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Chapter 1. INTRODUCTION 

A manufacturer’s assortment is the set of products or product configurations that the company 

builds and offers to its customers. Assortment planning is a critical strategic decision making 

process for it considerably affects both the company’s sales revenue as well as the cost of its 

product offering. Over the last hundred years, there have been quite a few different approaches 

toward planning automotive product assortments, the focus of our dissertation. For example, 

Henry Ford of Ford Motor Company is famous for offering a single product configuration of the 

famous Model T. However, over the years, the product offerings and configurations have 

steadily grown in the U.S. until recent years. Increasing the number of configurations offered to 

customers makes the manufacturing process more complex and will affect the plant’s 

productivity. Thus, some of the large auto manufacturers have been switching back to control 

their variety to decrease their operational costs while maintaining their sales and market shares. 

Variety reduction has been followed by U.S. automakers both in terms of reducing models and 

cutting the option combinations. For example, Ford Motor Company reduced the ordering 

complexity of the 2009 F-150 truck by more than 90 percent. (Automotive News. August 18, 

2008). There are also studies indicating that a large product variety offering does not necessarily 

lead to higher sales, even for popular vehicles (see Pil and Holweg, 2004). While there are a 

number of factors that influence sales, besides product variety, overall, it appears that 

automakers aren’t necessarily driving their strategic decisions regarding product variety based on 

objective models.  

In the past decades, there has been considerable work dedicated to demand aspects of 

assortment planning (see Kök et al. 2008, for a literature review). Furthermore, some researchers 

have been interested to study the effect of variety on manufacturing performance (MacDuffie et 
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al. 1996) or its effect on assembly operations (Fisher and Ittner, 1999). The link between product 

variety and distribution (Zhang et al. 2007) has been studied as well. But very little research has 

been done that integrally considers demand and supply/manufacturing aspects in planning 

product assortment for configurable products. It should be noted that most of the studies on 

assortment planning are developed for non-configurable (like grocery and retail) products (van 

Ryzin and Mahajan, 1999; Smith and Agrawal, 2000; Gaur and Honhon, 2005; Kok and Fisher, 

2007). However, industries involved with configurable products, such as automotive and 

computer industry require a specific approach to assortment planning that better suits their 

product line features.  

1.1. Research Objective 

The primary objective of this research is to develop an integrated framework for assortment 

planning of configurable products. In doing so, our aim is to develop models that explicitly 

account for supply, demand, and manufacturing considerations. We mostly focus on the highly 

complex automotive products to test and validate our models. The research also aims to tackle 

the related problem of powertrain technology selection in planning assortments, in particular, to 

support the OEM in addressing federal regulations on vehicle fuel economy expressed through 

Corporate Average Fuel Economy (CAFE) standards by the U.S. National Highway Traffic 

Safety Administration (NHTSA) and the U.S. Environmental Pollution Authority (EPA)
1
. 

Finally, the research also aims to investigate the impact of option/feature bundling in planning 

product assortments. 

                                                           
1
 See NHTSA Website for more information: http://www.nhtsa.gov/fuel-economy 
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1.2. Dissertation Organization 

In the second chapter, we mainly focus on planning product assortment for a manufacturer of 

configurable products. We use an exogenous demand model that accounts for product 

substitution (both assortment based and stock-out based). We also account for product unit cost 

and overage cost per configuration as well as manufacturing complexity cost and assume that the 

OEM receives discounts on economies-of-scale. The resulting model is a mixed-integer-

nonlinear program that could only be solved for very small size problems and fail to solve real 

world models. We propose a novel method that uses alternate lower/upper bounds through a 

modified Branch and Bound procedure for solving the original problem. We compare the results 

by Bonmin solver and show that (overall) our method is capable of finding better quality solution 

is a shorter time.  

In the third chapter, we keep our attention on assortment planning of automotive products 

through incorporating environmental issues into decision making. We study the effect of CAFE 

requirements and carbon footprint on the optimal assortment under different fuel price scenarios. 

We show that under environmental restrictions, some of the fuel-efficient configurations take a 

higher share in the fleet compared to conventional vehicles while some other will not be 

profitable due to small profit margins.  

In the fourth chapter, we study feature packaging in assortment planning with a numerical 

experiment presented from automotive industry. The study entertains a number of packaging 

rules in order to present product configurations under a a number of series. We show that feature 

packaging is a powerful tool in reducing product assortment complexity. 
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Chapter 2. ASSORTMENT PLANNING FOR CONFIGURABLE PRODUCTS 

2.1. Introduction 

A manufacturer’s assortment is the set of products or product configurations that the company 

builds and offers to its customers. Assortment planning is a critical strategic decision making 

process for it considerably affects both the company’s sales revenue as well as the cost of its 

product offering. From the marketing perspective, the company seeks to diversify the set of 

offered configurations in order to match best the customers’ preferences. However, this increase 

in variety leads to a more complex supply and manufacturing system. On the other hand, from 

the operational point of view, the company seeks to offer fewer configurations to manage 

manufacturing complexity and benefit from the economies of scale. Thus, “coping with product 

variety forces a manufacturing firm to confront a fundamental tradeoff: the increased revenue 

that can result from more variety verses increased costs through the loss of scale economies” 

(MacDuffie et al. 1996). Pil and Howleg (2004) also emphasize that reducing or delaying variety 

decreases manufacturing and logistics costs but might also affect design costs and reduce 

revenue by limiting the offerings in the marketplace.  

In the automotive industry, the pioneers decided to limit product variety to manage 

manufacturing complexity. An extreme example is the case of Henry Ford of Ford Motor 

Company suggesting and offering a single product configuration (in black) of the famous Model 

T. However, over the years, the product offerings and configurations have steadily grown in the 

U.S. until recent years. For example, the number of car models increased from 30 models in 

1955 to 84 models in 1973 and then to 142 models in 1989. However, during the same period 

(1955 to 1989) the average annual sales per model have dropped from 259,000 units to 112,000 
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units per model (Womack et al. 1990). Increasing the number of configurations offered to 

customers makes the manufacturing process more complex and affects the productivity of the 

plant. There are similar consequences for dealers, unable to hold product inventory that is 

representative of the number of orderable configurations. Thus, some of the major automotive 

companies are pulling back on variety to decrease their operational costs while maintaining their 

sales and market shares. “When decisions about variety strategy have needed to be made, the big 

three auto-makers in U.S. have increasingly chose to reduce variety, partly as a consequence of 

their determined drive to match or exceed Japanese level of productivity and quality” (Bowman 

& Kogut, 1995). Variety reduction has been followed by U.S. automakers both in terms of 

reducing models and cutting the option combinations. In the last couple of years, some 

automotive companies have started aggressive campaigns for reducing the number of product 

configurations. For example, Ford Motor Company reduced the ordering complexity (i.e., 

number of orderable configurations) of the 2009 F-150 truck by more than 90%. As for cars, it 

planned for the 2010 Ford Focus to have just 150 major combinations, a drop of 95% from the 

2008 model. Furthermore, Ford Motor Company announced that most car lines will now have 

fewer than 1,000 combinations (Automotive News. August 18, 2008). There are also studies 

suggesting that a large product variety offering does not necessarily lead to higher sales, even for 

popular vehicles. For example, Pil and Holweg (2004) report the total number of variations 

offered by key European, American and Japanese automakers for their two best selling products 

or models in Europe in 2002. The data does not show any considerable correlation between the 

total number of variations offered and the total sales in Europe. As an example, in the low 

variety models, they report that Nissan Micra with barely 676 variations achieving sales of 106k 

sales and Peugeot 206 with 1739 variations with sales of 596k. On the other side, they report that 
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Fiat Stilo with more than 10 billion offered variations had sales of 173k. Overall, they report that 

the top automakers in the European market have totally different product variety while not being 

consistently different in sales. This suggests that while there are a number of factors that 

influence sales, besides product variety (e.g., product quality, value, brand image), overall, it 

appears that automakers aren’t necessarily driving their strategic decisions regarding product 

variety based on objective models.  

In the past, there has been considerable work dedicated to assortment planning (see Kök et al. 

2008, for a literature review). Furthermore, some researchers have been interested to study the 

effect of variety on manufacturing performance (MacDuffie et al. 1996) or its effect on assembly 

operations (Fisher and Ittner, 1999). But very little research has been done that integrally 

considers demand, supply, and manufacturing complexity aspects in planning product 

assortment, in particular, for configurable products. It should be noted that most of the studies on 

assortment planning are developed for non-configurable (like grocery and retail) products (van 

Ryzin and Mahajan, 1999; Smith and Agrawal, 2000; Agrawal and Smith, 2003; Gaur and 

Honhon, 2006; Maddah and Bish, 2007; Kok and Fisher, 2007; Fisher and Vaidyanathan, 2009). 

However, industries involved with configurable products, such as automotive and computer 

industry require a specific approach to assortment planning that better suits their product line 

features. In this paper, we propose a framework for assortment planning of configurable products 

with explicit consideration of demand and substitution effects as well as variety-driven costs. We 

propose a new formulation to calculate stock-out rates while considering manufacturing 

complexity costs and economies of scales for supplying parts and options. The rest of the paper 

is organized as follows: section 2 provides a review on most relevant papers in the literature. In 

section 3 we present problem assumptions and model notation. In section 4 we propose a 
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modified branch and bound procedure to solve MINLP problem through alternate lower/upper 

MILP problems. Finally the results are presented in section 5.  

2.2. Literature Review 

In the literature, we face three common approaches to modeling demand:  utility based 

models, locational choice models, and exogenous demand models (Kok et al, 2008). Utility based 

models are more structured and easier to incorporate marketing variables like promotions; 

however, they usually suffer from the independence of irrelevant attributes (IIA) property (Kok 

and Fisher 2007). Binary logit, multinomial probit, nested logit, and multinomial logit (MNL) 

models are some of the utility based models. van Ryzin and Mahajan (1999) formulate an 

assortment planning problem using the MNL demand model. Maddah and Bish (2004) extended 

the van Ryzin and Mahajan (1999) model by considering the pricing decisions. Cachon et al. 

(2005) also made an extension to the model of van Ryzin and Mahajan (1999) by considering 

consumer search effort. In locational choice models, every customer has one most preferred 

configuration and she chooses the product that is closest to her ideal preference. Unlike MNL 

type utility based models, these models allow for different substitution rates even when the initial 

demand rates are equal. This model has received an increasing attention by researchers in recent 

years (Gaur and Honhon 2006; Fisher and Vaidyanathan 2009). Finally, exogenous demand 

models offer more degrees of freedom than the utility based or locational choice models and can 

accommodate extremely flexible substitution structures (Fisher and Vaidyanathan 2009). Smith 

and Agrawal (2000) as well as Kok and Fisher (2007) study assortment planning problem under 

exogenous demand model. In this paper, we employ the exogenous demand model for its 

flexibility, even though it leads to a more complex formulation for assortment optimization.  
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In the literature, van Ryzin and Mahajan (1999) were the first to study assortment planning 

and inventory decisions by using a MNL model of consumer choice. They assume that each 

product variant carried in the assortment has an identical unit cost,  , and is offered at an 

identical price,  . They also assume that customers make their choice (if any) when they observe 

it and they don’t switch to a second product if their choice is stocked out. Later on, Mahajan and 

van Ryzin (2001) study the same problem under dynamic substitution where customers would 

substitute to their next preferences when the first choice is stocked out. Smith and Agrawal 

(2000) study assortment planning problem with exogenous demand model and solve an 

inventory optimization problem that both selects items to stock and the stock levels for each item 

in the assortment of non-configurable products. They consider inventory policies that reinitialize 

at the start of each cycle. They also assume a fixed cost for offering each product in the 

assortment. Our study has some similarities with their work. However, they present an 

approximation for the demand probabilities corresponding to each product and use the proposed 

approximations in the assortment planning. Furthermore, in order to solve the assortment 

optimization problem, they propose solving the problem via total enumeration for small 

assortments (size  ) and suggest a linear approximation for the mixed-integer nonlinear program 

(MINLP) when the problem size increases to more than 10 items in the assortment. Another 

study on assortment planning with exogenous demand model is carried by Kök and Fisher (2007) 

in which they formulate a problem in the context of a supermarket chain. They first show a 

procedure for estimating the parameters of substitution behavior and demand for the stores’ 

products. Then, they propose a heuristic to solve the assortment planning and inventory problem 

with one-level stock-out based substitution in the presence of shelf-space constraints. To solve 

the assortment planning problem, they estimate    , the (long run) average gross profit from 
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product   by simulating the replenishment of product   in isolation from other products. Yunes et 

al. (2007) formulate a method for John Deere & Company to reduce the number of 

configurations from their product lines without sacrificing profits using a migration list which is 

a set of acceptable configurations sorted in decreasing order of preference. They initially build 

and cost out feasible configurations, then, for every customer they build a set of acceptable 

configurations, sorted in decreasing order of preference, termed migration lists. When the first 

configuration on a customer’s list is not available, she will buy the next available configuration. 

Finally they propose an optimization procedure to select the products to be offered in the 

assortment. 

Another approach to assortment planning is done through considering locational choice 

models to estimate demand and substitution behavior. Gaur and Honhon (2006) consider a 

single-period assortment planning and inventory management problem for a retailer. They 

represent the consumer choice model with a locational choice model and assume that products 

are sold at identical exogenous prices and have identical costs due to homogenous quality. They 

use a newsvendor model with lost sales for excess demand and the excess inventory is salvaged. 

Later, Honhon, Gaur, and Seshadri (2010) propose an algorithm to determine the optimal 

assortment and inventory levels under stock-out based substitution for a single period problem 

assuming that each customer type has a specific preference ordering amongst products and 

chooses the product with the highest rank according to his type (if any) which is available at the 

time of purchase. They solve the problem using a dynamic programming formulation. Fisher and 

Vaidyanathan (2009) propose an algorithm for retail assortment optimization. Their problem is 

to choose   SKUs from a set of   potential SKUs in a retail category. Although they consider 

the effect of substitution in the revenue term, our problem will be different from theirs in terms 
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of estimating the demand with an exogenous model as well as considering the effect of variety 

on the manufacturing and distribution costs.  

There are other works on assortment planning that entertain additional decision variables, 

mainly price, into the modeling. Maddah and Bish (2007) consider a set of product variants 

differentiated by some attributes such as color, flavor, or size and present a formulation which 

jointly determines the set of variants to include in the assortment, together with their prices and 

inventory levels. They use a MNL choice model to represent the consumer choice process and 

model the inventory setting with a newsvendor formulation. Schon (2010b) formulates an 

optimal “product-line design” algorithm that jointly addresses assortment and pricing decisions. 

