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A Nonparametric Fitted Test For The Behrens-Fisher Problem 
 

                                         Terry Hyslop      Paul J. Lupinacci 
                                    Department of Medicine                  Department of Mathematical Sciences 
                                Thomas Jefferson University                            Villanova University 
 
 
A nonparametric test for the Behrens-Fisher problem that is an extension of a test proposed by Fligner 
and Policello was developed. Empirical level and power estimates of this test are compared to those of 
alternative nonparametric and parametric tests through simulations. The results of our test were better 
than or comparable to all tests considered. 
 

Key words: Behrens-Fisher problem, empirical level and power, Wilcoxon-Mann-Whitney, 
nonparametric, simulation study 
 
 

Introduction 
 
The comparison of the means of two 
independent populations has traditionally been 
approached using Student’s t-test. The use of 
this test assumes that the observations come 
from a normal distribution and that the variances 
of the two populations are equal. When the 
homogeneity of variances is not a reasonable 
assumption the problem has been called the 
Behrens-Fisher problem. 

Lee and Gurland (1975) developed a 
new method for handling the Behrens-Fisher 
problem and compared their test to many others 
that have been proposed for this problem. Their 
test performed very well regarding size and 
power. However, their method utilized a large 
table of critical values to determine the correct 
region of rejection. Lee and Fineberg (1991) 
sought to simplify the method proposed by Lee 
and Gurland. They fit a nonlinear function to the 
critical values derived by Lee and Gurland so 
that the critical values could be estimated. 
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Various authors have also considered 
the Behrens-Fisher problem when the normality 
assumption is not appropriate. The usual 
nonparametric approaches assume that the data 
are continuous and the distributions are of the 
same shape. For these tests, such as the 
Wilcoxon-Mann-Whitney test (Wilcoxon 1945; 
Mann & Whitney 1947), the level of the test will 
not be preserved when the populations have 
different shapes or variances (Fligner & 
Policello 1981; Brunner & Neumann 1982, 
1986; Brunner & Munzel 2000). Fligner and 
Policello (1981) and Brunner and Neumann 
(1982, 1986) considered the problem under the 
assumption that the independent samples are 
from continuous distributions without the 
assumption of equal variances or equal shapes of 
the distributions. Brunner and Munzel (2000) 
derived an asymptotically distribution free test 
without the assumption that the data are 
generated from a continuous distribution 
function. 

Fligner and Policello developed their 
alternative nonparametric method for comparing 
two population medians without the equal 
variance and equal shape assumptions. To 
implement their test, one must consult a large 
table of critical values to determine the correct 
region of rejection. Their table is parameterized 
by the test’s level of significance and the sample 
sizes of the two samples.  We expand on the 
approach of Fligner and Policello by proposing a 
fitted test which eliminates the need for large 
tables or complicated derivations of critical 
values. We fit a nonlinear function to the critical 
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values in their table so that the critical values 
can be estimated. Motivation for the nonlinear 
function came from the nonlinear function used 
by Lee and Fineberg. A complete description of 
the problem and details of the proposed test 
follow in the Methodology Section. In that 
section, our method is demonstrated using a 
numerical example. Simulation studies are used 
in the Results Section to compare the fitted test 
to some of the other parametric and 
nonparametric tests which have been proposed 
for the Behrens-Fisher problem. 

 
Methodology 

 
Let 1 , , mX X…  and 1, , nY Y…  be independent 
random samples from continuous distributions 
with population medians xθ  and yθ , 
respectively. We are interested in testing the 
following hypotheses: 
 

0 : x yH θ θ=  

versus :a x y x y x yH or orθ θ θ θ θ θ⎡ ⎤> < ≠⎣ ⎦ . 

 
Let iP  represent the number of sample 
observations, jY , less than iX , for 1, ,i m= … .  
Similarly, let jQ  represent the number of 
sample observations, iX , less than jY , for 

1, ,j n= … .  Compute the average placement for 
each of the samples, 
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and calculate the test statistic 
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Fligner and Policello presented a test of H0 
based on this statistic, where the procedure at an 

approximate α level of significance versus the 
one-sided alternative x yθ θ>  is 
 

Reject H0 if Û uα≥ ; otherwise do not reject. 
 
