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CHAPTER 1  COMPARATIVE POWER OF THE ANOVA, APPROXIMATE 
RANDOMIZATION ANOVA, AND KRUSKAL-WALLIS TEST  

Introduction 

The Kruskal-Wallis Test is a nonparametric alternative to the one-way ANOVA 

when assessing for shift in location. Analysis of variance (ANOVA) has been stated 

to be robust to departures from population normality (Glass, Peckham & Sanders, 

1972). By definition, the Kruskal-Wallis Test is robust to this violation, because it 

does not operate under the assumption of normality. Under conditions of substantial 

non-normality, the permutation ANOVA has been proposed as an alternative to 

ANOVA to rehabilitate its robustness properties (Potvin & Roff, 1993) and has been 

asserted by Hunter & May (1993) to be superior in power to the nonparametric 

alternative. Hunter & May (1993) suggested that degrading the data to ranks, as 

nonparametric tests do, can produce a more powerful test only in some situations. 

The basis for that assertion appears to lie in the literature exploring the comparative 

efficacy of parametric tests to nonparametric counterparts in the context of the 

independent samples t test and the Wilcoxon-Mann-Whitney test, which are two-

sample tests of location (van den Brink & van den Brink, 1989). Note that Sawilowsky 

(1993) contested the notion that converting to ranks makes nonparametric tests less 

powerful, and stated that for treatment alternatives of shift in location it actually 

results in tests more powerful than parametric and permutation counterparts.   

Many researchers have demonstrated that under conditions of normality, 

power advantages of parametric tests such as Student’s t and ANOVA are small 

when compared with their nonparametric counterparts, Wilcoxon-Mann-Whitney test 

and Kruskal-Wallis test, respectively (Blair & Higgins, 1985; Sawilowsky, 1990; 
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Zimmerman & Zumbo, 1990a). More specifically, Blair (1981) reports that the 

asymptotic relative efficiency of the Wilcoxon test relative to the t test is .955 when 

the assumption of normality is perfectly met. Later, Blair and Higgins (1985) 

examined the t test and Wilcoxon test under 10 different population shapes, 

determining that not only was the Wilcoxon test more often the most powerful, but in 

those situations it was vastly more powerful. Zimmerman and Zumbo (1990) assert 

that the power advantages that exist for nonparametric tests, such as the Wilcoxon 

test, are due to the elimination of the outlier influence by process of ranking. Indeed, 

the researchers state that when non-normal distributions have a restricted range of 

scores, as is the case in uniform distributions, the t test outperforms the Wilcoxon, a 

claim supported by the finding of Blair and Higgins (1985). 

The propensity of researchers to prefer the use of parametric statistics have 

led many to propose transforming non-normal data in an attempt to satisfy the 

underlying parametric assumptions (e.g, Zimmerman & Zumbo, 1990b; Andrews, 

Gnanadesikan & Warner, 1971). However, others have shown that data 

transformation for certain designs can be dramatically non-robust and in many cases 

can have poor power properties (Sawilowsky, Blair & Higgins, 1989). This 

controversy highlights the need for researchers to better understand statistical 

procedures available to them given an unknown or non-normal population 

distribution. 

Problem 

Despite intricacies in the properties of parametric and nonparametric statistics, 

it is largely reported that parametric tests are generally more powerful than 
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nonparametric tests in all aspects, whether or not empirical support is provided for 

the claims (Blair & Higgins, 1985). Less common are the assertions that this 

aforementioned superiority of parametric tests lie on the foundation that the 

underlying assumptions such as distribution normality, must be perfectly met for the 

argument to hold true (e.g., Sharp, 1979).  

Micceri (1989) noted when using the Kolmogorov-Smirnov test of normality on 

a sample of 440 distributions from published research, 100% of the distributions were 

significantly non-normal at the .01 alpha level. If this occurrence holds true, there are 

several factors to consider when determining the appropriate analysis for a given 

study. Additionally, given that a large portion of educational and behavioral science 

data being used to make instructional and policy decisions could be considered non-

normal, one must decide the value placed on statistics that would be used in decision 

making. 

If population normality is a condition under which parametric statistics are to 

be used, it would follow that one wishing to use these statistics must first analyze 

data to determine their sample distribution. Ryan (1959) discussed the issue of 

experiment-wise error, the likelihood that any one analysis within a given experiment 

will produce a Type I error. Each analysis performed on any given data set will 

increase the likelihood of a Type I error occurrence. Given this increased error rate, 

this presents the question of whether it is worth the sacrifice to test for normality 

before conducting a priori analyses given that other nonparametric alternatives exist 

that do not rely on the underlying assumption of normality, and subsequently, do not 

require tests of normality.  
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Type I error and test robustness also have other implications in educational 

practice. If parametric tests require larger and equal sample sizes to remedy their 

sometimes excessive Type I error under non-normality, this can have a major impact 

on public education research practices. Having statistical options that can maintain 

robustness to departure from normality even in light of smaller samples, can make 

educational research more obtainable in the face of limited budgets. 

Purpose of the Study 

The bulk of prior comparison research has explored the comparative power of 

two-sample tests of location. The statistics underlying these tests expand to the tests 

for three or more groups, in this case the ANOVA (F-ratio), the approximate 

randomization ANOVA, and Kruskal-Wallis tests. Additionally, it has been suggested 

that under non-normal conditions, the approximate randomization ANOVA will 

rehabilitate the statistical power of the ANOVA, making it a better and more accurate 

alternative to the Kruskal-Wallis. The current study will evaluate the comparative 

statistical power of the three tests mentioned above - the one-way ANOVA, the 

approximate randomization ANOVA, and the Kruskal-Wallis test – under differing 

sample size and distribution. To conduct an approximate randomization ANOVA, a 

researcher must have the access and ability to implement a Monte Carlo simulation 

relevant to their data structure. Additionally, given the superior robust qualities of the 

Kruskal-Wallis test to the ANOVA under conditions of non-normality, its comparability 

to the ANOVA under conditions of normality, and the simplicity with which the 

Kruskal-Wallis test is performed, establishing that the Kruskal-Wallis test was at least 

as powerful as the two previously stated alternatives under varying conditions would 
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have dramatic implications for researchers both in the field and in educational 

institutions. Therefore, the research questions are:  

(a) What is the difference in statistical power of the three tests when all 

parametric assumptions are met? 

(b) What is the difference in statistical power of the three tests when the 

assumption of normality is not met? 

Assumptions and Limitations 

 Critical values will be obtained for the multiple iterations of the proposed 

statistical tests. The accuracy of these values will be determined by the number of 

iterations performed on the tests, and these could vary slightly from study to study. 

Additionally, the distributions created for the purposes of the study will be artificial in 

nature and may not be an accurate representation of a real-world distribution, but 

rather than idealized variation of real-world distributions.  

 In implementing artificial effect sizes, it should be noted that these effect sizes 

will be identical across groups, creating an ideal situation for parametric analysis. 

Additionally, group sizes in the samples will always be equal, another contributor to 

an essentially ideal condition for statistical testing. 

Definition of Terms 

Critical Value: The critical value(s) for a hypothesis test is a threshold to which the 

value of the test statistic in a sample is compared to determine whether or not the null 

hypothesis is rejected. 
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Data distribution: A display of scores in which the frequency of each score is readily 

apparent. It has two characteristics, central tendency and variability. The name of the 

distribution relies heavily on the central tendency.  

Degrees of Freedom (df): The degrees of freedom of an estimate is equal to the 

number of independent scores that go into the estimate minus the number of 

parameters estimated as intermediate steps in the estimation of the parameter itself.  

Monte Carlo Estimation: Computer intensive method used to test the hypothesis that 

the data are a random sample from a specified population. It allows for a substantial 

number of theoretical simulations. 

Non-normality: Used to describe values of which the frequency distribution is different 

from the normal probability distribution. 

Nonparametric Statistics: Statistical techniques designed to be used when the data 

being analyzed depart from the distributions that can be analyzed with parametric 

statistics. In practice, this most often means data measured on a nominal or an 

ordinal scale.  

Outlier: An observation (or subset of observations), in a set of data which appears to 

be inconsistent with the remainder of that set of data  

Parametric Tests: Statistical procedures, based on population parameters, for testing 

hypotheses or estimating parameters. A parametric statistical test depends on a 

number of assumptions about the population from which the samples used in the test 

are drawn. 

Robustness: Insensitivity to departures from assumptions surrounding an underlying 

probabilistic model. 
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Type I Error: Rejecting the null hypothesis (Ho) when in fact it is true.  

Type II Error: Failing to reject the null hypothesis (Ho) when in fact it is false. 

Violation of Assumptions: Statistical hypothesis tests generally make assumptions 

about the population(s) from which the data were sampled. Many normal-theory-

based tests such as the t test and ANOVA assume that the data are sampled from 

one or more normal distributions. If test assumptions are violated, the test results 

may not be valid. 
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CHAPTER 2  LITERATURE REVIEW 

Hypothesis Testing 

 When conducting an experiment, the researcher is not generally interested 

only in those individuals participating in the different treatment conditions, but rather, 

is attempting to make inferences about the population from which the samples come. 

Experiments are conducted with the participation of a sample group, and the 

obtained statistics provide estimates of designated parameters for different treatment 

populations (Keppel & Wickens, 2004). In conducting experiments, researchers 

generally assert that a treatment may have some defined treatment result, called a 

hypothesis. In doing so, two mutually exclusive hypotheses are generated regarding 

the treatment parameters. In hypothesis testing, these two terms are identified as the 

null hypothesis (H0) and alternative hypothesis (H1). The null hypothesis assumes no 

difference exists among the treatment group(s) and control group, and in situations 

where the null hypothesis can be rejected, the alternative hypothesis confirms the 

presence of a difference between groups, presumed to be due to the treatment 

imposed.  

 Parametric hypotheses suggest that either the averages of the groups are 

equal (e.g., H0: µ1=µ2=µ3) or not equal (e.g., H1: µ1≠µ2≠µ3). The null hypothesis for a 

traditional randomization test is that, “the measurement for each person or other unit 

that is randomly assigned will be the same under one assignment to treatments as 

any alternative assignment that could have resulted from the random assignment 

procedure”. (Edgington, 1995, p. 2). That is to say that when the randomization null 

hypothesis is true, random assignment of scores to different groups randomly divides 
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measurements among the groups. A nonparametric null hypothesis, in the case of 

the Kruskal-Wallis, for example, states that there is no difference between the 

populations being compared (Neave & Worthington, 1988). Note that in the 

nonparametric null alternative there is no mention of a mean or average score. 

