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Fortune Cookies, Measurement Error, And Experimental Design 
 

 
 
This article pertains to the theoretical and practical detriments of measurement error in traditional 
univariate and multivariate experimental design, and points toward modern methods that facilitate greater 
accuracy in effect size estimates and power in hypothesis testing. 
 
Keywords: measurement error, latent variables, multivariate analysis, experimental design 
 
 

Introduction 
 

Whichever leg of my post-secondary academic 
journey, and with whichever campus I have had 
the privilege of affiliating, the vast majority of 
my midday meals have ended with a fortune 
cookie. Since my college days, in fact, I estimate 
that I have had lunch at some inexpensive Asian 
restaurant near campus well over a thousand 
times. My graduate school office mates and the 
many students and faculty whom I served as 
teaching assistant might even remember all the 
little strips of paper taped to the top of my desk, 
filling the entire surface with fortunes by the 
time I finished my doctorate.   
 
 
Gregory R. Hancock is Professor in the 
Department of Measurement, Statistics and 
Evaluation at the University of Maryland. His 
research appears in such journals as 
Psychometrika, Structural Equation Modeling, 
and Journal of Educational and Behavioral 
Statistics. He serves on several journal editorial 
boards, and regularly conducts workshops 
around the U.S. Email: ghancock@umd.edu. 
  

Today, a little more reserved in my decorative 
zeal, though no less so in my meal predilection, I 
have but a single fortune tacked outside of my 
office door. Amidst aging cartoons and family 
pictures is an enlarged photocopy of the one 
little rectangle of wisdom I have saved over 
these last decades. It reads: 
 

Love truth 
but pardon error. 

Lucky Numbers 7, 8, 13, 31, 32, 44 
 

Although my quantitative training precludes me 
from seeking fortune based on the third line, not 
so with the first two. Their aphorism seems 
replete with insight and potential on many 
levels, personal and professional, with the latter 
level serving as the inspiration for this article.  

Less obtusely, in so many applied 
statistical analyses there seems to be a schism 
between the variables we have and the variables 
we wish we had. This is apparent in statements 
of theory preceding and justifying those analyses 
and in the interpretations and purported 
implications that follow. Educational policy 
researchers, for example, might analyze 
measures of teacher’s job satisfaction and 
absenteeism and then make proclamations 

Gregory R. Hancock 
University of Maryland 
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regarding the apparent degree of teacher 
burnout. Those studying child development 
might start by eliciting new mothers’ responses 
to rating scale items regarding interactions with 
their infants, and conclude by making inferences 
about those mothers’ emerging maternal 
warmth. Health care researchers might want an 
understanding AIDS patients’ sense of 
hopelessness while in group therapy, and choose 
measures of patients’ treatment compliance to 
help facilitate that understanding. Such is the 
nature of so much applied research, particularly 
within the social sciences — constructs of 
interest such as burnout, maternal warmth, or 
hopelessness are generally latent, so our 
analyses seem resigned to rely upon the fallible 
measured variables as surrogates.  

And therein lies the schism, in the 
operationalization of true constructs as error-
laden measured variables. At best the imperfect 
connection might lead us to a distorted image of 
the critical relations in a population; at worst we 
might not even have sufficient power to draw 
inference at all. Within the context of 
experimental design specifically, the primary 
focus of this treatise, the implication is that 
treatment effectiveness might be severely 
underestimated, or perhaps even undetected. Of 
course this is not unknown. In fact, nothing 
written here will be new knowledge. But it is 
important and often-overlooked knowledge, 
bearing clarification and amplification. It will 
thus be my purpose to drive home the often 
underestimated (if not entirely disregarded) 
importance of constructs and measurement error 
in our univariate and multivariate experimental 
analyses, and to point the applied researcher 
toward more modern strategies for dealing with 
measurement error in experimental design.  

 
Love Truth 

The purpose of applied statistics seems 
to be to gain insight into some truth bearing 
practical consequence. Drawing upon a few 
familiar test statistics, we attempt to use 
observed relations among measured variables in 
samples to make educated guesses about 
unobserved relations in the populations of which 
each sample serves as assumed microcosm. But 
what, precisely, is the population relation we 
hope to understand in order to have practical 

consequence? What is the truth into which we 
seek insight? 

As we learn and practice the many 
methods huddled under the general linear model 
umbrella, we typically hold as our goal a correct 
inference about, and often estimation of, some 
population relation among observed variables – 
a true correlation between X and Y (ρXY), a true 
predictive relation of X3 to Y holding X1 and X2 
constant (β3), a true standardized effect size for 
the mean difference between Populations 1 and 
2 on Y (dY), and so on. But what does any 
measured X or Y variable really represent, and 
what information do any relations among such 
variables convey? 

