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Confidence Intervals For P(X<Y) In The 
Exponential Case With Common Location Parameter 

 
Ayman Baklizi 

Department of Statistics 
Yarmouk University 

Irbid – Jordan 
 
 
The problem considered is interval estimation of the stress - strength reliability R = P(X<Y) where X and 
Y have independent exponential distributions with parameters θ  and λ  respectively and a common 
location parameter µ . Several types of asymptotic, approximate and bootstrap intervals are investigated. 
Performances are investigated using simulation techniques and compared in terms of attainment of the 
nominal confidence level, symmetry of lower and upper error rates, and expected length. 
Recommendations concerning their usage are given. 
 
Key words: Bootstrap, exponential distribution, interval estimation, stress-strength model 
 
 

Introduction 
 
The problem of making inference about R = 
P(X<Y) has received a considerable attention in 
literature. This problem arises naturally in the 
context of mechanical reliability of a system 
with strength X and stress Y. The system fails 
any time its strength is exceeded by the stress 
applied to it. Another interpretation of R is that 
it measures the effect of the treatment when X is 
the response for a control group and Y refers to 
the treatment group. Beg (1980) obtained the 
(MVUE) of R when X and Y are independent 
exponential random variables with unequal scale 
and unequal location parameters. 

Gupta and Gupta (1988) obtained the 
maximum likelihood estimator (MLE), the 
MVUE, and a Bayes estimator of R in case of 
different location parameters and a common 
scale parameter. Various other versions of this 
problem have been discussed in literature, see 
Johnson et al. (1994). 
 
 
 
Ayman Baklizi is an Assistant Professor of 
Applied Statistics. His research interests are in 
accelerated life tests and censored data. Email:   
baklizi1@hotmail.com.  
 

The problem of developing confidence 
intervals for the stress - strength probability has 
received relatively little attention; Halperin 
(1987) and Hamdy (1995) developed 
distribution free confidence intervals, while Bai 
and Hong (1992) discussed point and interval 
estimation of in the case of two independent 
exponentials with common location parameter, 
they derived two types of approximate intervals 
but did not study their finite sample properties 
and did not give an idea about how do they 
compare with each other. 

In this article, for the same problem 
considered by Bai and Hong (1992), we shall 
investigate and compare the performance of the 
two intervals of Bai and Hong together with 
some other types of confidence intervals like 
intervals based on the transformed maximum 
likelihood estimator, the likelihood ratio statistic 
and intervals based on the bootstrap (Efron & 
Tibshirani, 1993). The model and maximum 
likelihood estimation of its parameters will be 
presented in section 2. The “non-bootstrap” 
confidence intervals will be presented in section 
3, while bootstrap intervals are discussed in 
section 4. A Monte Carlo study designed to 
investigate and compare the intervals is 
described in section 5. Results and conclusions 
are given in the final section. 
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The Model and Maximum Likelihood 
Estimation 

In this study, X and Y are independently 
exponentially distributed random variables with 
scale parameters θ and λ respectively and a 
common location parameterµ , that is 

 
( )µθθµθ −−= x

X exf ),,( , µ≥x ;
( )µλλµλ −−= y

Y eyf ),,( , µ≥y . 
 
Let 

1
,...,1 nXX  be a random sample for X and 

2
,...,1 nYY  be a random sample for Y. The 

parameter R we want to estimate is 

λθ
θ
+

=<= )( YXpR . The likelihood 
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where ( )
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indicates the usual indicator function. 
The maximum likelihood estimators of 
µλθ  and ,, are given by (Ghosh & Razmpour, 
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maximum likelihood estimator of R is therefore 

2112

21ˆ
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TnR
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= . Now we will describe the 

various intervals under study. 
 
Confidence Intervals for R 

Exact confidence intervals that are 
convenient to use for R are not available and 
hence approximate methods that exist in a 
simple closed form are needed. In this section 
and the following section we shall develop 
various types of intervals for the stress – 
strength reliability (R). 

 
 
 

Intervals Based on the Asymptotic Normality of 
the MLE (AN Intervals) 

Bai and Hong (1992) showed that if  

∞→+= 21 nnn such that 10  ,1 <<→ γγ
n
n

. 

