the maximum likelihood-
based methods employed in geostatistical 
modeling is the large sample asymptotic 
inference. For a spatial stochastic process 
{ ( ); }D∈Y u u , with 2D R⊂  the asymptotic 
concept can be applied either to the sample size 
within a fixed space D  (infill asymptotics) or to 
the space D  (increasing domain asymptotics). 
In the latter, observations are spaced far enough 
to be considered uncorrelated. The results can 
differ, depending on the type of asymptotics 
used (see e.g. Tubilla, 1975). 

Bayesian hierarchical geostatistical 
models implemented via Monte Carlo methods 
avoid asymptotic inference as well as many 
computational problems in model fitting and 
prediction. Diggle et al. (1998) suggest inference 
on the posterior density via Markov chain Monte 
Carlo (MCMC). This iterative approach requires 
repeated inversions of the covariance matrix of 
the spatial process, which is involved in the 
likelihood. The size of this matrix increases with 
the number of locations. Inversion of large 
matrices can drastically slow down the running 
time of the algorithm and cause numerical 
instabilities affecting the accuracy of the 
estimates. To overcome this problem Gelfand et 
al. (1999) suggest non-iterative simulation via 
the Sampling-Importance-Resampling (SIR) 
algorithm (Rubin, 1987). The quality of SIR 
hinge on the ability to formulate an easy-to-
draw-from importance-density, which comes as 
close as possible to the true joint posterior 
distribution of the parameters. 

In this article, we review three fitting 
procedures; the maximum likelihood-based PQL 
method, the MCMC simulation and the SIR. We 
assess these methods in terms of estimation 
accuracy, ease of implementation and 
computational efficiency using a spatially 
structured dataset on infant mortality from Mali 
collected over 181 locations. A description of 
the dataset and the applied questions which 
motivated this work are given in the next 
section. Then we describe the model as well as 
the three fitting approaches. A discussion on the 
ease of implementation of each approach and a 
comparison of the inferences obtained is given 
in the conclusion section. 
 



GEMPERLI & VOUNATSOU 499

Data 
The data that motivated this work were 

collected under the Demographic and Health 
Surveys (DHS) program. The aim of the 
program is to collect and analyze reliable 
demographic and health data for regional and 
national family and health planning. Data are 
commonly collected in developing countries. 
DHS is funded by the U.S. Agency for 
International Development (USAID) and 
implemented by Macro International Inc. The 
standard DHS methodology involves collecting 
complete birth histories from women of 
childbearing age, from which a record of age 
and survival can be computed for each child. 
The data are available to researchers via the 
internet (www.measureDHS.com). 

Birth histories corresponding to 35,906 
children were extracted from the data of the 
DHS-III 1995/96 household survey carried out 
in Mali. Additional relevant covariates extracted 
were the year of birth, residence, mothers 
education, infant’s sex, birth order, preceding 
birth interval and mothers age at birth. Using 
location information provided by Macro 
International, we were able to geo-locate 181 
distinct sites by using digital maps and 
databases, such as the African data sampler 
(1995) and the Geoname Gazetteer (1995). The 
objective of data analysis was to assess the 
effect of birth and socio-economic parameters 
on infant mortality and produce smooth maps of 
mortality risk in Mali. These maps will help 
identifying areas of high mortality risk and assist 
child mortality intervention programs. 
 

Methodology 
 
Let ijY  be a binary response corresponding to 

the mortality risk of child j  at site is , 
1,...,i n=  taking value 1 if the child survived 

the first year of life and 0 otherwise, and let ijX  
be the vector of associated covariates. Within 
the generalized linear model framework (GLM), 
we assume ijY  are i.i.d. Bernoulli random 

variables with ( )ij ijE Y π=  and model predictors 

as ( ) t
ij ijg π = X β  where ( )g ⋅  is a link function 

such as logit in our mortality risk application. 
However the spatial structure of the data renders 
the independence assumption of ijY  invalid, 

leading to narrower confidence intervals for β  
and thus to overestimation of the significance of 
the predictors. 

