
Journal of Modern Applied Statistical
Methods

Volume 1 | Issue 2 Article 59

11-1-2002

A Program for Generating All Permutations of {1, 2,
..., n}
Robert DiSario
Bryant College

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Algorithms and Code is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been
accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
DiSario, Robert (2002) "A Program for Generating All Permutations of {1, 2, ..., n}," Journal of Modern Applied Statistical Methods: Vol.
1 : Iss. 2 , Article 59.
DOI: 10.22237/jmasm/1036109640
Available at: http://digitalcommons.wayne.edu/jmasm/vol1/iss2/59

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss2/59?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss2/59?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Modern Applied Statistical Methods Copyright 2002 JMASM, Inc.
Fall 2002, Vol. 1, No 2, 518-522 1538 – 9472/02/$30.00

518

A Program for Generating All Permutations of { }1, 2, , n…

Robert DiSario
Bryant College

A Visual Basic program that generates all permutations of {1, 2, …, n} is presented. The procedure for
running the program as an Excel macro is described. An application is presented which involves selecting
permutations which meet a specific constraint.

Key words: Visual Basic, permutation.

Introduction

A Visual Basic program for generating all
combinations of n elements taken m at a time was
presented in Stamatopoulos (2002). The present
work presents a program for generating all
permutations of n elements. Applications
involving combinations and permutations often
arise in designing experiments and in other areas.
As an example, the program was used to find all
permutations that meet a specific requirement.

The procedure given in the present work
meets the requirements stated in Stamatopoulos
(2002) for algorithms which implement automatic
enumeration: a) all possible cases are exhausted;
b) none of the permutations need to be stored – the
current case that has been formulated is the basis
for generating the next one. Therefore it presents a
practical means for generating permutations.

Methodology

The program consists of a main module,
Macro1(), and 3 functions: Permute(), Findlarg()
and Sort(). The main module handles input and
output (input from Excel ; output to a text file),
dimensions and initializes an array, and calls

Robert DiSario is an Assistant Professor in the
department of mathematics at Bryant College. He
received a Ph.D. in statistics from Boston
University in 1996. His academic interests include
applied statistics and combinatorics. E-mail him at
rdisario@bryant.edu

Permute(). Findlarg() returns the largest element
to the right of a given position in an array. Sort()
sorts the elements to the right of a given position
in an array. Permute() takes as input a
permutation of {1,2,…,n} and creates the next
permutation in the “natural sequence”. For an
example of the “natural sequence” of permutations
of {1,2,3,4} see the output below. Permute() also
returns 0 when the final permutation in the natural
sequence has been created. A general description
of Permute() follows. A listing of the program,
written in Visual Basic, appears in an appendix.

Description of Permute() function

Permute(x(),n)
Set bigfix = n.
Note: bigfix is an element that
serves as a reference point in the
array.
Top:
Find position of bigfix (call it
bigindx). Check whether array is
in descending order from bigindx
to the right. If descending, work
left. Else, work right.
Work left: (refers to left of
bigfix)
If nothing to left of bigfix, then
done (this is the last permutation
in natural sequence).
Else the element to the left of
bigfix, x(bigindx-1), needs to be
changed. Switch it with the
smallest element on its right

GENERATING ALL PERMUTATIONS OF {1, 2, … n}

519

which is bigger than it. Then sort
the elements from bigindx to the
right.
Permute() is done (indicated by
done = 1).
end Work left

Work right: (refers to right of
bigfix)
Find the largest element on the
right of bigfix. Set bigfix equal
to this largest element.
Permute() is not done (indicated
by done = 0)
end Work right

Return to top:

Results

Application 1

As a first example, the program was used
to generate all 24 permutations of the set

{1,2,3,4}. The results are shown in Table 1. This
output reveals the order referred to above
as the “natural sequence”. Note that the output file
contains a single column of permutations, but that
Table 1 has been reformatted into 6 columns to
save space.

Application 2

As a typical application, experimenters are
often interested in the order of presentation of
experimental conditions or stimuli. In some cases,
the orders used must be selected according to very
specific considerations. Furthermore, the
experimenter may desire to use a different order
for each of the subjects or replications. As an
example, suppose an experimenter wants a list of
all the permutations of {1,2,3,4,5} in which “1” is
not next to “2”, “2” is not next to “3”, “3” is not
next to “4”, and “4” is not next to “5”. The
program was modified (as described below) to
check each permutation to determine whether or
not it meets this constraint. The list of all such
permutations appears in Table 2.

Table 1. “Natural Sequence” of Permutations of {1,2,3,4}. Read down then across.

1 2 3 4 1 4 2 3 2 3 1 4 3 1 2 4 3 4 1 2 4 2 1 3
1 2 4 3 1 4 3 2 2 3 4 1 3 1 4 2 3 4 2 1 4 2 3 1
1 3 2 4 2 1 3 4 2 4 1 3 3 2 1 4 4 1 2 3 4 3 1 2
1 3 4 2 2 1 4 3 2 4 3 1 3 2 4 1 4 1 3 2 4 3 2 1

Table 2. All permutations of {1,2,3,4,5} with the property that adjacent elements are not consecutive integers.