In her work, the consumers choose among available products according to a general attraction 

choice model including the MNL, the Brudley-Terry-Luce (BTL), and approximately the first 

choice model. She assumes that every product uses some resources and using any resource has a 

specific fixed cost. She proposes a method to transform the standard MINLP formulation of 

“product line design” problem into a convex mixed-integer program (MIP) and reports solving 

large problems with thousands of products in a reasonable time. However, our problem will be 

different than hers in terms of more detailed treatment of variety driven costs, using an 

exogenous demand model, and explicit consideration of the effect of stock-out based 

substitution.  

2.3. Model Formulation 

Suppose that for the product under consideration,             denotes the set of potential 

configurations that can be made available by the original equipment manufacturer (OEM). 

Assortment planning involves selecting a subset of these configurations for tooling the assembly 
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line and readying the dealers/retailers which maximizes the OEM’s profit. We present the major 

assumptions in this paper as follows: 

Market Regions: We assume that the total market can be split into different regions, and 

            denotes the set of regions in the market. Each region could have a particular 

demand and substitution behavior and the model would determine the optimal product 

assortment for each specific region.  

Discrete Choice: In each region, every potential customer has a favorite or most preferred 

configuration from the set  .  

Demand: The potential demand for each configuration    , in each region    ,   
 , is an 

allocated and known fraction of total market demand,    We believe that the fractional 

allocation model is an acceptable approach for modeling demand since some major automakers, 

including Toyota, have adopted this method for product-mix planning (Iyer et al., 2009).  

Demand Uncertainty: The total market demand potential for the particular product under 

consideration,  , which accounts for competitive products and market conditions, is a discrete 

random variable with known probability distribution.  

Substitution: In case of mismatch between demand and supply at each region   , if the 

customer cannot find her favorite configuration   , she will decide not to substitute with 

probability   
 . Else, she will choose configuration   with probability    

 . Note that every region 

has a specific assortment available to customers (not necessarily equal to other region’s 

assortments) and the customers in a region would only substitute to available configurations 

across the region (and not between regions) in case their favorite configuration stocks out. This 

assumption is in accordance with dealer transshipments that stand for a considerable proportion 
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(up to 30%) of total sales at some dealers. The substitution probabilities are assumed to be 

exogenous to our model and are flexibly allowed to take any structure. However, for our 

numerical experiments and without loss of generality, we consider substitution probabilities to be 

derived based on price and content similarities between configurations, which is similar to the 

                          concept discussed by Vaagen et al (2011). Substitution can be 

broadly divided into assortment based substitution (i.e., customer substitutes because preferred 

configuration is not part of the offered assortment; cannot be ordered either) and stock-out based 

substitution (customer substitutes because the preferred configuration is temporarily out of 

stock). 

Single-Shot Supply: Given the strategic nature of assortment planning, we believe it is 

reasonable to model the problem as a single-period single-shot supply problem (model assumes 

no replenishments). This is consistent with the approach taken by others such as Gaur and 

Honhon (2006). 

Costs: Similar to Schon (2011b) that considers a fixed cost for using resources related to 

products, we consider fixed cost   
          

 associated with offering part/option  , which 

accounts for one time costs (share of program design and integration costs in product 

development phase, validating the production process, warranty, tooling, etc.). Besides, we 

consider fixed cost   
        

 associated with introducing configuration   in the assortment, which 

could be incurred due to several reasons including: integration costs (especially for 

configurations not built yet) as well as quality and reliability testing, and tooling costs. Note that 

there are some overhead costs independent of the assortment, like management compensation 

and staff wages, electricity and heating, costs of leasing or owning the facility, etc. which can be 
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excluded from our model as they will not affect the optimal solution. If they do affect the optimal 

assortment, the proposed formulation has the flexibility to account for such costs.  

We also assume that each configuration   has a manufacturing unit cost   
     and that the 

prices for each product configuration,    ,
 
are set exogenously and are available          for 

product assortment planning. Some papers assume identical variable costs and prices for the 

product variants (van Ryzin and Mahajan 1999; Gaur and Honhon 2006). However, in the 

automotive industry, configurations are typically priced differently as a function of the options 

content. Note that unit cost for configuration   mainly stems from material and labor costs per 

vehicle. The material cost can be calculated as summation of all the costs related to materials for 

common parts (like chassis, electrical wiring, etc.) as well as specific parts/options (like power 

train, seats, sunroof, etc.) used in building the configuration. 

Besides fixed and unit costs associated with configurations and contents, we consider another 

cost factor in our model, the cost of product assortment complexity. The complexity could incur 

additional costs due to the additional flexibility necessary to support the larger number of 

configurations in production facilities (e.g., less efficiency in balancing the assembly line and 

increased station cycle times) and/or to support the larger number of potential choices for 

parts/options (more manufacturing facilities, more experienced labor force, more inventory 

storage, more inbound logistics cost, etc.). Based on discussions with couple of Subject Expert 

Matters (SMEs) from the automotive industry, we also assume that complexity cost is a concave 

non-decreasing function with regard to size of the assortment.  

Finally, we assume that the cost of supplying different parts/options from the suppliers to 

OEM may be affected by the volume (i.e., economies of scale exist). That is, the company would 

receive discounts on some option content if purchased in large quantities. The information 
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related to discount policies is exogenous to our model. We assume that the supplier of a specific 

part/option offers its product under a step-wise non-increasing price and the OEM does not incur 

any additional cost other than unit purchasing price due to manufacturing or complexity costs of 

the supplier.  

2.4. Modeling Demand 

A critical concern for modeling demand in the presence of substitution is to check the 

significance of stock-out based substitution. Given that vast majority of the customers in the U.S. 

market purchase vehicles from dealer stock (over 90% according to a major OEM) and not order 

custom vehicles (which is more common in Europe) and given that most dealers carry very 

limited stock (tens of vehicles to hundreds at best for any given model) in comparison with the 

possible number of orderable configurations (that can run into tens to hundreds of thousands and 

even millions), it is expected that there is significant substitution by customers between 

configurations in purchasing product. This is not the case with most retail goods at grocery stores 

and merchandise retailers, where the stock-out rates are typically in the order of few percent 

(e.g., Kök and Fisher (2007) report the stock-out rates for some product segments in a European 

grocery chain to be 99%). To this end, we study real data from a collaborating automaker in 

North America and show that stock-out based substitution is considerably high and should not be 

ignored. Although there is almost no way for automotive industry to capture the first preference 

of each customer, it is possible to observe and analyze inventory and sales transactions for an 

automaker. Using real data from our collaborator for a specific model covering some 9 months of 

history, we observed that a total of 65,000 vehicles were built and sent to dealers (the dealer 

order guide can support hundreds of thousands to millions of possible orderable configurations 

when we account for exterior color and interior trim choices, not counting the dealer installed 
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accessories). Of these vehicles, there exist almost 25,000 distinct configurations in the whole US 

market. We note that the number of distinct configurations at a dealer varies from one dealer to 

another, but barely exceeds 200 configurations even at the largest dealers in the nation. The 

OEM models the U.S. market as roughly 16 distinct “regions” and we studied daily inventory for 

six different regions. Two of these regions (New York and Detroit) were supplied more than 

19,000 vehicles during the 9 month period, representing almost 30% of the total market supply. 

Daily information regarding stock rates (which we define as total number of available distinct 

configurations in the “entire region” divided by total number of actual configurations built for 

the entire U.S. market over the 9 month history) in these six regions are shown in Figure 1.1. The 

plot reveals that during any day from the studied time period, stock rates are usually less than 

10% for New York and Detroit area while for Chicago, Orlando, and Seattle areas the stock rates 

are no more than 6%. These results suggest that even when we consider a whole region and 

allow the possibility of dealers exchanging vehicles (so called “transshipments”), configuration 

stock rates are very low, which suggests that there is a high rate of stock-out and substitution. 

What we learnt from our OEM collaborator is that no more than 30% of the sales involve 

transshipments. Given that a small fraction of orderable configurations are actually built and that 

only a small fraction of these built configurations are carried in any region, and an even tinier 

fraction carried by the dealer, stock-out based substitution needs careful consideration during 

assortment planning, at least in the U.S. market. 
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Figure 2.1: Ratio of stocked distinct configurations to number of built configurations in different US regions 

 

After discussion on the importance of stock-out based substitution in modeling demand, we 

now present our formulation to find demand for each configuration at each region while 

considering both assortment and stock-out based substitutions. Suppose that        is the total 

primary (original) demand for configuration   in region  . By primary demand, we mean the total 

demand for each configuration for the entire season, if all the configurations are present in the 

market (i.e., the number of customers considering the configuration as their most preferred 

configuration). We have  

          
             (2-1) 

where   is total demand for the product under consideration and   
  is the fraction of total 

demand for configuration   in region  . Then, the observed (effective) demand for configuration 

  in region  ,         would be calculated as follows: 
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                ∑                              (2-2) 

where     is the substitution probability for a customer to switch to configuration   after not 

finding her favorite choice, configuration    . In this formulation,        denotes the average 

percentage of unmet demand for configuration    in region  , given total demand  . Note that for 

configurations not carried in the assortment,       , is equal to one. For configurations carried in 

the assortment, the average unmet demand rate is a number between 0 and 1, calculated as 

follows: 

       {

            

      
                             

                               
}         (2-3) 

It should be noted that Hopp and Xu (2008) propose a static approximation for dynamic 

demand substitution behavior using a fluid network model and suggest an approximation for 

service rate which measures the ratio of met demand to total demand. More precisely, they 

define service rate for inventory level   , as             ⁄    , where   represents the 

exogenous total number of customer arrivals. Our approximation for stock-out rate is not very 

different from their approximation for service levels except for the point that we are using 

effective demand in the denominator instead of using customer arrival rate. One difficulty in 

calculating our suggested stock-out rate is that calculating        requires knowing       , and 

hence,        is recursively a function of        . Thus, solving for        requires a system of 

nonlinear equations and makes the optimization problem a discrete nonlinear program (there are 

several binary variables in our model as well). We will later show a procedure to cope with the 

nonlinearity of the problem. A summary of notation and definition of all parameters and decision 

variables is provided in Table 1.4 in Appendix A. 
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2.5. Mathematical Formulation for Assortment Optimization  

We address the assortment planning problem in this section and present the results from our 

formulation in the next section (Section 2.6). Let        be the one-period (newsvendor) profit 

of OEM, from stocking  , when demand realization is  . Note that we follow a single period 

single-shot supply policy and hence,   is a variable independent of demand scenarios. We have:  

       ∑∑       
                       

       
        

 

   

 

   

 

 ∑   
 

            

 

   

 ∑    

            

 

   

 

 ∑ ∑   
   ̃ 

 

        

 

                         (2-6) 

Then, the expected profit would be: 

      ∑                            (2-7) 

Remember that        is a discrete random variable representing the total realized demand in 

the market under study; and      is the corresponding probability. We would like to maximize 

      with respect to some capacity and feasibility constraints. Here, we present the whole 

optimization problem followed by the feasibility constraints.  
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Equation (2-9) is to calculate the observed (effective) demand for each configuration in each 

region given the total demand based on scenario  . Equation (2-10) is used for estimating the 

average percentage of unmet demand (stock-out rate). Equation (2-11) determines the left-over 

inventory of configuration    in region  . Equations (2-12 and 2-13) are to make sure that there is 

no production across all regions for a vehicle that is not to be built (i.e., not part of the 

assortment). Equation (2-14) is to guarantee that total production does not exceed the maximum 

production limit. Equations (2-15 and 2-16) finds total units of option    required for the 

production of all configurations. Equations (2-17 and 2-22) are to choose a discount level (for 

economies-of-scale) for each option in the assortment. Finally, equation (2-23) calculates piece-

wise linear manufacturing complexity cost. 
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2.6. Proposed Methodology 

The suggested formulation requires using a MINLP solver to be solved optimally for small 

size problems and fails to give an optimal solution when we go to real world size problems. We 

suggest a novel procedure to solve this problem that can further be applied to a large class of 

MINLP problems (in particular, if the nonlinear function can be proved to be convex or 

concave). The main idea behind the procedure is to solve alternate linear lower/upper MILP 

estimators for the original problem and diminish the initial gap of lower/upper estimators by 

going into a branch and bound tree. We now explain the procedure in more detail. 

Alternate Linear Lower/Upper Estimators for Original Problem  

In our mathematical formulation, all the terms in the objective function as well as the model 

constraints are linear except for constraint (2-10), which calculates average rate of stock-outs. 

Note that this is also a complicating constraint for our model and relaxing it leads to significant 

improvement in solution time. We show in Appendix B that stock-out rate          is a concave 

function w.r.t production level        . Figure 1.2 depicts a schematic diagram of changes in 

stock-out rate of configuration    w.r.t changes in production level for configuration    when 

production levels for the rest of the configurations is fixed.  
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Figure 2.2: Schematic diagram of changes in stock-out rate ( ) w.r.t production level ( ) shown in blue. 

Lower and upper estimators are drawn as red and green dashed lines, respectively. 

 

We need to derive linear lower/upper estimators for the original problem that could be solved 

as an alternate to the original problem. We show in Appendix C that objective function 

monotonously changes w.r.t changes in       . This implies that if we replace constraint (2-10) 

with any lower bound for        , that should provide a true lower bound for the original problem. 

The same procedure would be stated for a true upper bound for the original problem. We now 

focus on finding valid lower/upper bounds for       . To that end, we suggest the following 

bounds: 

Lower Bound 

The basic idea behind finding the lower bound for stock-out based substitution          is to 

replace it with assortment-based substitution as follows:   

      
                   (2-24) 

Using this lower bound for estimation of effective demand is similar to the lower bound 

suggested by Smith and Agrawal (2000). Moreover, we are interested to have a set of 

lower/upper bounds with diminishing gap. We will later present another set of dynamic lower 
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bounds when discussing the Branch and Bound procedure, which could converge to zero gap 

given close enough lower/upper production levels.  

Upper Bound 

We derive a different set of upper bounds for our model. First, consider constraint (2-10), we 

then replace         with its equivalent form on constraint (2-9) and rewrite it as follows:   

        {

       ∑                            

       ∑                      
                                 

                                                             
}    (2-25) 

We now replace        in the numerator as well as the denominator with the highest value it could 

get (one) and that gives a linear upper bound for constraint (2-10).  

      
   {

       ∑                       

       ∑                 
                                 

                                                             
}      (2-26) 

Another bound for (2-25) is derived by replacing        in the denominator with a lower 

value,     . Remember that    is a binary decision variable equal to one when configuration   

is on the assortment and zero otherwise. The new bound is as follows: 

      
   {

       ∑                            

       ∑                      
                                 

                                                             

} 

   {

      
   (       ∑        (    )        )                   

         ∑                            

      
        

}   (2-27) 

Since we have a continuous decision variable multiplied by a binary variable, we can use 

linearization techniques to convert it into a MILP. The final linearized version of upper bound 

problem is presented in Appendix E.  
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The reason for using these two bounds is that the first bound is straight-forward to calculate 

but not very tight, versus the second one which is much more tight but is more expensive. So, we 

suggest to start with the first set of bounds and add new cuts derived from the second bounds into 

the branch and bound tree.  