One approach to take into account 
spatial dependence is via the generalized linear 
mixed model (GLMM) reviewed by Breslow 
and Clayton (1993). In particular, we introduce 
the unobserved spatial variation by a latent 
stationary, isotropic Gaussian process U  over 
our study region D , such that 

1 2( , , , ) ~ (0, )nU U U N=U Σ… , where ijΣ  is a 

parametric function of the distance ijd  between 

locations is  and js . Conditional on the random 

term iU , we assume that ijY  are independent 

with ( | )ij i ijE Y U π= . The iU  enters the model 
on the same scale as the predictors, that is 
 

( ) t
ij ij ig Uπ = +X β                   (1) 

 
and captures unmeasured geographical 
heterogeneity (small scale variation). 

A commonly used parameterization for 
the covariance Σ  is 2 ( ; )ij ijdσ ρ φΣ =  where 

2σ  is the variance of the spatial process and 
( ; )ijdρ φ  a valid correlation function with a 

scale parameter φ  which controls the rate of 
correlation decay with increasing distance. In 
most applications a monotonic correlation 
function is chosen i.e. the exponential function 
which has the form ( ; ) exp( )ij ijd dρ φ φ= − . 
Ecker and Gelfand (1997) propose several other 
parametric correlation forms, such as the 
Gaussian, Cauchy, spherical and the Bessel. 

A separate set of location-specific 
random effects, 1 2( , , , )t

nW W W=W …  is often 
added in Equation 1 to account for unexplained 
non-spatial variation (Diggle et al., 1998), where 

iW , 1, ,i n= …  are considered to be 
independent, arising from a Normal distribution, 

2~ (0, )iW N τ . The 2τ  is known in 
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geostatistics as the nugget effect and introduces 
a discontinuity at the origin of the covariance 
function: 

2 21( ) ( ; )ij iji j dτ σ ρ φΣ = = + . 
A large number of repeated samples at the same 
location make the nugget identifiable, otherwise 
its use in the model is not justifiable because the 
extra binomial variation is already accounted for 
by the spatial random effect. 
 
Parameter estimation 
 The above GLMM is highly 
parameterized and maximum likelihood methods  
can fail to estimate all parameters 
simultaneously. The estimation approach starts 
by integrating out the random effects and 
estimating the other parameters using the 
marginal likelihood 

2( | , , , )p σ φ∫ Y U β 2( | , )p dσ φU U . 

However, this integral has analytical solution 
only for Gaussian data. For non-Gaussian data 
the integrand can be approximated using a first-
order Taylor series expansion around its 
maximizing value, after which the integration is 
feasible. This approach, known as the Laplace 
approximation, results in the penalized quasi-
likelihood (PQL) estimator (Breslow and 
Clayton, 1993), which was shown in various 
simulation studies to produce biased results 
(Browne and Draper, 2000; Neuhaus and Segal, 
1997). Breslow and Lin (1995) determined the 
asymptotic bias in variance component problems 
for first- and second-order approximations in 
comparison to McLaurin approximations. 
 Following the Bayesian modeling 
specification, we need to adopt prior 
distributions for all model parameters. We chose 
non-informative Uniform priors for the 
regression coefficients, i.e. ( )p ∝β 1 , and vague 
inverse Gamma priors for the 2σ  and φ  
parameters: 1 1( ) ( , )p IG a bφ =  and 

2
2 2( ) ( , )p IG a bσ = . Bayesian inference is 

based on the joint posterior distribution 
 

2

2 2

( , , , | ) ( , ; )
( ) ( | , ) ( ) ( )

p L
p p p p

σ φ

σ φ σ φ

∝ ×β U Y β U Y
β U

, 

where 2( | , )p σ φU  is the distribution of the 
spatial random effects, that is 

2( | , ) (0, )p Nσ φ ≡U Σ . 
 