They provided a table of critical values for 
uα for various values of m, n, and α. Values 
outside the range of their table are to be derived 
or estimated by zα  for large sample sizes, where 
zα  is the 1-α percentile of the standard normal 
distribution. 

Implementation of this test would be 
greatly simplified if the large table of critical 
values was not required. In addition, sample size 
combinations that are not provided in their table 
would require either additional effort for 
derivation, or an assumption of u zα α= . We 
propose fitting the following function to the 
critical values in the Fligner and Policello table 
so that the critical values can be estimated: 

 

( )
3 51 2 4

2 20
1 2 1 2 1 2

b bb b bu b f f f f f fα = + + + + + , 

 
where 1 21, 1,f m f n= − = −  and 0, , 5b b…  are the 
parameters of the function. We also propose that 
the parameters 0 5, ,b b…  be estimated by 
ordinary least squares.  54 values obtained from 
Fligner and Policello’s table of critical values 
were used in the estimation process.  Table 1 
presents the parameter estimates obtained for the 
various α  values of 0.10, 0.05, 0.025, and 0.01. 
 
Table 1.  Parameter estimates for the F-P fitted 
test polynomial. 
 
α  

0b  1b  2b  3b  4b  5b  
0.10 1.34 -1.39 0.16 -0.03 5.20 1.17 
0.05 1.74 -0.69 -0.87 12.53 -4.09 2.44 
0.025 2.15 -0.60 -2.54 22.05 -3.50 7.36 
0.01 3.16 -11.43 -6.75 50.15 51.87 19.20 
 

Motivation for this functional form 
comes from a parametric fitted test for the 
Behrens-Fisher problem proposed by Lee and 
Fineberg (1991) as an alternative to Lee and 
Gurland’s (1975) test that also required 
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extensive tables of critical values. Their 
proposed function is similar to the one proposed 
here. Other functional forms were also 
considered, but none were found which provided 
a better fit to the critical values. Figure 1 
displays the critical and fitted values for a level 
0.05 test when m = 4, 5, …, 12 and n = 3, 4, and 
5.  The fit is good for even these small values of 
n and becomes more precise as n gets larger.  
The test based on the fitted critical values will be 

referred to as ˆ
fU , and the critical value will be 

referred to as ( )fuα .  For example, Fligner and 
Policello’s critical value for a one-sided, level 
0.05 test when both samples are of size 5 is 
2.063. Using our parameter estimates when 

0.05α = and the sample sizes, we obtain an 
estimated critical value of 2.035. 

 
Figure 1.  Plot of Fligner and Policello’s Critical Values and the Fitted Critical Values for m=4(1)12 and 
n=3,4,5. 
 

1.5

2.0

2.5

3.0

3.5

3 4 5 6 7 8 9 10 11 12 13

m

O
bs

er
ve

d 
an

d 
Fi

tte
d 

C
rit

ic
al

 V
al

ue
s

F-P n=3 Fitted F-P n=3 F-P n=4

Fitted F-P n=4 F-P n=5 Fitted F-P n=5
 

 
Numerical Example 

 
The following example uses a data set 

that originated from the simulation studies that 
are presented in the Results Section of the 
manuscript. With this data set, we will test the 
null hypothesis that the two population medians 
are the same versus the alternative hypothesis 
that the median of the first population is greater 
than that of the second population, that is, 

:o x yH θ θ= versus :a x yH θ θ> . 
 

The data in both groups were simulated 
from uniform distributions with a mean of 100.  
However, the variance of the second distribution 
was ten times that of the first distribution. The 
first data set consists of twelve observations 
while the second data set consists of only five 
observations. Thus, we are simulating a scenario 
where the data set with fewer observations 
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comes from an underlying distribution function 
with a larger variance. We will utilize this data 
set to demonstrate the test procedure and to 
illustrate the need for a simulation study which 
compares the various methods that are used for 
analyzing this type of data in terms of their 
power and ability to hold the level of 

significance. We will use the notation as defined 
in the Methodology Section. The data, as well as 
the placement values, iP  and jQ , for each 
observation in the first and second samples, 
respectively, are given in Table 2. 