2.7. Modified Branch and Bound Procedure for Solving MINLP Problem 

We suggest using a Modified Branch and Bound (M-BnB) procedure which is able to tackle 

mixed-integer nonlinear programs. The idea is to use problem relaxations through using 

lower/upper bounds instead of relaxing binary (integer) variables, which is a common step in 

regular Branch and Bound procedure. After solving lower/upper relaxations (estimators) at the 

root node, we would stop branching if the gap between the lower and upper relaxations is less 

than a predetermined optimality gap. If not, we would branch to further nodes until we can prune 

all the nodes by either bound or optimality gap. A flowchart of procedure is depicted in Figure 

2.3.  

 

Figure 2.3: Flowchart of proposed Modified Branch and Bound (M-BnB) algorithm 
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Branching Strategy 

We choose to pick a decision variable for branching that could help in diminishing global 

lower/upper bounds. This could be done through choosing production level variable      as the 

branching variable and adding new lower/upper bounds derived for that end. Note that the 

continuous random variable      takes a lower value of zero. To find a maximum value for     , 

we can pick maximum production level or to have a better bound, we can find it through forcing 

all of the configurations not to be in the assortment except for configuration   and solve the 

problem. The obtained production level for configuration   will be an upper value for     .  

Dynamic Bounds 

We now discuss dynamic bounds, which are calculated and updated for each particular node 

of the Branch and Bound tree. Remember that the main motivation behind these bounds is that 

the previously mentioned lower/upper bounds are not changing from their initial values at the 

root node. Hence, we employ these dynamic bounds to be able to diminish the gap between 

global lower/upper bounds. The dynamic lower/upper bounds are derived this way respectively: 

       
   {

       ∑              
               

 

       ∑              
          

        
          

     

}       (2-28) 

      
   {

       ∑              
               

 

       ∑              
          

        
          

     

}        (2-29) 

where     
      

  represent the lower and upper bounds for     , respectively, and are parameters 

with defined values before solving each node. Note that as values for     
  and      

  come closer to 

each other, dynamic lower and upper bounds would also converge to closer values.  
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2.8. Experimental Results 

Numerical Experiment 

We generated a set of examples with 36 potential configurations and generated an artificial 

dataset for cost of each part/option and based on that cost, we derive the unit cost associated with 

each configuration. We consider a profit margin between 15% - 30% and add it to the unit cost in 

order to derive the selling price. We then consider the overage cost of left-over inventory to be 

between 5%-12% of unit cost of a configuration. We also generate artificial data related to other 

parameters like substitution probabilities (   ), demand fractions (  
 ), fixed costs of offering 

configuration   
 

          , and fixed costs of offering an option    

          , as well as 

manufacturing complexity costs. It should be noted that to derive our artificial data, we relied on 

viewpoints of several Subject Expert Matters from a North-American OEM to make sure that 

data is consistent with the real-world situation. All generated data is presented in Appendix D. 

The above formulation was coded in ILog-Cplex 11.0. Table 2.1 shows the descriptive statistics 

on running time as well as optimal objective function for different problem settings. For each 

problem setting, we generate 10 random replicates by changing only one parameter at a time by a 

factor of +/- 20% and return average, minimum, maximum and standard deviation of solution 

time and the objective function. As can be seen from Table 2.1, solution times steadily increase 

by increasing the overall substitution probability. One reason might be that calculating observed 

demand using equation (2-9) is expensive and as we have more nonzero terms in substitution 

probability matrix, we expect more expensive calculations and hence, larger solution times. 

Another interesting fact is that on average total profit increases by 12.2% when substitution 

probabilities sum to 0.95 compared to the scenario with more picky customers whose 
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substitution probabilities only sum to 0.45. This amount of change in total profit shows the 

importance of incorporating substitution effects into assortment planning models.  

Table 2.1: Descriptive statistics regarding solution time and objective function for 70 different experiments. 
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1-10 1 1 Rand (0.45) 97.9 263.4 151.4 50.8 3,353,344.6 11,180.1 

11-20 1 1 Rand (0.7) 419.1 613.7 513.7 66.0 3,437,651.4 5,848.6 

21-30 1 1 Rand (0.95) 916.7 2,822.0 1,612.5 566.7 3,653,366.9 35,320.6 

31-40 1 
Rand 

(0.4:0.6) 
0.7 159.1 408.8 285.6 93.8 

731,324.4 77,520.1 

41-50 1 
Rand 

(0.8:1.2) 
0.7 185.8 771.7 416.9 190.7 3,464,968.0 146,383.4 

51-60 1 
Rand 

(1.6:2.4) 
0.7 

105.2 318.1 198.3 74.2 10,079,854.5 350,091.8 

61-70 
Rand 

(0.8:1.2) 
1 0.7 182.2 650.0 353.8 130.3 3,497,166.7 777,017.8 

We can also take a more detailed look at the result in terms of optimal values of some 

variables like assortment size, production levels, and number of chosen parts/options. For this 

end, we run an experiment (21) with all parameters presented in Appendix D. Figure 2.4 shows 

the production fractions as well as the primary demand fractions for 36 configurations when 

substitution probabilities are assumed to be high (sum to 0.95). As you can see from the graph, 

there are some configurations missing in the optimal assortment and there is not a similar trend 

between primary demand fractions and production volume fractions. Also, some of the popular 

configurations are missing in the optimal assortment due to high substitution rates, which makes 

it profitable to satisfy demand for some configurations through other configurations. Figure 2.5 

shows similar information for the scenario in which substitution probabilities are moderate (sum 

to 0.70). In this scenario and due to smaller substitution effects, the production fractions have a 
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more similar trend toward primary demand fractions even though they are still different. This 

observation supports the idea that optimal assortment decisions are highly dependent to 

substitutability of customers in case of miss-match of supply and demand.  

 

Figure 2.4: Production and primary demand fractions for configurations under high substitution rate 

 

Figure 2.5: Production and primary demand fractions for configurations under moderate substitution rate 
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Sensitivity Analysis 

We perform an analysis to assess the impact of assortment size on overall profit. For this end, 

we choose an experiment with nominal values (experiment 21) and run it with different limits on 

the size of the assortment. That is, each time we made the assortment size to be equal to a pre-set 

value. As expected and shown on Figure 2.6, the overall profits seem to take on a concave form 

as a function of the size of the assortment. Initially the profits increase with the assortment size 

to capture additional demand. However, too high an assortment seems to compromise the 

production economies-of-scale as well as incurring complexity costs), at least for the given 

setting and cost parameters. One observation is that total profit only drops less than 1.85% when 

assortment size varies from 19 to 24 which suggests that even though configurations are likely to 

differ considerably from one assortment size to another, total profit is relatively robust to 

assortment size variation by carrying optimal configuration. 

 

Figure 2.6: Effect of assortment size on total profit (in $ millions) 

Another observation is the impact of economies-of-scale on optimal assortment. Figure 2.7 
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particular experiment, the optimal assortment is different in those two scenarios which suggests 

necessity of incorporating economies-of-scales in assortment planning for automotive product. 

 

Figure 2.7: Effect of economies-of-scale on optimal assortment 

2.9. Analyzing Modified Branch and Bound (M-BnB) Method  

We now compare the modified branch and bound procedure with commercial Mixed-integer 

nonlinear programming solvers in terms of solution time and quality. We choose two 

experiments from each of the seven scenarios with maximum and minimum solution time and 

solve them with AMPL Bonmin solver. As the maximum solution time with M-BnB method is 

less than an hour, we set a 3,600 seconds time limit to run each of the experiments with AMPL 

as well as a 1% optimality tolerance gap for both methods. The results are shown on Table 2.2. 

As can be seen for our current experiment, M-BnB method surpasses Bonmin in terms of 

solution time for all the selected experiments while in terms of objective function it returns a 
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Table 2.2: Comparison of M-BnB method with AMPL Bonmin solver over the randomized experiments 
  M-BnB Method AMPL 

E
x

p
er

im
en

t 
#
 

#
  
o

f 
 P

o
te

n
ti

a
l 

C
o

n
fi

g
u

ra
ti

o
n

s 

S
o

lu
ti

o
n

  
 

T
im

e
 (

S
ec

o
n

d
s)

 

B
es

t 
  

S
o

lu
ti

o
n

 

O
b

je
ct

iv
e 

B
es

t 
 U

p
p

er
 

B
o

u
n

d
 

O
p

ti
m

a
li

ty
  

G
a

p
 

S
o

lu
ti

o
n

  
 

T
im

e
 (

S
ec

o
n

d
s)

 

B
es

t 
  

S
o

lu
ti

o
n

 

O
b

je
ct

iv
e 

B
es

t 
 U

p
p

er
  
 

B
o

u
n

d
 

O
p

ti
m

a
li

ty
  

  

G
a

p
 

1 

36 

98 3,356,212 3,356,212 0.00% 3,600 3,307,110 3,957,950 19.68% 

10 263 3,336,379 3,336,379 0.00% 3,600 3,297,830 3,979,380 20.67% 

12 614 3,441,529 3,441,529 0.00% 3,600 3,408,290 4,065,200 19.27% 

18 419 3,436,629 3,440,065 0.10% 3,600 3,389,310 4,070,370 20.09% 

27 2,822 3,624,690 3,624,690 0.00% 3,600 3,600,020 4,225,270 17.37% 

30 917 3,743,492 3,743,492 0.00% 3,600 3,678,530 4,323,430 17.53% 

32 160 690,337 691,027 0.10% 3,600 690,338 1,009,460 46.23% 

33 409 629,244 629,244 0.00% 3,600 622,356 922,820 48.28% 

46 186 3,367,229 3,367,229 0.00% 3,600 3,367,229 3,957,230 17.52% 

50 772 3,547,129 3,548,962 0.05% 3,600 3,548,070 4,182,540 17.88% 

54 105 9,337,718 9,339,337 0.02% 3,600 9,271,380 10,029,700 8.18% 

59 318 10,679,400 10,679,400 0.00% 3,600 10,575,800 11,303,300 6.88% 

66 650 3,022,360 3,022,360 0.00% 3,600 3,022,360 3,561,040 17.82% 

68 182 4,972,590 4,972,590 0.00% 3,600 4,949,060 5,527,450 11.69% 

 

Table 2.3: Comparison of M-BnB method with AMPL Bonmin solver over different problem sizes 
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18 35 4,443,795 4,443,795 0.00% 236 4,443,795 4,443,795 0.00% 

36 558 3,447,201 3,447,201 0.00% 80,000 3,446,770 3,662,750 5.90% 

72 17,431 2,686,846 2,686,846 0.00% 80,000 2,952,180 4,273,080 30.91% 

We would also like to test efficiency and effectiveness of the algorithm for dealing with 

different problem sizes. For this end, we select 3 groups of problems with 18, 36, and 72 

potential configurations and compare the result with AMPL output in Table 2.3. As can be seen, 
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M-BnB method returns optimal solutions in all three problem instances while AMPL is not able 

to return a 1% optimality solution in two out of three scenarios even after more than 22 hours. 

However, it also turns out that this problem suffers from curse of dimensionality and we suggest 

using some sort of heuristic algorithms when problem dimensions explode. 
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2.10. Appendix  

Appendix A:  

Table 2.4: Problem parameters, sets and decision variables 

 

 

Sets 

        Set of all potential configurations 

        Set of all market regions 

        denote the set of all options required for assortment production, 

        Set of all discount levels for an option. 

             Set of all levels piecewise linear parts of manufacturing complexity cost 

       Set of discrete random variables representing total demand in the market. 

Parameters 

        Primary (original) demand for configuration   in region   given   as total demand for 

the product under consideration 

  
  Fraction of total demand for configuration   in region  . 

    Substitution probability of switching to configuration   after not finding the favorite 

choice, configuration   
   Selling price of configuration  ,  

  
         Variable cost of every unit of configuration   

  
     

 Fixed cost of configuration   , if carried in the market.  

  
       

 Overage cost of configuration   if not sold. 

  
 
 be the amount of discount for each unit of option   if purchased at quantity level    

  
 
 BOM parameter equal to one if configuration   requires option   and zero otherwise. 

   
 
 The lower-point of quantity for level   of option  .  

BigM A sufficiently large number  

     maximum production capacity of the OEM 

      Probability mass function of        

       Total manufacturing complexity cost for k
th

 level of complexity 

       Assortment size at k
th

 level of complexity 

Decision Variables 

  
  Number of vehicles of configuration    supplied to the region   of the market.  

   A binary decision variable equal to one if configuration   is built, and zero otherwise.  

      
  Left-over inventory of configuration    in region  , given demand is  , and the supply 

vector is Y.  

       Effective demand for configuration   in region  , given   as total demand 

       Average percentage of unmet demand for configuration   in region   , given total 



34 
 

 
 

  

demand,  . 

   A binary decision variable equal to one if option   is required, and zero otherwise.  

   Total required units of option   for the production of all configurations 

 ̃ 
  Total required units of option   purchased at discount level    

         
  A binary decision variable equal to one if option   is purchased at discount level  , 

and zero otherwise. 
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Appendix B: 

Theorem:        is concave w.r.t.   
 .  

Consider these functions: 

              ∑                                    (B-1) 

       
       ∑                         

 

       ∑                      
          

                       (B-2) 

We show the proof for      
          and re-write equation (2) as follows: 

  
         ∑                  

 
                   ∑                         

 
              (B-3) 

We write the Hessian Matrix as follows:  

   
    

     
 =[

                                           

                                  
                                            

]  

   
    

     
 =[

                                               

                                                                             

                                             

] 

   
    

     
 =[

                                                

                                                               

                                           

] 

All the diagonal elements of the hessian matrix are zero and the other elements are either zero or 

non-positive. In order to prove that   is a negative semi-definite matrix and hence, Y(s) is 

concave, we need to show this:  
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We have assumed     
          which implies that            , so since all elements of   

are non-positive and    , =>           

We showed that    
  is concave w.r.t       . If   is a concave decreasing function w.r.t.  , its 

inverse would also be a decreasing concave function (Mrsevic, 2008). This implies that        is 

also concave w.r.t   
  . To prove that   

  is decreasing w.r.t.       , we can re-write equation (B-2) 

as follows: 

  
          ∑                  

 
                             (B-4) 

It is clear that increasing value of        leads to decreased value of   
 
. 
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Appendix C: 

We show that the objective function of the original problem will always get smaller (greater) 

if we replace constraint (2-3) with the under-estimator (over-estimator). The first observation is 

the value of effective demand (      ) which is a function of        with all positive coefficients. 