Markov chain Monte Carlo estimation 

Diggle et al. (1998) suggest Markov 
chain Monte Carlo and in particular Gibbs 
sampling for fitting GLMM for point-referenced 
data. The standard implementation of the Gibbs 
algorithm requires sampling from the full 
conditional posterior distributions which in our 
application have the following forms: 
 

1 1

( ,| , , )

exp(X )
1 exp( )

i

k k

nn
ijk k ij
t

i j ij i

p

Y
U

β

β
−

= =

∝

+ +∏∏

β U Y

X β
        (2) 

 
2

1 1

2 1 1/ 2
, ,

( | , , , )
exp( )

1 exp( )

| |

i

i i
nn

i ij
t

i j ij i

i i i i i

p U
U Y

U

σ φ

σ

−

= =

− −
− − −

∝

×
+ +

− ×

∏∏

U Y

X β

Σ Σ Σ

 

1 2
,

2 1 1
, ,

1exp( ( )
2

( ) )

i i i i i

i i i i i

U

σ

−
− − −

− −
− − −

− − ×

−

Σ Σ U

Σ Σ Σ
             (3) 

 

1

2 1/ 2

( 1)1
1

( | , ) | |
1exp( ( / ))
2

at

p

b

φ σ

φ φ

−

− +−

∝ ×

− +

U Σ

U Σ U
  (4) 

 
2

2

1
2

( | , ) ~
InverseGamma( / 2,

1 ),
2

t

p
a n

b −

+

+

U

U R U

σ φ
 

( ; )kl klR d= ρ φ                                (5) 
 
where 
 

1 1 1( , , , , , )t
k k k Kβ β β β− − +=β … … , 

           1 1 1( , , , , , )t
i i i nU U U U− − +=U … … , 

           , ,
t

i i i i− −= =Σ Σ ( , )i iCov U−U  and 
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            ( , )t
i i iCov− − −=Σ U U . 

 
Samples from 2( | , )p σ φU  can be drawn easily 
as this is a known distribution. The conditionals 
of the other parameters do not have standard 
forms and a random walk Metropolis algorithm 
with a Gaussian proposal density having mean 
equal to the estimate from the previous iteration 
and variance derived from the inverse second 
derivative of the log-posterior could be 
employed for simulation. 

The likelihood calculations in Equations 
3, 4, and 5 require inversions of the 
( 1) ( 1)n n− × −  matrices i−Σ , 1, ,i n= …  and 
the n n×  matrix Σ , respectively. Matrix 
inversion is an order 3 operation, which has to 
be repeated for evaluating the conditional 
distribution of all n  random effects iU  and that 
of the φ  parameter, within each Gibbs sampling 
iteration. This leads to an enormous demand of 
computing capacity and makes implementation 
of the algorithm extremely slow (or possibly 
infeasible), especially for large number of 
locations. 
 
Sampling-Importance-Resampling 

Gelfand et al. (1999) propose Bayesian 
inference for point-referenced data using non-
iterative Sampling-Importance-Resampling 
(SIR) simulation. They replace matrix inversion 
with simulation by introducing a suitable 
importance sampling density ( )g ⋅  and re-write 
the joint posterior as 
 

* 2

2
2

2

( , , , | )
( , , , | ) ( , , , ; ).
( , , , ; )

p
p g
g

=σ φ

σ φ σ φ
σ φ

β U Y
β U Y β U Y
β U Y

   (6) 

 
They construct the importance sampling density 
(ISD) by 
 

2

2 2

( , , , ; )
( | ; ) ( | , ) ( , )s s s

g
g g g=

σ φ

σ φ σ φ

β U Y
β U Y U

 (7) 

which is easy to simulate from and then re-
sample from 2( , , , ; )g σ φβ U Y according to the 
importance weights 
 

2
2

2

( , , , | )( , , , ) .
( , , , ; )

pw
g

=
σ φσ φ
σ φ

β U Yβ U
β U Y

     (8) 

 
The density 2( , )sg σ φ  of the ISD could 

be taken as a product of independent inverse 
Gamma distributions 2( ) ( )s sg gσ φ . It is 
however preferable to adopt a bivariate 
distribution which accounts for interrelations 
between the two parameters and thus it 
approximates closer the 2( , | )p σ φ Y . We 
considered a bivariate t-distribution on 2log( )σ  
and log( )φ  with low degrees of freedom and 
mean around the maximum likelihood estimates 
of 2log( )σ  and log( )φ . The spatial random 
effects can be simulated from a multivariate 
normal distribution,  
 

2 2( | , ) (0, ( , ))sg Nσ φ σ ρ φ≡ ⋅U . 
 