 
Table 2. Data for the Numerical Example 

 
Group 1  Group 2 

Observation Value iP  Observation Value jQ  
1 101.673 4  1 103.409 12 
2 101.550 4  2 98.546 1 
3 100.410 4  3 97.429 0 
4 100.203 4  4 96.536 0 
5 99.906 4  5 95.940 0 
6 99.875 4     
7 99.861 4     
8 99.695 4     
9 99.535 4     

10 98.985  4     
11 98.575  4     
12 98.461 3     

12

1
47i

i
P

=

=∑  
 5

1
13j

i
Q

=

=∑  

 
 
For this example, the sum of the placements in 
the first data set is 47 and the sum of the 
placements in the second data set is 13.  this 
leads to the average placements of: 
 

12

1

1 3.917
12 i

i
P P

=

= =∑  

 
and 
 

5

1

1 2.600
5 j

j

Q Q
=

= =∑  

 
for each group.  The values of 1V  and 2V  are 
 

( )
12 2

1
1

0.917i
i

V P P
=

= − =∑  

 
and 

( )
5 2

2
1

111.200j
j

V Q Q
=

= − =∑ , 

 
and the test statistic is calculated as 
 

( )

12 5

1 1
1

2
1 2

ˆ 1.537
2

i j
i j

P Q
U

V V P Q

= =

−
= =

+ +

∑ ∑
. 

 
For m = 12 and n = 5, the critical value 

for the fitted test is ( )
0.05

fu = 1.868, and the critical 
value for the Fligner and Policello test is 0.05u = 
1.923. Therefore, we fail to reject the null 
hypothesis using both tests. However, the 
calculation of the Fligner and Policello critical 
value would have been much more complicated 
if our sample sizes were not given in their table 
of critical values. Therefore, we suggest using 
the critical value based on the fitted test. 

Let us also consider how alternative 
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tests for this type of data would have fared with 
this data set.  Since the data are not coming from 
a normal distribution, most statisticians would 
use the nonparametric alternative to Student’s t 
test, the Wilcoxon-Mann-Whitney test, without 
hesitation. For this example, we compared our 
results to those of the Wilcoxon-Mann-Whitney 
test and the nonparametric test proposed by 
Brunner and Munzel (2000). The Brunner and 
Munzel test led to the same conclusion as our 
fitted test, that is, their test failed to reject the 
null hypothesis. The Brunner and Munzel test 
statistic was B = 1.437 and the corresponding p-
value was 0.112, which is not significant at the 
0.05 level of significance. However, there was a 
different result if one used the Wilcoxon-Mann-
Whitney test. Its test statistic was W = 28 and 
the corresponding p-value was 0.041, which is 
significant at the 0.05 level of significance. This 
conflicting result caught our attention and 
spurred interest in a simulation study which 
compares the various methods in terms of size 
and power. 
 

Results 
 
For our simulation study, we considered three 
nonparametric procedures and one parametric 
procedure. The three nonparametric procedures 
that were considered were the Wilcoxon-Mann-
Whitney test, denoted W , the Brunner and 
Munzel test, denoted B , and our fitted test, 
denoted ˆ

fU . The parametric test that we 
included in our simulation study was the usual t 
test using Satterthwaite’s approximation for the 
degrees of freedom. We used st  to denote this 
test. We decided not to include the Fligner and 
Policello test in the discussion because its 
empirical level and power estimates were almost 
identical to those of our fitted test. This was to 
be expected since we fitted a function to their 
critical values and the fit was very good. We 
simulated data using the normal, contaminated 
normal, double exponential, uniform, and 
gamma distributions for estimating both the 
empirical level and power for the four tests.  
Since we are interested in determining the effect 
of different variances on the level and power 
estimates, we considered distributions which 
differed in scale by assuming that if 

( )1, , ~mX X F x… , 
 

then we let 
 

( ) ( )1, , ~n
yY Y G y F σ=…  

 
for values of 

 
{ }2 0.01,0.25,1, 4,10σ = . 