Then ( ) ( )2,0ˆ σNRRn →−  where 

( )
( )γγ

σ
−
−

=
1
1 22

2 RR
. This fact can be used to 

construct approximate confidence intervals for 
R. The intervals are of the form 
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where 21 α−z  is the 21 α− -quantile of the 
standard normal distribution. 
 
Intervals Based on the Asymptotic Normality of 
the Transformed MLE (TRAN Intervals) 

When the maximum likelihood 
estimator of the parameter of interest has its 
range in only a part of the real line, a monotone 
transformation of this parameter with continuous 
derivatives and range in the entire real line will 
generally be better approximated by an 
asymptotic normal distribution as suggested by 
many authors including Lawless (1982) and 
Nelson (1982). Let ( )RK  be a monotone 

function of R and let ( )RK '  be the first 
derivative, then by applying the delta method 
(Serfling, 1980) we get 
 

( ) ( )( ) ( ) ( )( )RVRKNRKRKn ˆ,0ˆ 2'→− . 
 
Using this, a α−1  confidence interval for R 
may be obtained as 
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An appropriate transform is the 1tan −  (Jeng & 
Meeker, 2003). Using this transform a α−1  
confidence interval for R is given by 
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Bai and Hong’s Intervals (BH intervals) 

Ghosh and Razmpour (1984) showed 
that ( )ZTT ,, 21  is a complete sufficient for 
( )µλθ ,,  and that the joint probability density 
function of ( )21 ,TT  which is independent of 
Z is 
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Using standard transformation 
techniques, it can be shown that the probability 
density function of the random variable 
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1
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T

U
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= is given by (Bai and Hong, 

1992) 
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is the beta probability density function with 
parameters r and s. Bai and Hong (1992) showed 
that an approximate α−1  interval for R is of 
the form 
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where 21  and tt are the observed values of 

21  and TT  respectively, and αk is such that 
( ) απα =21 ,,ˆ, nnkG . Here π̂  is an estimator of 

π obtained by substituting the maximum 
likelihood estimators of λθ  and in the formula 
of π , and G is the distribution function of 
mixed beta random variable U. 
 
Intervals Based on the Likelihood Ratio Statistic 
(LR Intervals) 

The likelihood function of ( )µλθ ,, is 
given by  
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The likelihood ratio statistic for testing 

00 : RRH =  is defined as (Barndorff-Nielsen 
and Cox, 1994) ( ) ( )( )ϖllW −Ω= 2 , where 
( )Ωl is the log-likelihood function evaluated at 

the values of the unrestricted maximum 
likelihood estimator of ( )µλθ ,, . While ( )ϖl is 
the log-likelihood function evaluated at the 
values of the restricted maximum likelihood 
estimator under the null hypothesis. Recall that 
the unrestricted maximum likelihood estimators 

are z=µ̂ , 
1
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of the likelihood ratio statistic and simplifying 
we get 
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The distribution of ( )0RW  is 2

1χ  (Barndorff-
Nielsen and Cox, 1994). The bounds of 
likelihood ratio confidence intervals with 
( )α−1 nominal coverage probability are the two 
roots of ( ) 2

1,0 αχ=RW , where 2
1,αχ  is the upper 

α  quantile of the chi square distribution with 
one degree of freedom. 
 
Parametric Bootstrap Intervals 

The following methods of deriving 
confidence intervals are based on the Bootstrap 
approach (Efron & Tibshirani, 1993). They are 
computer intensive methods based on 
resampling with replacement from the original 
data and then using these Bootstrap samples to 
study the behaviour of estimators and tests. 
When the parametric form of the distribution 
from which the data are generated is known 
except for some unknown parameters, we 
generate from this distribution after its 
parameters are replaced by their estimates. The 
advantage of bootstrap methods is their wide 
applicability and remarkable accuracy, 
especially in situations where the traditional 
methods do not work. There are several 
Bootstrap based intervals discussed in the 
literature (Efron and Tibshirani, 1993), the most 
common ones are the bootstrap –t interval, the 
percentile interval and the bias corrected and 
accelerated ( aBC ) interval. 
 