So it is obvious that: 

      
               

    

Where       
         

   is the value of effective demand if we replace        by       
         

  . 

Notice that the objective function has only two terms that are affected by the value of effective 

demand. Those two terms are       
             

          and     
       

          . We 

need to check the effect of effective demand on both of them: 

1- We can re-arrange constraint (2-11) as follows: 

          
                 (C-1) 

Which shows that        is an upper bound for the sales volume (  
        ) in the 

objective function. Since the problem is maximization and the coefficient of the sales 

volume       
           , we see that decreasing (increasing) the value of effective 

demand makes the value of       
             

          smaller (larger). 

2- The other term in the objective which might be affected by the change in effective 

demand value is the value of left-over inventory (      ). Left-over inventory volume 

increases when we decrease the effective demand. Since this terms is in the objective 

function with a non-positive coefficient (   
       

  ), any decrease (increase) in the 

value of effective demand makes the value of     
       

         smaller (larger). 
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From 1 & 2 we see that if we replace constraint (2-3) with the proposed under-estimator (over-

estimator), the objective function will be always smaller (larger). 
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Appendix D: Data input used in numerical experiment with 36 configurations 

Table 2.5: Total demand and corresponding probabilities in different scenarios 

 

D
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D
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Total demand 150,000 180,000 

Probability 0.40 0.60 

 

Table 2.6: Selling price, unit and overage cost, and primary demand fraction per configuration 
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($
1
,0

0
0
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P
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em

a
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d
 

fr
a
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n

 

1 21.8 18.1 1.5 0.126 

2 23.8 18.3 2.2 0.08 

3 21.2 17.6 1.5 0.068 

4 21 17.5 1.4 0.061 

5 21.3 17.7 1.5 0.054 

6 20.7 17.2 1.4 0.047 

7 24.4 18.7 2.3 0.043 

8 21.4 17.8 1.5 0.043 

9 21.2 17.6 1.5 0.039 

10 21.5 17.9 1.5 0.035 

11 19.6 17 0.9 0.033 
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12 20.9 17.4 1.4 0.03 

13 20.7 17.2 1.4 0.029 

14 24 18.4 2.3 0.029 

15 24.5 18.8 2.3 0.028 

16 19.3 16.7 0.9 0.026 

17 23.7 18.2 2.2 0.024 

18 21.5 17.9 1.5 0.023 

19 20.7 17.2 1.4 0.021 

20 20.9 17.4 1.4 0.019 

21 24.1 18.5 2.3 0.019 

22 19.5 16.9 0.9 0.016 

23 21.5 17.9 1.5 0.016 

24 24 18.4 2.3 0.015 

25 21 17.5 1.4 0.013 

26 20.8 17.3 1.4 0.012 

27 21.8 18.1 1.5 0.01 

28 21 17.5 1.4 0.01 

29 19.6 17 0.9 0.009 

30 24.1 18.5 2.3 0.008 

31 19.4 16.8 0.9 0.006 

32 19.6 17 0.9 0.006 

33 23.7 18.2 2.2 0.006 

34 19.1 16.6 0.9 0.005 

35 21.6 18 1.5 0.005 

36 21.3 17.7 1.5 0.003 



41 
 

 
 

Table 2.7: Bill of Materials 
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P
a

rt
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rt
 7
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rt
 8

 

P
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rt
 9

 

P
a

rt
 1

0
 

1 0 0 0 1 0 0 1 0 0 1 

2 0 0 0 1 0 0 0 1 0 1 

3 0 0 0 1 0 0 1 0 0 0 

4 0 1 0 0 0 0 1 0 0 1 

5 0 0 1 0 0 0 1 0 0 1 

6 1 0 0 0 0 0 1 0 0 1 

7 0 0 0 0 0 1 1 0 0 1 

8 0 0 0 1 0 0 0 1 0 0 

9 0 1 0 0 0 0 0 1 0 1 

10 0 0 1 0 0 0 0 1 0 1 

11 0 1 0 0 0 0 1 0 0 0 

12 1 0 0 0 0 0 0 1 0 1 

13 0 0 1 0 0 0 1 0 0 0 

14 0 0 0 0 1 0 1 0 0 1 

15 0 0 0 0 0 1 0 1 0 1 

16 1 0 0 0 0 0 1 0 0 0 

17 0 0 0 0 0 1 1 0 0 0 

18 0 0 0 1 0 0 0 0 1 1 

19 0 1 0 0 0 0 0 1 0 0 

20 0 0 1 0 0 0 0 1 0 0 
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21 0 0 0 0 1 0 0 1 0 1 

22 1 0 0 0 0 0 0 1 0 0 

23 0 0 0 0 1 0 1 0 0 0 

24 0 0 0 0 0 1 0 1 0 0 

25 0 0 0 1 0 0 0 0 1 0 

26 0 1 0 0 0 0 0 0 1 1 

27 0 0 0 0 1 0 0 1 0 0 

28 0 0 1 0 0 0 0 0 1 1 

29 1 0 0 0 0 0 0 0 1 1 

30 0 0 0 0 0 1 0 0 1 1 

31 0 1 0 0 0 0 0 0 1 0 

32 0 0 1 0 0 0 0 0 1 0 

33 0 0 0 0 1 0 0 0 1 1 

34 1 0 0 0 0 0 0 0 1 0 

35 0 0 0 0 0 1 0 0 1 0 

36 0 0 0 0 1 0 0 0 1 0 
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Table 2.8: Fixed cost and discount information per part/option 
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1  27,000  0 - 

2  30,000  200 45,000 

3  33,000  220 45,000 

4  38,250  0 - 

5  41,250  275 45,000 

6  45,000  0 - 

7  6,750  45 80,000 

8  9,000  60 80,000 

9  4,500  0 - 

10  6,000  0 - 

 

Table 2.9: production and manufacturing complexity cost 

Assortment 

size 

0 7 14 21 28 36 

Manufacturing 

complexity cost 

0 100,000 250,000 450,000 800,000 1,500,000 
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Table 2.10: Substitution probabilities from missing configurations (rows) to available ones (columns) 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 - 0.12 0.14 0.07 - - 0.05 0.05 - - - - - 0.04 - - - 0.16 - - - - - - 0.07 - - - - - - - - - - -

2 0.17 - 0.07 - - - - 0.14 0.07 - - - - - 0.05 - - 0.11 - - 0.04 - - - 0.05 - - - - - - - - - - -

3 0.15 0.06 - - - - - 0.12 - - 0.06 - - - - - 0.05 0.07 - - - - 0.04 - 0.15 - - - - - - - - - - -

4 0.06 - - - 0.05 0.09 - - 0.10 - 0.11 - - - - 0.04 - - 0.04 - - - - - - 0.12 - - 0.04 - 0.05 - - - - -

5 0.04 - - 0.08 - - - - - 0.09 0.03 - 0.10 0.07 - - - - - 0.04 - - - - - 0.04 - 0.12 - - - 0.05 0.03 - - -

6 - - - 0.13 - - - - 0.05 - 0.06 0.08 - 0.05 - 0.09 - - - - - 0.03 - - - 0.06 - - 0.10 - - - - 0.04 - -

7 0.07 - - - 0.05 - - - - - - - - 0.11 0.08 - 0.09 - - - 0.04 - 0.04 - - - - - - 0.11 - - 0.05 - 0.04 -

8 0.08 0.15 0.17 - - - - - - - - - - - - - - 0.05 0.06 - - - - 0.05 0.10 - 0.04 - - - - - - - - -

9 - 0.06 - 0.13 - 0.04 - - - 0.05 0.06 0.09 - - - - - - 0.11 - - 0.04 - - - 0.08 - - - - 0.03 - - - - -

10 - 0.04 - 0.04 0.13 - - - 0.08 - - - 0.05 0.04 - - - - 0.03 0.10 0.07 - - - - - - 0.08 - - - 0.03 - - - -

11 - - 0.06 0.12 - 0.04 - - 0.04 - - - 0.05 - - 0.08 - - 0.09 - - - - - - 0.06 - - - - 0.12 - - 0.04 - -

12 - - - 0.07 - 0.11 - - 0.14 - - - - - - 0.05 - - 0.06 - 0.06 0.09 - - - 0.04 - - 0.07 - - - - - - -

13 - - 0.03 0.03 0.11 - - - - 0.04 0.07 - - 0.03 - - - - - 0.08 - - 0.07 - - - - 0.05 - - 0.03 0.11 - - - 0.03

14 - - - - 0.11 - 0.03 - - 0.04 - - 0.05 - - - - - - - 0.09 - 0.10 - - - 0.04 0.05 - - - - 0.12 - - 0.05

15 0.04 0.07 - - - - 0.12 - - 0.05 - - - 0.06 - - 0.05 - - - 0.10 - - 0.09 - - 0.04 - - 0.07 - - - - - -

16 - - - 0.06 - 0.10 - - - - 0.13 0.04 - - - - - - 0.05 - - 0.08 0.05 - - - - - 0.05 - 0.06 - - 0.10 - -

17 - - 0.07 - - - 0.10 - - - - - 0.04 0.05 0.04 - - - - - - - 0.10 0.08 - - 0.04 - - 0.05 - - - - 0.10 0.05

18 0.18 0.09 0.08 0.04 - - - 0.04 - - - - - - - - - - - - - - - - 0.13 0.06 - - - 0.05 - - 0.04 - - -

19 - - - 0.06 - - - 0.06 0.12 - 0.13 0.04 - - - 0.04 - - - 0.05 - 0.08 - - - 0.04 - - - - 0.08 - - - - -

20 - - - - 0.06 - - 0.03 0.03 0.10 0.04 - 0.12 - - - - - 0.07 - 0.03 - 0.03 - - - 0.06 0.03 - - - 0.07 - - - -

21 - - - - 0.06 - - - - 0.11 - - - 0.13 0.03 - - - - 0.05 - - 0.05 - - - 0.10 0.04 - - - - 0.08 - - 0.03

22 - - - 0.03 - 0.05 - - 0.06 - 0.07 0.10 - - - 0.11 - - 0.13 - - - - - - - 0.05 - - - 0.04 - - 0.07 - -

23 - - - - 0.05 - - - - - - - 0.11 0.11 - - 0.03 - - 0.04 0.04 - - - - - 0.09 - - - - 0.05 0.05 - - 0.11

24 - - 0.04 - - - 0.05 0.07 - - - - - - 0.10 - 0.11 - - 0.05 0.05 - 0.05 - - - 0.10 - - - - - - - 0.07 -

25 0.09 0.04 0.18 - - - - 0.09 - - - - - - - - - 0.15 - - - - - - - - - - - - 0.06 - - - 0.05 0.04

26 0.03 - - 0.14 - 0.05 - - 0.07 - 0.06 - - - - - - 0.06 - - - - - - - - - 0.05 0.08 - 0.11 - - 0.04 - -

27 - - - - - - - - - 0.05 - - 0.06 0.06 - - - - - 0.11 0.11 - 0.12 0.03 - - - - - - - 0.03 0.04 - - 0.08

28 - - - 0.05 0.14 - - - - 0.07 - - 0.06 0.04 - - - 0.04 - - - - - - - 0.08 - - - - 0.03 0.11 0.07 - - -

29 - - - 0.08 - 0.12 - - 0.04 - 0.03 0.06 - - - 0.05 - - - - - - - - - 0.13 - - - - 0.06 - 0.05 0.09 - -

30 0.04 - - - - - 0.12 - - - - - - 0.06 0.06 - 0.05 0.07 - - - - - - - - - 0.05 - - - - 0.10 - 0.09 0.04

31 - - - 0.07 - - - - - - 0.15 - - - - 0.05 - - 0.07 - - - - - 0.06 0.12 - - 0.04 - - 0.05 - 0.09 - -

32 - - - - 0.06 - - - - - 0.04 - 0.13 - - - - - - 0.06 - - 0.04 - 0.03 0.03 - 0.11 - - 0.07 - 0.03 - - 0.07

33 - - - - 0.07 - - - - 0.03 - - - 0.15 - - - - - - 0.07 - 0.06 - - - - 0.12 - 0.03 - 0.05 - - - 0.11

34 - - - 0.03 - 0.05 - - - - 0.07 - - - - 0.11 - - 0.03 - - 0.05 - - - 0.06 - - 0.09 - 0.12 - - - - 0.05

35 - - 0.04 - - - 0.06 - - - - - - - - - 0.12 - - - - - 0.06 0.06 0.07 - - - - 0.10 - 0.04 0.05 - - 0.10

36 - - - - - - - - - - - - 0.07 0.07 - - - - - - 0.03 - 0.14 - - - 0.07 0.05 - - - 0.11 0.12 - 0.03 -
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Chapter 3. ASSORTMENT PLANNING OF CONFIGURABLE PRODUCTS: 
Considerations for Economic and Environmental Impacts on Technology 

Selection 

3.1. Introduction 

Besides economic objectives to maximize profit, there are other factors affecting the final 

assortment of an OEM. Environmental issues are important driving forces that impact the 

automotive industry due to increasingly strict governmental regulations and increasing social 

expectations (Geffen and Rthenberg, 2000; Koplin et al. 2007). In the U.S., the main federal 

regulations on vehicle fuel economy have been expressed through Corporate Average Fuel 

Economy (CAFE) standards by National Highway Traffic Safety Administration (NHTSA) and 

the Environmental Pollution Authority (EPA)
2
. CAFE is the sales weighted average fuel 

economy, expressed in miles per gallon (mpg), of a manufacturer’s fleet of passenger cars or 

light trucks with a gross vehicle weight rating of 8,500 lbs. or less, manufactured for sale in the 

U.S., for any given model year. The automakers are subject to financial penalties for not meeting 

CAFE standards. In 2011, the penalty for failing to meet the standards was $5.50 per tenth of a 

MPG for each tenth under the target value times the total volume of vehicles manufactured. 

According to NHTSA, most European manufacturers regularly pay CAFE civil penalties ranging 

from less than $1 million to more than $20 million annually while Asian and American 

manufacturers have not paid a civil penalty in recent years. Instead of CAFE requirements, some 

countries including European states have imposed taxation policy on gasoline and diesel prices. 

This policy has been considered as one of the best ways to fiscally control the amount of energy 

consumption and emissions from the transportation sector (Steenberghen and Lopez, 2008). This 

policy often involves significantly increasing fuel price (van Vliet et. al 2010) and motivates 

                                                           
2
 See NHTSA Website for more information: http://www.nhtsa.gov/fuel-economy 
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customer’s evolution toward more fuel efficient vehicles. This dynamic will be considered in our 

model implicitly through the impact of vehicle price on primary demand fractions for distinct 

configurations. Another important measure for automakers to decide on their optimal assortment 

could be the total carbon emissions produced during the vehicle’s life cycle.  