1 3 5 2 4 2 4 1 3 5 2 5 3 1 4 3 1 5 2 4 3 5 2 4 1 4 2 5 1 3 5 2 4 1 3

 1 4 2 5 3 2 4 1 5 3 3 1 4 2 5 3 5 1 4 2 4 1 3 5 2 4 2 5 3 1 5 3 1 4 2

To select only those permutations that meet the
constraint, the section of the program that prints
the permutation was modified. First the
permutation was checked to see if it satisfies the
constraint. Then printing was conditional on the
outcome of this check. This was accomplished by
setting a “satisfy” flag to 0 if the constraint was
not met and to 1 if the constraint was met. The
specific lines that were changed (both original and
modified) are presented in Appendix III. A similar

approach could be used to select permutations
according to other constraints.

References

Stamatopoulos, C. (2002). Generation of

combinations using Excel. Journal of Modern
Applied Statistical Methods, 1, 191-194.

ROBERT DISARIO

520

Appendix I

The BASIC code that appears in Appendix
II can be run as an Excel macro. The procedure for
doing this is described in Stamatopoulos (2002).
Note that before pasting the program lines into the
Visual Basic editor, it is necessary to first delete

two lines which are automatically generated by
Excel: Sub Macro1() and End Sub.

The program can be assigned to a control
key. It will read a value of n from the cell B4 in
Sheet1 of the Excel workbook. It outputs the
permutations to a text file called perms.txt.

Appendix II

Program listing
Sub Macro1()
'Open file for output.
'Read n from worksheet
'Set initial permutation {1,2,...,n}
Open "c:\perms.txt" For Output As #1
n = Range("B4")
ReDim x(n)
For i = 1 To n
 x(i) = i
Next i

'Notdun=0 iff current permutation is n, n-1, ..., 1
notdun = 1
Do While (notdun)
 For i = 1 To n
'Print current permutation
 Print #1, x(i);
 Next i
'Print line feed
 Print #1, ""
'Find next permutation and note whether it is the final one
 notdun = permute(x(), n)
Loop
Close
End Sub

Function permute(x(), n)
'Creates the next permutation in the "natural sequence"
'Returns 0 if permutation is n, n-1, ..., 1
'Default is to return 1
permute = 1
bigfix = n
'Done = 1 indicates next permutation is complete, 0 not.
done = 0
Do While (done = 0)
 done = 1

'Find the index of bigfix
 For i = 1 To n
 If x(i) = bigfix Then bigindx = i
 Next i
 descend = 1
 If bigindx <> n Then
 For i = bigindx To n - 1
 If x(i) < x(i + 1) Then descend = 0

GENERATING ALL PERMUTATIONS OF {1, 2, … n}

521

 Next i
 End If
 If descend And bigindx = 1 Then permute = 0
 If descend Then
'Work left
 current = x(bigindx - 1)
 candidx = bigindx
'Find element to switch with x(bigindx-1)
 For i = bigindx To n
 If x(i) > current And x(i) < x(candidx) Then candidx = i
 Next i
'Switch them
 temp = x(candidx)
 x(candidx) = x(bigindx - 1)
 x(bigindx - 1) = temp
 temp = sort(x(), bigindx)
 End If
'End of work left

'Work right
 If descend = 0 Then
 done = 0
 bigfix = findlarg(x(), bigindx + 1)
 End If
'End of work right
Loop
End Function

Function findlarg(x(), start)
'Finds largest x(i) from i = start to i = n
candid = x(start)
ub = UBound(x)
For i = start To ub
 If x(i) > candid Then candid = x(i)
Next i
findlarg = candid
End Function

Function sort(x(), start)
'Sorts x() from i = start to i = n
ub = UBound(x)
For i = start To ub
For j = i To ub
If x(i) > x(j) Then
temp = x(i)
x(i) = x(j)
x(j) = temp
End If
Next j
Next i

End Function

ROBERT DISARIO

522

Appendix III

Program modification used to select permutations meeting constraint described in application 2.

Original code:
For i = 1 To n
'Print current permutation
 Print #1, x(i);
 Next i
'Print line feed
 Print #1, ""

Modified code:

'Check whether permutation meets constraints
satisfy = 1
For i = 2 To n
If Abs(x(i) - x(i - 1)) = 1 Then satisfy = 0
Next i

If satisfy Then
 For i = 1 To n
' print current permutation
 Print #1, x(i);
 Next i
' print line feed
 Print #1, ""
End If

	Journal of Modern Applied Statistical Methods
	11-1-2002

	A Program for Generating All Permutations of {1, 2, ..., n}
	Robert DiSario
	Recommended Citation

	tmp.1377145100.pdf.AINDq

