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CHAPTER 1: Background  
 
 

 
1.1 Introduction 

 

 

1.1.1 Protein post-translational modification  

Protein post-translational modification (PTM) raises the functional variety of the 

proteome. Depending on the specific way of protein modification, such as extra bonding of 

function groups or proteolytic cleavage of subunits, it can be classified into phosphorylation, 

glycosylation, nitrosylation, ubiquitination, lipidation, acetylation, methylation, and 

proteolysis. Well understanding and identifying PTMs are important in the study of cell 

biology and disease treatment as these modifications impact almost every sides of 

pathogenesis and microbiology. 

Protein methylation is a process that is transferring a one-carbon methyl group to an 

amino acid side chain of the protein. This transfer usually occurs on lysine or arginine, 

conjugating one, two or three methyl groups to residues. When methyl group bound to 

carboxylic acids, methylation neutralizes a negative amino acid charge and improves the 

hydrophobicity of protein. S-adenosyl methionine (SAM) is the primary methyl group donor, 

which has been suggested to be the second common used substrate in enzymatic reaction. 

Lysine methylation is also a well-known machinery of epigenetic regulation, since 

histone lysine methylation and demethylation effects the transcriptional accessibility of DNA.  
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1.1.1.1 Non-histone Protein Lysine Methylation 

 

However, comparing to histone methylation, people are just getting to know non-

histone methylation. The first reported event of non-histone protein methylation was mono-

methylation of p53 protein by SET7 (2). Beside of protein p53, several other non-histone 

proteins have been studied as well. Most of those proteins are either histone-/DNA-modifying 

enzymes, like KMT1C  and DNMT1, or transcriptional factors, like RB, E2F1, NFκB(3).  

Methylation of lysine residues (Figure 1) on non-histone proteins has occurred as an 

important regulator of cellular signaling transduction that mediated by several signaling 

pathways, such as BMP, Hippo, JAK–STAT, MAPK, and WNT. Crosstalk between non-

histone protein and histone methylation, and between methylation and other kinds of post-

translational modifications, constantly emerges and affects biochemical cellular functions 

including chromatin remodeling, DNA repair, gene transcription, signal transduction and 

Figure 1:the catalysis of the methyl transfer from co-factor S-Adenosyl-Lmethionine 

(AdoMet) to the ε-amine of the lysine residue (1) 
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protein synthesis. With recent progress in proteomic research and particular mass 

spectrometry, the stage is set to reveal the methylproteome and define its functions in health 

and disease.(4) 

 

1.1.2 Epigenetic regulation  

Epigenetic regulation consists of 3 highly interconnected epigenetic pathways: DNA 

methylation, histone translational modifications, and RNA modification, impacting on the 

chromatin structure and accessibility. Understanding the term of epigenetics requires a 

comprehension of chromatin structure. Chromatin, formed by repeating units called 

nucleosomes, which is a complex of protein and DNA/RNAs (5). A nucleosome are made up 

of double-stranded DNA wrapping around histone proteins, which is an octamer consists of 

two copies of each core histones H2A, H2B, H3, and H4. DNA can be chemically modified 

with epigenetic marks that affect the structure of chromatin by changing the affinity of 

interactions with proteins which bind to chromatin and by the chromatin electrostatic nature 

altering. 

Comparing to DNA modification, histone modification is more dynamic. Histones are 

subjects to a few different covalent modifications, such as acetylation, methylation, 

sumoylation, phosphorylation and ubiquitination(Figure 2). Histone modifications could have 

diverse influences based on the location and type of modification on the histone. The best-

identified histone modifications are acetylation and methylation. The enzymes that methylate 

histone are called histone methyltransferases. Histone methylation plays a vital role in 

transcriptional regulation, could be either suppressive or simulative, according to the location 

of the methylated residue. Methylation of the lysine at the fourth residue of histone H3 
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(H3K4me), for example, facilitates a transcriptionally active conformation, as opposite to 

H3K4me, where at the ninth lysine, H3K9me inhibit a transcriptionally conformation. 

Furthermore, H3K36me can be either suppressive or simulative, depending on proximity to a 

gene promoter region. 

 

 
 

Figure 2: Histone lysine modification(6) 

 

 
1.1.2.1 Histone Lysine Methylation   

 
As this figure above, lysine is the majority of histone modification substrate. Lysine 

methylation is a covalent protein post-translational modification (PTM) that modulates a 

myriad of biological processes. The presence of this PTM on histone alters chromatin 

structure and function, which is involved in the regulation of DNA damage response, 
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transcription activity and cell cycle progression (5). Difficult to characterize in itself, 

methylation complexity also increases from the potential of mono-, di-, or tri- methylation 

of lysine side chain, producing multiple states for the single modification(7). 

The lysine methylation was identified to be localized on histone proteins in 1964 (8). While 

sites of methylation on histones were verified, the biological function of the histone 

methylation remained unknown. The biological consequence of the methylation of lysine 

residues on histones and the influences on genetic expression were first discovered through 

the formation of heterochromatin-mediated by the recruitment of HP1 to the H3K9 methyl 

mark (9), raising interest in lysine methylation on epigenetic regulation. 