Parametric Tests 

The ANOVA relies on a group mean for hypothesis testing. Each individual 

score within a group is compared to the group mean, and the difference is then 

squared. Because of the overall importance of the mean in parametric tests, they 

can be susceptible to outliers. If a sample contains multiple outliers, the results of 

the test can be suspect. There is a plethora of support for the use of ANOVA and 

other parametric tests, however, there are certain expectations that comes with the 

use of these tests. The parametric t and ANOVA tests rely on underlying 

assumptions. Most notably, the assumptions state that scores should be 

independent of each other, meaning no score should be impacted by another’s. 

Additionally, it is assumed that variances are equal across groups and the 

population distributions from which samples are drawn are normally distributed 

(Hunter & May, 1993).  

Research has indicated that parametric tests can maintain their power 

properties in light of encountering some of the aforementioned violations, as long as 

they are not severe or are few in number (Zimmerman, 1987; Sawilowsky & Blair, 

1992). The consequences of failing to meet underlying assumptions in the use of the 

F-ratio was explored by Glass, Peckham, and Sanders (1972), who reported that the 

F-ratio is robust to departures from normality. In fact, it is a relatively understood 
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premise that concerning Type I error, the t test is robust to non-normal distributions 

as long as sample sizes are equal or closely so, sample sizes approach 30 or more, 

and the tests are two-tailed rather than one-tailed (Sawilowsky & Blair, 1992). The 

issue of being robust to departures from normality, however, should not be confused 

with being the best statistic for the situation in question. Scheffé (1959) warned that 

though the F-statistic may maintain acceptable degree of power under certain non-

normal situations, that should not be taken to mean that it is broadly the best statistic 

in relation to other available statistics given certain populations. Additionally, 

reported results can be confusing because of the use of inordinately small sample 

sizes. Boneau (1962) found the power of the t test to modestly surpass that of the 

Wilcoxon test for certain non-normal distributions with sample sizes approaching 5. 

Conversely, in exploring similar comparisons with non-normal distributions with 

sample sizes n1=n2=20 and n1=20 and n2=40, Neave and Granger (1968) reported 

that the Wilcoxon was superior to the t statistic, receiving a power advantage as 

large as .12. These conflicting results illustrate the warning posed by Scheffe (1956) 

regarding the selection of test statistics.  

Micceri (1989) performed an evaluation of 440 educational, social and 

behavioral research studies and found that despite the high prevalence of use of 

parametric statistics, normal populations essentially do not arise in the research. 

Roughly 3% of the studies examined approached a normal distribution while 

approximately 31% exhibited extreme tail weights. He reported in his findings that 

this exemplifies, “the need for careful data scrutiny prior to analysis, for purposes of 

both selecting statistics and interpreting results” (p. 161.).  
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Sawilowsky and Blair (1992) noted that real and existing distributions are 

generally of sufficient non-normality to bring about non-robust Type I error in the t 

test under certain circumstances. In situations where sample sizes are equal or 

nearly equal, sample sizes approach 25, and the tests are two-tailed, the t test 

demonstrated to be reasonable robust under non-normal conditions. Glass et al. 

(1972) suggested there is no need to abandon the t test in the face of non-normal 

data. Others have provided support for the use of alternative methods in the face of 

non-normal samples (e.g., Scheffe, 1959; Blair, 1981; Sawilowsky & Blair, 1992). 

Permutation and Randomization Tests 

In an endorsement of the applicability of permutation tests, Good (1994) 

stated: 

Permutation tests can be applied to continuous, ordered and categorical data, 

and to values that are normal, almost normal, and non-normally distributed. 

For almost every parametric and nonparametric test, one may obtain a    

distribution-free permutation counterpart. The resulting permutation test is 

usually as powerful as more or powerful than alternative approaches. And 

permutation methods can sometimes be made to work when other statistical 

methods fail. (p. 1) 

Permutation tests can take several forms. Exact permutation tests compile all 

possible combinations of available data for the chosen test statistic. They are called 

exact because the relevant properties are specifically determined, that is an exact 

level of significance is determined by a significance test (Walsh, 1968). The moment 

approximation test uses the continuous probability density function based on the 
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exact lower moments of the test statistic fitted to the discrete permutation 

distribution. Finally, the approximate randomization test focuses on a random subset 

of all possible permutations (Mielke & Berry, 2001). In situations where the number 

of permutations may be overwhelming due to a large sample size, an approximate 

randomization test can be a viable alternative. Several researchers suggest that 

permutation and randomization tests help to rehabilitate the power of parametric 

tests under conditions of non-normality (Potvin & Roff, 1993; Edgington, 1995). And 

still others offer permutation tests as preferred alternatives to rank-based tests, citing 

that rank tests are less powerful than randomization tests on scores (May, Masson, 

& Hunter, 1989). 

Unlike parametric tests, permutation tests are considered to be distribution 

free (Bradley, 1968), and therefore are not bound by one of the major assumptions 

of the parametric tests, which is that the sample is drawn from a normal population 

(Hunter & May, 2003).  Additionally, Noreen (1989) noted that random selection is 

not necessary for producing internally valid results, however, lack of randomization 

is a barrier to making inferences to a population.  

There are some assumptions underlying permutation tests, however, that are 

important to consider. All observations are assumed to be independent of each other 

(Good, 1994), exchangeability of sample data under conditions of the null hypothesis 

(Good, 2002), continuity of distribution (Edgington, 1995), and homogeneity of 

variance (Boik, 1987). Importantly, it has been asserted that permutation methods 

have superior power to nonparametric tests due to their use of actual data rather 



13 

than ranks (Ludbrook & Dudley, 1998), although no compelling evidence has been 

offered to support this assertion. 

The permutation model was first introduced by Fisher (1935), and with the 

continuing growth of computer technology, the procedure became more feasible to 

conduct. In a permutation test, data are shuffled to create all possible arrangements 

of data values (May & Hunter, 1993). Therefore, p-values are derived from a 

redistribution of the existing data. For approximate randomization tests, the precision 

with which the p-values can be derived depends largely on the number of iterations, 

or re-shufflings, created with the permutation process. This method differs from the 

permutation method because it does not create all necessary combinations of the 

data, but rather a number of iterations established by the researcher, and this 

number can vary depending on sample size and computing power, to mention but a 

few factors.  

Permutation statistics offer a couple of advantages over parametric methods. 

Researchers do not need to refer to a table of critical values for a given test as the 

permutation test provides critical values based on the data available (Edgington, 

1995). Under normality, the permutation tests are almost as powerful as the t test 

(Good, 1994) and have been stated by some researchers (Rao & Sen, 2002) to be 

more robust than parametric tests, though others have demonstrated that when 

samples contain similar means and unequal variances, permutation tests do not 

always maintain robustness (Boik, 1987; Manly, 1995). Another advantage of 

permutation tests is their ability to deal with outliers by likely detecting the difference 

in means with outliers (Edgington, 1995). Though permutation tests have been 
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referred to as nonparametric because of their assumptions, Hayes (1996) disagrees 

with the notion that permutation tests are nonparametric. In analyzing the 

relationship between the t test and permutation t, he found that in most cases, the 

two tests yielded nearly identical results. In comparing the two tests under conditions 

of heteroscedasticity, non-independence, and non-normal distributions, the 

permutation test exhibited error rates comparable to the t test. 

Nonparametric Tests 

 There are at least three types of nonparametric tests: categorical, sign, and 

rank tests (Sawilowsky, 1990). A test can be considered to be nonparametric when it 

can maintain satisfactory Type I error properties when assumptions such as 

normality do not hold true, as they make no assumptions about population 

parameters (Sawilowsky & Fahoome, 2003). Because of this, nonparametric 

statistics are good alternatives to parametric statistics under non-normal conditions 

(Lehmann, 1975). Although nonparametric tests are robust to departures from 

normality, they do still operate under the assumptions of independence of 

observations, random data selection, and a continuous distribution of data (Kerlinger 

& Lee, 2000). 

As well as being robust to non-normality, nonparametric tests have been 

shown to be more powerful in testing shift in location under many non-normal 

situations (Blair & Higgins, 1985). A trend in research involving nonparametric 

statistics is that in situations where nonparametric tests are less powerful than 

parametric tests (e.g., normality), that power gap is small, whereas the power 
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advantage of nonparametric tests under conditions of non-normality can be dramatic 

(Sawilowsky, Blair, & Higgins, 1989; Blair & Higgins, 1985). 

The Kruskal-Wallis test (Kruskal & Wallis, 1952) is identified as a 

nonparametric test due to the fact it does not make the assumption of a normal 

distribution. The Kruskal-Wallis test was derived from the F-test, the most notable 

difference being that it replaces the actual observations with ranks. Each score in 

the sample is assigned a rank which replaces the raw value, and that rank is used in 

the analysis. As ANOVA is a k-sample extension of the t test, the Kruskal-Wallis test 

is a k-sample extension of the Mann-Whitney U test. It assumes that sampling is 

random and that these samplings are from a continuous distribution (Feir-Walsh & 

Toothaker, 1974). It has been asserted that when sampling from a normal 

distribution, the Kruskal-Wallis test has power almost equal to the F-test and is much 

more reliable in the presence of outliers (Neave & Worthington, 1988). 

The loudest detractors from nonparametric tests would state that because 

they use ranks rather than the actual data, power is lost. Indeed, many researchers 

(e.g., Lehman 1986; Adams & Anthony, 1996) have purported that it is for this 

reason that permutation tests are more powerful than other nonparametric tests. As 

permutation tests preserve raw values, some researchers have the opinion that 

permutation tests are superior to rank tests (Ludbrook & Dudley, 1998). However, 

others make the claim that ranking scores has no impact on the data, but rather 

removes some of the noise (Blair & Higgins, 2000; Sawilowsky, 1993). Still others 

have stated that not only does ranking not create a loss in power, but the power may 

actually increase (Langbehn, Berger, Higgins, Blair, & Mallows, 2000). 
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Underlying Assumptions 

All three previously mentioned statistical tests operate under the assumption 

of independence of scores.  That is, all scores are independent of other scores and 

are in no way affected by other scores.  Given that all data are drawn from a random 

number generator, this assumption holds true in this study. The ANOVA is a 

parametric test and as such, assumes the sample data to be normally distributed.  