In the physical sciences, variables such as 
temperature, pressure, mass, and volume, when 
considered in sufficient quantities, are in their 
measurement as they are in name. That is, there 
tends to be a strong correspondence between the 
measurement and the entity it represents. In the 
social sciences, some such variables exist as 
well – biological sex, treatment group 
assignment, and political party affiliation, for 
example. Except for data recording or entry 
errors, we expect each variable to represent 
precisely that which its name implies. Other 
social science variables would also seem to have 
such identity, being determinable largely 
without interference – number of therapy 
sessions attended, number of children’s books in 
the home, and the like. However, a fundamental 
question in many disciplines, particularly those 
in the social sciences, is the following: What is 
the underlying construct that each variable has 
been selected to represent?  

 
The univariate scenario 

Consider a researcher who is truly 
interested in a construct contrived here as In-
Home Reading Resources. In that case, number 
of children’s books in the home is indeed a fairly 
proximal operationalization of the construct of 
interest. As such, estimates regarding population 
mean differences in number of children’s books 
in the home, or regarding the population 
relations this measured variable has with other 
such proximal operationalizations, provides 
direct insight into some truth for the construct of 
In-Home Reading Resources. On the other hand, 
if a researcher is interested in a construct 
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designated as Parental Commitment to Literacy, 
and has attempted to capture the spirit of this 
construct using the number of children’s books 
in the home, then we expect the measured 
variable to be a more distal operationalization of 
the desired construct. As such, inference about 
population differences in Parental Commitment 
to Literacy, or of its relation to other variables 
(proximally or distally operationalized), is 
compromised by typical general linear model 
analyses. Thus, the truths we seek – constructs 
and their population relations – are often not 
directly accessible. 

The issue at hand, of course, is one of 
measurement error in our variables. As an 
indicator of In-Home Reading Resources, 
number of children’s books in the home has 
virtually no measurement error; when reflecting 
Parental Commitment to Literacy, however, it 
has considerable error. Imagine a researcher 
employing a control and treatment group to draw 
inference about the impact of a treatment 
designed to enhance Parental Commitment to 
Literacy. Figure 1 displays hypothetical 
population distributions for the measured 
variable of number of children’s books in the 
home (Y), as well as for the latent construct of 
Parental Commitment to Literacy (η). Notice 
that while the means of the two populations are  

 

 
 
 

expected to be the same for Y and η, the relative 
magnitude of the treatment effect on the Parental 
Commitment to Literacy construct would be 
underestimated. The standardized effect size for 
Y, which is the familiar 
                     dY=(µ1Y- µ2Y)/σY                                        (1) 

 
(Cohen, 1988), is depicted as approximately .65; 
meanwhile, the standardized effect size for η, 
                    dη=(µ1η- µ2η)/ση,                         (2) 

 
is near .95.  For this disparity to occur, the 
construct’s standard deviation would have to be 
68.4% of the size of standard deviation of Y, 
meaning its variance is roughly 46.8% (.6842) 
that of Y.  That is, 46.8% of the variability in Y  
reflects η, while 53.2% is error with respect to 
the construct of interest.  Put directly,  
                      22

ηρ dd YYY = ,                             (3) 
 
where ρYY is the reliability of Y (.468 in the 
above example). Thus, while the number of 
children’s books in the home may accurately 
reflect In-Home Reading Resources, with regard 
to Parental Commitment to Literacy it could be a 
relative overestimate or underestimate for any 
given individual. 
 
 

 
 

Figure 1.   Univariate population difference on measured variable and underlying construct. 

 
Measured

Construct
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As mentioned previously, the implications 
of measurement error for inference are two-fold. 
First, as seen in Figure 1, we would 
underestimate the magnitude of the treatment 
effect on Parental Commitment to Literacy. That 
is, we would make an incorrect estimate of the 
truth we seek. Second, the presence of the error 
variance would decrease the power of a two-
sample test to detect the presence of that 
treatment effect. An understanding of this loss of 
power may be communicated in terms of 
additional subjects needed in each group to 
compensate for the presence of measurement 
error. Assuming a desired level of power (e.g., 
.80) and a specific standardized effect size at the 
construct level (e.g., dη=.30), the number of 
subjects per group for a two-sample z-test can 
easily be shown to be: 

 
  nY = (1/ρYY) nη.                       (4) 
 
For example, conducting the test using a valid 
measure with reliability of ρYY =.50 would 
require twice as many subjects as a test that 
could, hypothetically, be conducted directly at 
the construct level. This result holds for t-tests as 
well for all but the smallest sample sizes, where 
appreciable changes in the critical value make 
the relation only approximate. Further, except 
for very small samples, Equations 3 and 4 hold 
for k-group between-subjects analysis of 
variance (ANOVA) as well using the more 
general k-group effect size measures (see Cohen, 
1988). 

