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Approximate Bayesian Confidence Intervals  

For The Variance Of A Gaussian Distribution 
 

Vincent A. R. Camara 
University of South Florida 

                                     
 
The aim of the present study is to obtain and compare confidence intervals for the variance of a Gaussian 
distribution. Considering respectively the square error and the Higgins-Tsokos loss functions, 
approximate Bayesian confidence intervals for the variance of a normal population are derived.  Using 
normal data and SAS software, the obtained approximate Bayesian confidence intervals will then be 
compared to the ones obtained with the well known classical method. The Bayesian approach relies only 
on the observations. It is shown that the proposed approximate Bayesian approach relies only on the 
observations. The classical method, that uses the Chi-square statistic, does not always yield the best 
confidence intervals. 
 
Key words: Estimation, loss functions, statistical analysis 
 

Introduction 
 
There is a significant amount of research in 
Bayesian analysis and modeling, which has been 
published the last twenty-five years; see 
references. A Bayesian analysis implies the 
exploitation of a suitable prior information and 
the choice of a loss function in association with 
Bayes’ Theorem. It rests on the notion that a 
parameter within a model is not merely an 
unknown quantity but rather behaves as a 
random variable, which follows some 
distribution. In the area of life testing, it is indeed 
realistic to assume that a life parameter is 
stochastically dynamic. This assertion is 
supported by the fact that the complexity of 
electronic and structural systems is likely to 
cause undetected component interactions 
resulting in an unpredictable fluctuation of the 
life parameter. Recently, Drake (1966) gave an 
excellent account for the use of Bayesian 
statistics in reliability problems.  
 
 
Vincent A. R. Camara earned a Ph.D. in 
Mathematics/Statistics. His research interests are 
in the theory and applications of Bayesian and 
empirical Bayes analyses with emphasis on the 
computational aspect of modeling. He is featured 
in the 2003 edition of Marquis Who’s Who in 
America. (E-mail: gvcamara@ij.net) 

As he pointed out, “He (Bayesian) realizes … 
that his selection of a prior (distribution) to 
express his present state of knowledge will 
necessarily be somewhat arbitrary. But he 
greatly appreciates this opportunity to make his 
entire assumptive structure clear to the world…” 
       In the present study, we shall consider a 
classical and useful underlying model. That is, 
we shall consider the normal underlying model 
characterized by 
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As we well know, once the underlying model 
is found to be normally or approximately 
normally distributed, the classical approach 
uses the Chi-square statistic and considers the 
following confidence interval for the 
population variance 2σ : 
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For the above model (1), approximate 
Bayesian confidence bounds for the parameter 
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2σ will be derived to challenge the classical 
approach (2). In the study, we shall denote the 
inverse of the population variance 2σ  by θ  

and its corresponding estimate by 
Λ

θ . 
Although there is no specific analytical 

procedure that allows us to identify the 
appropriate loss function to be used, the most 
commonly used is the square error loss 
function. One of the reasons for selecting this 
loss function is because of its analytical 
tractability in Bayesian analysis. As it will be 
shown, selecting the square error loss does not 
always lead to the best approximate Bayesian 
confidence intervals. However, the obtained 
approximate Bayesian confidence intervals 
corresponding to the square error and the 
Higgins-Tsokos loss functions will be 
respectively used to challenge the classical 
method (2). The loss functions that will be 
used are given below, along with a statement 
of their key characteristics. 
 
Square error loss function 

The popular square error loss function 
places a small weight on estimates near the 
true value and proportionately more weight on 
extreme deviation from the true value of the 
parameter. Its popularity is due to its analytical 
tractability in Bayesian modeling. The square 
error loss is defined as follows: 
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Higgins-Tsokos loss function 

The Higgins-Tsokos loss function 
places a heavy penalty on extreme over- or 
underestimation. That is, it places an 
exponential weight on extreme errors. The 
Higgins-Tsokos loss function is defined as 
follows: 
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We shall assume that θ  behaves as a random 
variable and is being characterized by the 
Pareto probability density function given by 
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where  θ =1/ 2σ . 
 

The Pareto prior has been selected 
because of its mathematical tractability. Using 
observations from normal distributions, we 
will approximate the Pareto prior (5) in such a 
way that good approximate Bayesian estimates 
of θ  are obtained. 
 