In this Chapter, while limiting our discussion/scope to the automotive industry, we aim to 

develop configurable product assortment planning models that explicitly account for both 

demand and supply issues while entering environmental concerns into decision making. In the 

past decades, there has been considerable work dedicated to demand aspects of assortment 

planning (see Kök et al. 2008, for a literature review). Furthermore, some researchers have been 

interested in studying the effect of variety on manufacturing performance (MacDuffie et al. 

1996) or its effect on assembly operations (Fisher and Ittner, 1999). But very little research has 

been done that integrally considers demand and supply/manufacturing aspects in planning 

product assortment, in particular, for configurable products. It should also be noted that most of 

the studies on assortment planning are developed for non-configurable products, e.g., grocery 

and retail products (van Ryzin and Mahajan, 1999; Agrawal and Smith, 2003; Kok and Fisher, 

2007; Fisher and Vaidyanathan, 2009). The automotive industry, with its highly configurable 

products and unique federal and state regulations requires a specific approach to product 

assortment planning that better suits its product line features. The contribution of the Chapter is 

to propose an objective decision support system for assortment planning of automotive products 

by exploiting exogenous demand models. Moreover, and to best of our knowledge, this is the 

first work on product assortment planning that takes environmental issues into consideration.  

The rest of the Chapter is organized as follows: Section 2 reviews the relevant literature; 

Section 3 discusses the problem setting in more detail and the main assumptions behind our 
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model. Methodology and problem formulation are discussed in Section 4. Section 5 reports the 

results from a number of experiments. Finally, we conclude in Section 6. 

3.2. Literature Review 

Section 2.2 has provided a detailed review of the assortment planning literature. This section 

extends that review by examining literature that addresses environmental impacts through 

product technology selection. 

As mentioned earlier, environmental concerns have not been explicitly studied in the literature 

for assortment planning problems. However, Goldberg (1998) studies the effects of CAFE 

standards on automobile prices and sales and the expected environmental effects of CAFE 

standards. He claims that policies oriented towards shifting the mixture of the new car fleet 

towards more fuel efficient vehicles are promising and CAFE provides incentives for 

manufacturers to develop more fuel efficient vehicles.  Michalek et al. (2004) study the impact of 

fuel efficiency and emission policy on optimal vehicle design decisions in an oligopoly market. 

They evaluate several policy scenarios for the small car market, including CAFE standards, 

carbon dioxide (CO2) emissions taxes, and diesel technology quotas. The results show that 

imposing CO2 taxes on producers for expected life cycle emissions results in diminishing returns 

on fuel efficiency improvement as the taxes increase, while CAFE standards lead to higher 

average fuel efficiency per regulatory dollar. Although their model decides on design parameters 

(such as engine size), prices, and production volumes, it is different from our approach on 

assortment planning by considering no substitution effects. Recently, Hoen et al. (2010) study 

the effect of carbon emission regulations on transport mode selection in supply chains. Their 

results suggest that introducing a constraint on emissions is a more powerful tool for 

policymakers in reducing emissions compared to introducing an emission cost for freight 
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transport via a direct emission tax or a market mechanism. In this paper, similar to results of 

Hoen et al (2010), we constrain the maximum emissions allowed by the automotive 

manufacturer rather than introducing an emission cost. 

3.3. Assumptions 

Suppose that for the product under consideration, },...,1{ IN   denotes the set of potential 

configurations that can be made available by the OEM. Assortment planning involves selecting a 

subset of these configurations for tooling the assembly line and readying the suppliers and 

dealers/retailers. Due to the long lead times associated with engineering parts/options and their 

integration into the vehicle as well as lead times associated with supply chain readiness, the 

assortment decisions have to be made well up front, often several years in advance of product 

launch. This forces the planners to make a number of assumptions. The major assumptions 

behind our assortment planning model are as follows, categorized into assumptions related to 

demand, supply, costs, and environmental issues.  

1. Demand  

a. Assumption (A1). We assume that the target market needs to be split into different 

regions, and },...,1{ rR  denotes the set of regions in the market. This is less of an 

assumption and more of a model feature. Each region is expected to have its distinct 

product configuration demand and substitution behavior (e.g., colder northern states 

generally exhibit less demand for convertible models and have higher demand for 

features such as heated seats and engine block heaters). From our conversations with 

SMEs, this is how OEMs model the market. 
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b. Assumption (A2). Given the long lead times associated with assortment planning and 

the significant uncertainty in fuel prices and their impact on product demand, we 

consider different potential scenarios for market fuel price. A probability is associated 

with each of the scenarios and the associated product demand mix (i.e., the demand for 

the different configurations). We impose no restrictions on the structure of the 

relationship between fuel price and the product demand mix within these scenarios. 

b. Assumption (A3). We assume that every potential customer has a favorite (most 

preferred) configuration from the set  . Under fuel price scenario     , the potential 

demand for each configuration    , at each region    , is a known fraction of total 

market demand,  . Note that total market demand (as well as demand mix for different 

technologies) could take different values across fuel price scenarios. If the customer 

cannot find her favorite configuration   , she will decide not to substitute with 

probability   
    , else, will choose configuration   with probability    

 . We assume that 

customers in a region would only substitute to available configurations across the region 

(and not between regions) in case their favorite configuration is missing.  

2. Supply  

a. Assumption (A4). Although there are multiple market realization scenarios (in terms of 

fuel price and associated demand), given the long lead times involved for product 

development and supply chain readiness, the OEM has to decide on a unique product 

configuration assortment upfront (strategic planning process). The model also has to 

decide upfront the planned production volumes for each configuration, so that the supply 

chain can install the necessary manufacturing capacity for producing the parts/options 

content. While the OEMs can try to adjust these production capacities after launching 
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the product and observing the actual realized demand, this is often a very lengthy and 

expensive process for highly engineered and complex products such as automobiles and 

could take several months to a year. OEMs can also rely on tactics such as price rebates 

to alter demand. These reactionary decisions are more tactical in nature and outside the 

scope of our strategic assortment planning model. This being a strategic model, we 

model the production supply and consumption setting as a single-period problem, also 

known as the newsboy or news-vendor model, where the manufacturer would supply the 

regions with product configurations at the beginning of the time period; we do not 

explicitly model the on-going replenishment process with dealers ordering and the OEM 

trying to fulfill the orders.  

b. Assumption (A5). We allow economies-of-scale for the OEM in purchasing 

parts/options from the suppliers as a function of purchase quantity. That is, the OEM 

could receive discounts on some parts/options if purchased in large quantities. We 

assume that the information related to discounts is exogenous to our model and 

purchasing cost is assumed to follow a step-wise non-increasing function as a function 

of purchase quantity; we assume an all-unit quantity discount model. If parts are shared 

across models, the step-wise function is expected to capture the incremental price 

benefits from using the part within the product under consideration. This is again less of 

an assumption and more of a flexible model feature.   

3. Costs 

a. Assumption (A6). We assume that each potential configuration    has a variable 

production and supply cost    
        . We assume that prices for each product 

configuration,   , are set exogenously and are available a priori for product assortment 
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planning. In addition, we assume that each configuration   has a fixed cost   
     

  if 

selected in the final assortment. The fixed cost can be attributable to factors such as 

incremental design, engineering, testing, quality, warranty, and service costs from 

adding the configuration to the assortment. 

4. Environmental Factors 

a. Assumption (A7). We assume that the OEM will target a specific average fuel economy 

(AFE) for each model in the aim of meeting the CAFE or similar requirements for the 

overall company across all models.  

b. Assumption (A8). We assume that the effect of any tax and excise policy on fuel prices 

(e.g., policies encouraging diesel vehicles in Europe) and/or financial incentives for 

purchasing fuel efficient vehicles (e.g., recent subsidies for electric cars in the U.S.) 

would only affect potential demand for each configuration within these regions and does 

not incur any cost to the OEM. 

c. Assumption (A9). We limit modeling of greenhouse gas (GHG) emissions to just 

product use emissions from tailpipe and upstream fuel supply chain GHG emissions. 

The data we are using in our numerical experiments is derived from 

www.fueleconomy.gov and those estimates include CO2, methane, and nitrous oxide 

emitted from all steps in the use of a fuel, from production and refining to distribution 

and final use—vehicle manufacture is excluded. Methane and nitrous oxide emissions 

are converted into a CO2 equivalent. Tailpipe emissions and upstream emissions—those 

that occur prior to the fuel being used in the vehicle—are displayed. We also assume 

that all vehicle units sold will be used for the same number of years and the emissions 

limit is in average tons/year. Future studies should account for complete product life-
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cycle emissions, including manufacturing, supply chain, and distribution (i.e., Scope 1, 2, 

and 3) and other emissions besides CO2. 

Furthermore, we assume that the regulations affecting the assortment decisions do not change 

during the planning horizon. We also assume that the fuel prices will remain constant during the 

planning horizon based on one of the fuel price scenarios. There is also no explicit consideration 

for supply chain decisions in the model.  

3.4. Methodology 

In this section, we present our framework to model assortment planning for automotive 

products. The mathematical model seeks to maximize OEM’s profit subjected to feasibility and 

environmental constraints. Before presenting the model’s objective function, it is necessary that 

we introduce demand modeling structure based on an exogenous demand model. Assume that 

       is the primary (first-choice) demand for configuration   in region    under fuel price 

scenario   . The observed demand for configuration   in region    under fuel price scenario    

would be introduced and calculated as follows: 

              ∑                              (3-1) 

where     is the substitution probability for a customer to switch to configuration   after not 

finding her favorite choice, configuration    ;   is a binary decision variable equal to one if 

configuration   is a part of the final assortment (i.e., built), and zero otherwise. We can now 

introduce the mathematical model to find the optimal assortment. A summary of notation and 

definition of all parameters and decision variables is provided in Appendix A.  

Let        be the one-period (newsvendor) profit for the OEM, from stocking assortment  , 

when fuel price realization is  . We have:  
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         (3-2) 

This profit function consists of revenue associated with sales minus any fixed cost associated 

with offering configurations as well as parts/options. The last term in equation (3-2) is the saving 

due to the economies-of-scale. Then, the expected profit would be: 

      ∑                        (3-3) 

Remember that    represents the set of fuel price scenarios and      is the corresponding 

probability. We would like to maximize       with respect to capacity and feasibility 

constraints. The complete formulation for the optimization problem is presented in Appendix B.   

3.5. Numerical Experiment 

In consultation with several subject-matter-experts (SMEs) from the U.S. automotive 

industry, we generated a set of hypothetical product assortment planning problems generally 

representative of the mid-size sedan segment in the U.S. These problems carried 120 potential 

product configurations for consideration.
4
 The SMEs also provided guidance in generating cost 

data of each part/option, and subsequently, deriving the unit costs associated with each 

configuration. The profit margins were set between 15%-30% of the unit cost (with 15% for 

cheapest configurations and 30% for most expensive ones) and added to the unit cost to compute 

                                                           
4
 It is typical for OEMs to limit the strategic assortment planning activity to key vehicle part/option content (e.g., 

body styles, engines, transmissions) to limit data collection and model formulation complexity and avoid 
considering relatively simple/cheap accessories such a floor mats and most other dealer installed content. Colors 
also often finalized much later. 
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the selling price for each configuration
5
. The overage cost of left-over inventory at the end of the 

selling period is assumed to be between 4%-12% of the unit cost of a configuration (4% for 

cheapest configurations and 12% for most expensive ones). Other data/parameters such as 

substitution probabilities (    ), primary demand fractions (       ), fixed costs of offering 

configuration (  
          

), and fixed costs of offering options    

           were also generated 

in consultation with SMEs. In total, the 120 potential configurations employ 15 different 

parts/options which are grouped into powertrain technology choices (with 10 different types 

consisting of 6 gasoline engine choices, 3 diesel engine choices, and one hybrid engine choice), 

three body style choices (sedan, two-door coupe, and hatchback), sunroof option, and finally a 

satellite radio option. While the sunroof and satellite options are truly optional (meaning that the 

customer can select a configuration without these options), powertrain and body style choices are 

choices (e.g., customer cannot select a configuration without a powertrain). Also, we assume 

three different market scenarios based on low, medium, and high but realistic prices of fuel. In 

each of these scenarios, the customers exhibit different demand for configurations with different 

levels of fuel economy. Given that the assortment planning problem is a strategic problem and 

the OEM cannot easily change the product assortment in response to changes in fuel prices 

(though customers tend to react fast to big swings in fuel prices as noticed during the last 

decade), hence, the model aims to find a robust yet optimal assortment that best maximizes the 

expected profit across all possible fuel-price / demand scenarios. In deriving the settings for our 

artificial experiments, we not only relied on the viewpoints of several SMEs from the North-

American OEMs but also the official U.S. government source for ‘fuel economy information’
6
 to 

                                                           
5
 In this study, we assume that the prices are fixed and do not change as a function of the fuel prices encountered 

in the market. This assumption has to be relaxed in a future study.  
6
 Data is gathered from http://www.fueleconomy.gov  
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make sure that the data employed is consistent with the real-world situation. All generated data 

are presented in detail in Appendix C. 

Based on powertrain technology, we categorize the whole set of configurations into 

conventional, diesel, and hybrid vehicles. Each of these configurations has its specific fuel 

economy and product use emission footprint, which could affect the optimal assortment through 

either average fuel economy (AFE) requirement or maximum allowed product use emission 

footprint constraints. Figure 1 shows the primary demand fractions for different vehicles (based 

on technology class) under different scenarios. As expected for the U.S. market, demand for 

conventional powertrain technologies (i.e., with gasoline engines) is the highest while there is 

much less demand for diesel and hybrid technologies.
7
 As evident from the figure, the demand 

for hybrid and diesel technologies is assumed to increase with higher fuel prices, for their higher 

fuel efficiency.  

Table 3.1 shows average profit margin, average overage cost, fuel efficiency in miles-per-

gallon (MPG), and greenhouse gas (GHG) emissions for the different technologies. As is 

currently the case, hybrid technologies are least profitable models but offer the highest fuel 

efficiency and lowest GHG emissions while the 3.5 liter automatic all-wheel drive (AWD) 

powertrain technology builds the most profitable configurations that return the lowest fuel 

efficiency and release highest GHG emissions. Our goal is to maximize total expected profit 

while satisfying AFE requirements and emissions constraints by identifying the supply amount 

(if any) of each configuration at each region. We used ILOG-CPLEX 11.0 to run the proposed 

mathematical model.  

                                                           
7
 This is very different from other markets such as Europe where diesel powertrains carry a large market-share in 

many vehicle segments. 
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Figure 3.1: Demand fraction for ten different powertrain technologies under different fuel prices. 