The randomization ANOVA and Kruskal-Wallis test make no such assumption.  

Other assumptions shared by both the ANOVA and the Permutation ANOVA is 

homogeneity of variance and the use of at least interval data, again, assumptions 

not made by the Kruskal-Wallis test, as data are ranked prior to analysis. 
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CHAPTER 3  METHODOLOGY 

Overview 

The purpose of the study is to compare the Type I error and comparative 

statistical power of three statistical methods for assessing a difference in means 

across K > 2 groups. The three hypothesis tests include (1) the classical parametric 

one-way ANOVA, (2) a distribution-free approximate randomization one-way ANOVA, 

and (3) the nonparametric Kruskal-Wallis.  

Design 

Cohen (1988) suggested parameters for identifying small, medium, and large 

effect sizes in the one-way ANOVA layout. A small effect size was defined as f = .1σ, 

medium = .25σ, and large = .4σ. In keeping with the recommendations of Sawilowsky 

(2009) in expanding magnitudes from two sample layout, a very large effect size will 

be defined as f = .6σ, and a huge effect size will be defined as f = 1.0σ, where σ 

refers to the standard deviation of the distribution selected. 

Distributions 

Data will be drawn from three theoretic distributions. Data will be sampled from 

a normal distribution ( 1,0   ) to demonstrate the veracity of the Monte Carlo 

study. A uniform distribution and chi-square distribution (df = 2; also known as an 

exponential distribution with shape parameter =2) will be used to test conditions 

under which the distribution assumption does not hold. (Note that homoscedasticity 

will be maintained.)  

The normal (Gaussian) distribution was identified due to being the ideal 

condition under which the ANOVA is the uniformly most powerful and unbiased 
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(UMPU) test. Additionally, two other distributions, uniform and chi-square, were 

chosen as a comparison for conditions which violate the normality assumption. The 

descriptions of the distributions are as follows (Sawilowsky & Fahoome, 2003): 

 

 

Figure 1. Gaussian (Normal) Distribution, Sawilowsky & Fahoome (2003). 

 

1. Normal Distribution: This “bell shaped” curve has symmetric light tails and 

contains an equal distribution of scores. The mean and median = 0, and the standard 

deviation = 1. The probability density function of U is as follows: 

)exp()2()( 2
2

11 uuPU    

Despite being the underlying assumption for parametric tests, Micceri (1989) noted 

that 15% of the psychometric, achievement, criterion/mastery, and gain score studies 

only qualified as near-Gaussian. Most support for the use of this distribution is 
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derived from the central limit theorems, which postulate that “the distribution of 

standardized sums of random variables tends to a unit normal distribution as the 

number of the variables in the sum increases” (Johnson & Kotz, 1970, p.45). Johnson 

and Kotz (1970) also state that the normal distribution can be used to approximate to 

other distributions.  

 

Figure 2. Uniform Distribution, Sawilowsky & Fahoome (2003). 

 

2. Uniform Distribution: This distribution, similar to the normal distribution, is 

symmetric with light tails. The probability distribution function of a uniform distribution 

is as follows: 

1)()(  ypY       )(   y  

A uniform distribution is often used to represent rounding off errors when forming 

numbers to a set number of decimal places (Johnson & Kotz, 1970). In conditions 

where there is a preferences for discrete objects in which each choice is equally 
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likely, the likely outcomes are represented by a uniform distribution. Micceri (1989) 

noted that in his exploration of 440 social science and educational studies, 

approximately 3% of said studies conformed to a uniform distribution. However, in the 

engineering field in which machined parts are produced within a particular range of 

acceptability, these parts are often produced with variation represented by a uniform 

distribution (Mendenhall & Sincich, 1995). 

 

 

Figure 3. Chi-Square Distribution, Sawilowsky & Fahoome (2003). 

 

3. Chi-Square Distribution: Also referred to as exponential when containing 2 

degrees of freedom, this distribution represents the comparison between expected 

and actual outcomes. The probability density function is as follows: 

]/)(exp[)( 1    xxpx     )0;(  x  
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These distributions are relatively common when modeling the wait times between 

some unknown event and events recurring at random time intervals (Johnson & Kotz, 

1970). For example, this can include time between arrivals at a service counter, time 

between earthquakes, or the length of time a machine will operate before breaking 

down. This can be prevalent in the mechanical and engineering field due to its 

relevance in electrical and mechanical lifespans. 

Sample Sizes and Effect Sizes 

Differing sample sizes will be invoked, as well as differing patterns of 

simulated treatment effects (tr), as noted in Table 1 below. Conditions 1, 4, 7, and 12 

present the null condition. The remaining conditions present a systematic pattern of 

the number of non-null groups: 
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Table 1      

Sample Size and Treatment Conditions  

  Sample Size 

Condition Group 1 Group 2 Group 3 Group 4 Group 5 
1 (null) 10 10 10 - - 

2 10 10 10(tr) - - 

3 10 10(tr) 10(tr) - - 

4 (null) 30 30 30 - - 

5 30 30 30(tr) - - 

6 30 30(tr) 30(tr) - - 

7 (null) 10 10 10 10 10 

8 10 10 10 10 10(tr) 

9 10 10 10 10(tr) 10(tr) 

10 10 10 10(tr) 10(tr) 10(tr) 

11 10 10(tr) 10(tr) 10(tr) 10(tr) 

12 (null) 30 30 30 30 30 

13 30 30 30 30 30(tr) 

14 30 30 30 30(tr) 30(tr) 

15 30 30 30(tr) 30(tr) 30(tr) 

16 30 30(tr) 30(tr) 30(tr) 30(tr) 
Note. The notation (tr) refers to a group that is receiving the designated treatment 

effect. 

 
Fortran Programming 

The Monte Carlo study will be performed using the Fortran programming 

language and the IMSL subroutine library. Pseudo-random number generators will be 

invoked to obtain random variates from the normal distribution, and random deviates 

from the non-normal distributions. Nominal alpha will be set at  = 0.05 and  = 0.01.  

Each experiment will be repeated 20,000 times for each distribution under each 

sample size condition, treatment alternative, and alpha level. Within each iteration, 

however, the approximate randomization test will be conducted based on 5,000 
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permutations. The approximate randomization test will be performed with random 

permutations, which is a procedure also known as a Monte Carlo version of the test. 

Each statistical test will be conducted on each sample condition under the null 

condition, that is, in the absence of treatment, before treatments are added. Then, 

power comparisons of the ANOVA, approximate randomization ANOVA, and the 

Kruskal-Wallis test or groups of k=3 and k=5 will be made by introducing treatment 

effects modeled as a shift in location parameter. For non-null conditions, a constant 

will be added to each treatment group in graduated increments, until all but one 

group has received a treatment. Treatments across groups within any analysis will be 

of equal magnitude and each treatment group will receive all effect sizes. Type I error 

and power will be identified as the rate of rejection of the null hypothesis under all 

treatment and distribution conditions. 

 The Monte Carlo study will be performed using Absoft version 11.1 compiler 

and written in Fortran 77 language. The program will utilize the International 

Mathematics and Statistics Library (IMSL) to compute the tests of significance 

performed. For the theoretical distributions, the program utilizes separate random 

number generators for the normal distribution (RNNOR), chi-squared distribution 

(RNCHI), and the uniform distribution (RNUN). Analyses will be performed using a 

Toshiba Satellite A505 computer with an Intel Core2 DuoTM processor (2.20 GHz x 2) 

and 3.87 GB of usable RAM. The computer utilizes the Windows 7 Home Premium 

edition with Service Pack 1. 
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Presentation of Results 

Results will be reported using tables of rejection rates to depict the Type I error 

rates under the truth of the null hypothesis, as well as the relative power of each 

statistical method under each sample size and distribution condition. For each 

experimental condition, a graph will illustrate the power curve of the three statistics 

being explored. 

 

 
 
 
 



25 

CHAPTER 4  RESULTS 
 

Overview 
 
 A Monte Carlo simulation was performed to examine the Type I error rates and 

power properties of the ANOVA, approximate randomization ANOVA, and the 

Kruskal-Wallis test for data sampled from three theoretical distributions, two sample 

sizes (ni = 10 and ni = 30), and number of groups of K = 3 and K = 5. Results provide 

further support for previously reported findings on the t and F statistic, as well as 

provide new information regarding the relative powers of the three K ≥ 3 tests, when 

treatments were modeled as a shift of location parameter. The three theoretical 

distributions explored were: the normal (Gaussian) distribution, the uniform 

distribution, and the chi-square (df=2) distribution.  

Type I Error 

To determine the Type I error properties of the statistical tests under the 

differing distribution and sample condition, a Monte Carlo analysis was written to tally 

the number of null rejections in the absence of treatment effect.  

Table 2       

Rejections Under Null Condition for Normal Distribution (Type I Error)  

  ANOVA 

Approximate 
Randomization 

ANOVA Kruskal-Wallis 

Sample Size: α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

n1=n2=n3=10 0.04825 0.00975 0.04880 0.01000 0.04860 0.01000

n1=n2=n3=30 0.04920 0.00915 0.05050 0.00910 0.04895 0.00975

n1=n2=n3=n4=n5=10 0.04930 0.01040 0.04930 0.01060 0.04995 0.01080

n1=n2=n3=n4=n5=30 0.04940 0.01040 0.04940 0.01070 0.04855 0.00985
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Table 3       

Rejections Under Null Condition for Uniform Distribution (Type I Error)  

  ANOVA 

Approximate 
Randomization 

ANOVA Kruskal-Wallis 

Sample Size: α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

n1=n2=n3=10 0.05120 0.01105 0.04915 0.01020 0.04870 0.01005

n1=n2=n3=30 0.04955 0.00970 0.04955 0.00985 0.04865 0.00965

n1=n2=n3=n4=n5=10 0.05080 0.01110 0.04910 0.01015 0.05040 0.01065

n1=n2=n3=n4=n5=30 0.04895 0.01000 0.04910 0.01015 0.04870 0.00995
 

 

Table 4       

Rejections Under Null Condition for Chi-Square (df=2) Distribution (Type I Error) 

  ANOVA 

Approximate 
Randomization 

ANOVA Kruskal-Wallis 

Sample Size: α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

n1=n2=n3=10 0.04240 0.00740 0.05030 0.00985 0.04845 0.01015

n1=n2=n3=30 0.04460 0.00780 0.04845 0.00960 0.04890 0.00960

n1=n2=n3=n4=n5=10 0.04455 0.00890 0.05110 0.01045 0.04985 0.01075

n1=n2=n3=n4=n5=30 0.04700 0.01020 0.05010 0.01080 0.04845 0.00990
 

 
For data obtained from the normal distribution, Type I error rates were 

relatively consistent across samples and statistical tests. Most notably, no test was 

clearly superior in error rates across sample conditions. Also notable was that error 

rates on the whole for the normal distribution ranged from 4.825% to 5.050% across 

all tests at the α = .05 level and 0.910% to 1.080% at the α = .01 level. The rates fell 

well within range of those previously reported in the literature. 
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For data sampled from the uniform distribution, Type I error rates were again 

consistent across tests and sample conditions, though the ANOVA never 

demonstrated a superior error rate under any condition or alpha level. The error rates 

on the whole for the uniform distribution ranged from 4.865% to 5.120% across all 

tests at the α = .05 level and 0.965% to 1.110% at the α = .01 level.  

