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Human Pelvis and Long Bones Reveal Differential Preservation of Ancient
Population History and Migration Out of Africa

Abstract
One of the main events in the history of our species has been our expansion out of Africa. A clear signature of
this expansion has been found on global patterns of neutral genetic variation, whereby a serial founder effect
accompanied the colonization of new regions, in turn creating a within-population decrease in neutral genetic
diversity with increasing distance from Africa. This same distinctive pattern has also been described for cranial
and dental morphological variation in human populations distributed across the globe. Here, we used a data
set of postcranial linear measurements for 30 globally distributed human populations, and a climatic data set
of minimum annual temperature, maximum annual temperature, and precipitation in order to separate for the
first time the relative effect of neutral demographic processes and climatic selection on four long (limb) bones
(femur, tibia, radius, and humerus) versus the pelvic bones of the human appendicular skeleton. We
implemented a stepwise regression procedure in which phenotypic variance is assumed to be affected by the
iterative founder events that accompanied human expansion from Africa, as well as by climate. This model
included, as independent factors, geographic distance from central Africa, the three climatic variables, and all
possible interactions between the three climatic variables. We excluded all nonsignificant factors by backward
stepwise elimination with the aim of identifying the minimal model significantly explaining variation in the
phenotypic data. Our results indicate a sharp difference in the way the pelvis and the limb bones reflect the
neutral signature of the out-of-Africa expansion. Consistent with previous analyses of the cranium and
dentition, pelvic shape variation shows a significant within-population decrease with increasing distance from
Africa. However, no such pattern could be found in the long bones. Rather, in the case of both the tibia and
the femur, a significant relationship between population-level variance and minimum temperature was
demonstrated. Hence, in the case of these limb bones, it is probable that the effects of climatic selection have
obliterated the demographic signature of human dispersal from Africa. Our finding that pelvic variation
exhibits the neutral effects of demographic history suggests that consideration of this skeletal element might
be used to shed light on factors of human population history, just as the cranium has done.
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Human Pelvis and Long Bones Reveal Differential
Preservation of Ancient Population History and Migration Out
of Africa

LIA BETTI,1* NOREEN VON CRAMON-TAUBADEL,1 AND STEPHEN J. LYCETT
1

Abstract One of the main events in the history of our species has been our
expansion out of Africa. A clear signature of this expansion has been found
on global patterns of neutral genetic variation, whereby a serial founder
effect accompanied the colonization of new regions, in turn creating a
within-population decrease in neutral genetic diversity with increasing
distance from Africa. This same distinctive pattern has also been described
for cranial and dental morphological variation in human populations distrib-
uted across the globe. Here, we used a data set of postcranial linear
measurements for 30 globally distributed human populations, and a climatic
data set of minimum annual temperature, maximum annual temperature, and
precipitation in order to separate for the first time the relative effect of
neutral demographic processes and climatic selection on four long (limb)
bones (femur, tibia, radius, and humerus) versus the pelvic bones of the
human appendicular skeleton. We implemented a stepwise regression
procedure in which phenotypic variance is assumed to be affected by the
iterative founder events that accompanied human expansion from Africa, as
well as by climate. This model included, as independent factors, geographic
distance from central Africa, the three climatic variables, and all possible
interactions between the three climatic variables. We excluded all nonsig-
nificant factors by backward stepwise elimination with the aim of identifying
the minimal model significantly explaining variation in the phenotypic data.
Our results indicate a sharp difference in the way the pelvis and the limb
bones reflect the neutral signature of the out-of-Africa expansion. Consistent
with previous analyses of the cranium and dentition, pelvic shape variation
shows a significant within-population decrease with increasing distance from
Africa. However, no such pattern could be found in the long bones. Rather,
in the case of both the tibia and the femur, a significant relationship between
population-level variance and minimum temperature was demonstrated.
Hence, in the case of these limb bones, it is probable that the effects of
climatic selection have obliterated the demographic signature of human

1Department of Anthropology, School of Anthropology and Conservation, University of Kent, Canterbury, UK.
*Correspondence to: Lia Betti, Department of Anthropology, School of Anthropology and Conservation,

University of Kent, Canterbury, UK. E-mail: lb322@kent.ac.uk.