 
 

The Bootstrap – t Interval Based on the MLE 
(BTST Intervals) 

Let R̂ be the maximum likelihood 
estimator of R and let *R̂  be the maximum 
likelihood estimator calculated from the 
bootstrap sample. Let *

αz be the α  quantile of 
the bootstrap distribution of 
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where ( )*ˆˆ RV  is estimated variance of 

R̂ calculated from the bootstrap sample. The 
bootstrap-t interval is given by 
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2 αα −+−  where *

αz  is 
determined by simulation. 
 
The Bootstrap – t Interval Based on the 
Transformed MLE (TRBTST Intervals) 

Let R̂ be the maximum likelihood 
estimator of R and let *R̂  be the maximum 
likelihood estimator calculated from the 
bootstrap sample. Let *

αz be the α  quantile of 
the bootstrap distribution of 
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where ( )*ˆˆ RV  is estimated variance of 

R̂ calculated from the bootstrap sample. The 
bootstrap-t interval is given by 
 

( ) ( )
( ) ( ) ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

+−

−

−

−

122
1

*
21

122
1

*
2

ˆ1 ˆˆ

,ˆ1 ˆˆ

RRVqR

RRVqR

α

α
 

 
where *

2αq  and *
21 α−q  are the quantiles of the 

bootstrap distribution of  *Q  determined by 
simulation. 
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The Percentile Interval (PRC Interval) 
Here we simulate the bootstrap 

distribution of *R̂  by resampling repeatedly 
from the parametric model of the original data 
and calculating BiRi ,,1,ˆ * …= where B is the 

number of bootstrap samples. Let Ĥ be the 
cumulative distribution function of *R̂ , then the 

α−1  interval is given by 
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The Bias Corrected and Accelerated Interval 
( BCa  Interval) 

The bias corrected and accelerated 
interval is calculated also using the percentiles 
of the bootstrap distribution of *R̂ , but not 
necessarily identical with the percentile interval 
described in the previous subsection. The 
percentiles depend on two numbers â and 

0ẑ called the acceleration and the bias 
correction. The α−1  interval is given by 
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( ).Φ  is the standard normal cumulative 

distribution function, αz is the α quantile of the 
standard normal distribution. The values of 
â and 0ẑ  are calculated as follows; 
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where ( )iR̂  is the maximum likelihood 
estimator of R using the original data excluding 
the i-th observation and 
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The value of 0ẑ  is given by  
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Small Sample Performance of the Intervals 

For the confidence intervals with 
nominal confidence coefficient )1( α− , we use 
the criterion of attainment of lower and upper 

error probabilities which are both equal to 
2
α

.  

Attainment of lower and upper nominal error 
probabilities is important because otherwise we 
will use an interval with unknown error 
probabilities and our conclusions therefore are 
imprecise and can be misleading. Attainment of 
nominal error probabilities (assumed equal) 
means that if the interval fails to contain the true 
value of the parameter, it is equally likely to be 
above as to be below the true value. Users of 
two sided confidence intervals expect the lower 
and upper error probabilities to be symmetric 
because they are using symmetric percentiles of 
the approximating distributions to form their 
confidence intervals. However, symmetry of 
error probabilities may not occur due to the 
skewness of the actual sampling distribution 
Jennings (1987). 

Another criterion for comparing 
confidence intervals is their expected lengths, 
obviously the shortest confidence interval 
among intervals having the same confidence 
level is the best. We have simulated the expected 
lengths of the three considered intervals. 

A simulation study is conducted to 
investigate the performance of the intervals. The 
indices of our simulations are: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )20,40  ,40,20  ,10,40  ,40,10  ,40,40  ,30,30,20,20  ,10,10, 21 =nn

R  : The true value of R=p(X<Y) and is taken to 
be 0.5, 0.7, 0.9, 0.95. 
 

For each combination of 1n , 2n  and R , 
2000 samples were generated for X taking θ = 1, 

0=µ , and 2000 samples for Y with 

11
−=

R
λ , 0=µ . The intervals are calculated, 

we used B = 1000 for bootstrap calculations. 