We first investigate the effect of environmental constraints on the optimal assortment. Figure 

3.2 shows the optimal solution for the problem under different AFE levels. First, it shows the 

optimal solution when there is no AFE constraint, and then, by considering AFE requirements 

under different levels.  

The first counter-intuitive observation is that production shares for different technologies 

overall look different from their primary demand fractions. As an example, although the all-

wheel-drive (AWD) 3.0 liter powertrain has the highest primary demand fraction across all 

technologies in all fuel price scenarios, this technology is only selected under two AFE 

requirement levels (No AFE & AFE = 25) and it has zero production for the other cases. The 

inconsistency between primary demand fraction and production share is mainly a result of 

environmental restrictions, product substitutions, and economies-of-scale. Another unexpected 

observation is seen by comparing 2.0 liter (2.0L) Automatic Diesel technology with FWD 3.0L, 

FWD 3.5L Automatic, and AWD 3.5L Automatic. The diesel technology is getting much higher 
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production share in all AFE levels (in particular when there is no AFE requirement) compared to 

those conventional technologies even-though the average profit margin is at least 20% less for 

the Diesel technology. The exact reason behind this observation is not clear for us; however, we 

do suspect that the effect of product substitution is an important factor in determining the optimal 

share for each configuration. 

In addition, one could observe that some particular technologies are not profitable in most 

AFE scenarios (e.g., 2.5L Manual Diesel, AWD 3.0L, and 2.5L hybrids). Since there are many 

factors affecting the optimal assortment solution (substitution effects, option fixed costs, 

economies-of-scale, etc.), it is not straightforward to predict the behavior of the optimal solution. 

However, one might consider the fact that 2.5 Manual Diesel has a lower MPG w.r.t other diesel 

technologies, and hence, is not getting a share in the optimal solution.  

One intuitive observation is that the optimal solution gives a higher share to some of the fuel 

efficient technologies when we consider environmental requirements. Also, one might observe 

that 3.5L FWD Automatic technologies get smaller production share w.r.t 3.5L AWD Automatic 

technologies in most AFE scenarios (except AFE = 28) even-though they have a better fuel 

economy, which is possibly the result of having lower average profit margin. Another 

observation is that hybrid technologies seem to be non-profitable (at least with our current 

settings) due to low profit margins even-though they are very fuel-efficient. This particular 

experiment suggests diesel technologies to be a dominant alternative for hybrid technologies in 

order to achieve higher AFE levels.  
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Table 3.1: Average margin, overage cost, MPG, and GHG emissions for different powertrain technologies 
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Conventional 

2.5 L, 4 cyl, Manual , FWD 2,500 1,200 25
*
  7.3

*
 

2.5 L, 4 cyl, Automatic, FWD 3,000 1,400 26
*
 7.1

*
 

FFV 3.0 L, 6 cyl, Automatic, FWD 3,000 1,400 23
*
 8.0

*
 

FFV 3.0 L, 6 cyl, Automatic, AWD 2,800 1,300 20
*
 9.1

*
 

3.5 L, 6 cyl, Automatic, FWD 3,000 1,400 21
*
 8.7

*
 

3.5 L, 6 cyl, Automatic, AWD 3,100 1,500 19
*
 9.6

*
 

Diesel 

2.5 L, 4 cyl, Manual Diesel  2,600 1,500 26
**

 7.1
**

 

2.0 L, 4 cyl, Automatic Diesel 2,500 1,500 33
**

 6.3
**

 

2.0 L, 5 cyl, Manual Diesel 2,400 1,600 34
**

 5.9
**

 

Hybrid 2.5 L, 4 cyl, Automatic Hybrid 1,800 1,300 39
*
 4.7

*
 

* Numbers are from http://www.fueleconomy.gov  
** Numbers are generated based on data for similar class vehicles 

 

 

Figure 3.2: Production levels for different powertrain technologies under different AFE requirements 
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In terms of profit, it can be seen from Figure 3 that satisfying AFE requirements is reducing 

OEM’s profit from 0.77% to 6.91% for different AFE requirements. This is a considerable share 

of profit and suggests need for potential investment in developing fuel efficient technologies at 

lower prices. Finally, Figure 4 shows amount of average annual GHG emissions under different 

AFE levels, which steadily reduces when satisfying higher AFE levels. This diagram can be a 

good indicator of pollution savings while forcing automakers to satisfy AFE requirement. 

Considering two extreme AFE levels (AFE=28 and No AFE) in Figures 3 and 4, the net effect is 

a reduction of GHG emissions by about 200,000 U.S. tons (almost one U.S. tons per vehicle) 

costs almost 69 million dollars for the automakers (which could be a potential limit on any 

subsidies spent on GHG emission reduction in the auto industry).  

 

Figure 3.3: Total OEM’s profit under different CAFE requirements 

No CAFE CAFE=25 CAFE=26 CAFE=27 CAFE=28
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Figure 3.4: Average Annual GHG Emissions (U.S. tons/vehicle) under Different AFE Requirements 

3.6. Conclusion  

We present a modeling framework for assortment planning of automotive products using an 

exogenous demand model. The objective is to maximize OEM’s profit while meeting a set of 

environmental constraints. The numerical experiments presented suggest that production rates 

have a different trend w.r.t. primary demand fractions due to product substitution effects, profit 

margin differences, and environmental constraints. Also, we show that hybrid technologies are 

not being selected in the optimal assortment solution because of low profit margins while 2.0 L 

manual Diesel technologies have been selected as a reliable alternative to help meet CAFE 

requirements.  
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3.7. Appendix  

Appendix A: Notation   

Table 3.2: Problem parameters, Sets, and Decision variables  

Sets 

        Set of all potential configurations, 

        Set of all market regions,   

        denote the set of all options required for assortment production,  

        Set of all discount levels for an option.  

         Set of all scenarios on fuel price. 
 

Parameters 

        Primary (first-choice) demand for configuration   in region    under fuel price 

scenario   when facing a full assortment 

        fuel economy (calculated based on miles per gallon) of configuration    
CAFE_Standard CAFE standard regulated by US federal government 

      Life cycle carbon equivalent emission of configuration   
          Maximum level of total carbon equivalent emission allowed for the whole 

assortment 

    Substitution probability of switching to configuration   after not finding the 

favorite choice, configuration   
   Selling price of configuration   

  
         Variable cost of every unit of configuration   

  
      Fixed cost of configuration   , if carried in the market.  

  
       

 Overage cost of configuration   if not sold. 

  
 
 Amount of discount for each unit of option   if purchased at quantity level    

  
 
 Bill of material parameter equal to one if configuration   requires option   and 

zero otherwise. 

   
 

 The lower-point of quantity for level   of option  .  

BigM A sufficiently large number  

     Maximum production capacity of the OEM 

      Probability mass function for fuel price scenario   
 

Decision Variables 

  
  Number of vehicles of configuration    supplied to the region   of the market.  

  
      

 A binary decision variable equal to one if configuration   is built, and zero 

otherwise.  

  
    

 A binary decision variable equal to one if option   is required, and zero otherwise.  

   Total required units of option   for the production of all configurations 

 ̃ 
 

 Total required units of option   purchased at discount level    

         
 
 A binary decision variable equal to one if option   is purchased at discount level  , 

and zero otherwise. 

         Left-over inventory of configuration     in region   , under fuel price scenario   , 

given supply vector is Y.  

       Effective demand for configuration   in region  , under fuel price scenario   
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Appendix B: Mathematical Formulation   
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Constraint (3-5) captures effective demand for configuration    in region   under fuel price 

scenario   . This constrain consists of original demand (      ) plus any demand as a result of 

substitution from missing products. Constraint (3-6) determines the left-over inventory of 

configuration    in region  , constraint (3-7) is to guarantee that total production does not exceed 

the maximum production limit. Constraint (3-8) is to ensure that there is no production for a 

vehicle that is not to be built. Constraints (3-9 and 3-10) are optional and used to limit the total 

production/maximum number of configurations supplied to the market. Constraint (3-11) is to 

ensure that the assortment satisfies the OEM’s target average fuel economy (AFE) for the model 

in support of meeting overall CAFE requirement for the whole company; is the linearized form 

of this formulation: 

∑ ∑   
 

        

∑
∑   

 
    

       
    

              (3-25) 

Constraint (3-12) is to ensure that the average annual tail-pipe and upstream fuel CO2 emissions 

in the assortment do not exceed a predetermined threshold. Constraints (3-13 and 3-14) find total 

units of option   required for the production of all configurations. Constraints (3-15 to 3-20) are 
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required to determine the discount level from economies-of-scale for each option in the 

assortment. Equations (3-21to 3-24) declare the variable types. 
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Appendix C: Data Employed for Numerical Experiments  

Table 3.3: Total demand and corresponding probabilities in different scenarios 

 Fuel price Scenario 1 Fuel price Scenario 2 Fuel price Scenario 3 

Total demand 200,000 200,000 200,000 

Probability 0.2 0.45 0.35 

 

Table 3.4: Selling price, unit and overage cost, and primary demand fraction per configuration 
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1 

2.5 L, 4 cyl, 

Manual , 

FWD 

17.6 14.6 1.8 0.0241 0.0219 0.0208 

2 18.2 15.1 1.9 0.0145 0.0132 0.0125 

3 15.5 13.4 0.7 0.0130 0.0118 0.0112 

4 15.6 13.5 0.7 0.0097 0.0088 0.0083 

5 16 13.9 0.7 0.0080 0.0073 0.0069 

6 17.6 14.6 1.8 0.0078 0.0071 0.0067 

7 18.6 15.5 1.9 0.0052 0.0047 0.0045 

8 20.4 17 2.1 0.0048 0.0044 0.0042 

9 15.1 13.1 0.7 0.0043 0.0039 0.0037 

10 15.9 13.8 0.7 0.0032 0.0029 0.0028 

11 16 13.9 0.7 0.0026 0.0024 0.0022 

12 16.1 14 0.7 0.0017 0.0016 0.0015 

13 

2.5 L, 4 cyl, 

Automatic, 

FWD 

22.8 17.5 2.1 0.0349 0.0317 0.0301 

14 14.2 12.3 0.7 0.0209 0.0190 0.0181 

15 17.3 14.4 1.8 0.0188 0.0171 0.0162 

16 19.2 16 2 0.0139 0.0127 0.0120 

17 18 15 1.8 0.0116 0.0106 0.0100 

18 14.7 12.7 0.7 0.0113 0.0102 0.0097 

19 15.5 13.4 0.7 0.0075 0.0068 0.0065 

20 22.8 17.5 2.1 0.0070 0.0063 0.0060 

21 15.7 13.6 0.7 0.0063 0.0057 0.0054 

22 17.2 14.3 1.8 0.0046 0.0042 0.0040 

23 15.6 13.5 0.7 0.0038 0.0034 0.0032 

24 17.2 14.3 1.8 0.0025 0.0023 0.0022 

25 FFV 3.0 L, 23.4 18 2.2 0.0295 0.0268 0.0241 
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26 6 cyl, 

Automatic, 

FWD 

19 15.8 1.9 0.0177 0.0161 0.0145 

27 13.7 11.9 0.6 0.0159 0.0144 0.0130 

28 14.5 12.6 0.7 0.0118 0.0107 0.0097 

29 16 13.9 0.7 0.0098 0.0089 0.0080 

30 14.7 12.7 0.7 0.0095 0.0087 0.0078 

31 23.4 18 2.2 0.0064 0.0058 0.0052 

32 14.8 12.8 0.7 0.0059 0.0054 0.0048 

33 18.6 15.5 1.9 0.0053 0.0048 0.0043 

34 25.4 19.5 2.4 0.0039 0.0036 0.0032 

35 19.6 16.3 2 0.0032 0.0029 0.0026 

36 15.1 13.1 0.7 0.0021 0.0019 0.0017 

37 

FFV 3.0 L, 

6 cyl, 

Automatic, 

AWD 

20.4 17 2.1 0.0697 0.0634 0.0570 

38 18.6 15.5 1.9 0.0418 0.0380 0.0342 

39 15.1 13.1 0.7 0.0375 0.0341 0.0307 

40 15.2 13.2 0.7 0.0279 0.0254 0.0228 

41 15.9 13.8 0.7 0.0232 0.0211 0.0190 

42 17.7 14.7 1.8 0.0225 0.0205 0.0184 

43 17.8 14.8 1.8 0.0150 0.0137 0.0123 

44 15.9 13.8 0.7 0.0139 0.0127 0.0114 

45 19.5 16.2 2 0.0125 0.0114 0.0102 

46 14.2 12.3 0.7 0.0093 0.0085 0.0076 

47 24.1 18.5 2.3 0.0075 0.0068 0.0061 

48 19.6 16.3 2 0.0050 0.0046 0.0041 

49 

3.5 L, 6 cyl, 

Automatic, 

FWD 

14.3 12.4 0.7 0.0176 0.0146 0.0117 

50 22.8 17.5 2.1 0.0105 0.0088 0.0070 

51 14.2 12.3 0.7 0.0095 0.0079 0.0063 

52 15.1 13.1 0.7 0.0070 0.0059 0.0047 

53 20.2 16.8 2.1 0.0059 0.0049 0.0039 

54 15.2 13.2 0.7 0.0057 0.0047 0.0038 

55 26 20 2.4 0.0038 0.0032 0.0025 

56 18 15 1.8 0.0035 0.0029 0.0023 

57 14.7 12.7 0.7 0.0032 0.0026 0.0021 

58 20.1 16.7 2.1 0.0023 0.0020 0.0016 

59 13.3 11.5 0.6 0.0019 0.0016 0.0013 

60 20.2 16.8 2.1 0.0013 0.0011 0.0008 

61 

3.5 L, 6 cyl, 

Automatic, 

AWD 

15.7 13.6 0.7 0.0293 0.0244 0.0195 

62 17.2 14.3 1.8 0.0176 0.0146 0.0117 

63 23.8 18.3 2.2 0.0158 0.0131 0.0105 

64 23.4 18 2.2 0.0117 0.0098 0.0078 

65 18.3 15.2 1.9 0.0098 0.0081 0.0065 

66 17.1 14.2 1.8 0.0095 0.0079 0.0063 

67 13.7 11.9 0.6 0.0063 0.0053 0.0042 

68 19 15.8 1.9 0.0059 0.0049 0.0039 

69 17.2 14.3 1.8 0.0053 0.0044 0.0035 

70 13.7 11.9 0.6 0.0039 0.0033 0.0026 

71 14.5 12.6 0.7 0.0032 0.0026 0.0021 

72 20.1 16.7 2.1 0.0021 0.0018 0.0014 

73 2.5 L, 4 cyl, 

Manual 

14.1 12.8 0.7 0.0197 0.0219 0.0351 

74 14.9 13.5 0.7 0.0118 0.0132 0.0211 
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75 Diesel 14 12.7 0.7 0.0106 0.0118 0.0189 