Human Biology, April 2012, v. 84, no. 2, pp. 139–152 .
Copyright © 2012 Wayne State University Press, Detroit, Michigan 48201-1309.

KEY WORDS: SERIAL FOUNDER EFFECT, OUT OF AFRICA, ANATOMICALLY MODERN

HUMANS, PELVIS



dispersal from Africa. Our finding that pelvic variation exhibits the neutral
effects of demographic history suggests that consideration of this skeletal
element might be used to shed light on factors of human population history,
just as the cranium has done.

In recent years, the application of a population genetic approach has revealed that
neutral evolutionary processes (i.e., drift and migration) can leave a strong
signature on human phenotypic traits (e.g., Betti et al., 2009, 2010; Harvati and
Weaver 2006a, 2006b; Manica et al. 2007; Relethford 1994, 2002, 2004;
Roseman 2004; Roseman and Weaver 2004, 2007; Smith 2009, 2011; Strauss
and Hubbe 2010; von Cramon-Taubadel and Lycett 2008; von Cramon-Taubadel
2009a, 2009b, 2011; von Cramon-Taubadel and Weaver 2009). Cranial shape
variation in different human populations, in particular, tends to reflect the
underlying neutral genetic pattern, to the point that cranial morphology can be
used effectively to test for past demographic events, such as past migrations and
the colonization of new regions (e.g., González-José et al. 2001, 2002, 2007;
Hubbe et al. 2010, 2011; Manica et al. 2007; Pinhasi and von Cramon-Taubadel
2009; von Cramon-Taubadel and Pinhasi 2011).

One of the main events in the history of our species (Homo sapiens) has
been the expansion out of the African continent, where the human species
originated around 200,000 years ago, and the colonization of other continents
occurred from at least 60,000 years ago (Cann et al. 1987; Ingman et al. 2000;
Thomson et al. 2000). A very clear signature of the Out-of-Africa (OoA)
expansion has been found on global patterns of neutral genetic variation,
whereby an iterative founder effect that accompanied the colonization of new
regions by peripheral populations generated a gradual decrease in genetic
diversity with increasing distance from the African point(s) of origin (Liu et al.
2006; Prugnolle et al. 2005; Ramachandran et al. 2005). Notably, this genetic
pattern is compatible with both single and multiple dispersals (e.g., Rasmussen
et al. 2011) of populations from Africa, since the same basic relationship (i.e.,
between geographic distance from Africa and reduced within-group genetic
variance) will be evinced regardless of how frequently any such dispersal(s) took
place. Indeed, although recent genetic studies suggest that during this range
expansion modern humans interbred with Neanderthals (H. neanderthalensis)
and possibly other hominin species (Currat and Excoffier 2011; Green et al.
2010; Stoneking and Krause 2011), the limited amount of gene flow between
these species, if any (Ghirotto et al. 2011a, 2011b; Hodgson et al. 2010), was
evidently not enough to erase the OoA signature (Manica et al. 2007; Prugnolle
et al. 2005; Ramachandran et al. 2005). Indeed, as Green et al. (2010: 721) put
it, their analysis of the Neanderthal genome “continues to support the view that
the vast majority of genetic variants that exist at appreciable frequencies outside
Africa came from Africa with the spread of anatomically modern humans”.

This same distinctive pattern has also been described for cranial and
dental morphological variation, giving additional evidence that some skeletal
traits vary according to a null model of neutral evolution (Betti et al. 2009;
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Hanihara 2008; Manica et al. 2007; von Cramon-Taubadel and Lycett 2008). The
presence of a neutral signal in craniodental traits may be seen as largely unexpected,
since many studies had previously focused on the effects of selective pressures and
developmental plasticity in creating cranial shape variation (e.g., Beals 1972; Beals
et al. 1983, 1984; Franciscus and Long 1991).