For data obtained from the chi-square (df=2) distribution, the ANOVA 

consistently demonstrated error rates outside of conservative parameters under all 

but one sample condition. The error rates of the other tests remained at or around 

their designated level, with the rates for the approximate randomization ANOVA and 

Kruskal-Wallis ranging from 4.845% to 5.110% at the α = .05 level and 0.960% and 

1.080%  at the α = .01 level. 

Comparative Power Analysis 

After assessing Type I error rates for each sample and distribution condition, 

equal treatments (tr) ranging from 0.1σ to 1.0σ were imposed on a progressive 

number of groups within each sample, to the maximum of k-1 groups per condition 

[e.g., n1=n2=n3=n4=n5(tr)=30; n1=n2=n3=n4(tr)=n5(tr)=30; n1=n2=n3(tr)=n4(tr)=n5(tr)=30; 

n1=n2(tr)=n3(tr)=n4(tr)=n5(tr)=30]. The results for the treatment conditions were 

organized into 12 tables by sample size and power curves are illustrated in a graph 

for each experimental condition. Note that in discussing the results of the power 

analysis, this researcher focuses primarily on the α = .05 level due to its prevalence 

in research, though results for α = .01 are included in all tables and follow the same 

trends. Following are the results of the study, organized by distribution. 
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Normal Distribution 

Sample n1=n2=n3=10 

The first sample explored was n1=n2=n3=10, in which one group received 

treatment. For the one treatment condition, the results of the three tests under the 

condition of normality were consistent across effect sizes. The results of the two 

treatment condition were essentially identical to the one treatment condition. 
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Figure 4. Shift vs. Power in the normal distribution for sample condition 

n1=n2=n3(tr)=10. 
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Figure 5. Shift vs. Power in the normal distribution for sample condition 

n1=n2(tr)=n3(tr)=10. 

 
In the one treatment condition, the ANOVA demonstrated power of .0540 at 

the 0.1σ shift, increasing to .1268 at 0.4σ and .5854 at the 1.0σ shift, with the 

approximate randomization ANOVA nearly equal at every effect size. The Kruskal-

Wallis demonstrated power of .0545 at 0.1σ, rising to .1248 at 0.4σ and .5572 at 

1.0σ. The largest power discrepancy across tests was at the 1.0σ effect size, where 

the ANOVA and approximate randomization ANOVA achieved a power of .5854, and 

the Kruskal-Wallis .5572.  With the exception of the 0.1σ shift, the Kruskal-Wallis 

trailed both the ANOVA and the approximate randomization ANOVA in power at 

every degree of shift. The results for the two treatment group condition were nearly 

identical. 
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Sample n1=n2=n3=30 

For both the one treatment and two treatment group conditions of the 

n1=n2=n3=30 sample, the results of the three tests under conditions of normality were 

again consistent across effect sizes and the power curves were nearly identical for 

both treatment conditions. 
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Figure 6. Shift vs. Power in the normal distribution for sample condition 

n1=n2=n3(tr)=30. 
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Figure 7. Shift vs. Power in the normal distribution for sample condition 

n1=n2(tr)=n3(tr)=30. 

 
In the one treatment group condition, the ANOVA demonstrated power of 

.0632 at 0.1σ, to .3302 at 0.4σ, and increasing to .9826 at 1.0σ with the approximate 

randomization ANOVA nearly equal, and with one exception marginally more 

powerful, at every effect size. The Kruskal-Wallis demonstrated power of .0634 at 

0.1σ, to .3138 at 0.4σ, and .9768 at 1.0σ. The largest power discrepancy across tests 

was at the 0.6σ shift, at which the ANOVA achieved .6552, the approximate 

randomization ANOVA .6560, and the Kruskal-Wallis .6326. The two treatment group 

conditions exhibited nearly identical results and trends to the one treatment condition.  

Sample n1=n2=n3=n4=n5=10 

The results of the three tests under the condition of normality for the one 

treatment group were consistent across effect sizes.  
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Figure 8. Shift vs. Power in the normal distribution for sample condition 

n1=n2=n3=n4=n5(tr)=10. 

 
The ANOVA demonstrated power of .0521 at 0.1σ, to .1182 at 0.4σ, and 

increased steadily to .5557 at 1.0σ, with the approximate randomization ANOVA 

nearly equal at every effect size. The Kruskal-Wallis demonstrated power of .0534 at 

0.1σ, to .1125 at 0.4σ, and rose to .5207 at 1.0σ. The largest power discrepancy 

across tests was at the 1.0σ effect size, where the ANOVA and approximate 

randomization ANOVA achieved a power of about .55, and the Kruskal-Wallis .5207.  

With the exception of the 0.1σ shift, the Kruskal-Wallis trailed both the ANOVA and 

the approximate randomization ANOVA in power. 

For the two and three treatment group conditions, the relationship of the three 

tests with each other under all distributions very strongly resembled that of the one 

treatment group condition, with the difference being the pace at which the power 

levels increased with each shift.  
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Figure 9. Shift vs. Power in the normal distribution for sample condition 

n1=n2=n3=n4(tr)=n5(tr)=10. 
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Figure 10. Shift vs. Power in the normal distribution for sample condition 

n1=n2=n3(tr)=n4(tr)=n5(tr)=10. 
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No test demonstrated more than a 2.0% power advantage at any shift under 

the normal distribution, with the ANOVA and approximate randomization ANOVA 

trading off very slight power advantage at alternating shifts. Under normality, all three 

tests gained power incrementally at roughly the same pace, with power of 

approximately .05 at 0.1σ, .15 at 0.4σ, and .75 at 1.0σ. 

For the four treatment groups condition, all patterns under the normal 

distribution and shift sizes remained essentially the same as the one treatment group 

condition, 
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Figure 11. Shift vs. Power in the normal distribution for sample condition 

n1=n2(tr)=n3(tr)=n4(tr)=n5(tr)=10. 

 
Sample n1=n2=n3=n4=n5=30 

The next subset of sample conditions involved exploring the effect of differing 

treatment effect sizes on five groups of n=30, in which one, two, three, and four 
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groups receive equal treatment. For the one treatment group, the power results of the 

three tests under conditions of normality were very similar across effect sizes.  
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Figure 12. Shift vs. Power in the normal distribution for sample condition 

n1=n2=n3=n4=n5(tr)=30. 

 
The ANOVA demonstrated power of .0601 at 0.1σ, to .2986 at 0.4σ, and 

increased to .9826 at 1.0σ. The power curve of the approximate randomization 

ANOVA followed that of the ANOVA almost exactly, never departing more than .0008 

in power. The Kruskal-Wallis demonstrated power of .0600 at 0.1σ, to .2813 at 0.4σ, 

and rose to .9749 at 1.0σ. The largest power discrepancy across tests was at the 

0.6σ effect size, where the ANOVA and approximate randomization ANOVA 

achieved a power of about .64 and the Kruskal-Wallis .61, a difference of 

approximately 3%. Unlike the n=10 conditions, the Kruskal-Wallis trailed both the 

ANOVA and the approximate randomization ANOVA in power at every effect size, 

though the discrepancy was usually modest. 
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As was the case with the n1=n2=n3=n4=n5=10 subset, the four treatment 

groups condition demonstrated very similar patterns to the one treatment group 

condition under the normal distribution.  
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Figure 13. Shift vs. Power in the normal distribution for sample condition 

n1=n2(tr)=n3(tr)=n4(tr)=n5(tr)=30. 

 
For the two and three treatment group conditions, the relationship of the three 

tests with each other under the normal distribution very strongly resembled that of the 

one treatment group condition. At no point was there a power discrepancy reaching 

1% for any corresponding test or effect size condition between the two and three 

treatment group condition (the only exception being a power increase of roughly 2% 

for the Kruskal-Wallis at 0.25σ).  
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Figure 14. Shift vs. Power in the normal distribution for sample condition 

n1=n2=n3=n4(tr)=n5(tr)=30. 
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Figure 15. Shift vs. Power in the normal distribution for sample condition 

n1=n2=n3(tr)=n4(tr)=n5(tr)=30. 
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With the exception of a nearly 2% power discrepancy between the Kruskal-

Wallis (lower) and the other tests at 0.6σ for both the two and three treatment group 

conditions, no test demonstrated more than a 2% or higher power advantage at any 

shift under the normal distribution. The ANOVA and approximate randomization 

ANOVA traded off very slight power advantages or ties at alternating shifts. Under 

normality, all three tests gained power incrementally at roughly the same pace, with 

power of approximately .07 at 0.1σ, .43 at 0.4σ, and .99 at 1.0σ. 