 
 
 

 
 

The scenario for the univariate outcome 
may also be depicted symbolically using a path 
diagram.  In Figure 2 we see the measured 
variable Y being defined by two components, the 
construct of interest η and measurement error ε.  
The connection between η and Y, labeled as λ in 
Figure 2, symbolically reflects the (square root 
of the) measured variable’s reliability. The 
stronger the relation λ, the more proximal Y’s 
operationalization of η and thus the less error 
variance it contains; conversely, the weaker λ, 
the more distal Y’s operationalization of η and 
thus the more error variance it contains.  On the 
left we see a grouping variable representing 
population membership and whose influence is 
being assessed; this could be a single variable 
for k=2 groups, or k-1 group code variables for 
the general k-group case. 

As depicted, population membership X has 
a potential bearing γ on the construct η 
underlying the measured variable Y, while the 
remaining variance in η is accounted for by 
other independent but latent residual influences 
ζ .  Thus, an observed population difference on 
the measured variable Y is actually the 
attenuated manifestation of a population 
difference on the true underlying construct of 
interest.  The weaker the connection between the 
η and Y (i.e., the weaker the reliability), the less 
well the population difference on the construct 
of interest is propagated to, and thus reflected in, 
the observed variable.   
 
 
 
 
 

 

Figure 2.  Path model for univariate case 
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This simple univariate example 
underscores two needs regarding truth in 
experimental design and analysis. First, we must 
seek measured operationalizations as proximal 
to their constructs as possible. Certainly in the 
social sciences perfect operationalization is 
generally unrealistic, particularly given the 
vagaries of human behavior, perception, affect, 
and attitude. Notwithstanding, researchers 
should expend considerable effort to select or 
construct the most valid and reliable measures 
feasible. Second, to the extent that measurement 
error remains, we must employ analytic methods 
that maximize the accuracy of inference and 
estimation, thereby portraying population truths 
with the greatest clarity. These analytic methods 
must, to every extent possible, penetrate the 
measurement noise to achieve the same fidelity 
to truth as the theoretical questions that preceded 
and the practical proclamations we hope to 
follow. One attempt to do so lies within a 
multivariate scenario. 
 
The multivariate scenario 

Researchers often attempt to enhance 
their ability to make inference about population 
differences by gathering several pieces of 
evidence to be employed within a multivariate 
experimental design. In multivariate analysis of  
variance (MANOVA) with outcome measures Y1 
through Ym, the hope is that the signal of 
population differences on some combination of 
variables will be detected above the noise of 
their measurement error. This portion of the 
article will address MANOVA in the presence of 
measurement error, and highlight its somewhat 
misguided attempt to get closer to truth. 

Consider the multivariate scenario with 
k=2 populations, often analyzed using 
Hotelling’s T2. An example is depicted in Figure 
3 using m=2 outcomes for simplicity, and with 
extremely large population differences for 
clarity. As before, assume that each Yi measure 
is an operationalization of its own specific 
construct ηi, with individual standardized effect 
sizes of 

iYd  and 
i

dη  for the univariate measured 
and latent population mean differences, 
respectively. The assessment of the multivariate 
population difference between centroids µY1 and 
µY2 is tantamount to evaluating the univariate 

mean difference on the maximally 
differentiating discriminant function W=w1Y1 + 
w2Y2 = w'Y, with weights w commonly (but not 
necessarily) chosen so the within-group variance 

2
Wσ  =w'ΣYw equals 1. Observed and latent 

variable distributions on each Yi axis, as well as 
on the W axis, are depicted in Figure 3. 

Given that W is a linear combination of 
the observed variables, the measurement error of 
each Yi is propagated to the linear composite W. 
The standardized effect size along the W axis, 
the effect of interest in MANOVA, is dW=(µ1W-
 µ2W)/σW; it appears as approximately 3. The 
square of this effect size, 2

Wd , may be computed 
as the squared Mahalanobis’ distance 

 
][]'[ 21

1
21

2
YYYYYW within

D µµΣµµ −−= − ,           (5) 
 
where 

withinYΣ  is the pooled (within-group) 
variance-covariance matrix reflecting the 
observed Yi measures' m-dimensional dispersion 
and within lurks the influence of measurement 
error. Specifically, 

withinwithinwithinY εη ΣΣΣ += , 

where 
withinηΣ is the pooled (within-groups) 

variance-covariance matrix of the specific 
constructs ηi and 

withinεΣ  is a diagonal matrix of 
within-group error variances, assumed 
independent and each equal to )1(2

iii YYY ρσ − . 
Thus, 

 
][][]'[ 21

1
21

2
YYYYW withinwithin

D µµΣΣµµ −+−= −
εη . (6) 