The following quantities are simulated for each 
interval using the results of the 2000 samples; 
the expected width of the interval (W): The 
average of the widths of the 2000 intervals. 
Lower error rates (L): The fraction of intervals 
that fall entirely above the true parameter. Upper 
error rates (U): The fraction of intervals that fall 
entirely below the true parameter. Total error 
rates (T): The fraction of intervals that did not 
contain the true parameter value. 

 
 
Table 1: Simulated error rates and expected lengths of the intervals 
 

( 21,nn ) R  AN TRAN BH LR BTST TRBTST PRC BCa  
(10, 10) 0.50 L 0.0425 0.0500 0.0245 0.0275 0.0070 0.0110 0.0310 0.0160
  U 0.0455 0.0255 0.0305 0.0340 0.0110 0.0030 0.0285 0.0235
  T 0.0880 0.0755 0.0550 0.0615 0.0180 0.0140 0.0595 0.0395
  W 0.4160 0.4160 0.4230 0.3870 0.5240 0.4940 0.4210 0.4270
 0.70 L 0.0175 0.0395 0.0245 0.0210 0.0355 0.0095 0.0115 0.0235
  U 0.0475 0.0550 0.0425 0.0200 0.0650 0.0095 0.0100 0.0200
  T 0.0650 0.0945 0.0670 0.0410 0.1010 0.0190 0.0215 0.0435
  W 0.3610 0.3570 0.3230 0.4270 0.6000 0.4500 0.4470 0.3760
 0.90 L 0.0010 0.0095 0.0075 0.0180 0.0035 0.0080 0.0550 0.0255
  U 0.1080 0.0975 0.0565 0.0425 0.0195 0.0145 0.0095 0.0240
  T 0.1090 0.1070 0.0640 0.0605 0.0230 0.0225 0.0645 0.0495
  W 0.1550 0.1560 0.1630 0.1060 0.2030 0.2170 0.1640 0.1890
 0.95 L 0.0000 0.0030 0.0120 0.0175 0.0145 0.0095 0.0655 0.0230
  U 0.1370 0.1110 0.0655 0.0480 0.0270 0.0230 0.0150 0.0185
  T 0.1370 0.1140 0.0775 0.0655 0.0415 0.0325 0.0805 0.0415
  W 0.0813 0.0825 0.0863 0.0772 0.1080 0.1160 0.0872 0.1080
(20, 20) 0.50 L 0.0390 0.0500 0.0250 0.0290 0.0140 0.0145 0.0340 0.0290
  U 0.0450 0.0295 0.0305 0.0340 0.0175 0.0215 0.0325 0.0195
  T 0.0840 0.0795 0.0555 0.0630 0.0315 0.0360 0.0665 0.0485
  W 0.3018 0.3010 0.3028 0.3355 0.3354 0.3250 0.3028 0.3050
 0.70 L 0.0175 0.0275 0.0200 0.0225 0.0145 0.0125 0.0385 0.0170
  U 0.0605 0.0420 0.0430 0.0365 0.0205 0.0160 0.0195 0.0235
  T 0.0780 0.0695 0.0630 0.0590 0.0350 0.0285 0.0580 0.0405
  W 0.2546 0.2560 0.2594 0.2305 0.2835 0.2830 0.2570 0.2630
 0.90 L 0.0030 0.0115 0.0110 0.0155 0.0130 0.0170 0.0485 0.0195
  U 0.0800 0.0605 0.0455 0.0430 0.0325 0.0160 0.0135 0.0275
  T 0.0830 0.0720 0.0565 0.0585 0.0455 0.0330 0.0620 0.0470
  W 0.1103 0.1110 0.1135 0.0845 0.1249 0.1300 0.1134 0.1230
 0.95 L 0.0035 0.0060 0.0125 0.0190 0.0200 0.0235 0.0490 0.0270
  U 0.0850 0.0855 0.0470 0.0380 0.0225 0.0240 0.0125 0.0260
  T 0.0885 0.0915 0.0595 0.0570 0.0425 0.0475 0.0615 0.0530
  W 0.0585 0.0586 0.0610 0.0558 0.0665 0.0682 0.0604 0.0662
(30, 30) 0.50 L 0.0305 0.0455 0.0255 0.0265 0.0175 0.0205 0.0290 0.0220
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( 21,nn ) R  AN TRAN BH LR BTST TRBTST PRC BCa  
  U 0.0310 0.0265 0.0265 0.0270 0.0190 0.0210 0.0280 0.0255
  T 0.0615 0.0720 0.0520 0.0535 0.0365 0.0415 0.0570 0.0475
  W 0.2488 0.2480 0.2461 0.3249 0.2663 0.2600 0.2492 0.2500