Uniform Distribution 

 Sample n1=n2=n3=10 

The first sample explored was n1=n2=n3=10, in which one group received 

treatment. The same trends in power differential existed under the uniform 

distribution as the normal distribution, with the ANOVA and approximate 

randomization ANOVA outperforming the Kruskal-Wallis at every treatment level.  
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Figure 16. Shift vs. Power in the uniform distribution for sample condition 

n1=n2=n3(tr)=10. 
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The ANOVA demonstrated the highest power on all but the 1.0σ shift, in which 

the approximate randomization ANOVA was nearly identical in power. The ANOVA 

ranged from a power of .0683 at 0.1σ to .37758 at 0.4σ and .9968 at 1.0σ with the 

approximate randomization ANOVA showing very similar, though mostly lower, 

levels. The Kruskal-Wallis ranged from .0657 at 0.1σ to .3402 at 0.4σ and.9877 at 

1.0σ. The most notable outcome under the uniform distribution was that the Kruskal-

Wallis was outperformed by the ANOVA by nearly 8% at the 0.6σ shift before 

demonstrating more similar power results at 1.0σ. 

The two treatment group condition exhibited nearly identical results and trends 

to the one treatment group condition.  
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Figure 17. Shift vs. Power in the uniform distribution for sample condition 

n1=n2(tr)=n3(tr)=10. 
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Power analysis results yielded almost identical rates for each shift size. Also 

similar was the pattern of the power drop-off for the Kruskal-Wallis from the other 

tests under the uniform distribution as the effect size increased, approaching a 

differential of 2.5% from the ANOVA and approximate randomization ANOVA. 

Sample n1 = n2 = n3 = 30 

In the one treatment group condition, the power of the Kruskal-Wallis quickly 

lagged behind that of the ANOVA and approximate randomization ANOVA, reaching 

a drop-off of 4% at the 0.25σ shift and 5% at the 0.4σ shift.  
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Figure 18. Shift vs. Power in the uniform distribution for sample condition 

n1=n2=n3(tr)=30. 

 
All tests surpassed a power of .99 at the 0.6σ shift and reached a power of 1.0 

at the 1.0σ shift. The ANOVA demonstrated power of .1103 at 0.1σ, increasing to 

.8872 at 0.4σ with the approximate randomization ANOVA following a nearly identical 
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pattern. The Kruskal-Wallis demonstrated power of .1063 at 0.1σ, rising to .8344 at 

0.4σ. 

The two treatment group condition exhibited nearly identical results and trends 

to the one treatment condition.  
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Figure 19. Shift vs. Power in the uniform distribution for sample condition 

n1=n2(tr)=n3(tr)=30. 

 
Sample Condition n1 = n2 = n3 = n4 = n5 = 10 

The next sample explored was n1=n2=n3=n4=n5=10 in which one group 

received treatment of each shift size. The same trends in power differential existed 

under the uniform distribution as with the normal distribution, with the ANOVA and 

approximate randomization ANOVA outperforming the Kruskal-Wallis at every 

treatment level.  
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Figure 20. Shift vs. Power in the uniform distribution for sample condition 

n1=n2=n3=n4=n5(tr)=10. 

 
The ANOVA demonstrated the highest power, albeit very modest, on all 

degrees of shift. The ANOVA ranged from a power of .0650 at 0.1σ and .3562 at 

0.4σ, to .9973 at 1.0σ with the approximate randomization ANOVA showing very 

similar, though mostly lower, levels. The Kruskal-Wallis ranged from .0626 at 0.1σ 

and .3060 at 0.4σ, to .9885 at 1.0σ. The Kruskal-Wallis was outperformed by the 

ANOVA by nearly 9% at the 0.6σ shift before demonstrating more similar power 

results at 1.0σ. 

For the two and three treatment group conditions, the relationship of the three 

tests with each other very strongly resembled that of the one treatment group 

condition, with the difference being the pace at which the power levels increased with 

each shift. The ANOVA showed a modest power advantage over the approximate 
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randomization ANOVA, and both tests demonstrated up to 6% higher power than the 

Kruskal-Wallis. 
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Figure 21. Shift vs. Power in the uniform distribution for sample condition 

n1=n2=n3=n4(tr)=n5(tr)=10. 
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Figure 22. Shift vs. Power in the uniform distribution for sample condition 

n1=n2=n3(tr)=n4(tr)=n5(tr)=10. 
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For the four treatment group condition, all patterns remained essentially the 

same as the one treatment group condition. 
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Figure 23. Shift vs. Power in the uniform distribution for sample condition 

n1=n2(tr)=n3(tr)=n4(tr)=n5(tr)=10. 

 
Sample n1 = n2 = n3 = n4 = n5 = 30 

The power differential trends that existed between treatment group conditions 

under the normal distribution remained under the uniform distribution, with the 

ANOVA and approximate randomization ANOVA outperforming the Kruskal-Wallis at 

all but the 1.0σ treatment effect.  
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Figure 24. Shift vs. Power in the uniform distribution for sample condition 

n1=n2=n3=n4=n5(tr)=30. 

 
The ANOVA demonstrated the highest power or power equal to the 

approximate randomization ANOVA (and Kruskal-Wallis at 1.0σ) on all degrees of 

shift. The ANOVA ranged from a power of .0984 at 0.1σ and .8862 at 0.4σ, to 1.0000 

at 1.0σ with the approximate randomization ANOVA showing very similar levels. The 

Kruskal-Wallis ranged from .0947 at 0.1σ and .8261 at 0.4σ, to 1.0000 at 1.0σ. The 

Kruskal-Wallis was outperformed by the ANOVA by just over 6% at the 0.4σ shift 

before demonstrating more similar power results at 0.6σ and 1.0σ. The four 

treatment group condition revealed nearly identical curves. 
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Figure 25. Shift vs. Power in the uniform distribution for sample condition 

n1=n2(tr)=n3(tr)=n4(tr)=n5(tr)=30. 

 
For the two- and three treatment group conditions, the patterns also remained 

constant, with the ANOVA and approximate randomization ANOVA demonstrating 

nearly identical power curves, and both tests demonstrating up to a 5% higher power 

than the Kruskal-Wallis (0.25σ). 
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Figure 26. Shift vs. Power in the uniform distribution for sample condition 

n1=n2=n3=n4(tr)=n5(tr)=30. 
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Figure 27. Shift vs. Power in the uniform distribution for sample condition 

n1=n2=n3(tr)=n4(tr)=n5(tr)=30. 
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Chi-Square (df=2) Distribution 

The first sample explored was n1=n2=n3=10, in which one group received 

treatment. For every effect size, the ANOVA was outperformed by the approximate 

randomization ANOVA, which in turn, was heavily outperformed by the Kruskal-

Wallis.  
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Figure 28. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2=n3(tr)=10. 

 
The ANOVA exhibited a power of .0642 at 0.1σ, .4512 at 0.4σ, and .9859 at 

1.0σ, not reaching a power above .50 until the 0.6σ shift (.7700). At every treatment 

level, the approximate randomization ANOVA outperformed the ANOVA by 1-2%. 

Starting at the 0.25σ shift, a stark separation developed between the Kruskal-Wallis 

and its counterparts, and this separation increased dramatically through the 0.4σ shift 

until converging again around .99 at 1.0σ. The largest power differential for the 
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Kruskal-Wallis was a nearly 18% power advantage over both of the other tests at the 

0.4σ shift. 
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Figure 29. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2(tr)=n3(tr)=10. 

 
For the two treatment group condition, power analysis results yielded similar 

trends for each shift size. The only notable exception is that at the 0.4σ and 0.6σ 

shifts, the power of the Kruskal-Wallis was 5-8% lower than it was at the same effect 

size for the one treatment group condition and was 1.5% lower at the 1.0σ shift. 

Sample n1 = n2 = n3 = 30  

 For the chi-square (df=2) distribution in the one treatment group condition, the 

Kruskal-Wallis (.8303 at 0.25σ) quickly showed a significant power advantage over 

both the ANOVA and approximate randomization ANOVA, which registered power 

results of .5042 and .5132, respectively.  
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Figure 30. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2=n3(tr)=30. 

 
At the 0.4σ shift, the ANOVA demonstrated a power of .8943, the approximate 

randomization ANOVA showed a power of .8985, and the Kruskal-Wallis, .9937. All 

tests achieved a power of 1.0 at the 1.0σ shift. The results of the two treatment group 

condition were nearly identical, except the power of the Kruskal-Wallis was 5% lower 

at 0.25σ than the same effect size for the one treatment group condition. 
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Figure 31. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2(tr)=n3(tr)=30. 

 
Sample n1 = n2 = n3 = n4 = n5 = 10 

The next sample explored was n1=n2=n3=n4=n5=10 in which one group 

received treatment of each shift size. As with the k=3 condition, the ANOVA was 

outperformed by the approximate randomization ANOVA, and the Kruskal-Wallis 

exhibited significantly higher power than both other tests.  
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Figure 32. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2=n3=n4=n5(tr)=10. 

 
The ANOVA exhibited a power of .0581 at 0.1σ, to .3932 at 0.4σ, and .9924 at 

1.0σ, not reaching a power above .50 until the 0.6σ shift (.7532). The Kruskal-Wallis 

outperformed both other tests at every level, with the largest gap of over 21% 

demonstrated at the 0.4σ. At this same shift, the Kruskal-Wallis also demonstrated a 

19% power advantage over the approximate randomization ANOVA. The 

approximate randomization ANOVA was consistently more powerful than the 

ANOVA, though the advantage was modest overall. These patterns also remained for 

the two- and three treatment group conditions. At the 0.4σ shift, the Kruskal-Wallis 

exhibited a 19%-21% power advantage over either of the ANOVA tests, with that gap 

closing incrementally as shift approached 1.0σ. 
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Figure 33. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2=n3=n4(tr)=n5(tr)=10. 
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Figure 34. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2=n3(tr)=n4(tr)=n5(tr)=10. 
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For the four treatment groups condition, all patterns remained essentially the 

same as the one treatment group condition, but there was one difference in relation 

to the chi-square (df=2) distribution. The Kruskal-Wallis demonstrated a significant 

power loss when compared with its power curve with one treatment group condition. 

It demonstrated a decrease in power at 0.4σ (.0584) and 0.6σ (.1142) shifts. There 

was also a decrease in power at the 1.0σ shift, though that drop was much smaller in 

magnitude (.0231). 
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Figure 35. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2(tr)=n3(tr)=n4(tr)=n5(tr)=10. 

 
Sample n1 = n2 = n3 = n4 = n5 = 30 

For the one treatment group condition under the chi-square (df = 2) 

distribution, the Kruskal-Wallis exhibited higher power than both the ANOVA and 
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approximate randomization ANOVA, with the power advantage reaching 36% at 

0.25σ.  
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Figure 36. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2=n3=n4=n5(tr)=30. 