 
As seen in Figure 3, the population mean 

difference on the W axis mirrors the univariate 
case, where the standardized effect size on the 
measured composite W underestimates the 
standardized effect size on the corresponding 
underlying construct. In this case, the construct 
underlying W, denoted here as ηW, is a linear 
combination of the ηi constructs underlying the 
respective measured Yi variables: ηW =w1η1 + 
w2η2 = w'η, where η is the vector of ηi 
constructs. Whereas the measured standardized  

 



GREGORY R. HANCOCK 
 

298 
 

 
 

   Figure 3. Multivariate population difference on measured variables and underlying constructs. 
 
 
effect size on W was depicted as near 3, the 
latent  standardized  effect size for ηW, 

WW
d ηηηη σµµ /)( 21 −= , is approximately 5. 

The square of this effect size, 2
W

dη , is also the 
squared Mahalanobis’ distance 
 
   ][]'[ 21

1
21

2
ηηηηηη µµΣµµ −−= −

withinW
D ,        (7) 

 
which corresponds to Equation 6 with the error 
variance 

withinεΣ removed. In fact, the reliability 
of the composite W could be determined as 

22 /
W

DDW η , which is just a multivariate 
restatement and rearrangement of Equation 3. 

To get a sense of the impact of 
measurement error on the multivariate effect 
size, consider a simple scenario in which the ηi 
constructs are uncorrelated (and hence so too are 
the Yi variables). In this case the matrix 

withinYΣ is 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

diagonal, and thus Equation 5 may be shown to 
simplify to 

 

 ∑
=

==
m

i
YYYW i

dD
1

22 'dd ,                    (8) 

 
where dY is the vector of standardized effect 
sizes for Yi (i=1…m) as per Equation 1. The 
same logic would also yield a parallel result for 
the latent effect size: 

 ∑
=

==
m

i
iW

dD
1

22 ' ηηηη dd ,                    (9) 

 
where dη is the vector of latent standardized 
effect sizes for ηi (i=1…m) as per Equation 2. 
Taking each Yi variable’s measurement error 
into account following Equation 3, Equation 8 
yields 
 

 ∑
=

=
m

i
YYW iii

dD
1

22 )(ρη .                         (10) 

 
 
 
 
 

Y1

Y2 

W W 

Pop. 1     Pop. 2 

Pop. 2 

Pop. 1 

Pop. 1 

Pop. 2 

          Pop. 1 

         Pop. 2 
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If all Yi variables were of the same reliability 
ρYY, it further follows that 
 
 22 )(

W
DD YYW ηρ=                               (11) 

 
(again, given uncorrelated ηi constructs and 
homogeneous reliabilities). Assuming a desired 
level of power (e.g., .80) and a specific effect 
size at the latent multivariate level (e.g., 

W
dη =.30), the number of subjects per group for 
a two-sample test can be shown to be inversely 
proportional to measured variable reliability for 
all but the smallest sample sizes (in this highly 
restrictive example). That is, 
 
 

W
nn YYW ηρ )/1(= .                           (12) 

 
More generally, given any correlational pattern 
among the ηi constructs (and resulting 
attenuated correlations among the Yi variables), 
the resulting reliability ρWW of the composite W 
would yield the corresponding relation 
 
 

W
nn WWW ηρ )/1(= .                         (13) 

 
Thus, the more reliable the composite W, the 
more MANOVA’s power tends toward that of a 
theoretical test directly on the underlying 
construct. 

In the univariate case, two implications of 
measurement error were highlighted: 
underestimating the magnitude of the treatment 
effect on the underlying construct of interest, 
and decreased power to detect the treatment 
effect. As illustrated, these hold as well for the 
multivariate case. However, while we may tend 
to gain power by accommodating multiple 
measured variables simultaneously, it is here 
that we must remind ourselves of our purpose, of 
precisely what truth we seek. That is – what, 
exactly, is the construct of interest in 
MANOVA?  