This step requires matrix decomposition of 

2 ( , )σ ρ φ ⋅ , repeatedly at every iteration. This is 
an operation of order 2 and the most expensive 
numerical part of the simulation from the ISD. 
The density ( | ; )sg β U Y  can be a Normal 

distribution, ˆ ˆ( | ; ) ( , )sg N≡ U ββ U Y β Σ , with 
ˆ

Uβ  equal to the regression coefficients 
estimated from an ordinary logistic regression 
with offset U  and ˆ

βΣ  equal to the covariance 

matrix of ˆ
Uβ . 

 When the ISD approximates well the 
posterior distribution, one expects that the 
standardized importance weights are Uniformly 
distributed. When this is not the case, the ISD 
would give rise to very few dominant weights 
leading to an inefficient and wrong sampler. A 
possible remedy would be to embed the 
Sampling-Importance-Resampling simulation in 
an iterative scheme which refines the initial 



FITTING MIXED MODELS FOR POINT-REFERENCED DATA 502 
 
 

guesses of the ISD and allows after few 
iterations more uniform weights. 

Point estimates of the parameters should 
preferably be calculated from the importance 
weights using all sampled values, rather than 
from the re-sampled values, what leads to 
smaller bias. For example the mean and variance 
of iβ  is estimated by ( ) /k

i k i k
k k

w wβ β=∑ ∑  

and ( ) 2( ) /k
k i i k

k k
w wβ β−∑ ∑  respectively, 

where ( )k
iβ  is the k th sampled value of iβ  

from the ISD. 
 
Spatial Prediction 

Modeling point-referenced data is not 
only useful for identifying significant covariates 
but for producing smooth maps of the outcome 
by predicting it at unsampled locations. Spatial 
prediction is usually refereed as kriging. 

Let 0Y  be a vector of the binary 
response at new, unobserved locations 0is , 

01, ,i n= … . Following the maximum likelihood 
approach, the distribution of 0Y  is given by: 
 

2
0

2
0 0 0 0

ˆˆ ˆ ˆ( | , , , )
ˆˆ ˆ ˆ( | , ) ( | , , )

P

P P d

=

∫
σ φ

σ φ

Y β U

Y β U U U U
         (9) 

 
where β̂ , 2σ̂  and φ̂  are the maximum 
likelihood estimates of the corresponding 
parameters. In PQL, Û  is derived as part of the 
iterative estimation process (Breslow and 
Clayton, 1993). 0 0

ˆ( | , )P Y β U  is the Bernoulli-
likelihood at new locations and 

2
0

ˆˆ ˆ( | , , )P σ φU U  is the distribution of the 
spatial random effects 0U  at new sites, given 

Û  at observed sites and is Normal 
 

2
0

1 1
01 11 00 01 11 10

ˆˆ ˆ( | , , )
ˆ( , )

P

N − −

=

−

σ φU U

Σ Σ U Σ Σ Σ Σ
         (10) 

 

with 11 ( )tE=Σ UU , 00 0 0( )tE=Σ U U  and 

01 10 0( )t tE= =Σ Σ U U . The mean of the 
Gaussian distribution in (10) is the classical 
kriging estimator (Matheron, 1963). 

The Bayesian predictive distribution of 
0Y  is given by: 

2
0 0 0 0( | ) ( | , ) ( | , , )P P P σ φ= ×∫Y Y Y β U U U  

 2 2
0( , , , | )P d d d d dσ φ σ φβ U Y β U U            (11) 

 
2( , , , | )P σ φβ U Y  is the posterior distribution 

of the parameters and obtained by the Gibbs 
sampler or the SIR approach. Simulation-based 
Bayesian spatial prediction is performed by 
consecutive drawing samples from the posterior 
distribution, the distribution of the spatial 
random effects at new locations and the 
Bernoulli-distributed predicted outcome. In SIR, 
drawing is performed from the set of all sampled 
parameters with weighting given in Equation 
(8). 