76 21.5 17.2 2.1 0.0079 0.0088 0.0140 

77 17.3 15 1.8 0.0066 0.0073 0.0117 

78 12.3 11.1 0.6 0.0064 0.0071 0.0113 

79 21.7 17.3 2.1 0.0043 0.0047 0.0076 

80 24.4 19.5 2.4 0.0039 0.0044 0.0070 

81 18.8 16.3 2 0.0035 0.0039 0.0063 

82 14.5 13.1 0.7 0.0026 0.0029 0.0047 

83 21.5 17.2 2.1 0.0021 0.0024 0.0038 

84 13.2 12 0.6 0.0014 0.0016 0.0025 

85 

2.0 L, 4 cyl, 

Automatic 

Diesel 

17 14.7 1.8 0.0154 0.0171 0.0213 

86 23.4 18.7 2.3 0.0092 0.0102 0.0128 

87 23.5 18.8 2.3 0.0083 0.0092 0.0115 

88 15.2 13.8 0.7 0.0061 0.0068 0.0085 

89 17.9 15.5 1.9 0.0051 0.0057 0.0071 

90 18.7 16.2 2 0.0050 0.0055 0.0069 

91 17 14.7 1.8 0.0033 0.0037 0.0046 

92 13.6 12.3 0.7 0.0031 0.0034 0.0043 

93 13.7 12.4 0.7 0.0028 0.0031 0.0038 

94 19.4 16.8 2.1 0.0020 0.0023 0.0028 

95 15.4 14 0.7 0.0017 0.0018 0.0023 

96 14.3 13 0.7 0.0011 0.0012 0.0015 

97 

2.0 L, 5 cyl, 

Manual 

Diesel 

 

22.2 17.7 2.2 0.0110 0.0122 0.0152 

98 17.9 15.5 1.9 0.0066 0.0073 0.0091 

99 12.8 11.6 0.6 0.0059 0.0066 0.0082 

100 19.3 16.7 2.1 0.0044 0.0049 0.0061 

101 12.7 11.5 0.6 0.0037 0.0041 0.0051 

102 18.4 16 2 0.0035 0.0039 0.0049 

103 22.9 18.3 2.2 0.0024 0.0026 0.0033 

104 24 19.2 2.4 0.0022 0.0024 0.0030 

105 16.4 14.2 1.8 0.0020 0.0022 0.0027 

106 13.1 11.9 0.6 0.0015 0.0016 0.0020 

107 18.4 16 2 0.0012 0.0013 0.0016 

108 14.9 13.5 0.7 0.0008 0.0009 0.0011 

109 

2.5 L, 4 cyl, 

Automatic 

Hybrid 

20.2 17.5 1.6 0.0078 0.0098 0.0137 

110 19.8 17.2 1.6 0.0047 0.0059 0.0082 

111 16.5 15 1.4 0.0042 0.0053 0.0074 

112 14.2 13.5 0.6 0.0031 0.0039 0.0055 

113 11.7 11.1 0.5 0.0026 0.0033 0.0046 

114 18.2 16.5 1.5 0.0025 0.0032 0.0044 

115 21.6 18.7 1.7 0.0017 0.0021 0.0029 

116 17.1 15.5 1.4 0.0016 0.0020 0.0027 

117 20.7 18 1.7 0.0014 0.0018 0.0025 

118 13.7 13 0.6 0.0010 0.0013 0.0018 

119 17.6 16 1.5 0.0008 0.0011 0.0015 

120 20.2 17.5 1.6 0.0006 0.0007 0.0010 
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Table 3.5: Bill of materials 
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1 

2.5 L, 4 cyl, Manual , FWD 

 

1 0 0 1 1 

2 0 1 0 1 1 

3 1 0 0 0 1 

4 0 0 1 1 1 

5 1 0 0 1 0 

6 0 1 0 0 1 

7 0 0 1 0 1 

8 0 1 0 1 0 

9 1 0 0 0 0 

10 0 0 1 1 0 

11 0 1 0 0 0 

12 0 0 1 0 0 

13 

2.5 L, 4 cyl, Automatic, FWD 

 

1 0 0 1 1 

14 0 1 0 1 1 

15 1 0 0 0 1 

16 0 0 1 1 1 

17 1 0 0 1 0 

18 0 1 0 0 1 

19 0 0 1 0 1 

20 0 1 0 1 0 

21 1 0 0 0 0 

22 0 0 1 1 0 

23 0 1 0 0 0 

24 0 0 1 0 0 

25 

FFV 3.0 L, 6 cyl, Automatic, FWD 

 

1 0 0 1 1 

26 0 1 0 1 1 

27 1 0 0 0 1 

28 0 0 1 1 1 

29 1 0 0 1 0 

30 0 1 0 0 1 

31 0 0 1 0 1 

32 0 1 0 1 0 

33 1 0 0 0 0 

34 0 0 1 1 0 

35 0 1 0 0 0 

36 0 0 1 0 0 

37 FFV 3.0 L, 6 cyl, Automatic, AWD 

 

1 0 0 1 1 

38 0 1 0 1 1 
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39 1 0 0 0 1 

40 0 0 1 1 1 

41 1 0 0 1 0 

42 0 1 0 0 1 

43 0 0 1 0 1 

44 0 1 0 1 0 

45 1 0 0 0 0 

46 0 0 1 1 0 

47 0 1 0 0 0 

48 0 0 1 0 0 

49 

3.5 L, 6 cyl, Automatic, FWD 

 

1 0 0 1 1 

50 0 1 0 1 1 

51 1 0 0 0 1 

52 0 0 1 1 1 

53 1 0 0 1 0 

54 0 1 0 0 1 

55 0 0 1 0 1 

56 0 1 0 1 0 

57 1 0 0 0 0 

58 0 0 1 1 0 

59 0 1 0 0 0 

60 0 0 1 0 0 

61 

3.5 L, 6 cyl, Automatic, AWD 

 

1 0 0 1 1 

62 0 1 0 1 1 

63 1 0 0 0 1 

64 0 0 1 1 1 

65 1 0 0 1 0 

66 0 1 0 0 1 

67 0 0 1 0 1 

68 0 1 0 1 0 

69 1 0 0 0 0 

70 0 0 1 1 0 

71 0 1 0 0 0 

72 0 0 1 0 0 

73 

2.5 L, 4 cyl, Manual Diesel 

 

1 0 0 1 1 

74 0 1 0 1 1 

75 1 0 0 0 1 

76 0 0 1 1 1 

77 1 0 0 1 0 

78 0 1 0 0 1 

79 0 0 1 0 1 

80 0 1 0 1 0 

81 1 0 0 0 0 

82 0 0 1 1 0 

83 0 1 0 0 0 

84 0 0 1 0 0 

85 
2.0 L, 4 cyl, Automatic Diesel 

 

1 0 0 1 1 

86 0 1 0 1 1 

87 1 0 0 0 1 
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88 0 0 1 1 1 

89 1 0 0 1 0 

90 0 1 0 0 1 

91 0 0 1 0 1 

92 0 1 0 1 0 

93 1 0 0 0 0 

94 0 0 1 1 0 

95 0 1 0 0 0 

96 0 0 1 0 0 

97 

2.0 L, 5 cyl, Manual Diesel 

 

1 0 0 1 1 

98 0 1 0 1 1 

99 1 0 0 0 1 

100 0 0 1 1 1 

101 1 0 0 1 0 

102 0 1 0 0 1 

103 0 0 1 0 1 

104 0 1 0 1 0 

105 1 0 0 0 0 

106 0 0 1 1 0 

107 0 1 0 0 0 

108 0 0 1 0 0 

109 

 

2.5 L, 4 cyl, Automatic Hybrid 

 

1 0 0 1 1 

110 0 1 0 1 1 

111 1 0 0 0 1 

112 0 0 1 1 1 

113 1 0 0 1 0 

114 0 1 0 0 1 

115 0 0 1 0 1 

116 0 1 0 1 0 

117 1 0 0 0 0 

118 0 0 1 1 0 

119 0 1 0 0 0 

120 0 0 1 0 0 
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Table 3.6: Fixed cost and discount information per part/option 

Part ID Part/option  Name Fixed cost ($1,000) 
Minimum purchase 

(to receive discount) 
Discount 

1 2.5 L, 4 cyl, Manual , FWD 10,800 37,000 180 

2 2.5 L, 4 cyl, Automatic, FWD 12,000 50,000 200 

3 FFV 3.0 L, 6 cyl, Automatic, FWD 13,200 40,000 220 

4 FFV 3.0 L, 6 cyl, Automatic, AWD 15,300 16,000 255 

5 3.5 L, 6 cyl, Automatic, FWD 16,500 12,000 275 

6 3.5 L, 6 cyl, Automatic, AWD 18,000 25,000 300 

7 2.5 L, 4 cyl, Manual Diesel 22,500 46,000 375 

8 2.0 L, 4 cyl, Automatic Diesel 24,000 36,000 400 

9 2.0 L, 5 cyl, Manual Diesel 25,500 20,000 425 

10 2.5 L, 4 cyl, Automatic Hybrid 30,000 20,000 500 

11 4 Doors Body 4,500 95,000 75 

12 2 Doors Body 6,000 72,000 100 

13 Hatch Back Body 4,500 60,000 75 

14 Sunroof 3,600 130,000 60 

15 Satellite radio 2,400 135,000 40 
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Chapter 4. Packaging Product Features for Automotive Assortments 

4.1. Introduction 

Building on the models presented in earlier chapters, here, we once again limit our 

discussion/experiments to the automotive industry and develop product assortment planning 

models that explicitly consider “feature packaging” rules in decision making. In the past decades, 

there has been considerable work dedicated to demand aspects of assortment planning (see Kök 

et al. 2008, for a literature review). Furthermore, some researchers have been interested in 

studying the effect of variety on manufacturing performance (MacDuffie et al. 1996) or its effect 

on assembly operations (Fisher and Ittner, 1999). There has also been some research on feature 

bundling and its effect on consumer behavior (Johnson et al 1999, Hamilton and Koukova 2008). 

But to the best of our knowledge, there is not yet a comprehensive approach that considers 

feature packaging in planning product assortments for configurable products, the focus of this 

Chapter.  

The rest of the Chapter is organized as follows: Section 2 reviews the most relevant literature; 

Section 3 discusses the problem setting and the main assumptions behind our model in more 

detail. Problem formulation is presented in Section 4 while a number of numerical experiments 

are discussed in Section 5. Finally, Section 6 gives some conclusions. 

4.2. Literature Review 

In terms of research on product bundling, we can see two different approaches to bundling in 

the literature. Venkatesh and Mahajan (2009) describe these major types of methodological 

approaches as design oriented and pricing oriented approaches. The first approach is mainly used 

to identify the set of products which should go into the bundle while the latter one “typically 
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assumes a product portfolio and proposes the prices at which the individual items and/or bundles 

should be offered”. In this paper we use packaging as a tool to identify the features that should 

be grouped together to form a bundle for consumers. Hanson and Martin (1990) present a 

mathematical programming formulation to determine the bundle configurations and prices to 

maximize profit. Venkatesh and Mahajan (1993) propose an approach to optimally price a 

bundle of products or services to maximize firms’ profit. They consider a multi-criteria decision-

making situation and find the optimal price for a given bundle under different bundling 

strategies. Johnson et, al. (1999) study the effects of price bundling on how consumers evaluate 

product offerings. Later, Stremersch and Tellis (2002) present a set of strategies for bundling and 

discuss that price bundling and product bundling are independent strategies allowing firms to 

mix and match them in order to meet consumer demand better. Bitran and Ferrer (2007) consider 

the problem to find the optimal selection of the bundle’s component and the optimal price to 

offer it. They assume that demand is modeled using a multinomial logit model (MNL) and is a 

function of the bundle price and product attributes. Gurler et al (2009) study optimal bundling 

and pricing decisions for perishable products with limited stocks and discuss how to form 

bundles and how to price them in order to maximize expected profit.   

4.3. Assumptions 

In order to manage product assortment complexity, the OEMs usually build and offer the 

optimal assortment to the dealers under a particular representation where all product 

configurations are grouped into a number of series. In this representation, each individual series 

consist of a number of base parts/options which are decided up-front for that series (like a fixed 

powertrain choice, a fixed body type choice, etc.) besides a number of packages and/or stand-

alone options that the customer can choose from. The packages usually include more than one 
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option and the customer should either choose a configuration containing all options in the 

package or choose a configuration with none of the options in the package. Note that the content 

of the packages and stand-alone choices (as well as the size of the packages) is not set prior to 

solving the model. We mention the rules/requirements that are used in this study to return 

optimal packages as well as the optimal assortment. These rules/requirements are based on our 

discussion with several Subject Expert Matters from North-American auto-makers and are as 

following: 

1- If a package in series X consists of options A and B, all the configurations in this series, 

should have either both options A and B or neither of them installed. 

2- We consider upper and lower limits on the size of the packages, however the formulation 

is capable of handling any arbitrary combination of number of packages and any package 

size 

3- The price of configurations within a particular series is subject to be within a given range. 

(for example S-series are subject to take lower price range compared to premium series)  

4- There is a lower and upper limit on the price of any package for different series.  

5- The model allows assigning an option to more than one package within a particular series. 

6- There are some exclusive rules by automakers that prohibit offering some of the options in 

some particular series (for example 2.0L EcoBoost Automatic AWD and BLIS are never 

offered for basic series like series S). These exclusive rules are exogenous data to our 

model. 

Now suppose that for the product under consideration, },...,1{ nN   denotes the set of 

potential configurations that can be made available by the OEM. Assortment planning involves 

selecting a subset of these configurations for tooling the assembly line and readying the 
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dealers/retailers which maximizes OEM’s profit. We present the rest of assumptions in this paper 

as follows: 

Every potential customer has a favorite configuration from the set  . The potential demand 

for each configuration    ,   , is an allocated and known fraction of total market demand,    

We believe that the fractional allocation model is an acceptable approach for modeling demand 

since some major automakers, including Toyota, have adopted this method for mix planning 

(Iyer et all, 2009). We assume that if the customer cannot find her favorite configuration  , she 

will decide not to substitute with probability    . Else, she will choose configuration   with 

probability    . The substitution probabilities are assumed to be exogenous to our model and are 

flexibly allowed to take any structure. However, for our numerical experiments and without loss 

of generality, we consider substitution probabilities to be derived based on price and content 

similarities between configurations which is similar to the                           concept 

discussed by Vaagen et al (2011). We also consider fixed cost   
          

 associated with 

offering part/option   as well as   
        

 associated with fixed cost of introducing configuration 

  in the assortment. We assume that each configuration j  has a manufacturing unit cost   
     and 

that the prices for each product configuration,    ,
 

are set exogenously and are available 

         for product assortment planning. We also consider complexity cost factor in our model 

which could incur additional costs due to larger number of configurations (less efficiency in 

balancing assembly line and increased TACT time, etc.) and/or larger number of potential 

choices per parts/options (more manufacturing facilities, more experienced labor forces, etc.). In 

this paper and based on discussions with couple of Subject Expert Matters in automotive 

industry, we assume that complexity cost is a concave non-decreasing function with regard to 
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size of the assortment.  We also assume that the cost of supplying different parts/options from 

the suppliers to OEM may be affected by the volume. That is, the company would receive 

discounts on some options if purchased in large quantities. The information related to discount 

policies is exogenous to our model and the supplier offers its products under All-Unit-Discount 

policy and the OEM does not incur any additional cost other than unit purchasing price due to 

manufacturing or complexity costs of supplier. 