Figure 4, a conceptual path diagram for 
the multivariate case, will help this discussion. 
On the left is a group code variable (e.g., 
dummy) representing population membership 
and whose influence is being assessed. As 
depicted, population membership has a potential 

bearing on the ηi constructs underlying the 
measured Yi variables. Portions of the constructs 
not explained by population membership are 
represented in the latent residual influences ζi, 
which are likely to be correlated (shown in 
Figure 4 by shared two-headed arrows). 
Population differences on the measured variables 
are the observable manifestations of differences 
on the true underlying constructs of interest. The 
connection between each ηi and Yi reflects the 
(square root of the) reliability of each variable; 
the weaker such a relation the less well the 
population differences on a construct are 
propagated to, and thus reflected in, the 
observed variables. As a result of each variable’s 
imperfect operationalization of its construct, 
error εi contributes to the variable as well. 
Finally, in the case of multiple outcomes, a 
discriminant function W is represented as a 
composite of the measured variables. The 
weights determining this composite are optimal 
in the sense that they maximize the relation 
between W and X. Note that W, as a weighted 
sum of measured variables, is also a weighted 
sum of constructs and errors. That is, unless all 
variables are perfect operationalizations of their 
constructs, the composite W will contain 
measurement error which thus hampers its 
ability to reflect population differences 
propagated by X. 

 
 
Figure 4. Path model for multivariate case, with 
m constructs. 
 

So if W contains measurement error, with 
respect to what construct does that measurement 
error exist? The answer, as utilized previously, is 
the composite implicitly formed by MANOVA 
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of the constructs underlying the variables. But 
what truth does a composite of univariate 
constructs represent? To this critical question 
there seems to be three common answers, none 
of which is entirely satisfactory. Each will be 
presented in turn, along with the concerns it 
inspires. 

Position 1: The composite is not itself 
intended to be a construct; rather, it is merely a 
vehicle for the simultaneous examination of the 
m individual constructs of interest.  

Response 1: If the separate constructs are 
of interest, then a MANOVA is inconsistent 
with that interest. Rather, a collection of 
individual ANOVAs, however seemingly 
inelegant, would address each construct directly. 
An omnibus MANOVA is not generally 
appropriate as a Type I error control mechanism 
since a single false univariate null hypothesis 
renders the multivariate null hypothesis false, 
and thus control over other true univariate 
("partial") nulls becomes ungoverned. If one 
wishes to invoke an error control mechanism at 
the level of the constructs of interest, such as 
that of Bonferroni or his descendants, it may be 
applied across ANOVAs.  

Position 2: The univariate constructs are 
facets of a single meaningful whole, as 
represented by the discriminant function and 
upon which knowledge of population differences 
is sought.  

Response 2: Measured variables having a 
deterministic and defining bearing on a construct 
have been referred to as constituting an 
emergent variable system (e.g., Bollen & 
Lennox, 1991; Cohen, Cohen, Teresi, Marchi, & 
Velez, 1990). For example, one could imagine 
an unmeasured construct representing stress, 
contributed to and defined by such variables as 
relationship with parents, relationship with 
spouse, and demands of the workplace. In this 
case population differences in stress might 
indeed be of interest.  

However, the formation of the 
discriminant function is not done in a manner 
reflecting any relative theoretical contributions 
of the three measured variables. If population 
differences existed only in terms of demands of 
the workplace, for example, then the 
discriminant function would be composed of 
only that variable. But does that then mean that 

stress is only a function of demands in the 
workplace? Surely not. Thus, while the notion is 
reasonable that variables combine to define a 
composite with a meaningful underlying 
construct, those variables’ combination is not 
informed by the theoretical soundness of the 
construct, but rather only by measured variable 
mean differences. Forming a meaningful 
composite and then conducting an ANOVA on 
the resulting scores would seem more consistent 
with the beliefs underlying this variable system. 

Position 3: The univariate constructs are 
actually a single meaningful underlying 
construct; the discriminant function represents 
that construct and allows for the assessment of 
population differences thereon.  

Response 3: Contrary to the emergent 
variable system described in Response 2, the 
variable system here is latent. That is, all 
measured variables are believed to be 
undergirded by the same construct (but perhaps 
varying in the quality of their reflection), and it 
is on this common construct that inference is 
desired. Still, although a single construct exists, 
MANOVA remains clouded in its ability to 
address this construct directly.  

Consider Figure 5, where X codes 
population membership and has a potential 
bearing γ on the common construct η underlying 
the measured Yi variables. Thus, population 
mean differences on the measured variables are 
the observable manifestations of a population 
difference on the true underlying construct of 
interest. Again, the connections between the η 
construct and Yi variables (λi) embody the 
(square root of the) reliability of each variable; 
the weaker such a relations the less well the 
group differences will be reflected in the 
observed variables. Finally, the discriminant 
function W is again shown as an optimal 
composite of the measured variables, where 
every variable in the composite contributes some 
part η and some part εi. So the discriminant 
function has succeeded to some extent in being a 
reflection of a construct of interest; however, it 
has still failed to eradicate error.  

Further, the function has used group mean 
differences to guide its definition rather than 
proximity of construct operationalization. Thus, 
even if a single common construct underlies the 
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measured variables, measurement error within 
this multivariate approach will continue to 
compromise the accuracy of a treatment effect’s 
assessment as well as the power to detect that 
effect. That is, we must continue the search for 
methods that attempt to pardon error. 