The maximum-likelihood predictor 
(Equation 9) can be interpreted as the Bayesian 
predictor (Equation 11), with parameters fixed at 
their maximum-likelihood estimates. In contrast 
to Bayesian kriging, classical kriging does not 
account for uncertainty in estimation of β  and 
the covariance parameters. 
 

Results 
 
A generalized linear mixed model was fitted to 
the infant mortality data in Mali using the three 
estimation approaches discussed in the 
methodology-section, PQL, MCMC and SIR 
together with an ordinary logistic regression 
(GLM) which did not account for spatial 
dependence. The purpose of the analysis was to 
assess the effect of maternal and socio-economic 
factors on infant mortality, produce a smooth 
map of mortality risk in Mali and compare the 
results obtained from the above procedures. 
Univariate analysis based on the ordinary 
logistic regression revealed that the following 
variables should be included in the model: 
child’s birthday, region type, mother’s degree of 
education, sex, birth order, preceding birth 
interval and mother’s age at birth. 
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We fitted the non-spatial logistic model 
(GLM) in SAS (SAS Institute Inc., Cary, NC, 
USA) using Proc Logistic. The spatial model 
with the PQL estimation method was also fitted 
in SAS using the %GLIMMIX-macro. This 
macro is based on the approach of Wolfinger 
and O’Connell (1993) and does subsequent calls 
of Proc Mixed to iteratively estimate mixed 
models for non-normal data. It is supported by a 
collection of spatial correlation functions, such 
as the exponential, Gaussian, linear, power and 
spherical. In our application, we have chosen the 
exponential function. MCMC and SIR 
estimation were implemented in software written 

by the authors in FORTRAN 95 (Compaq 
Visual Fortran v6.6) and run on an Unix 
AlphaServer 8400. For small number of 
locations the freeware software WinBUGS 
(www.mrc-bsu.cam.ac.uk/bugs) can also be used 
to obtain MCMC simulation-based estimates. 
Proc Mixed for normal data supports Bayesian 
modeling by allowing specification of prior 
distributions for the parameters and MCMC 
simulation. However, this possibility is currently 
available only for variance component models 
and not for spatial covariances, which holds for 
the %GLIMMIX macro, too. 

 
Table 1: Comparison of the computational costs for the Bayesian, simulation based approaches. 
 

Model Initial 
sample 

size 

Final 
sample 
from 

posterior 

No. of batches and 
size 

Iterations to 
convergence 

Thinning* Time per 
1,000 

iterations 

MCMC 50,000 1,720 - 7,000 25 7 hrs 14 
min 

SIR 400,000 1,600 800 batches with 
500 values (2 

batches per draw) 

0 0 1 hr 23 
min 

*Minimum lag at which autocorrelation was not significant. 
 
Table 2: Comparison of parameter estimates from the binary spatial model using different estimation 
strategies. The binary outcome is the survival of the first year of life. 
 

 Birth year 
Model Estimate 2σ  φ  Intercept 1966-71 1972-77 1978-83 1984-89 

MLE - - 1.81 -0.18 0.04 0.09 0.12 GLM 
 95% CI - - 1.43,2.11 -0.44,0.09 -0.22,0.29 -0.16,0.34 -0.13,0.37 

MLE 1.05 2.07 2.59 -0.19 0.03 0.09 0.12 PQL 
95% CI 0.72,1.81 0.54,4.63 1.43,3.74 -0.48,0.11 -0.26,0.31 -0.19,0.37 -0.17,0.40 
Mean 1.32 0.07 1.76 -0.20 0.01 0.07 0.10 