 
All simulations were run in SAS version 

8. The SAS function NORMAL was used to 
generate random standard normal deviates which 
were then transformed to simulate the desired 
normal distribution. The contaminated normal 
deviates were generated by multiplying a 
random normal deviate by 9 with probability p = 
0.10. The double exponential deviates were 
generated using the method of Martinez and 
Iglewicz (1984) that transforms a random 
standard normal deviate into a double 
exponential deviate using the transformation 
 

20.109exp{ }
2 ,

Z

DE Z=  
 
where Z is a random standard normal deviate.  
Random uniform and gamma deviates were 
generated using the SAS functions UNIFORM 
and RANGAM, respectively. 

For a statistical test to be meaningful, it 
must display adequate power while still 
maintaining its nominal level. We ran 
simulations to obtain estimates of the level and 
power for each of the tests under consideration.  
To estimate the tests’ level, we ran 15,500 
simulation iterations. The number of simulations 
provides that a 95% confidence interval for the 
estimated level will be approximately 0.36%±  
for 0.05α = .  At each iteration m + n deviates 
of the desired type were generated from 
distributions where .x yθ θ= The four tests were 
performed at each interation testing :o x yH θ θ=  
vs. :a x yH θ θ> . The proportion of the iterations 
where the null hypothesis was rejected was 
recorded for each of the four tests. This 
proportion is the empirical level estimate. The 
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empirical levels were mulitplied by 1,000 and 
these values are reported in Table 3. Table 3 lists 
the empirical levels for each of the five 
distributions, for five sample size combinations, 
at each of the five variance ratios, τ , for each of 

the four tests. The standard error was calculated 
assuming a true nominal level of 0.05. We 
indicate an empirical level more than two 
standard deviations above 0.05 by entering the 
number into the table in boldface type. 

 
Table 3. Empirical Levels Times 1,000 for α = 0.05 for Each of the 4 Tests. 
 

  m = 5, n = 5 m = 12, n = 5 m = 11, n = 10 
Distribution τ W ˆ fU  B ts W ˆ fU  B ts W ˆ fU  B ts 

 
 
Normal 

0.1 
0.25 

1 
4 

10 

49 
49 
51 
52 
52 

49 
49 
51 
52 
52 

47 
49 
55 
53 
48 

51 
48 
50 
51 
51 

22 
24 
40 
67 
89 

35 
38 
52 
61 
59 

49 
49 
56 
56 
52 

48 
49 
49 
52 
53 

59 
55 
51 
55 
61 

54 
54 
53 
52 
55 

49 
52 
52 
49 
48 

50 
51 
50 
47 
45 

 
 
Contaminated  
Normal 

0.1 
0.25 

1 
4 

10 

49 
48 
49 
45 
49 

32 
29 
28 
27 
30 

44 
47 
53 
46 
44 

25 
21 
21 
22 
21 

28 
29 
43 
60 
76 

13 
13 
21 
27 
28 

59 
57 
58 
49 
44 

73 
75 
73 
72 
72 

59 
54 
49 
56 
61 

29 
25 
26 
29 
29 

49 
49 
51 
52 
51 

41 
38 
41 
40 
38 

 
 
Uniform 
 

0.1 
0.25 

1 
4 

10 

50 
52 
47 
48 
49 

50 
52 
47 
48 
49 

47 
53 
49 
51 
48 

57 
55 
44 
52 
57 

19 
23 
42 
80 

103 

32 
37 
54 
66 
58 

47 
50 
56 
59 
53 

46 
51 
55 
59 
59 

61 
55 
48 
62 
70 

52 
53 
50 
56 
58 

47 
50 
49 
49 
50 

50 
50 
49 
49 
50 

 
 
Double 
Exponential 

0.1 
0.25 

1 
4 

10 

51 
49 
48 
50 
46 

51 
49 
48 
50 
46 

46 
44 
51 
51 
42 

47 
47 
45 
47 
42 

22 
25 
42 
66 
87 

36 
39 
52 
61 
59 

50 
50 
53 
56 
52 

49 
46 
48 
47 
47 

58 
49 
50 
56 
66 

54 
50 
52 
53 
58 

50 
48 
51 
49 
52 

49 
48 
48 
47 
50 

 
 