Preliminaries 

Let 1x , 2x , ……., nx  denote the 
observations of a given system that are being 
characterized by the normal distribution. 
Replacing 1/ 2σ  by θ , we obtain the 
following characterization of the normal 
underlying model defined in (1). 
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This leads to the following posterior 
distribution: 
 

..,)\(
1

2

1

2

2
)(

1
2

2
)(

1
2

b

de

exh

b

x
a

n

x
an

n
i

n
i

;θ

θθ

θθ
µ

θ

µ
θ

∫
∞ −

−−−

−
−−−

∑

∑
    (7) 

 
 
 

Methodology 
 
Approximate Bayesian confidence bounds of 

2σ   when the population meanµ  is known.  
 With respectively the following 
approximate priors for the square error and the 
Higgins-Tsokos loss functions, good 
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approximate Bayesian estimates of θ  are 
obtained. 
 
 
 
 
 
Approximate prior for the square error loss: 
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Approximate prior for the Higgins-Tsokos 
loss: 
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It’s easily shown that the approximate 
Bayesian estimate of the parameterθ , subject 
to the square error loss, is the same as the 
Bayesian estimate of θ  under the Higgins-
Tsokos loss. They are equal to 
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Using respectively the approximate 

posterior distributions that correspond to (8) 
and (9), along with the equalities 

2/1)|( αθ −=xLP ;  and 
2/)|( αθ =xUP ; , we respectively obtain 

the following lower and upper confidence 
bounds for θ : 

Approximate Bayesian confidence 
bounds of θ  corresponding to the square error 
loss function when µ  is known: 
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Approximate Bayesian confidence bounds of 
θ  corresponding to the Higgins-Tsokos loss 
function when µ  is known: 
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Thus when the population mean is known, (10) 
and (11) respectively yield the following 

)%1(100 α−  approximate Bayesian 
confidence bounds for the normal population 
variance 2σ : 
 
Confidence bounds corresponding to the 
square error loss: 
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Confidence bounds corresponding to the 
Higgins-Tsokos loss: 
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Approximate Bayesian confidence bounds of 

2σ  when the population meanµ  is unknown. 
In the case where the population mean 

µ  is unknown, it is estimated by the sample 

mean 
_
x  and we obtain the following: 

Approximate Bayesian confidence bounds of 
θ  corresponding to the square error loss 
function when µ  is unknown: 
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Approximate Bayesian confidence bounds of 
θ  corresponding to the Higgins-Tsokos loss 
function when µ  is unknown: 
 

),(
)(

)2/1(21 _

1

2
_)( xnF
xx

LnnL n

i
i

HT −
−

−−−
=

∑
=

α
θ  (15) 

 

),(
)(

)2/(21 _

1

2
_)( xnF
xx

LnnU n

i
i

HT −
−

−−
=

∑
=

α
θ . 

 
Thus when µ  is unknown (14) and 

(15) respectively yield the following 
)%1(100 α−  approximate Bayesian 

confidence bounds for the normal population 
variance 2σ : 

Confidence bounds corresponding to 
the square error loss: 
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Confidence bounds corresponding to the 
Higgins-Tsokos loss: 
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Results 
In order to compare the proposed approximate 
Bayesian approach to the classical method, 
samples that have been obtained from normally 
distributed populations (Examples 1, 2, 3, .4, 
7) as well as approximately normal populations 
(Examples 5, 6) will be considered. SAS 
software is used to obtain the normal 
population parameters µ  and σ  
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corresponding to each of the examples. The 
proposed approximate Bayesian estimates of 
the variance (16) (17) will be used. For the 
Higgins-Tsokos loss function, we will consider 

1,1 21 == ff . The lengths of the classical and 
approximate Bayesian confidence intervals are 
respectively denoted by Cl , SEl  and HTl . 
 
Example 1. (Data obtained from Prem S. 
Mann, Introductory Statistics, Third edition, 
page 504, 1998). 
 

24, 28, 22, 25, 24, 22, 29, 26, 25, 28, 19, 29. 
Normal population distribution 

obtained with SAS: 
)1176.3,083.25( == σµN  Population and 

sample variances: 71943.92 =σ , 
719696.92 =s . 