Median 0.91 0.04 1.75 -0.21 0.01 0.07 0.09 
MCMC 

95% CI 0.22,3.89 0.008,0.24 1.47,2.09 -0.46,0.08 -0.25,0.27 -0.19,0.33 -0.16,0.36 
Mean 0.91 0.005 1.77 -0.19 0.03 0.08 0.11 

Median 0.61 0.03 1.73 -0.18 0.03 0.08 0.11 
SIR 

95% CI 0.22,2.62 0.0004,0.015 0.34,3.25 -0.44,0.06 -0.21,0.27 -0.16,0.31 -0.13,0.34 
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 Birth year Residency Education Sex Birth order 
Model Estimate 1990-96 Urban No Primary Male 2nd or 3rd 4th to 6th 

MLE 0.17 0.32 -0.56 -0.66 -0.14 -1.90 -1.97 GLM 
 95% CI -0.08,0.42 0.22,0.36 -0.75,-0.31 -0.83,-0.43 -0.16,-0.05 -2.40,-1.32 -2.48,-1.38 

MLE 0.16 0.29 -0.54 -0.58 -0.14 -1.88 -1.95 PQL 
95% CI -0.12,0.44 0.19,0.39 -0.75,-0.32 -0.78,-0.38 -0.20,-0.09 -2.42,-1.34 -2.50,-1.40 
Mean 0.15 0.3 -0.55 -0.6 -0.14 -1.90 -2.00 

Median 0.14 0.3 -0.54 -0.59 -0.14 -1.95 -2.02 
MCMC 

95% CI -0.11,0.40 0.23,0.38 -0.74,-0.36 -0.78,-0.42 -0.16,-0.10 -2.39,-1.44 -2.48,-1.51 
Mean 0.16 0.33 -0.50 -0.57 -0.14 -1.88 -1.96 

Median 0.16 0.34 -0.50 -0.57 -0.14 -1.88 -1.96 
SIR 

95% CI -0.08,0.39 0.25,0.41 -0.68,0.32 -0.75,-0.40 -0.19,-0.09 -2.34,-1.42 -2.43,-1.49 
 

 Birth 
order 

Preceding birth 
interval 

Mothers age at birth 

Model Estimate 7th or 
higher 

2-4 > 4 20-29 30-39 39-49 

MLE -2.10 2.34 2.71 0.24 0.31 0.19 GLM 
95% CI -2.62,-1.51 1.76,2.84 2.11,3.22 0.13,0.29 0.15,0.40 -0.02,0.42 
MLE -2.07 2.31 2.67 0.25 0.32 0.19 PQL 

95% CI -2.63,-1.52 1.77,2.85 2.12,3.22 0.17,0.33 0.19,0.44 -0.07,0.44 
Mean -2.10 2.37 2.73 0.26 0.33 0.20 

Median -2.15 2.38 2.74 0.26 0.33 0.20 
MCMC 

95% CI -2.16,-1.63 1.87,2.82 2.20,3.22 0.19,0.32 0.23,0.43 -0.009,0.43 
Mean -2.09 2.31 2.65 0.25 0.32 0.21 

Median -2.09 2.30 2.65 0.25 0.32 0.21 
SIR 

95% CI -2.56,-1.62 1.82,2.77 2.16,3.13 0.18,0.31 0.22,0.43 0.01,0.42 
 

 
Convergence of the PQL approach to the global 
mode of the likelihood was highly dependent on 
the starting values. We suggest to compare the 
results by running the procedure with several 
starting values. Computationally, the PQL is fast 
in comparison to the simulation-based 
procedures, MCMC and SIR, but it runs quickly 
out of workspace for larger dataset. A 
comparison of the computational time required 
for the MCMC and SIR algorithms is given in 
table 1. MCMC estimation was applied using a 
single chain. Convergence was assessed using 
Geweke’s (1992) criterion. The algorithm 
converged after 7,000 iterations. A final sample 
from the posterior distribution of size 1,720 was 
obtained by sampling every 25th iterations after 
convergence  was  reached.  The  SIR algorithm 