 0.70 L 0.0205 0.0320 0.0225 0.0225 0.0180 0.0210 0.0400 0.0230
  U 0.0565 0.0435 0.0345 0.0355 0.0240 0.0230 0.0230 0.0255
  T 0.0770 0.0755 0.0570 0.0580 0.0420 0.0440 0.0630 0.0485
  W 0.2097 0.2100 0.2129 0.2060 0.2249 0.2240 0.2110 0.2140
 0.90 L 0.0035 0.0100 0.0090 0.0155 0.0155 0.0180 0.0365 0.0320
  U 0.0600 0.0610 0.0395 0.0305 0.0205 0.0220 0.0125 0.0255
  T 0.0635 0.0710 0.0485 0.0460 0.0360 0.0400 0.0490 0.0575
  W 0.0903 0.0907 0.0922 0.0762 0.0977 0.0999 0.0919 0.0968
 0.95 L 0.0030 0.0080 0.0145 0.0210 0.0225 0.0225 0.0425 0.0235
  U 0.0700 0.0645 0.0470 0.0320 0.0270 0.0250 0.0175 0.0275
  T 0.0730 0.0725 0.0615 0.0530 0.0495 0.0475 0.0600 0.0510
  W 0.0479 0.0480 0.0480 0.0449 0.0520 0.0529 0.0489 0.0526
(40, 40) 0.50 L 0.0300 0.0380 0.0295 0.0260 0.0180 0.0210 0.0255 0.0240
  U 0.0335 0.0185 0.0335 0.0290 0.0230 0.0155 0.0280 0.0205
  T 0.0635 0.0565 0.0630 0.0550 0.0410 0.0365 0.0535 0.0445
  W 0.2163 0.2160 0.2164 0.2989 0.2271 0.2240 0.2162 0.2170
 0.70 L 0.0170 0.0320 0.0165 0.0255 0.0210 0.0270 0.0350 0.0220
  U 0.0470 0.0280 0.0345 0.0295 0.0235 0.0170 0.0245 0.0260
  T 0.0640 0.0600 0.0510 0.0550 0.0445 0.0440 0.0595 0.0480
  W 0.1811 0.1830 0.1819 0.2003 0.1906 0.1920 0.1819 0.1850
 0.90 L 0.0090 0.0165 0.0170 0.0210 0.0220 0.0225 0.0395 0.0225
  U 0.0605 0.0470 0.0405 0.0350 0.0230 0.0235 0.0190 0.0270
  T 0.0695 0.0635 0.0575 0.0560 0.0450 0.0460 0.0585 0.0495
  W 0.0782 0.0791 0.0796 0.0687 0.0829 0.0848 0.0792 0.0824
 0.95 L 0.0050 0.0035 0.0145 0.0215 0.0265 0.0160 0.0325 0.0265
  U 0.0560 0.0575 0.0300 0.0390 0.0190 0.0245 0.0165 0.0255
  T 0.0610 0.0610 0.0445 0.0605 0.0455 0.0405 0.0490 0.0520
  W 0.0415 0.0414 0.0425 0.0400 0.0441 0.0443 0.0421 0.0442
(10, 40) 0.50 L 0.0270 0.0345 0.0415 0.0250 0.0175 0.0205 0.0530 0.0485
  U 0.0490 0.0335 0.0165 0.0295 0.0100 0.0105 0.0080 0.0055
  T 0.0760 0.0680 0.0580 0.0545 0.0275 0.0310 0.0610 0.0540
  W 0.3359 0.3350 0.3345 0.3369 0.3828 0.3700 0.3351 0.3370
 0.70 L 0.0105 0.0215 0.0375 0.0205 0.0115 0.0185 0.0790 0.0435
  U 0.0855 0.0585 0.0230 0.0395 0.0155 0.0080 0.0065 0.0085
  T 0.0960 0.0800 0.0605 0.0600 0.0270 0.0265 0.0855 0.0520
  W 0.2790 0.2820 0.3033 0.2630 0.3358 0.3400 0.2770 0.2810
 0.90 L 0.0020 0.0055 0.0220 0.0175 0.0145 0.0130 0.1055 0.0625
  U 0.1185 0.0945 0.0520 0.0550 0.0195 0.0160 0.0025 0.0045
  T 0.1205 0.1000 0.0740 0.0725 0.0340 0.0290 0.1080 0.0670
  W 0.1190 0.1190 0.1440 0.0913 0.1557 0.1640 0.1181 0.1250
 0.95 L 0.0010 0.0015 0.0125 0.0175 0.0190 0.0230 0.1120 0.0700
  U 0.1265 0.1330 0.0475 0.0535 0.0170 0.0225 0.0015 0.0065
  T 0.1275 0.1340 0.0600 0.0710 0.0360 0.0455 0.1135 0.0765
  W 0.0625 0.0615 0.0720 0.0631 0.0843 0.0864 0.0614 0.0686
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(20, 40) 0.50 L 0.0320 0.0260 0.0320 0.0280 0.0210 0.0110 0.0370 0.0370
  U 0.0395 0.0290 0.0215 0.0300 0.0170 0.0205 0.0175 0.0115