Climate, in particular, has always been considered a powerful factor in shaping
skeletal morphology, especially in the case of the postcranium. Allen’s (1877) and
Bergmann’s (1847) rules offer specific predictions on how body proportions should
change under strong climatic selection. Following Allen’s (1877) rule, animals living
in cold climates tend to have relatively shorter extremities than similar species or
subspecies in warmer climates, in order to reduce the dissipation of heat. It has been
suggested that Allen’s rule has affected human populations in this manner, with
populations living in cold regions exhibiting relatively shorter limb bones in respect
to overall stature, versus relatively longer limbs in warm (equatorial) climates
(Holliday and Hilton 2010). Conversely, Bergmann’s (1847) rule states that
populations living in cold regions tend to have higher body mass (i.e., increased
volume), which can be achieved by an increase in absolute size. In line with
Bergmann’s rule, it has previously been shown that Inuit and other arctic populations
have a higher body mass, larger trunks and pelvic regions in respect to most
populations living near the equator (Holliday 1997; Ruff 1993, 1994). In summary,
Allen’s rule may be considered a change in overall body shape in the absence of an
increase or decrease in the mass (volume) of an individual, while Bergmann’s rule is
related to an increase or decrease in absolute body mass (volume) without necessarily
changing body shape.

In this study, we use a freely available data set of postcranial linear
measurements (Goldman Data set — http://web.utk.edu/�auerbach/GOLD.htm;
Auerbach and Ruff 2006) in order to separate, for the first time, the relative effect
of neutral demographic processes and climatic selection on the long (limb) bones
and the pelvic bones of the human appendicular skeleton. The original data set
has been expanded to include six additional sub-Saharan African populations in
order to adequately account for the high intracontinental variability expected in
sub-Saharan African populations (e.g., Henn et al. 2011; Jorde et al. 1997, 2000).
The OoA demographic (population history) signature will be used as an indicator
of neutral evolution, given the very distinctive pattern and clear predictions
associated with it. Hence, using this model as a null hypothesis, two specific
predictions can be made depending on the level of selection acting on the
different anatomical regions:

(1) If phenotypic variation is largely neutral, then — in a manner similar to the
human cranium — within-population postcranial variation should show a
significant fit to the OoA (serial founder effect) model and exhibit no
significant correlation with climate.

(2) Conversely, if climatic selection has annihilated the underlying neutral
signature, then postcranial phenotypic variation will not show a significant
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fit to the OoA model, but will rather exhibit a significant relationship with
climate.

Materials and Methods

From the original data in the Goldman data set, only populations with
complete data from at least 15 individuals were selected for inclusion in the
analyses (Figure 1, Table 1). In order to avoid the potentially confounding effects
of sexual dimorphism, the analyses were restricted to male individuals because
of the much larger sample size available. Measurements were chosen preferably
from the left side, using the right side only in cases where the left presented
missing data. The data set thus comprised measurements for the pelvis, femur,
tibia, humerus, and radius.

In addition to the 24 population samples collated from the Goldman data
set, an additional six sub-Saharan samples were added by collecting primary data
(LB) housed at the National Museum of Kenya (Nairobi, Kenya) and the
University of Witwatersrand (Johannesburg, South Africa) (see Table 1). These
additional samples were chosen in order to maximize the geographic coverage of
sub-Saharan Africans close to the putative origin as described in previous studies
of molecular variation (e.g., Manica et al. 2007). The same measurements as used
in the Goldman database (see Table 2) were collected on each of the five
anatomical regions according to the protocol described by Auerbach and Ruff

Figure 1. Distribution of the population samples from the Goldman data set (solid circles), and the
newly collected African samples (open circles). Points used as starting points for calculation
of geographic distances used in the analyses are represented by stars, while compulsory
waypoints are indicated as black arrows.
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(2004, 2006). Given that population within-group variances were calculated
using each individual population sample (i.e., from a single observer), inter-
observer error is unlikely to affect the results of the analysis. Moreover, the effect
of inter-observer differences was also tested by performing a post-hoc analysis of
just the Goldman data set minus the new sub-Saharan samples.