 

 
 

Pardon Error 
Having cursed the varying degrees of 

darkness inherent in traditional univariate and 
multivariate experimental analyses, I now wish 
to light a candle – or more accurately, introduce 
the candle others have lit (e.g., Muthén, 1989; 
Sörbom, 1974). The foundation for this 
illumination may be seen in Figure 5, already 
presented. Our real goal is not to be able to 
detect an overall relation between the population 
membership X and the discriminant function W, 
but rather between X and the construct η. That 
is, we desire an estimate of the path denoted as 
γ, making the discriminant function W irrelevant. 
Fortunately, under the umbrella of structural 
equation modeling, a clearer attempt at a 
solution exists.  

In Figure 5 the relations between the 
construct and its measured operationalizations 
may be expressed in a system of m structural 
equations of the form Yi = λiη + εi (i=1…m). 
These measurement equations may in turn be 
represented collectively as  

 
 

                         Y = Λη + ε,                           (14) 
 

where Y is a subject’s mx1 vector of Yi scores, Λ 
is an mx1 vector of unstandardized factor 
loadings   generally   assumed   to   hold   for  all  

 

 

 

subjects in both populations (homogeneity of 
measurement), and ε is a subject’s mx1 vector of  
εi measured variable residuals. More 
interestingly, the theoretical relation of our 
current focus is contained in the structural 
equation relating population membership to the 
construct,  
 

η = γ X + ζ.                     (15) 
 

These structural equations, along with the 
simplifying (but not mandatory) assumption of 
independence of all exogenous elements (X, ε, 
and ζ), have implications for the partitioned 
variance-covariance matrix Σ containing the X 
and Yi variables for all populations combined. 
Specifically, for the Yi variables alone, Equation 
14 implies 
 
                  ΣY = Λφη Λ' + Θε ,                       (16) 
 
where φη is the total construct variance for both 
populations combined, and Θε is the mxm 

Figure 5. Path model for multivariate case, with one construct. 
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variance-covariance matrix for the εi residuals. 
Equation 15 has implications for φη, such that 
 
                   ψσγφη += 22

X ,                        (17) 
 
where 2

Xσ  is the variance of X and ψ is the 
variance of the construct residual ζ. That is, ψ is 
the part of the construct variance that is not 
explained by population membership; as such, it 
is the pooled within-groups variance for the 
construct. Finally, the portion of the covariance 
matrix relating the vector Y of Yi variables to X, 
as  following  from Equations 14  and  15, is  
 
                     '2 ΛΣ XXY γσ= .                         (18) 
 
As implied by the model in Figure 5, the full 
partitioned matrix for the X and Yi variables 
(respectively) is: 
 

  ⎥
⎦

⎤
⎢
⎣

⎡

++
=

εψσγγσ
γσσ

ΘΛΛΛ
Λ

Σ
'][

'
222

22

XX

XX .     (19) 

 
Using maximum likelihood estimation 

within structural equation modeling (see, e.g., 
Bollen, 1989), and after fixing one factor 
loading to a value of 1 so as to give the construct 
η a unit of measurement (i.e., that of the 
corresponding indicator variable), population 
values for all parameters in Equation 19 are 
chosen so as to maximize the likelihood of the 
observations giving rise to the sample 
covariance matrix S. After conducting an 
assessment of the data-model fit as represented 
by the degree of correspondence between the 
observed matrix S and the expected matrix Σ̂  
(after substituting the optimum parameter values 
into Equation 19), satisfactory fit allows one to 
proceed to the question at hand. That question 
involves the estimation of, and statistical test of, 
the population mean difference(s) on the 
construct η.  

For the two-group case, the path from the 
single dummy variable X to the construct η is an 
estimate of the population difference on the 
construct. This path, γ, will also have a 
maximum likelihood standard error as a by-
product of the estimation process, which will 

allow a statistical test of the difference between 
the two population means on the construct η. If 
X is coded 0/1, then a statistically significant and 
positive estimate of γ implies the population 
coded X=1 has a higher mean on the construct η, 
whereas a negative value would imply 
superiority of the population coded X=0. An 
interpretation of the value of γ itself is not 
generally useful because it reflects the metric 
that η has been assigned by fixing a variable 
loading to 1. However, given that the pooled 
within-groups construct variance ψ has been 
estimated as well, we may derive an estimate of 
the  latent  standardized effect size dη, where 
 
                      ψγη /=d .                         (20) 

 
Thus, if a single construct underlies our 
measured variables, we are able to conduct a 
statistical test on the construct mean difference 
as well as estimate the standardized effect size 
associated with that differences in latent means. 