Gamma 

0.1 
0.25 

1 
4 

10 

32 
35 
48 
87 

144 

32 
35 
48 
87 

144 

30 
37 
51 
88 

132 

32 
33 
46 
85 

147

10 
17 
42 

123
238 

19 
27 
53 

110 
165 

27 
34 
57 

100
147 

38 
44 
65 

109
163

33 
34 
51 

129 
253 

30 
33 
53 

122 
229 

28 
31 
51 

115
209 

37 
38 
50 
84 

124
 
Notes: Wilcoxon-Mann-Whitney (W), Fitted Test ( ˆ fU ), Brunner-Munzel (B), and Satterthwaite’s t-test 
(ts). Variance of X = 1, Variance of Y = τ. The right side of this table continues on the page below. 
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Table 3, continued. 

 
  m = 25, n = 20 m = 40, n = 40 
Distribution τ W ˆ fU  B ts W ˆ fU  B ts 

 
 
Normal 

0.1 
0.25 

1 
4 

10 

51 
45 
47 
59 
71 

47 
44 
46 
47 
50 

48 
46 
48 
47 
49 

48 
49 
50 
47 
48 

60 
54 
52 
58 
66 

44 
43 
46 
47 
49 

48 
48 
52 
51 
52 

49 
46 
53 
52 
52 

 
 
Contaminated  
Normal 

0.1 
0.25 

1 
4 

10 

53 
50 
48 
55 
65 

17 
16 
18 
19 
22 

48 
49 
49 
48 
49 

64 
67 
67 
66 
66 

62 
55 
50 
52 
63 

19 
17 
15 
16 
20 

51 
50 
50 
49 
54 

54 
54 
48 
52 
53 

 
 
Uniform 
 

0.1 
0.25 

1 
4 

10 

58 
50 
50 
63 
78 

48 
46 
49 
48 
52 

49 
48 
51 
47 
50 

49 
49 
51 
48 
52 

67 
61 
51 
61 
64 

44 
47 
46 
47 
43 

48 
50 
52 
50 
46 

47 
51 
50 
51 
46 

 
 
Double 
Exponential 

0.1 
0.25 

1 
4 

10 

52 
48 
52 
59 
70 

46 
46 
50 
48 
50 

48 
49 
53 
48 
48 

48 
49 
53 
47 
46 

64 
51 
47 
55 
61 

47 
43 
43 
46 
45 

52 
47 
48 
50 
49 

51 
48 
47 
54 
49 

 
 
Gamma 

0.1 
0.25 

1 
4 

10 

22 
25 
47 

186 
408 

19 
24 
46 

158
339 

20 
25 
48 
158
332

40 
44 
50 
76 
108

20 
19 
52 
245
590

13 
15 
48 

215
521 

15 
17 
53 
227 
535 

41 
40 
54 
72 
91 

 
 

 
There are a number of interesting 

conclusions that can be made from observing the 
values in Table 3. First, the t test using 
Satterthwaite’s approximation for the degrees of 
freedom maintained its level when the data were 
generated from a normal distribution regardless 
of the sample size combination or the ratio of the 
variances. This was expected since the primary 
purpose of this test is to handle these situations.  
However, when the condition of normality was 
removed, the test became less predictable. In 
some cases, such as when the data were  

 
 

 

 
generated from the contaminated normal 
distribution and the sample sizes were similar, 
the test was very conservative. In other cases, 
such as when the data were uniformly 
distributed and when the sample sizes differed, 
the test became anti-conservative. The 
Wilcoxon-Mann-Whitney text generally does 
not maintain its level, even under the optimal 
condition of normality. It was conservative in 
situations where the larger sample size was 
taken from the population with the larger 
variance, and it was anti-conservative if the 
reverse was true. The fitted test generally 
maintained its level. In most of the situations 

Notes. Continued from previous page. Wilcoxon-Mann-Whitney (W), Fitted Test ( ˆ fU ), Brunner-
Munzel (B), and Satterthwaite’s t-test (ts). Variance of X = 1, Variance of Y = τ. 
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when it did not, the test was conservative. The 
Brunner-Munzel test generally maintained its 
level under all scenarios tested.  All of the tests 
had trouble maintaining the 0.05 level when the 
data were simulated using the gamma 
distribution. 