 
Table 1. Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the first data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 6.18 – 

19.16 

7.32 – 10.47 8.08– 10.23 

90 5.43 – 

23.36 

6.68 – 10.58 7.32 –10.47 

95 4.87 – 

28.01 

6.15 – 10.63 6.68 –10.58 

99 3.99– 

41.07 

5.19 – 10.68 5.56 –10.67 

 
Confidence 

level 
 

( Cl ) ÷  ( SEl ) ( Cl ) ÷  

( HTl ) 
80% 4.1193 6.0455 
90% 4.6021 5.6927 
95% 5.1589 5.9373 
99% 6.7538 7.2636 

 

Example 2. Data obtained from Prem S. Mann, 
Introductory Statistics, Third edition, page 504, 
1998. 
 

13, 11, 9, 12, 8, 10, 5, 10, 9, 12, 13. 
 

Normal population distribution 
obtained with SAS: 

)4008.2,182.10( == σµN . Population and 
sample variances: 76384.52 =σ , 

763636.52 =s . 
 
 
Table 2: Classical and approximate Bayesian 
confidence intervals of 2σ  corresponding to 
the second data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 3.60  –  

11.84 

4.23 –  6.25 4.71– 6.10 

90 3.14 – 

14.62 

3.84 – 6.33 4.23– 6.25 

95 2.81 – 

17.75 

3.51 – 6.36 3.84 – 6.33 

99 2.28 – 

26.73 

2.94 – 6.39 3.16 – 6.38 

 
Confidence 

level 
 

( Cl ) ÷  

( SEl ) 

( Cl ) ÷  

( HTl ) 

80% 4.0777 5.9530 
90% 4.6157 5.6804 
95% 5.2426 6.0051 
99% 7.0734 7.5801 

 
 
Example 3. Data obtained from Prem S. Mann, 
Introductory Statistics, Third edition, page 504, 
1998. 
 

16, 14, 11, 19, 14, 17, 13, 16, 17, 18, 19, 12. 
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Normal population distribution obtained with 
SAS: )6799.2,5.15( == σµN . Population 
and sample variances: 18186.72 =σ , 

181818.72 =s . 
 
Table 3. Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the third data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 4.57 – 

14.16 

5.40 – 7.73 5.97 – 7.56 

90 4.01 – 

17.26 

4.94 – 7.81 5.40 – 7.73 

95 3.60 – 

20.70 

4.54 – 7.86 4.94 – 7.81 

99 2.95 – 

30.34 

3.83  – 7.89 4.11 – 7.88 

 
Confidence 

level 
 

( Cl ) ÷  ( SEl ) ( Cl ) ÷  

( HTl ) 
80% 4.1194 6.0456 
90% 4.6022 5.6926 
95% 5.1592 5.9375 
99% 6.7539 7.2636 

 
 
Example 4.  Data obtained from Prem S. 
Mann, Introductory Statistics, Third edition, 
page 504, 1998. 
 
27, 31, 25, 33, 21, 35, 30, 26, 25,31.33.30, 28. 

 
Normal population distribution 

obtained with SAS: 
)9549.3,846.28( == σµN . Population and 

sample variances: 64123.152 =σ , 
641025.152 =s . 

 
 

Table 4. Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the fourth data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 10.11 

– 

29.77 

12.02 – 

16.74 

13.20 – 

16.39 

90 8.92 – 

35.91 

11.04 – 

16.90 

12.02 – 

16.74 

95 8.04 – 

42.61 

10.21 – 

16.98 

11.04 – 

16.90 

99 6.63 – 

61.05 

8.69  – 

17.04 

9.28   – 

17.03 

 
Confidence level 

 ( Cl ) ÷  ( SEl ) ( Cl ) ÷  

( HTl ) 
80% 4.1688 6.1471 
90% 4.6063 5.7243 
95% 5.1059 5.9013 
99% 6.5129 7.0273 

 
Example 5. Data obtained from James T. 
McClave/Terry Sincich A first course in 
Statistics, page 301, Sixth edition, 1997 
 

52, 33, 42, 44, 41, 50, 44, 51, 45, 38, 
37,40,44, 50, 43. 