The simple process described above, 
which may be conducted using any structural 
equation modeling software (e.g., AMOS, EQS, 
LISREL, Mplus), is part of a larger class of 
models known as multiple-indicator multiple-
cause (MIMIC) models suggested for assessing 
latent population differences (Muthén, 1989). 
The procedure is not without its own 
assumptions and restrictions, some of which 
may be softened in a somewhat more 
complicated strategy known as structured means 
modeling (Sörbom, 1974). Those details are left 
for the interested reader, and are summarized 
didactically elsewhere (e.g., Hancock, in press). 
More importantly is that these methods exist to 
put the construct back at center stage, in terms of 
hypothesis testing and effect size estimation, and 
as such the theoretical benefits over a 
MANOVA approach should be clear. 

We may also take a practical approach in 
comparing the MIMIC and MANOVA strategies 
by determining the sample sizes required to 
detect a specific latent standardized effect size in 
order to achieve a desired level of statistical 
power. In Table 1 we see the cases of m=2, 3, 
and 4 measured variables, crossed with 
homogeneous sets of standardized loadings of 
λ=.4, .6, and .8. The standardized latent effect 
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sizes included were dη=.2, .5, and .8. In all 
conditions the necessary sample size was 
assessed for both MANOVA and the MIMIC 
approach in order to achieve .80 power using the 
equivalent of a two-tailed test at the .05 level. 
For MANOVA, sample size determination in 
each case followed strategies for Hotelling’s T2 
outlined by Cohen (1988; Section 10.3.2.1), 
while for the MIMIC approach the methods 
derived  by  Hancock  (2001) were  used.  
 
 

 
 
 
 
 

 
 

 
 

 
 
 

 
 
 
 
 

 
 

 
 

Many points are noteworthy in Table 1. 
As expected, for both the MIMIC and 
MANOVA methods the necessary sample size 
decreases as effect size increases (holding all 
else constant). Specifically, sample size 
decreases were approximately proportional to 
corresponding increases in the square of dη (e.g., 
from dη=.2 to dη=.5, sample size necessary 
decreases by a multiplicative factor of 
.22/.52=.16). Sample size also decreases for both 
methods as loading magnitude increases 
(holding all else constant). In particular, sample 
size decreases were approximately proportional 
to corresponding increases in construct 
reliability as measured by coefficient H (also 
known as maximal reliability), where for the 

case of homogeneous loadings H mirrors the 
Spearman-Brown prophecy formula as 

 
             ])1(1/[ 22 λλ −+= mmH                (21) 
 
(see Hancock, 2001). For example, with m=3 
variables, H=.276 for λ=.4 and H=.529 for λ=.6; 
sample size thus decreases by a multiplicative 
factor of .276/.529=.521 for both the MIMIC 
and MANOVA strategies. For MANOVA this 

 

 

 
 
sample size decrease is due to the increased 
presence of the construct in the discriminant 
function; for the MIMIC approach, which 
already operates at the construct level, this 
sample size decrease is due to a decrease in the 
standard error associated with the γ path.  

With regard to increasing the number of 
variables, for the MIMIC strategy sample size 
decreases correspondingly (holding all else 
constant); this is because distributional 
noncentrality varies directly with construct 
reliability as measured by H (Hancock, 2001), 
which increases with the addition of any nonzero 
loading. For MANOVA, sample size decreases 
with additional variables for λ=.4 and .6, but an 
increase in required sample size is observed for 

Table 1 
Sample Size Required For Two-Group .05-Level Tests With Power=.80 

 
 MIMIC  MANOVA  

  λ=.4 λ=.6 λ=.8  λ=.4 λ=.6 λ=.8 
m=2 dη=.2 1424 742 504  1748 912 619 

 dη=.5 229 120 81  281 148 101 
 dη=.8 90 47 32  111 59 41 
         

m=3 dη=.2 1080 626 467  1502 871 650 
 dη=.5 174 101 76  242 141 106 
 dη=.8 68 40 30  96 57 43 
         

m=4 dη=.2 909 568 449  1383 865 684 
 dη=.5 146 92 73  224 141 112 
 dη=.8 58 36 29  89 57 45  
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λ=.8. This is because at some point additional 
variables do not contribute sufficient new 
information about the construct to justify the 
additional degree of freedom expenditure. This 
was seen in a supplemental analysis as well 
using λ=.9 (not shown in Table 1), where for 
m=2, 3 and 4 the necessary sample size per 
group for MANOVA increased from 540 to 590 
to 635, respectively.  