  T 0.0715 0.0550 0.0535 0.0580 0.0380 0.0315 0.0545 0.0485
  W 0.2632 0.2630 0.2666 0.3312 0.2838 0.2780 0.2631 0.2650
 0.70 L 0.0175 0.0285 0.0260 0.0240 0.0185 0.0255 0.0470 0.0310
  U 0.0620 0.0415 0.0235 0.0325 0.0180 0.0160 0.0155 0.0125
  T 0.0795 0.0700 0.0495 0.0565 0.0365 0.0415 0.0625 0.0435
  W 0.2214 0.2220 0.2304 0.2086 0.2434 0.2430 0.2216 0.2240
 0.90 L 0.0025 0.0055 0.0195 0.0170 0.0180 0.0110 0.0625 0.0340
  U 0.0830 0.0840 0.0390 0.0360 0.0230 0.0215 0.0075 0.0180
  T 0.0855 0.0895 0.0585 0.0530 0.0410 0.0325 0.0700 0.0520
  W 0.0950 0.0942 0.0987 0.0797 0.1077 0.1090 0.0953 0.1010
 0.95 L 0.0040 0.0025 0.0135 0.0185 0.0160 0.0190 0.0715 0.0410
  U 0.0940 0.0825 0.0420 0.0410 0.0240 0.0245 0.0090 0.0180
  T 0.0980 0.0850 0.0555 0.0595 0.0400 0.0435 0.0805 0.0590
  W 0.0498 0.0494 0.0524 0.0462 0.0571 0.0576 0.0499 0.0540
(40, 20) 0.50 L 0.0430 0.0500 0.0230 0.0325 0.0170 0.0160 0.0220 0.0210
  U 0.0315 0.0170 0.0315 0.0310 0.0230 0.0200 0.0470 0.0230
  T 0.0745 0.0670 0.0545 0.0635 0.0400 0.0360 0.0690 0.0440
  W 0.2631 0.2630 0.2666 0.3289 0.2839 0.2770 0.2631 0.2640
 0.70 L 0.0205 0.0360 0.0145 0.0245 0.0135 0.0170 0.0235 0.0195
  U 0.0465 0.0340 0.0475 0.0265 0.0225 0.0235 0.0305 0.0260
  T 0.0670 0.0700 0.0620 0.0510 0.0360 0.0405 0.0540 0.0455
  W 0.2227 0.2240 0.2171 0.2084 0.2373 0.2370 0.2258 0.2260
 0.90 L 0.0070 0.0135 0.0140 0.0230 0.0190 0.0175 0.0275 0.0180
  U 0.0550 0.0500 0.0470 0.0305 0.0240 0.0235 0.0290 0.0330
  T 0.0620 0.0635 0.0610 0.0535 0.0430 0.0410 0.0565 0.0510
  W 0.0973 0.0982 0.0944 0.0795 0.1031 0.1060 0.1015 0.1040
 0.95 L 0.0045 0.0080 0.0125 0.0265 0.0145 0.0180 0.0195 0.0235
  U 0.0550 0.0510 0.0400 0.0300 0.0205 0.0220 0.0230 0.0250
  T 0.0595 0.0590 0.0525 0.0565 0.0350 0.0400 0.0425 0.0485
  W 0.0518 0.0521 0.0506 0.0467 0.0548 0.0560 0.0545 0.0558
(40, 10) 0.50 L 0.0525 0.0605 0.0185 0.0325 0.0090 0.0145 0.0120 0.0160
  U 0.0260 0.0140 0.0400 0.0255 0.0210 0.0175 0.0625 0.0370
  T 0.0785 0.0745 0.0585 0.0580 0.0300 0.0320 0.0745 0.0530
  W 0.3354 0.3350 0.3345 0.3402 0.3839 0.3670 0.3349 0.3330
 0.70 L 0.0370 0.0425 0.0175 0.0335 0.0120 0.0120 0.0080 0.0160
  U 0.0380 0.0295 0.0425 0.0245 0.0240 0.0235 0.0610 0.0340
  T 0.0750 0.0720 0.0600 0.0580 0.0360 0.0355 0.0690 0.0500
  W 0.2900 0.2890 0.2774 0.2740 0.3194 0.3130 0.2993 0.2890
 0.90 L 0.0070 0.0275 0.0105 0.0240 0.0100 0.0185 0.0110 0.0205
  U 0.0565 0.0520 0.0505 0.0285 0.0260 0.0255 0.0460 0.0325
  T 0.0635 0.0795 0.0610 0.0525 0.0360 0.0440 0.0570 0.0530
  W 0.1293 0.1320 0.1277 0.0901 0.1377 0.1440 0.1430 0.1370
 0.95 L 0.0055 0.0140 0.0065 0.0240 0.0170 0.0185 0.0125 0.0190
  U 0.0600 0.0585 0.0495 0.0325 0.0275 0.0285 0.0435 0.0345
  T 0.0655 0.0725 0.0560 0.0565 0.0445 0.0470 0.0560 0.0535
  W 0.0703 0.0706 0.0698 0.0672 0.0745 0.0768 0.0798 0.0755
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Conclusion 