 
Normal population distribution 

obtained with SAS: 
)4746.5,6.43( == σµN . Population and 

sample variances: 97124.292 =σ , 
971428.292 =s . 
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Table 5. Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the fifth data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 19.92 –  

53.86 

23.83 – 31.76 25.87 – 

31.20 

90 17.71 

– 

63.85 

22.09 – 32.02 23.83 – 

31.76 

95 16.06 – 

74.54 

20.59 – 32.15 22.09 – 

32.02 

99 13.39– 

102.96 

17.78 – 32.25 18.89 – 

32.22 

 
Confidence 

level 
 

( Cl ) ÷  ( SEl ) ( Cl ) ÷  

( HTl ) 
80% 4.2814 6.3629 
90% 4.6465 5.8198 
95% 5.0583 5.8889 
99% 6.1902 6.7170 

 
Example 6. Data obtained from James T. 
McClave/Terry Sincich A first course in 
Statistics, page 301, Sixth edition, 1997. 
 

52, 43, 47, 56, 62, 53, 61, 50, 56, 52, 
 53, 60, 50, 48, 60, 55. 

 
Normal population distribution 

obtained with SAS: 
)4145.5,625.53( == σµN . Population and 

sample variances: 31681.292 =σ , 
316666.292 =s . 

 
 
 
 
 
 
 

Table 6. Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the sixth data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes

. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 19.71 –

51.45  

23.63 – 

30.94 

25.53 – 30.44 

90 17.59– 

60.56 

21.99 – 

31.18 

23.63 – 30.94 

95 15.99–

70.22  

20.57 – 

31.29 

21.99 – 31.18 

99 13.40– 

95.57 

17.87 – 

31.38 

18.94 – 31.36 

 
Confidence 

level 
 

( Cl ) ÷  ( SEl ) ( Cl ) ÷  

( HTl ) 
80% 4.3422 6.4743 
90% 4.6781 5.8754 
95% 5.0551 5.9036 
99% 6.0822 6.6163 

 
Example 7. The following observations have 
been obtained from the collection of SAS data 
sets. 
 

50, 65, 100, 45, 111, 32, 45, 28, 60, 66, 114, 
134, 150, 120, 77, 108, 112, 113,80,77, 69, 

91, 116, 122, 37, 51, 53, 131, 49, 69, 66, 
46, 131, 103, 84, 78. 

 
Normal population distribution 

obtained with SAS: 
)226.33,861.82( == σµN . Population and 

sample variances: 96716.11032 =σ , 
951587.11032 =s . 
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Table 7: Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the seventh data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 839.4–

1556.4 

1000.8– 

1129.4 

1038.1 – 

1121.6 

90 776.4 – 

1717.1 

966.1  – 

1133.0 

1000.8 –

1129.4 

95 726.8 – 

1874.5 

933.7  –

1134.7 

966.1  – 

1133.0 

99 641.6 – 

2240.2 

866.3  – 

1136.0 

894.1  – 

1135.7 

 
Confidence 

level 
 

( Cl ) ÷  

( SEl ) 

( Cl ) ÷  

( HTl ) 

80% 5.5772 8.5808 
90% 5.6388 7.3176 
95% 5.7119 6.8792 
99% 5.9277 6.6181 

 
All seven Tables show that the 

proposed approximate Bayesian confidence 
intervals contain the population variance 2σ . 
Also, the lengths of the obtained classical 
confidence intervals are more than four times 
greater than the ones corresponding to the 
proposed approach. 

 
Conclusion 

 
In the present study, approximate Bayesian 
confidence intervals for the variance of a 
normal population under two different loss 
functions have been derived. The loss 
functions that are employed are the square 
error and the Higgins-Tsokos loss functions.  
Based on the above numerical results we can 
conclude the following: 

The classical method used to construct 
confidence intervals for the variance of a 
normal population does not always yield the 

best coverage accuracy. In fact, each of the 
obtained approximate Bayesian confidence 
intervals contains the population variance and 
is strictly included in the corresponding 
confidence interval obtained with the classical 
method. 

Contrary to the classical method that 
uses the Chi-square statistic, the proposed 
approach relies only on the observations. 

With the proposed approach, 
approximate Bayesian confidence intervals for 
a normal population variance are easily 
computed for any level of significance.  

The approximate Bayesian approach 
under to the popular square error loss function 
does not always yield the best approximate 
Bayesian results. In fact, the Higgins-Tsokos 
loss function performs better in the above 
examples. 

Bayesian analysis contributes to 
reinforcing well-known statistical theories such 
as the estimation theory. 
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