4.4. Problem Formulation 

In this section, we present our framework to model assortment planning for automotive 

products. The mathematical model seeks to maximize OEM’s profit subjected to feasibility 

constraints and packaging requirements. Before presenting the model’s objective function, it is 

necessary that we introduce demand modeling structure based on an exogenous demand model. 

Assume that    is the primary (first-choice) demand for configuration  . The observed demand 

for configuration   would be introduced and calculated as follows: 

      ∑                           (4-1) 

where     is the substitution probability for a customer to switch to configuration   after not 

finding her favorite choice, configuration   . After calculating the effective demand for each 

configuration, we can build our model to find the optimal assortment. Let      be the one-period 

(newsvendor) profit for the OEM, from stocking assortment Y, We have:  

      ∑        
                    

       
    

 

   

  

 ∑   
     

    ∑    
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                     ∑ ∑   
   ̃ 

 
            (4-2) 

This profit function consists of revenue associated with sales minus complexity cost and any 

fixed cost associated with offering configurations as well as parts/options. The last term in 

equation (4-2) is the discounts received due to the economies-of-scale. We would like to 

maximize      with respect to capacity and feasibility constraints and packaging requirements. 

Here, we present the whole optimization problem followed by the feasibility constraints.  
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Equation (4-4) is to calculate the observed (effective) demand while equation (4-5) 

determines the left-over inventory of configuration  . Equations (4-6 and 4-7) are to make sure 

that there is no production for a configuration that is not built. Equation (4-8) is to guarantee that 

total production does not exceed the maximum production limit. Equations (4-9 and 4-10) finds 

total units of option   required for the production of all configurations. Equations (4-11 to 4-16) 

are to choose a discount level (for economies-of-scales) for each option in the assortment and 

equation (4-17) calculates piece-wise linear manufacturing complexity cost. Equation (4-18) 

states that each configuration should be assigned to no more than one series. Equations (4-19 to 

4-20) put a limit on total cost of all options in a package (or a standalone option) while equations 

(4-21 and 4-22) limit the number of options in package. Equation (4-23) states that when a part is 

assigned to any package, it is forced to be built and equation (4-24) determines when a part is not 

assigned to any package in no series, it is forced to be not built. Equation (4-25) requires that 

when a series doesn't have a particular option in any of the packages, that series shouldn't offer 

any configuration containing that option. Equation (4-26) prohibits option p to be offered on 

series s in case of exogenous restrictions and equations (4-27 and 4-28) enforce a one to one 

relation between          and    decision variables.  Equations (4-29 and 4-30) force the 

configurations in each series to take prices within a pre-determined range (with some possible 

overlaps across some series). Finally equations (4-31 to 4-35) are a set of linear rules to make 

sure that if series   includes package   with some options, all the configurations in series   have 

to contain either all options in package   or none of those options is allowed for configurations 

within series  .  
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4.5. Numerical Experiments 

We generated an example with 192 potential configurations and made an artificial data set for 

cost of each part/option and based on that, derived the unit cost associated with each 

configuration. We also generate artificial data related to other parameters like substitution 

probabilities (   ), demand fractions (  ), fixed costs of offering configuration (  
          ), and 

fixed costs of offering option    
          

 . All 192 potential configurations are made from 11 

different options consisting of six powertrain technology choices (PT1: 2.5L i4 Manual FWD, 

PT2: 2.5L i4 Automatic FWD, PT3: 1.6L EcoBoost Automatic FWD, PT4: 1.6L EcoBoost 

Automatic AWD, PT5: 2.0L EcoBoost Automatic FWD, and PT6: 2.0L EcoBoost Automatic 

AWD), and 5 binary options: Ford Sync, Moon-roof, Rearview Camera, Navigation system, and 

Blind Spot Information System (BLIS). The generated data is presented in appendix B.   

We would like to maximize total profit while meeting packaging requirements by identifying 

the supply amount (if any) of each configuration. We use ILog-Cplex 11.0 to run the 

mathematical model presented in this paper. A summary of results is presented in tables 4.1 and 

4.2 

Table 4.1: Average profit margin, price ranges and number of configurations in each series  

 
Series 1 Series 2 Series 3 Series 4 

Total number of configurations 4 15 25 14 

Minimum selling price 14,400 16,100 18,700 23,300 

Maximum selling price 15,300 19,300 23,400 25,700 

Average selling price 14,875 17,887 20,170 24,264 
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As seen in the table, different series are taking quiet different assortment sizes with Series 1 

being the smallest and series 3 the largest one. This is mainly due to higher primary demand 

fractions of configurations that are allowed to be built on series 2 and 3. Also, the total size of 

assortment is 58 out of 192 potential configurations which is considerably small size.  

Table 4.2: Options available over different series 

 
Powertrains 

(Baseline) 
First Package Second Package 

First 

standalone 

Second 

standalone 

Series 

1 

PT1, PT2 

Ford 

Sync 

- - 

 

- - 

Series 

2 

PT1,PT2,PT3,PT4 

Ford 

Sync 

Moon 

roof 

Rearview 

Camera 

- Navigation - 

Series 

3 

PT3,PT4 

Rearview 

Camera 

- 

Ford 

Sync 

Navigation Moon roof BLIS 

Series 

4 

PT5,PT6 

Moon 

roof 

- 

Ford 

Sync 

Navigation 

Rearview 

Camera 

BLIS 

 

Table 4.3: Optimal size of packages and standalones across all four series 

  
First package Second package First standalone Second standalone 

Package 

Size 

Optimal  

Size 

Lower 

Limit  

Upper 

Limit  

Optimal  

Size 

Lower 

Limit  

Upper 

Limit  

Optimal  

Size 

Lower 

Limit  

Upper 

Limit  

Optimal  

Size 

Lower 

Limit  

Upper 

Limit  

Series 1 1 0 1 - - - 

Series 2 2 1 2 1 1 1 1 0 1 - 

Series 3 1 1 2 2 1 3 1 0 1 1 0 1 

Series 4 1 1 2 2 1 3 1 0 1 1 0 1 
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4.6. Conclusion 

We present a framework for packaging product features for automotive assortments in order 

to maximize OEM’s profit. Overall, it looks that feature packaging gives a very powerful tool to 

decision makers in auto industry to select the optimal assortment as well to represent it in an easy 

way to customers. It also helps automakers to considerably cut their assortment size to manage 

their manufacturing complexity costs.  
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4.7. Appendix  

Appendix A: Notation   

Table 4.4: Problem parameters, sets, and decision variables  

Sets 

        Set of all potential configurations, 

        Set of all parts/options that build configurations 

        Set of all discount levels for an option.  

                 Set of all breakpoints of piecewise complexity cost 

         Set of all vehicle series 

           Set of all packages (including standalones) associated with all series   

          Set of parts/options that can be offered to customers as a choice in 

any of the PACKAGES 

 

Parameters 

    Primary (first-choice) demand fraction for configuration   when 

facing a full assortment 

              Price of standalone part/option   when offered to customers 

                Minimum acceptable price of package (or standalone)   when 

offered at series   

               Maximum acceptable price of package (or standalone)   when 

offered at series   

               Minimum acceptable size of package (or standalone)   when offered 
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at series   

              Maximum acceptable size of package (or standalone)   when offered 

at series   

                    Equal to one if option   is allowed to be offered in series  , 

otherwise zero 

    Substitution probability of switching to configuration   after not 

finding the favorite choice, configuration   

    Selling price of configuration  ,  

  
         Variable cost of every unit of configuration   

  
      Fixed cost of configuration   , if carried in the market.  

  
       

 Overage cost of configuration   if not sold. 

  
 
 Amount of discount for each unit of option   if purchased at quantity 

level    

  
 
 Bill of material parameter equal to one if configuration   requires 

option   and zero otherwise. 

   
 
 The lower-point of quantity for level   of option  .  

BigM A sufficiently large number  

     Maximum production capacity of the OEM 

       Total manufacturing complexity cost for k
th

 level of complexity 

       Assortment size at k
th

 level of complexity 
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Decision Variables 

  
  Number of vehicles of configuration    supplied to the region   of the 

market.  

   A binary decision variable equal to one if configuration   is built, and 

zero otherwise.  

   A binary decision variable equal to one if option   is required, and 

zero otherwise.  

   Total required units of option    for the production of all 

configurations 

 ̃ 
 

 Total required units of option   purchased at discount level    

         
 

 A binary decision variable equal to one if option   is purchased at 

discount level  , and zero otherwise. 

     Left-over inventory of configuration    given supply vector is Y.  

   Effective demand for configuration   

                Total manufacturing complexity cost 

            A binary decision variable equal to one if configuration   is offered 

at series    

             A binary decision variable equal to one if option   is offered at 

package   on series     

                    Intermediate binary variables  

                     Intermediate binary variables  
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Chapter 5. Conclusion & Future Research 

In this dissertation, we study product assortment planning for a manufacturer of configurable 

products. In the second chapter, we study assortment planning of configurable products under 

stock-out based substitution. We use an exogenous demand model that accounts for product 

substitution, manufacturing complexity cost and economies-of-scale. We develop a mixed-

integer-nonlinear program and propose an alternate (linear) Modified Branch and Bound 

procedure for solving the original problem. The result shows the importance of considering 

substitution effects for product assortment planning. We also observe that M-BnB method 

surpasses Bonmin in terms of solution time for all the selected experiments while in terms of 

objective function it returns a better solution in 11 out of 14 experiments with two other 

experiments returning the same objective value. In the third chapter, we present a framework for 

assortment planning of automotive products using an exogenous demand modeling. Our 

objective is maximizing OEM’s profit through considering a set of environmental constraints. 

The numerical experiment presented in this chapter suggests that production rates have a 

different trend w.r.t primary demand fractions due to product substitution effects. Also, we show 

that hybrid technologies are not being selected in the optimal solution because of low profit 

margins while 2.0 L manual Diesel technologies have been selected as a reliable alternative to 

help meet CAFE requirements. Finally and in the fourth chapter, we present a framework for 

packaging product features for automotive assortments in order to maximize OEM’s profit. We 

show that feature packaging is a very powerful tool for decision makers in auto industry to select 

the optimal assortment as well to represent it in an easy way to customers. It also helps 

automakers to considerably cut their assortment size to manage their manufacturing complexity 

costs. 
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5.1. Future Research 

During different parts of this dissertation, we are using an exogenous demand model for the 

primary demand fraction and substitution parameters. However, it could be quiet difficult to 

estimate these parameters when dealing with real world problems. We see it very worthy to 

develop methodologies for estimating those parameters.  

As mentioned earlier, our scope is to provide strategic level guidance on the optimal 

assortment at different marketing regions followed by the production levels. A more tactical 

level decision would be achieved by extending this model to determine the optimal stock levels 

of configurations at dealer level. These types of models could be more attractive due to very high 

stock-out rates at dealers as well as a relatively high rate of transshipment among dealers in a 

region.  

Another possible extension to our current work could be achieved in terms of solution 

strategies. Even though our Modified Branch and Bound method is able to solve larger models 

much faster compared to current MINLP solvers, there are still real world problems that our 

model is not capable of solving and returning an optimal solution in a reasonable amount of time. 

For this reason, we suggest enhancing our current procedure in order to deal with more real 

world problems. 

We also assumed single period models with no replenishment of supply and exogenous 

prices; however, as an extension, we suggest building models with on-going replenishment 

process and/or models that account for pricing and price-demand elasticity.  

In our proposed models we assume that individual market regions are served by a single 

dealer; however, in reality, there a number of dealers/region stocking limited product and making 
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stock-out rates even higher and substitution options are more limited and come at expense if they 

involve transshipments. So, we suggest building models that explicitly account for distribution 

channel constraints. Lastly, we suggest considering the effect of assortment complexity not only 

on production and manufacturing costs (which we considered in this study) but also on the 

inventory holding costs as well as dealer capacities. This will provide more guidance to 

managers on the optimal level of assortment complexity for OEMs.  
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A manufacturer’s assortment is the set of products or product configurations that the company 

builds and offers to its customers. While the literature on assortment planning is growing in 

recent years, it is primarily aimed at non-durable retail and grocery products. In this study, we 

develop an integrated framework for strategic assortment planning of configurable products, with 

a focus on the highly complex automotive industry. The facts that automobiles are highly 

configurable (with the number of buildable configurations running into thousands, tens of 

thousands, and even millions) with relatively low sales volumes and the stock-out rates at 

individual dealerships (even with transshipments) are extremely high, pose significant challenges 

to traditional assortment planning models. This is particularly the case for markets such as the 

U.S. that mostly operate in a make-to-stock (MTS) environment. First, we study assortment 

planning models that account for exogenous demand models and stock-out based substitution 

while considering production and manufacturing complexity costs and economies-of-scale. We 

build a mathematical model that maximizes the expected profit for an Original Equipment 

Manufacturer (OEM) and is a mixed-integer nonlinear problem. We suggest using linear 
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lower/upper bounds that will be solved through a Modified-Branch and Bound procedure and 

compare the results with commercial mixed-integer nonlinear solvers and show superiority of the 

proposed method in terms of solution quality as well as computational speed.   

We then build a modeling framework that identifies the optimal assortment for a manufacturer 

of automotive products under environmental considerations, in particular, Corporate Average 

Fuel Economy (CAFE) requirements as well as life-cycle Greenhouse Gas (GHG) emission 

constraints. We present a numerical experiment consisting of different vehicle propulsion 

technologies (conventional, Diesel, and hybrid) and study the optimal shares of different 

technologies for maximizing profitability under different target levels of CAFE requirements. 

Finally, we develop assortment planning formulations that can jointly identify optimal packages 

and stand-alone options over different series of the product model. Our numerical experiment 

reveals that product option packaging has a considerable effect on managing product complexity 

and profitability. 
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