All measurements (Table 2) were size-adjusted by dividing each measure-
ment by the geometric mean of all measurements of the same bone (Jungers et
al. 1995). This method equalizes the volumes of all specimens (i.e., isometrically
scales each specimen to the same size) while maintaining overall shape
information (Falsetti et al. 1993; Jungers et al. 1995). Individual within-
population variances were calculated as the average of the trace of the
variance-covariance matrix, following the Relethford and Blangero (1990) model
for quantitative traits. The Relethford-Blangero estimator of population genetic
affinities based on quantitative traits assumes an equal and additive model of
inheritance. Multivariate covariance matrices were calculated under the assump-
tion that population phenotypic variances are proportional to genetic variances.
All within-population variances were calculated under the assumption of
complete heritability h2 � 1 given the lack of appropriate population-specific
heritability estimates for the anatomical regions under consideration here.

To test for the OoA signature, the geographic distances of each population
sample from central sub-Saharan Africa (Betti et al. 2009; Manica et al. 2007)
were calculated using great circle distances, based on the haversine (Sinnott
1984). In order to better approximate actual distances on the ground (i.e., limiting
long-distance sea-crossings), five waypoints were imposed when calculating the
distances. These geographic waypoints and their co-ordinates are listed in Table 3. In

Table 2. Linear Measurements Used to Estimate Within-Population Variance for
Each of the Five Anatomical Regions

Measurements

Humerus Femur
- Maximum Length - Maximum Length
- Epicondylar Breadth - Bicondylar Length
- Head Diameter - Epicondylar Mediolateral Breadth
- 50% Diaphyseal Mediolateral Diameter - Distal Articular (Bicondylar) Mediolateral Breadth
- 50% Diaphyseal Anteroposterior Diameter - Head Anteroposterior Diameter

- 50% Diaphyseal Mediolateral Diameter
Tibia - 50% Diaphyseal Anteroposterior Diameter
- Maximum Length
- Plateau Mediolateral (Bicondylar) Breadth Pelvis
- 50% Diaphyseal Mediolateral Diameter - Bi�iliac Breadth
- 50% Diaphyseal Anteroposterior Diameter - Maximum Iliac Blade Length

- Maximum Acetabular Height
Radius
- Maximum Length
- 50% Diaphyseal Mediolateral Diameter
- 50% Diaphyseal Anteroposterior Diameter
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order to compare phenotypic variability with climate, a climatic data set of
average minimum and maximum temperature (°C) for the coldest and hottest
month respectively, and annual average precipitation (mm/year) was collated
from WORLDCLIM (Hijmans et al. 2005), as a set of global climatic GIS layers
interpolating data from approximately 15,000 weather stations distributed
worldwide (Table 2). Ideally, climatic data coeval to the population samples
should be used for the analyses. Variation in climatic conditions during the time
span covered by our samples, however, has been quite limited. Moreover, given
the global nature of our sample, small regional temporal fluctuations in
temperature will be minimal compared with the global differences in temperature
between widely distributed populations. Indeed, the use of modern global
climatic data of this nature is in line with recent equivalent analyses of human
cranial variation (e.g., Betti et al. 2009, 2010; Harvati and Weaver 2006a, 2006b;
Hubbe et al. 2009; Noback et al. 2011; Roseman 2004; von Cramon-Taubadel
2009, 2011).

In order to test the predictions, we implemented a stepwise regression
procedure using the “Drop1” function (http://stat.ethz.ch/R-manual/R-patched/
library/stats/html/add1.html) of the software R (R Development Core Team
2007). We started with a full linear model, in which phenotypic variance is
assumed to be affected by the iterative founder events that accompanied the
expansion of the species OoA, as well as by climate. This model included, as
independent factors, geographic distance from Central Africa, minimum and
maximum temperature, average precipitation, and all possible interactions
between the three climatic variables. Starting from this model, we excluded
all nonsignificant factors by backward stepwise elimination. The exclusion of
single factors, sequentially, from the model was performed respecting the
hierarchy of factors (interactions between factors were considered before
excluding the factors themselves), and was determined by the relative
increase/decrease of Akaike Information Criterion (AIC) (Akaike 1973) follow-
ing the exclusion of a factor. Moreover, an ANOVA was performed at each step
to confirm that the exclusion of the factor did not significantly decrease the