Our simulations indicate that the performance of 
intervals based on asymptotic normality (AN 
intervals) are not satisfactory even for relatively 
large samples, they are quite anti-conservative in 
the sense that their coverage probabilities are 
often higher than the nominal confidence level. 
Also they are quite asymmetric, especially for 
values of R far from 0.5. The performance of the 
intervals based on the transformed maximum 
likelihood estimator (TRAN intervals) is about 
similar to that of AN intervals, but their anti-
conservativeness and asymmetry being slightly 
less severe than AN intervals. Concerning Bai 
and Hong (BH) intervals, they often attain the 
nominal sizes but are asymmetric for values of R 
away from 0.5. On the other hand, the 
Likelihood ratio (LR) intervals attain the 
nominal size and are almost symmetric even for 
small sample sizes. 

For the Bootstrap intervals, it appears 
that the bootstrap – t intervals (BTST) and 
(TRBTST) are symmetric but tend to be 
conservative for small sample sizes, while the 
percentile interval (PRC) attains the nominal 
level but tends to be asymmetric for values of R 
far from 0.5. The bias corrected and accelerated 
interval appear to be the best interval based on 
the bootstrap principle, they attain the nominal 
level and are symmetric in almost all situations 
considered. 

With regard to interval widths, our 
simulation results suggest that all intervals have 
about equal performance. No intervals appear to 
be uniformly shorter or longer than the others. 

Overall, the (BCa) interval appears to 
have the best performance according to the 
criteria of attainment of coverage probability, 
symmetry and expected length followed by the 
(LR) intervals. Although the other intervals 
(especially AN intervals) are anti-conservative 
and sometimes extremely asymmetric, which 
limit their usefulness, especially when lower or 
upper confidence bounds are desired. 
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