 
The ANOVA exhibited a power of .1016 at 0.1σ, to .8964 at 0.4σ, a very 

similar power curve to the approximate randomization ANOVA, though the 

approximate randomization ANOVA had a very slight edge in power until 1.0σ. The 

Kruskal-Wallis demonstrated power of .1857 at 0.1σ and by 0.25σ had reached a 

power of .8372. As with other distributions, there were many similarities between the 

one- and four treatment group conditions for the chi-square (df=2) distribution. One 

noteworthy detail was the power drop-off for the Kruskal-Wallis at 0.25σ (.0874) and 

0.4σ (.0272) shifts of the four treatment group condition when compared to its power 

properties under the one treatment group condition. The Kruskal-Wallis also 

benefited in this comparison from a slight increase in power at 0.1σ. 
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Figure 37. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2(tr)=n3(tr)=n4(tr)=n5(tr)=30. 

 
Congruent patterns also held for the two treatment and three treatment 

groups. At the 0.25σ shift, the Kruskal-Wallis exhibited a 26%-28% power advantage 

over either of the other tests, with that gap closing as shift approached 0.4σ. 
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Figure 38. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2=n3=n4(tr)=n5(tr)=30. 
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Figure 39. Shift vs. Power in the chi-square (df=2) distribution for sample condition 

n1=n2=n3(tr)=n4(tr)=n5(tr)=30. 
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Table 5        

Rejections of the null under treatment condition for n1=n2=n3(tr)=10 

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.05405 0.01115 0.05410 0.01140 0.05450 0.01150

Uniform 0.06835 0.01690 0.06665 0.01530 0.06570 0.014900.1σ 

Chi-Square 0.06425 0.01355 0.07365 0.01775 0.09435 0.02410

Normal 0.07410 0.01690 0.07460 0.01785 0.07385 0.01715

Uniform 0.16550 0.05200 0.16200 0.04815 0.15395 0.046800.25σ 

Chi-Square 0.20020 0.06700 0.21885 0.08150 0.32100 0.12330

Normal 0.12685 0.03615 0.12705 0.03665 0.12480 0.03600

Uniform 0.37750 0.16345 0.37340 0.15445 0.34025 0.141600.4σ 

Chi-Square 0.45120 0.22260 0.46975 0.24575 0.64375 0.36460

Normal 0.24315 0.08930 0.24440 0.09050 0.22975 0.08260

Uniform 0.74345 0.47780 0.74045 0.46700 0.66750 0.405700.6σ 

Chi-Square 0.77000 0.54325 0.78110 0.56495 0.90160 0.71055

Normal 0.58545 0.31715 0.58540 0.31735 0.55720 0.30050

Uniform 0.99685 0.97640 0.99690 0.97680 0.98775 0.940501.0σ 

Chi-Square 0.98590 0.94020 0.98725 0.94425 0.99690 0.97565
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Table 6        

Rejections of the null under treatment condition for n1=n2(tr)=n3(tr)=10 

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.05335 0.01180 0.05390 0.01200 0.05335 0.01215

Uniform 0.06840 0.01630 0.06560 0.01495 0.06525 0.015050.1σ 

Chi-Square 0.06630 0.01415 0.07555 0.01800 0.10115 0.02885

Normal 0.08095 0.01995 0.08205 0.02025 0.07915 0.02065

Uniform 0.17080 0.05685 0.16765 0.05255 0.16050 0.051350.25σ 

Chi-Square 0.20945 0.06985 0.22695 0.08470 0.32655 0.15300

Normal 0.12565 0.03650 0.12640 0.03765 0.11990 0.03660

Uniform 0.37770 0.16125 0.37280 0.15255 0.34140 0.138600.4σ 

Chi-Square 0.45820 0.23330 0.47695 0.26280 0.58965 0.37020

Normal 0.23760 0.08685 0.23765 0.08800 0.22415 0.08495

Uniform 0.73880 0.46790 0.73550 0.45490 0.66315 0.396450.6σ 

Chi-Square 0.76425 0.55720 0.77510 0.58840 0.83520 0.65805

Normal 0.58215 0.31760 0.58275 0.31795 0.55615 0.29990

Uniform 0.99775 0.97450 0.99760 0.97385 0.98800 0.936501.0σ 

Chi-Square 0.97925 0.93335 0.98040 0.94015 0.98055 0.93275
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Table 7        

Rejections of the null under treatment condition for n1=n2=n3(tr)=30 

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.06325 0.01430 0.06385 0.01425 0.06340 0.01405

Uniform 0.11035 0.03045 0.10975 0.02955 0.10635 0.027600.1σ 

Chi-Square 0.11510 0.03240 0.11970 0.03680 0.21865 0.07800

Normal 0.14850 0.04445 0.14885 0.04565 0.14240 0.04405

Uniform 0.48475 0.24570 0.48380 0.24245 0.44405 0.215700.25σ 

Chi-Square 0.50425 0.27090 0.51320 0.28760 0.83030 0.60845

Normal 0.33020 0.14215 0.33070 0.14495 0.31385 0.13395

Uniform 0.88725 0.71755 0.88665 0.71455 0.83445 0.636800.4σ 

Chi-Square 0.89435 0.73550 0.89855 0.75110 0.99370 0.96545

Normal 0.65525 0.40575 0.65600 0.40840 0.63265 0.38630

Uniform 0.99910 0.99155 0.99910 0.99130 0.99465 0.971800.6σ 

Chi-Square 0.99720 0.98320 0.99750 0.98560 1.00000 0.99990

Normal 0.98260 0.92745 0.98230 0.92845 0.97680 0.91535

Uniform 1.00000 1.00000 1.00000 1.00000 1.00000 1.000001.0σ 

Chi-Square 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
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Table 8        

Rejections of the null under treatment condition for n1=n2(tr)=n3(tr)=30 

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.06410 0.01380 0.06455 0.01375 0.06425 0.01300

Uniform 0.11170 0.03020 0.11050 0.02980 0.10800 0.029550.1σ 

Chi-Square 0.11540 0.03120 0.12065 0.03510 0.21505 0.08360

Normal 0.15025 0.04725 0.15080 0.04750 0.14420 0.04410

Uniform 0.47870 0.24760 0.47810 0.24425 0.43755 0.219650.25σ 

Chi-Square 0.51805 0.28625 0.52735 0.30375 0.77980 0.58230

Normal 0.33085 0.14330 0.33095 0.14475 0.31620 0.13670

Uniform 0.89445 0.72420 0.89350 0.72215 0.84165 0.644700.4σ 

Chi-Square 0.87980 0.73160 0.88440 0.74635 0.97415 0.91685

Normal 0.65050 0.40330 0.65150 0.40495 0.63010 0.38275

Uniform 0.99910 0.99225 0.99915 0.99180 0.99490 0.970000.6σ 

Chi-Square 0.99415 0.97820 0.99495 0.98045 0.99960 0.99730

Normal 0.98425 0.92750 0.98450 0.92735 0.97830 0.91280

Uniform 1.00000 1.00000 1.00000 1.00000 1.00000 1.000001.0σ 

Chi-Square 1.00000 0.99995 0.99995 0.99995 1.00000 0.99995
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Table 9        

Rejections of the null under treatment condition  for n1=n2=n3=n4=n5(tr)=10   

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.05210 0.00960 0.05235 0.00990 0.05345 0.01070

Uniform 0.06500 0.01460 0.06370 0.01350 0.06260 0.014300.1σ 

Chi-Square 0.05810 0.01325 0.06480 0.01510 0.08285 0.02030

Normal 0.07540 0.01695 0.07645 0.01715 0.07580 0.01800

Uniform 0.15640 0.04790 0.15370 0.04570 0.14395 0.042800.25σ 

Chi-Square 0.17055 0.05735 0.18355 0.06350 0.28420 0.09800

Normal 0.11825 0.03375 0.11815 0.03350 0.11250 0.03105

Uniform 0.35625 0.15480 0.35215 0.15045 0.30605 0.120700.4σ 

Chi-Square 0.39325 0.18720 0.41030 0.19920 0.60775 0.30545

Normal 0.21750 0.07745 0.21790 0.07860 0.20840 0.07295

Uniform 0.72700 0.47070 0.72440 0.46525 0.63580 0.361150.6σ 

Chi-Square 0.75320 0.52185 0.76395 0.53695 0.91625 0.70205

Normal 0.55570 0.29890 0.55660 0.29970 0.52070 0.26725

Uniform 0.99730 0.98070 0.99715 0.97965 0.98855 0.935651.0σ 

Chi-Square 0.99240 0.95910 0.99320 0.96250 0.99955 0.99040
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Table 10       

Rejections of the null under treatment condition for n1=n2=n3=n4(tr)=n5(tr)=10 

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.05335 0.01155 0.05325 0.01200 0.05410 0.01155

Uniform 0.07330 0.01655 0.07105 0.01570 0.06885 0.015300.1σ 

Chi-Square 0.07070 0.01645 0.07880 0.01965 0.11220 0.03225

Normal 0.08430 0.01965 0.08450 0.02040 0.08365 0.02095

Uniform 0.21735 0.07480 0.21350 0.07160 0.20265 0.067500.25σ 

Chi-Square 0.23355 0.08565 0.25025 0.09295 0.43975 0.20960

Normal 0.15280 0.04590 0.15350 0.04680 0.15040 0.04635

Uniform 0.52550 0.27445 0.52180 0.26785 0.47225 0.239000.4σ 

Chi-Square 0.56880 0.32480 0.58670 0.33970 0.80490 0.58250

Normal 0.30185 0.12325 0.30240 0.12515 0.29115 0.11860

Uniform 0.90445 0.71990 0.90295 0.71495 0.84090 0.627950.6σ 

Chi-Square 0.89960 0.75155 0.90605 0.76415 0.98155 0.91815

Normal 0.75565 0.51135 0.75695 0.51150 0.73855 0.49615

Uniform 1.00000 0.99985 1.00000 0.99985 0.99985 0.997351.0σ 

Chi-Square 0.99905 0.99245 0.99915 0.99330 0.99985 0.99925
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Table 11       

Rejections of the null under treatment condition for n1=n2=n3(tr)=n4(tr)=n5(tr)=10 

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.05470 0.01160 0.05445 0.01205 0.05540 0.01150