Table 3. Origin Points Used to Calculate Great Circle Distances and Obligatory
Waypoints Imposed in This Study

Origins Coordinates

Central Africa (Democratic Republic of the Congo) 8S, 25E
Central Asia (Lhasa, Tibet, China) 29.63N, 91.13E

Waypoints

Sinai Peninsula, Egypt (any route out of Africa) 30.07N, 33.7E
Istanbul, Turkey (routes connecting Africa and Europe) 41N, 29E
Thailand (routes to Australia) 16.13N, 98.35E
Bering Strait (routes to the Americas) 65.78N, 169.97W
Panama (routes to South America) 13.5N, 86.2W
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accuracy of the model. In cases where no significant factor was found, the results
of the full model regression are presented.

Results

Table 4 and Figure 2 show the results of the stepwise regression analysis.
Notably, the results of the linear models show a very different pattern for the
pelvis in respect to the limb bones. Pelvic shape variance is significantly
correlated with geographic distance from Africa (i.e., minimal model �
PhVar�Dist), following the same pattern expected under the neutral model, and
in line with the previous results from genetic markers and craniodental traits.
Conversely, the humerus, tibia, radius, and femur do not exhibit a fit to the
geographic (OoA) model. Rather, within-population morphological diversity for
both the femur and tibia significantly correlates with minimum temperature (i.e.,

Table 4. Results of the Linear Modelsa

Skeletal Region Minimal Model R2 P-value

Pelvis PhVar�Dist 0.154 0.032
Humerus n.a. 0.214 0.555
Tibia PhVar�Tmin 0.163 0.027
Radius n.a. 0.251 0.425
Femur PhVar�Tmin 0.261 0.004

a. Statistically significant results are in bold (� � 0.05). PhVar � Phenotypic Variance, Dist �
Distance from Africa, Tmin � Minimum Temperature. In the case of the humerus and radius,
no significant factors were found so the values for the full model are presented.

Figure 2. Linear regression of phenotypic within-population variance and geographic distance for the
pelvis, with central Africa (8S, 25E) used as point of origin (R2 � 0.154, P � 0.032).
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minimal model � PhVar�Tmin). These results are consistent with the hypoth-
esis that climatic selection has obliterated the effects of population history (i.e.,
OoA dispersal) in the case of these lower limb bones.

In order to further evaluate the robustness of our results, a number of
post-hoc tests were undertaken. In the case of the pelvis (for comparison with the
OoA model), we tested for a fit between geographic distance and a hypothetical
point of origin in central Asia (see Figure 3, Table 3). No significant relationship
was found (R2 � 0.042; P � 0.28). We also repeated the OoA analysis for the
pelvis using only populations included in the original Goldman data set, in order
to corroborate that the results were not affected by the inclusion of the additional
data from sub-Saharan Africa. This analysis provided results consistent with
those of our primary analysis (R2 � 0.162; P � 0.05). Additionally, we tested
whether a significant relationship existed between population sample sizes for
the pelvis and within-population variances; no such relationship was found (R2 �
0.00031; P � 0.93).

Discussion

An OoA fit to a serial founder effect model has previously been shown for
human genetic variation (Liu et al. 2006; Prugnolle et al. 2005; Ramachandran et
al. 2005), craniodental variation (Hanihara 2008; Manica et al. 2007; von
Cramon-Taubadel and Lycett 2008), and even linguistic variation (Atkinson
2011). Here, we assessed whether population-level variation in post-cranial
elements of the human skeleton might also fit this model.