  
 

required extensive fine tuning in order to derive 
good estimates. We ran the sampler several 
times and adjusted the degrees of freedom and 
mean parameter in the bivariate t-distribution 

2( , )sg σ φ , according to those values leading to 
large weights. Instead of resampling from the 
whole sequence of parameters according to their 
weights, we obtained better results by dividing 
the generated parameters into batches and 
drawing an equal number of samples with 
replacement from every batch. The 
implementation of the SIR algorithm was found 
to be difficult. Despite the effort applied to 
improve the SIR estimator, the derived weights 
show a highly skewed distribution, with a few 
dominating values (Figure 1). 
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Figure 1: Distribution of the weights in the Sampling-Importance-Resampling (SIR) procedure. 
 

 
 

Table 2 gives the parameter estimates 
obtained by the four approaches. The fixed 
effect coefficients β  show no fundamental 
difference in their point estimates between the 
competitive models, with the exception of the 
intercept coefficient. The PQL estimate of the 
intercept is higher than from the other 
estimators. The standard error of β  estimated 
from GLM is narrower than in the spatial 
models, as we were expecting. Discrepancies 
between the fitting approaches are observed in 
the estimates of the covariance parameters 2σ  
and φ . The posterior density of 2σ  obtained 
from MCMC simulation was found to be highly 
skewed to the left. PQL overestimates φ  
suggesting a lower spatial variation than the 
Bayesian approaches. This confirms known 
results about bias in the PQL estimates 
especially for the covariance parameters 2σ  and 
φ  due to the bad quality of the first-order 
approximation of the integrand. The SIR 
estimates are similar to those obtained from 
MCMC. 
 
 

Figure 2: Variogram cloud of the residuals  
in a non-spatial model. 
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Figure 2 shows three plots of the 
semivariogram cloud based on the Anscombe 
residuals obtained after fitting the GLM model. 
The semivariogram cloud is a plot of half the 
squared difference of the residuals versus the 
distance between their sample locations. The 
mean of the squared differences at each lag 
gives an estimator of the semivariogram. The 
three plots correspond to the 5%, 50% and 95% 
quartile of the squared difference of the 
residuals. The semivariogram cloud shows high 
variability and an increasing trend from the 
origin indicating lag-dependent variation. For a 
stationary spatial process, the semivariogram 
relates to the covariance of the random effects. 
Therefore we expect high variability in the 
covariance parameters. 

Figure 3 depicts different 
semivariogram estimators. The classical 
estimator by Matheron (1963) was calculated by 
 

2
( )

1ˆ( ) ( ( ) ( ))
| ( ) | i jN h

h Z Z
N h

γ = −∑ s s , 

 
where ( )iZ s  is the Anscombe residual at 
location is , 

 ( ) {( , ) : }i j i jN h h ε= − = ±s s s s  

 
and | ( ) |N h  is its cardinality. This estimator is 
sensitive to outliers and a robust version was 

proposed by Cressie and Hawkins (1980), which 
is displayed in Figure 3, too. The MCMC, SIR 
and PQL based estimators were calculated by 
replacing the estimates of 2σ  and φ  obtained 
from the three approaches in  
 

2( ) (1 exp( ))h hγ σ φ= − − ⋅ . 
 
The MCMC and SIR estimators appear to be 
between the two other empirical semivariogram 
estimators. Because we have omitted the nugget 
term, they pass through the origin. Nevertheless, 
their values fit nicely into the graph. The PQL 
estimate does not capture the correlation present 
at large lags. It represents the classical 
semivariogram estimator well, but it is far off 
the robust version. 

Regarding our application, Figure 4 
displays the locations of the DHS surveys and 
the observed infant mortality risk in Mali. The 
risk factors which were found to be statistically 
significant related to infant mortality (table 2) 
confirm findings made by other authors. The 
negative association between maternal education 
and mortality has been described by Farah and 
Preston (1982) and Cleland and Ginneken 
(1989). Higher education may result in higher 
health awareness, better utilization of health 
facilities (Jain, 1988), higher income and ability 
to purchase goods and services which improves 
infants health (Schultz, 1979). 
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Figure 3: Semivariogram estimators: Classical semivariogram estimator by Matheron  (circles), Robust 
version by Cressie and Hawkins (triangles), MCMC (long dashed line), SIR (short dashed line) and PQL  
(line) fit. 