Uniform 0.07145 0.01750 0.06995 0.01655 0.06995 0.016500.1σ 

Chi-Square 0.07125 0.01660 0.07905 0.01905 0.11485 0.03215

Normal 0.08685 0.02135 0.08765 0.02195 0.08390 0.02100

Uniform 0.21660 0.07490 0.21370 0.07165 0.20100 0.068450.25σ 

Chi-Square 0.24440 0.08985 0.25945 0.09825 0.43450 0.22330

Normal 0.15430 0.04805 0.15420 0.04840 0.15035 0.04695

Uniform 0.52460 0.27340 0.52035 0.26585 0.46865 0.235300.4σ 

Chi-Square 0.56705 0.32865 0.58180 0.34865 0.77000 0.56515

Normal 0.31345 0.12830 0.31340 0.12905 0.30295 0.12500

Uniform 0.90380 0.73175 0.90295 0.72635 0.84475 0.642000.6σ 

Chi-Square 0.89015 0.74660 0.89655 0.75920 0.96005 0.88195

Normal 0.75170 0.51120 0.75305 0.51260 0.73630 0.49670

Uniform 1.00000 0.99975 1.00000 0.99970 0.99970 0.997351.0σ 

Chi-Square 0.99810 0.99175 0.99835 0.99305 0.99940 0.99670
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Table 12       

Rejections of the null under treatment condition for n1=n2(tr)=n3(tr)=n4(tr)=n5(tr)=10 

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.05420 0.01120 0.05405 0.01130 0.05405 0.01165

Uniform 0.06760 0.01475 0.06575 0.01380 0.06450 0.014450.1σ 

Chi-Square 0.06220 0.01335 0.07010 0.01535 0.09490 0.02530

Normal 0.07365 0.01790 0.07425 0.01855 0.07345 0.01790

Uniform 0.15350 0.04895 0.15000 0.04660 0.13885 0.042450.25σ 

Chi-Square 0.17125 0.05290 0.18395 0.05930 0.29850 0.13505

Normal 0.11515 0.03110 0.11510 0.03110 0.11065 0.03010

Uniform 0.35490 0.15350 0.35225 0.14850 0.30475 0.119900.4σ 

Chi-Square 0.40880 0.19240 0.42560 0.20785 0.54935 0.33520

Normal 0.21510 0.07475 0.21570 0.07630 0.20160 0.06940

Uniform 0.72955 0.46820 0.72770 0.46155 0.63140 0.353400.6σ 

Chi-Square 0.75000 0.54510 0.76205 0.56800 0.80200 0.61930

Normal 0.55280 0.30025 0.55395 0.30255 0.51650 0.26840

Uniform 0.99750 0.98000 0.99750 0.97925 0.98920 0.933001.0σ 

Chi-Square 0.98155 0.94565 0.98255 0.95090 0.97640 0.91895
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Table 13       

Rejections of the null under treatment condition for n1=n2=n3=n4=n5(tr)=30 

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.06010 0.01360 0.06090 0.01355 0.06005 0.01235

Uniform 0.09840 0.02540 0.09735 0.02540 0.09470 0.024550.1σ 

Chi-Square 0.10160 0.02685 0.10540 0.02925 0.18570 0.05705

Normal 0.13165 0.03815 0.13240 0.03860 0.12625 0.03610

Uniform 0.44830 0.22125 0.44655 0.22020 0.40100 0.187600.25σ 

Chi-Square 0.46105 0.23570 0.47075 0.24620 0.83720 0.59705

Normal 0.29865 0.12165 0.29940 0.12355 0.28135 0.11355

Uniform 0.88625 0.71420 0.88570 0.71345 0.82610 0.617400.4σ 

Chi-Square 0.89640 0.73440 0.90085 0.74490 0.99770 0.98165

Normal 0.63460 0.38500 0.63500 0.38585 0.60825 0.35665

Uniform 0.99895 0.99395 0.99895 0.99435 0.99615 0.976400.6σ 

Chi-Square 0.99860 0.99005 0.99870 0.99110 1.00000 1.00000

Normal 0.98260 0.93340 0.98280 0.93310 0.97495 0.91275

Uniform 1.00000 1.00000 1.00000 1.00000 1.00000 1.000001.0σ 

Chi-Square 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
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Table 14       

Rejections under treatment condition for n1=n2=n3=n4(tr)=n5(tr)=30   

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.07240 0.01605 0.07270 0.01650 0.07025 0.01760

Uniform 0.13015 0.04055 0.13035 0.04060 0.12685 0.039200.1σ 

Chi-Square 0.13435 0.04280 0.14005 0.04545 0.28465 0.11650

Normal 0.17830 0.06110 0.17940 0.06250 0.17545 0.05905

Uniform 0.63960 0.38920 0.63955 0.38865 0.58740 0.342050.25σ 

Chi-Square 0.65810 0.41945 0.66635 0.43185 0.94580 0.83680

Normal 0.44160 0.21705 0.44160 0.21855 0.42235 0.20555

Uniform 0.97795 0.91600 0.97740 0.91460 0.95350 0.860700.4σ 

Chi-Square 0.97460 0.91365 0.97625 0.91790 0.99990 0.99850

Normal 0.82330 0.61870 0.82520 0.61980 0.80130 0.59435

Uniform 1.00000 1.00000 1.00000 1.00000 0.99995 0.999150.6σ 

Chi-Square 0.99995 0.99960 0.99995 0.99970 1.00000 1.00000

Normal 0.99925 0.99435 0.99935 0.99445 0.99900 0.99215

Uniform 1.00000 1.00000 1.00000 1.00000 1.00000 1.000001.0σ 

Chi-Square 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
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Table 15       

Rejections of the null under treatment condition for n1=n2=n3(tr)=n4(tr)=n5(tr)=30 

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.06510 0.01480 0.06530 0.01465 0.06190 0.01525

Uniform 0.12455 0.03595 0.12310 0.03550 0.12045 0.034900.1σ 

Chi-Square 0.13340 0.03845 0.13905 0.04110 0.28095 0.11570

Normal 0.18660 0.06120 0.18645 0.06190 0.17955 0.05965

Uniform 0.64640 0.39840 0.64450 0.39625 0.59405 0.350500.25σ 

Chi-Square 0.66025 0.42410 0.66745 0.43645 0.92395 0.80495

Normal 0.43835 0.21945 0.43905 0.22165 0.42285 0.20650

Uniform 0.97945 0.92230 0.97960 0.92110 0.95725 0.865950.4σ 

Chi-Square 0.97020 0.90735 0.97140 0.91185 0.99905 0.99385

Normal 0.81940 0.61670 0.81910 0.61840 0.79815 0.58910

Uniform 1.00000 0.99995 1.00000 0.99995 0.99995 0.999050.6σ 

Chi-Square 0.99995 0.99895 0.99995 0.99910 1.00000 1.00000

Normal 0.99940 0.99530 0.99935 0.99530 0.99925 0.99360

Uniform 1.00000 1.00000 1.00000 1.00000 1.00000 1.000001.0σ 

Chi-Square 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
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Table 16       

Rejections of the null under treatment condition for n1=n2(tr)=n3(tr)=n4(tr)=n5(tr)=30 

  ANOVA 

Approximate 
randomization 

ANOVA Kruskal-Wallis 
Effect 
Size Distribution α = .05 α = .01 α = .05 α = .01 α = .05 α = .01 

Normal 0.06125 0.01415 0.06115 0.01475 0.06110 0.01455

Uniform 0.10050 0.02650 0.09885 0.02640 0.09750 0.025350.1σ 

Chi-Square 0.10210 0.02650 0.10670 0.02885 0.20065 0.07555

Normal 0.13545 0.03835 0.13490 0.03895 0.13050 0.03660

Uniform 0.44920 0.22605 0.44790 0.22530 0.40380 0.191750.25σ 

Chi-Square 0.47970 0.25455 0.48770 0.26355 0.74980 0.54960

Normal 0.30325 0.12360 0.30335 0.12570 0.28760 0.11605

Uniform 0.89020 0.72260 0.88945 0.72015 0.83190 0.626200.4σ 

Chi-Square 0.87910 0.72990 0.88290 0.73875 0.97050 0.91425

Normal 0.62370 0.37955 0.62445 0.38115 0.59400 0.35355

Uniform 0.99905 0.99430 0.99895 0.99400 0.99605 0.975150.6σ 

Chi-Square 0.99495 0.98350 0.99525 0.98415 0.99950 0.99645

Normal 0.98355 0.93620 0.98380 0.93740 0.97725 0.91735

Uniform 1.00000 1.00000 1.00000 1.00000 1.00000 1.000001.0σ 

Chi-Square 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
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CHAPTER 5  DISCUSSION 

Overview 

 The first section of the discussion contains the findings from the Type I error 

portion of the study. The power results will then be explored for the different statistical 

tests performed. Implications of the current study will then be discussed. 

Type I Error 

 Unlike other studies exploring Type I error properties of parametric and 

nonparametric tests (e.g., Tomarken & Serlin, 1986), the Type I error analysis for this 

study were performed within the framework of the experiment rather than as a 

separate component. Therefore, the error rates are based on 20,000 repetitions of 

each test, a number of iterations that is smaller than many others in published 

research (e.g., Weber & Sawilowsky, 2009). Similar patterns were observed at α=.01 

than were observed at α=.05, with the latter to be discussed in more detail. 

 For data sampled from the normal distribution, the ANOVA demonstrated the 

smallest error rate under the n1=n2=n3=10 sample condition, and the error rates as a 

whole were at or around the 5% level for all tests. The error rates were within the 

expected range according to Bradley’s (1978) conservative criteria of robustness, 

where he asserted that a range of .9α to 1.1α constitutes a conservative limit for 

robustness, while a range of .5α to 1.5α is to be considered the most liberal limit. 

 Data sampled from the uniform distribution showed more diverse rejection 

rates than under the normal condition, but an expected pattern emerged. The 

ANOVA demonstrated a decrease in rejection rate from 5.12% on the smallest 

sample to 4.90% on the largest sample, with a gradual decrease at each increase in 
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sample. All three tests demonstrated robustness well within the conservative 

boundaries.  