To estimate the tests’ power, we ran 
1,540 simulation iterations. This number of 
simulations assures that a 95% confidence 
interval for power will be approximately 

0.025± when power is around 80%. For each 
iteration, m + n deviates of the desired type were 
generated under the condition ,x yθ θ δ− = where 

{1,2,3,4}.δ =  Again, the proportion of the 
iterations where the null hypothesis was rejected 
was recorded for each of the four tests. This 
proportion is the test’s estimated power. Since 
the Wilcoxon-Mann-Whitney test was anti- 

 
 
 
 
 

conservative in most scenarios, it was not 
surprising that the power of this test was greater 
than the power of the other tests. However, since 
this power is meaningless in the presence of an 
inflated nominal level, the Wilcoxon test will be 
removed from the rest of the discussion. 

Figure 2 shows the power of the 
remaining tests under normality when the 
variances are not equal and the sample sizes are 
the same. Under these conditions, most 
statisticians would use the t test with 
Satterthwaite’s approximation for the degrees of 
freedom. However, the fitted test and the 
Brunner-Munzel test demonstrate comparable 
power. 

Figure 3 illustrates the power of the tests 
under normality with the added complication 
that the smaller sample size corresponds to the 
group with the larger variance.  Once again, all 
three tests demonstrate similar power levels. 
 
 
 
 
 

Figure 2. Plot of the Power for the Various Tests under Normality, Equal Sample Sizes, Ratio of the 
Variances 0.1τ = , and 0.05α = . 
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Figure 3. Plot of the Power for the Various Tests under Normality, Different Sample Sizes, Ratio of the 
Variances 10τ = , and 0.05α = . 
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When symmetry is removed from the 

distribution, such as in the case of the 
contaminated normal distribution, the fitted test 
and the Brunner-Munzel test demonstrate 
superiority over Satterthwaite’s t test.  This is 
illustrated in Figures 4 and 5. Figure 4 illustrates 
the power of the three tests when samples of the 
same size are generated from contaminated 
normal distributions with the same variance.  
Figure 5 illustrates the power of the three tests 

when samples of different sizes are generated 
from contaminated normal distributions with 
different variances. In both of these figures, the 
fitted test and the Brunner-Munzel test 
demonstrate similar power. However, the t test 
using Satterthwaite’s approximation for the 
degrees of freedom has considerably less power 
than the other tests. This pattern is consistent 
over all of the results run using the contaminated 
normal distribution. 
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Figure 4. Plot of the Power for the Various Tests under the Contaminated Normal Distribution, Equal 
Sample Sizes, and Ratio of the Variances 1τ = , and 0.05α = . 
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Figure 5. Plot of the Power for the Various Tests under the Contaminated Normal Distribution, Different 
Sample Sizes, and Ratio of the Variances 0.1τ = , and 0.05α = . 
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All three tests exhibited comparable 

power under the double exponential and uniform 
distributions. All three tests had increased power 
when the sample with fewer observations was 
obtained from the distribution with the smaller  

 
 

 
variance. However, all three tests exhibited 
decreased  power  when   the sample with  fewer 
observations was obtained from the distribution 
with the larger variance. 
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Conclusion 
 

In this paper, we developed a method to test the 
difference between two population medians.  
Our fitted test was created by fitting a function 
to the large table of critical values presented by 
Fligner and Policello. Through a simulation 
study, we have determined that our test, and the 
Brunner-Munzel test, generally maintains the 
expected level of the test for a variety of 
underlying density functions. 
 The usual alternative to Student’s t test, 
the Wilcoxon-Mann-Whitney test, has been 
shown to be anti-conservative in the simulation 
study under unequal variances by exhibiting 
empirical level estimates that are generally 
greater than the nominal level. Therefore, this 
test also exhibited artificially high power in the 
simulation results. Whereas, the fitted test and 
the Brunner-Munzel test have shown 
comparable power to the t test using 
Satterthwaite’s approximation for the degrees of 
freedom under the ideal condition of normality. 
When symmetry is removed from the 
distribution function, such as in the 
contaminated normal distribution, the fitted test 
and the Brunner-Munzel test have shown 
improved power over the t test using 
Satterthwaite’s approximation for the degrees of 
freedom. 
 All three tests exhibited comparable 
power in the simulation studies when the data 
were simulated from the double exponential or 
the uniform distributions. Statisticians should 
consider using an alternative to the Wilcoxon-
Mann-Whitney test when unequal variances are 
possible. 
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