 
The observed time trend, with higher 

infant survival for more recent years, was found 
not statistically significant. Longer birth 
intervals and low birth order reduce the risk of 
infant death. Mortality was related to the 
residency and sex of the infant with girls and 
urbanites being at lower risk of dying during the 
first year of life. The impact mothers age has on 
infant mortality shows the typical J-shape 

(Kalipeni, 1993) with lowest risk for age around 
thirty. The higher risk in young women may be 
explained by not fully developed maternal 
resources and that in older women by the effect 
of ageing. The MCMC-based estimate of the φ  
parameter revealed strong spatial correlation 
which reduces to less than 5% for distances 
longer than 75km. 
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Figure 4: Observed mortality in 36,906 infants from the DHS surveys conducted in the years 1995 and 
1996 at 181 distinct locations in Mali. 
 

 
 
Figure 5: Predicted spatial random effects from the infant mortality model using MCMC. The darker the 
shading, the lower the survival. 
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Predictions of the child mortality risk 
using the MCMC approach were made at 
600,000 new locations on a regular grid, 
covering the whole area of Mali south of 18 
degrees latitude north. Because the covariates 
are infant-specific and can not be extrapolated 
for the new locations, we predict the random 
effects only. The map with prediction is 
displayed in Figure 5. The map indicates a 
higher infant mortality risk mainly in the 
Northern part of the Niger delta. This region has 
low population density and water availability is 
seasonal. The many lakes in this region are 
preferred breeding site for the malaria mosquito. 
Low mortality is predicted in North-Western 
Mali at the border to Mauritania and Senegal. In 
this region, the population is more active in 
migrating to other countries for business 
purposes, bringing money to the region. Health 
facility coverage is also reflected in the 
predictive map, where the coverage is low in the 
Northern Niger delta and high in the North-East. 
 

Conclusion 
 
Generalized linear mixed models for large point-
referenced spatial data are highly parameterized 
and their estimation is hampered by 
computational problems. Reliable estimation 
methods that can be applied in standard software 
or algorithms that can accurately estimate the 
model parameters within practical time 
constraints do not exist. In this paper we 
compared a few recent developments using a 
real dataset on infant mortality in Mali. 

The advantage of the PQL method is 
that it can be applied in standard statistical 
software package. However estimates are biased 
especially those for the covariance parameters. 
The algorithm depends highly on the starting 
values and can easily converge to a local mode. 
For medium to large number of locations 
implementations of this algorithm is impeded by 
computer memory problems. 

Bayesian methods can provide flexible 
ways of modeling point-referenced data, give 
unbiased estimates of the parameters and their 
standard error and have computational 
advantages for problems larger than the ones the 
maximum likelihood methods can handle. 
However, for very large number of locations, an 

implementation may be infeasible due to long 
computing time. The SIR runs considerably 
faster than MCMC, but it requires tedious 
tuning. Finding an ISD which approximates well 
the posterior distribution is difficult to develop 
and application-specific. Rigorous methods for 
evaluating the suitability of the ISD do not exist. 
This increases the possibility of drawing 
misleading inference. 

MCMC is the most practical and, when 
it comes to prediction, accurate approach to date 
for fitting geostatistical problems. However, it is 
computationally intensive, especially for dataset 
with large number of locations. More research is 
required in ways of improving the convergence 
of the algorithm and the inversion of large 
matrices. Gilks and Roberts (1996), Mira and 
Sargent (2000) and Haran et al. (2001) have 
proposed general MCMC algorithms for 
improving convergence. Rue (2000) and Pace 
and Barry (1997) have applied innovative 
numerical methods using sparse matrix solvers 
for fitting areal data. In future, similar 
approaches need to be adapted and assessed for 
modeling point-referenced spatial data. 
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