Overall, as expected the sample size 
required for MANOVA was always greater than 
for MIMIC. For the m=2 case MANOVA 
sample sizes were always about 23% larger than 
for the MIMIC approach. For m=3 that number 
increased to around 39%, while for m=4 
required sample sizes for MANOVA were 
approximately 52% larger than for the MIMIC 
strategy. Thus, not only has the MIMIC 
approach’s estimation and inference operated 
directly at the level of the construct of interest, it 
has done so with the same power for a 
considerable savings in sample size (or with 
greater power for the same sample size 
expenditure). And interestingly, at no point did 
we need to estimate variables’ reliability; this 
information was implicit within the MIMIC 
process in the estimation of the λi loadings. 

Extensions to this latent approach exist 
both internally and externally, where the former 
refers to methods for answering the same 
questions under less restrictive assumptions and 
the latter refers to methods for addressing more 
complex questions. With regard to internal 
extensions, the primary assumption implicit in 
MIMIC modeling is that, because the data from 
the groups are combined and only one model 
results, the same measurement model holds 
across populations. This includes loadings, 
construct variance, and error variances. In effect, 
all sources of covariation among observed 
variables are assumed to be equal in all 
populations, making the assumption of identical 
measurement models tantamount to an 
assumption of equal variance/covariance 
matrices (as is actually assumed in MANOVA 
as well). As alluded to previously, a more 
flexible approach to assessing latent means 
exists in structured means modeling (Sörbom, 
1974), where only the corresponding loadings 
are commonly constrained across populations in 
the complete covariance model. Further, 

additional flexibility may exist to allow for some 
loading differences across populations under 
particular configurations of partial measurement 
invariance (Byrne, Shavelson, & Muthén, 1989). 

Externally, the methods of assessing latent 
means may be extended greatly. Within the 
MIMIC framework, the creative use of group 
code predictors of the latent construct of interest 
(e.g., dummy variables) can fairly easily 
facilitate inferences that parallel those of more 
complex one-way and factorial ANOVA 
designs. Also, covariates may be introduced 
along with the group code variables. In fact, like 
all other variables covariates have underlying 
constructs; as such, given multiple indicator 
variables a latent covariate construct may be 
incorporated into the model along with the group 
code variables. The disattenuation of 
measurement error in the covariate provides 
greater accuracy in the assessment and testing of 
the covariate’s predictive role in the design, as 
well as of population mean differences on the 
outcome construct after exacting such latent 
control. 

 
Seeking Your Fortune 

Inspired jointly by ancient wisdom and 
modern analytical methods, this article has 
attempted to return our focus to the constructs 
that underlie our experimental research 
endeavors. Certainly those constructs must be 
grounded in observable measures, but the 
proximity of those measures’ operationalization 
of the construct(s) should be acknowledged and 
even accommodated. I have attempted to 
highlight the theoretical and practical costs of 
imperfect operationalization within traditional 
experimental analyses, and pointed toward 
reasonably accessible strategies that circumvent 
our measures’ necessary imperfections.  

But there is no free lunch, so to speak. 
Although the latent variable approaches to 
experimental design can pardon error and thus 
attempt to correct for unreliability, researchers 
are not thereby absolved of expending 
considerable effort in choosing or constructing 
quality measures. Poor reliability in measures 
yields less stability in the constructs and in 
estimates of their relations with other variables 
(e.g., group code variables), as well as larger 
standard errors for the statistical assessment of 
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estimated relations. Thus, the methods described 
briefly herein serve to complement sound 
principles of instrument selection and 
construction. 

These methods also signal the potential to 
reframe other aspects of the multivariate general 
linear model as well. Although this article has 
focused on experimental design, the canonical 
correlation model suffers from some of the same 
problems as MANOVA. Specifically, while X 
and Y variables are generally chosen by 
researchers with some constructs in mind, X and 
Y composites are formed whose primary 
allegiance is to the maximization of XY 
relations. If one used variables to define 
constructs in separate X and Y measurement 
models, the relations between constructs would 
be directly couched in theory, disattenuated of 
measurement error, and detectable with 
considerably more power than within the 
canonical framework. Expositions similar to 
those provided here for experimental design 
could be crafted, and would be equally 
compelling. 

In sum, although constructs and their 
relations are the beloved truths that motivate 
most applied statistics, so many of our analytical 
efforts are hindered in their inferential 
estimation and hypothesis testing by our 
measures’ inability to reflect those constructs 
satisfactorily. The current article has illustrated 
the detriments of failing to pardon error from 
our experimental inference, and has directed the 
applied researcher toward more modern methods 
that can assist researchers in getting closer to the 
truths they seek. It is my hope that they will 
pursue these and related methods as they seek 
their research fortunes. In the mean time, I 
believe I have a lunch appointment…. 
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