Our results indicate a sharp difference in the way the pelvis and the limb
bones reflect the neutral signature of the OoA expansion. Consistent with

Figure 3. Linear regression of phenotypic within-population variance and geographic distance for the
pelvis, with central Asia (29.63N, 91.13E) used as point of origin (R2 � 0.042, P � 0.28).
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previous analyses of the cranium and dentition, pelvic shape shows a significant
decrease in within-population variation with increasing distance from Africa.
However, no such pattern could be found in the long bones. Rather, in the case
of both the tibia and the femur, a significant relationship between population-
level variance and minimum temperature was demonstrated. Hence, in the case
of these lower limb bones, it is probable that the effects of climatic selection have
obliterated the effects of population history (i.e., our dispersal OoA).

These results also indicate that climatic selection has had a stronger effect
on the lower limb in respect to the upper limb, at least in terms of shape effects.
One possible explanation could be that differing population activity patterns, and
the subsequent remodeling responses of osseous tissue at a population level, may
feasibly have contributed to erasing evidence of climatic selection on the upper
limb that could otherwise have been present (e.g., Currey 1984; Ruff 1999;
Stock) and Pfeiffer 2001; Stock 2006). Such factors could also, of course,
provide an additional reason (i.e., to selection) as to why the effects of
demographic history are not as readily detected in the long bones as they are in
the pelvis.

The OoA signature appears less clear on the pelvis than on the cranium,
where it has been shown that as much as 19�26% of within-population levels of
variation may be explained by distance from sub-Saharan Africa (e.g., von
Cramon-Taubadel and Lycett 2008). This may be due to methodological
differences, such as the far lower number of pelvic measurements used; however,
we cannot rule out the possibility that such differences might also reflect
differing microevolutionary histories for the cranium versus the pelvis (i.e., they
have been affected differentially by the evolutionary forces of drift, migration,
selection, etc.). Indeed, while our results show a clear difference in the relative
neutrality of the pelvis compared against the limb bones, our results should not
be interpreted as implying that no climatic (or other) selection has acted on the
human pelvis in different populations and regions, merely that the extent of such
selection has not obliterated entirely the effects of population history. Moreover,
we cannot assess the impact of directional versus stabilizing selection on the
post-cranium, as directional selection can increase differences between popula-
tions, without necessarily affecting within-population diversity.

The results of our analyses are particularly striking when we consider that
two out of the three pelvic measurements have previously been suggested to be
under climatic selection. The diameter of the acetabulum varies accordingly to
the femoral head diameter (Ruff 2010), which in turn relates closely to body mass
(e.g., Grine et al. 1995; McHenry 1992; Ruff et al. 1991). According to
Bergmann’s (1847) rule, body mass should be higher in cold climates in respect
to warm regions, and we could therefore expect femoral head diameter, and
therefore acetabular diameter, to be affected by climate in a similar way.
Bergmann’s and Allen’s rule have also been used to explain the global pattern of
bi-iliac breath, with larger hips and trunks in arctic regions and narrower bodies
in tropical populations (Ruff 1994). However, it is worth reiterating that our
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analyses used data scaled for the effects of overall isometric size (i.e., volumes
were equalized). Hence, while raw pelvic dimensions may have been affected by
selection for overall isometric size (i.e., according to Bergmann’s rule), our
results suggest that the effects of climate on pelvic shape variation have not been
prevalent.

One of the limitations of our analysis is that it only included male
specimens. An important future extension of this study is, therefore, to determine
if the neutral pattern of variation we have found in males holds true in global
patterns of human female pelvic morphology. This is important to determine,
given the fundamental functional involvement of the pelvis in parturition, and
hence potential obstetric constraints on morphological variation (e.g., Rosenberg
and Trevathan 1997; Tague 1995; Weaver and Hublin 2009).

Our finding that human pelvic variation exhibits the neutral effects of
demographic history, suggests that consideration of this skeletal element might
be used to shed light on factors associated with population history, just as the
human cranium has done (Roseman and Weaver 2007; von Cramon-Taubadel
and Weaver 2009). Moreover, its potential role as an indicator of neutral
demographic history may also be of import with regard to interpreting population
history in fossil hominins, especially given that the available fossil sample of
hominin pelvic remains has improved in recent years (Kibii et al. 2011; Lovejoy
et al. 2009; Simpson et al. 2008).
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