 For data sampled from the chi-square distribution (df=2), a difference did 

emerge between tests, and similar to other findings (e.g., Tomarken & Serlin, 1986), 

the ANOVA demonstrated rejection rates beyond the conservative limits of 

robustness at all but the largest sample condition. Both the approximate 

randomization ANOVA and the Kruskal-Wallis maintained their robustness under the 

chi-square (df=2) distribution. 

 None of the error rates were surprising considering the past research on the 

matter. Sawilowsky & Blair (1992) reported that the t statistic was robust to 

departures from normality in situations such as equal sample sizes and samples 

approaching 30 or more, both conditions that appeared to have a rehabilitating effect 

on the ANOVA’s rejection rates under the chi-square (df=2) distribution. That the 

other tests maintained robustness under the three distributions examined was 

expected considering their nonparametric nature. 

Comparative Statistical Power 

Small Sample Conditions 

 Regardless of the number of groups explored, results from the samples 

consisting of n=10 were very congruent. Not surprisingly, under the normal 

distribution, the ANOVA and approximate randomization ANOVA demonstrated 

nearly identical power. The Kruskal-Wallis trailed in power minimally throughout the 

range of shifts in location (see Figure 4). Research has indicated that under 

conditions of normality and equal sample size, the ANOVA accomplishes superior 
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power to nonparametric alternatives (Zimmerman & Zumbo, 1990a), and for the 

current n=10 conditions, that finding was replicated. Also confirmed in these findings 

was this comparative superiority is minimal in comparison with nonparametric 

alternatives (Blair & Higgins, 1985; Sawilowsky, 1990). 

 In exploring the results obtained for data sampled from the uniform 

distribution, the power curve for the ANOVA and approximate randomization ANOVA 

were also nearly identical, exhibiting modestly higher power (most notably at the 0.4σ 

and the 0.6σ magnitudes of shift in location) than the Kruskal-Wallis. This power 

advantage closed at the 1.0σ effect size. The Kruskal-Wallis test, however, 

demonstrated a dramatic power advantage over the ANOVA tests for data sampled 

from the chi-square (df=2) distribution, with these advantages reaching as much as 

18-28%. The approximate randomization ANOVA did appear to rehabilitate the power 

loss of the ANOVA under the chi-square (df=2) condition, although slightly (2% at 

most). These power curves were also consistent at the α=.01 level, with the same 

patterns emerging in test comparisons. 

Large Sample Conditions  

 Regardless of the number of groups in the sample, the results from the n=30 

samples were also highly congruent. In fact, the patterns demonstrated by the larger 

samples follow those of the smaller group samples, with the exception of having 

steeper curves. Under all distributions, the same trends were revealed, with some 

power advantages slightly increasing or decreasing. Specifically, the Kruskal-Wallis 

exhibited a power advantage as large as 36% over the ANOVA and approximate 

randomization ANOVA for data obtained under the chi-square (df=2) distribution (see 
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Figure 30). These findings are an extension of the assertion of Neave and Granger 

(1968) that with larger group sizes, the Wilcoxon demonstrated larger power 

advantages over the t test in non-normal distributions. These power curves were also 

consistent at the α=.01 level, with the same patterns emerging in test comparisons. 

 Throughout all treatment group conditions of the n=30 samples, the power 

curves of all of the tests remained essentially identical under normality. The uniform 

distribution revealed a slight power advantage for the ANOVA and approximate 

randomization ANOVA when compared to the Kruskal-Wallis (see Figure 37). 

Multiple Treatment Groups 

Although not an intentional goal of the current study, the impact of the number 

of groups receiving treatment within a sample became of particular interest. Results 

revealed that the effect of adding multiple treatment groups was modest. Most 

notably, as the number of treatment groups rose, particularly in the n1 = n2 = n3 = n4 = 

n5 = 10 condition, the power advantage the Kruskal-Wallis demonstrated under the 

chi-square (df=2) decreased modestly. Conversely, as the number of treatment 

groups increased, the power advantage of the ANOVA and approximate 

randomization ANOVA over the Kruskal-Wallis under the uniform distribution also 

increased slightly. No other noticeable patterns were revealed by multiple treatment 

groups in the small samples. 

Implications 

 Under conditions of normality, the ANOVA is uniformly most powerful and 

unbiased, making it the staple analysis tool under those conditions. However, Micceri 

(1989) noted in his exploration of research literature, that only roughly 3% of 
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published research had data that approximated a normal distribution. Nonparametric 

tests such as the Kruskal-Wallis, by virtue of not operating under the assumption of 

normality, are alternatives to their parametric counterparts when normality does not 

hold. 

 Unfortunately, according to Hunter and May (1993) and others, it was posited 

that degrading data to ranks, as nonparametric tests do, removes valuable 

information and makes these tests less powerful in some situations. Moreover, as the 

advent of high speed personal computers has proliferated, the randomization ANOVA 

has been suggested as an alternative which will rehabilitate ANOVA’s lack of 

robustness with respect to Type I error for departures from population normality, and 

provide an increase in statistical power under non-normal conditions (e.g., Hunter & 

May, 1993; Potvin & Roff, 1993), It was similarly presumed that the increased power 

would be superior to nonparametric rank tests due to their use of actual data rather 

than ranks (Ludbrook & Dudley, 1998). Assuming this is all true, in situations where 

the ANOVA is not most powerful, it was contended that the randomization ANOVA 

would prove to be the most powerful of the three options. 

However, Weber and Sawilowsky (2009) previously found with regard to the 

two independent samples t test, its permutation analog, and the nonparametric 

Wilcoxon Rank-Sum test (also known as the Mann-Whitney U test), that while the 

permutation technique is successful in rehabilitating robustness properties, the 

resulting comparative statistical power generally follows the power spectrum of the 

parametric test. However, the rank based nonparametric test, which is by definition 

robust, is actually far superior in terms of its comparative power, specifically for 
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treatments modeled as a shift in location parameter, The results of this study 

demonstrated that the Weber and Sawilowsky (2009) results generalize from the k=2 

independent groups to the k > 2 independent groups layouts. 

Conclusion 

The purpose of this study was to explore the assertion that randomization 

ANOVA is better than the Kruskal-Wallis as an alternative to ANOVA under 

conditions on non-normality, and additionally, to explore the relationship of the three 

tests under conditions of normality and non-normality. In instances where it was more 

powerful than the ANOVA, the power curve of the approximate randomization 

ANOVA was only slightly better, and often impossible to distinguish. Most 

importantly, in situations where the ANOVA could not be said to be most powerful 

than the Kruskal-Wallis, nor could the approximate randomization ANOVA. In the 

case of the chi-square (df=2) distribution, when the Kruskal-Wallis was demonstrated 

to be most powerful, the approximate randomization ANOVA did perform with more 

power than the ANOVA. To state more clearly, the approximate randomization 

ANOVA appears to be more powerful than the Kruskal-Wallis only under the same 

conditions in which ANOVA is more powerful. Within the parameters of the current 

study, a modest advantage was present for the ANOVA in the uniform distribution, 

while the Kruskal-Wallis demonstrated a stark power advantage under the chi-square 

(df=2) distribution. This finding extends to K>3 tests for shifts in location the claims 

made by Blair (1981) and Blair & Higgins (1985) regarding two-sample tests. That is 

when normality conditions are perfectly met, the nonparametric test is only slightly 
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less powerful than the parametric test, and when those conditions are not met, the 

nonparametric test is often vastly more powerful. 

This study utilized theoretical distributions which many researchers would 

suggest are not representative or productive in the experimental context. Though this 

could be true, what they do provide is a reference to which others can test the 

assumptions and results presented herein. Furthermore, they provide an understood 

standard by which ideas such as a "normal and non-normal" context can be 

examined. The question left for researchers to consider in selection of statistical tests 

is how close is close enough? That is to say, knowing that under perfectly met 

normality conditions the Kruskal-Wallis suffers a .01-.02 power disadvantage 

compared to the ANOVA and approximate randomization ANOVA, is that enough of 

a disadvantage to surrender power advantages of what was demonstrated in this 

study to be as large as .36? Knowing that perfect normality is rarely, if ever, 

achieved, this study provides more evidence that there is quite literally little to lose in 

using nonparametric statistics when exploring shifts in location. It should also be 

noted that in this study, group sizes and treatment effect sizes were always held 

equal, two more factors that placed the ANOVA in the best position to demonstrate 

superior statistical power.  

In the future, researchers may want to explore opportunities to test the 

significance level of a noted power difference. Perhaps there is a way to test whether 

the difference between two power slopes is significant, or if there is not, this may be 

something for future research to explore. At the time of this study, the researcher was 

unaware of any such tools. 
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 The t test has been suggested to be robust to departures from normality as 

long as group sizes are equal and samples approach 30 or more. The F statistic has 

also been proposed to have the same robust qualities as the t, though researchers 

have suggested that because a test is robust to departures from normality, that does 

not necessarily make it the best test for every situation. With the increase in 

computing capabilities, the permutation ANOVA has been explored as an alternative 

to the ANOVA under non-normal conditions to rehabilitate the loss of statistical 

power. Since the permutation ANOVA does not operate under the assumption of 

normality and uses actual scores, many researchers suggest that the permutation 

ANOVA is superior to rank tests such as the Kruskal-Wallis because ranking data 

disposes of valuable information. To compare the power of the ANOVA, approximate 

randomization ANOVA, and the Kruskal-Wallis test, the researcher performed a 

Monte Carlo analysis on group sizes of n=10 to n=30 and groups of k=3 and k=5 

using Fortran program language and the IMSL subroutine library. In 12 different 

treatment conditions, the researcher implemented equal treatment effect sizes of 
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small (0.1σ) to huge (1.0σ) on each treatment group in graduated increments, until all 

but one group had received a treatment. Data were drawn from three theoretical 

distributions: the normal (Gaussian) distribution, the uniform distribution, and the chi-

square (df=2) distribution. Results indicated that regardless of the number of 

treatment groups, the ANOVA and approximate randomization ANOVA exhibited 

almost equal power under every distribution and effect size. The power of the 

Kruskal-Wallis was slightly less than the ANOVA and approximate randomization 

ANOVA under the normal and uniform condition, and was significantly more powerful 

under the chi-square (df=2) distribution. The sample size and treatment effect had 

little to do with the relationship between the performances of the three tests but did 

affect the rate of power increase and maximum power achieved. Implications of the 

findings as well the contribution to existing literature is discussed. 
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