 

1.1.3 Lysine Methyltransferases 

Lysine methyltransferases (KMTs) catalyze methylation by transferring one, two, 

or three methyl groups, from SAM to the ε-amino group of a lysine residue. Except for 

KMT4/DOT1L, all known KMTs are consist of a conserved SET (Su(var)3-9, Enhancer of 

Zeste, Trithorax) domain with the enzymatic activity (10). Besides the SET domain, most 

KMTs also have some other defined protein domain or homologous sequence to classify 

KMTs into distinct subfamilies (11). Naming enzymes were based on their relationship in 

sequence and domain structure, including the catalytic domain (Figure 3).The majority of 

KMT3 family focused on methylation of H3K36, whereas some SMYD proteins were 

observed to methylate H3K4 and other residues.  
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Figure 3: Human KMTs and their histone and non-histone substrates(12) 
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1.2 SMYD protein family  
 

The SMYD (SET and MYND domain) family proteins, which are a special group of 

protein lysine methyltransferases participated in methylation of histones and non-histone 

targets, plays pivotal roles in numerous cellular processes including gene expression 

regulation and DNA damage response(13).  

So far, SMYD family has five members, SMYD1–5(Figure 4)(14). Each member 

contains a conserved SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) domain 

interrupted by an MYND (Myeloid-Nervy-DEAF1) domain(15). The SET domain, which is 

approximately 130 amino acid long, is a conserved catalytic unit responsible for lysine 

methylation and found in nearly all histone methyltransferase(16). The MYND domain is a 

zinc finger motif that basically functions as a protein–protein interaction module(17,18) and 

has been suggested that has a preference for binding with a proline-rich motif (PXLXP) in the  

 

 

 

 

 

 

 

 

 

                           

Figure 4: Overall structure of SMYD) proteins.(19) 
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interaction with other protein(20). The last feature is the TPR (Tetratrico Peptide Repeat) 

domain found in SMYD1–4 but not in SMYD5, which are important for the modulation of 

protein-protein interactions, and SMYD4 contains an additional TPR domain at its N-

terminus. 

 

1.2.1 SMYD protein sequence analysis  

As shown in (Figure 4), the structures of SMYD proteins share a lot of commons. 

However, according to the alignment of the protein sequence of SMYD proteins, the percent 

identity of two SMYD protein (homo sapiens) members is approximately 20%-30% (Table 

1), indicate the SMYD proteins are diverse in metazoans. So, to understand the history of 

evolutionary and functional conservation or diversification, a critical phylogenetic 

reconstruction of this complicated gene family is significant. The study of phylogenetic tree 

analysis of SMYD protein sequences has been started, and the results indicate that the existing 

metazoan SMYD genes turned into three main classes, SMYD4, SMYD5 and SMYD3 

(including chordate-specific SMYD1, SMYD2 genes). SMYD1 and SMYD2, which are most 

close to each other in this five members, are most similar to SMYD3. The reason SMYD1 

and SMYD2 are under SMYD3 class is they are respectively exclusive of chordates and 

vertebrates but SMYD3 exist in all species of metazoans. The evolutionary of the SMYD3 

class and SMYD5 class is relatively simple. However, the SMYD4 class has passed through 

a few events such as gene duplication, gene loss, and lineage-specific expansions in the animal 

phyla. SMYD4 gene has dupicated into more sub-group but they are not redundant since four 
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SMYD4 genes in Drosophila melanogaster are expressed different patterns and deletion of 

individual genes behave diverse phenotypes (21). 

Table 1: SMYD Proteins Percent Identity Matrix. According to protein sequence alignment of 
SMYD family, this table shows percent identity between two SMYD proteins.  

"100" - 100% identity. 

 

 
                           SMYD5 SMYD4 SMYD1 SMYD3 SMYD2     
                    

1: SMYD1        25.10   20.86 100.00   31.12   30.61 

2: SMYD2        27.86   21.81   30.61   32.37 100.00 

3: SMYD3        26.09   23.35   31.12 100.00   32.37 

4: SMYD4        22.95 100.00   20.86   23.35   21.81 

5: SMYD5       100.00   22.95   25.10   26.09   27.86 

 

1.2.2 SMYD family function in biological development  

The SMYD family members SMYD1-4 are required in critical developmental 

processes, especially related to cardiac and muscle development. 

SMYD1 is essential for heart development via cardiomyocyte differentiation and 

maturation(22) and its expression in the heart is directed by myocyte enhancer factor-2c 

(MEF2C)(23) and serum response factor (SRF)(24). In skeletal muscle cells, its transcription 

is regulated by myogenic differentiation antigen 1 (MYOD)(25). SMYD1 is expressed during 

the growth of zebrafish and is necessary for proper development of skeletal muscle, myofibril 

organization and muscle contraction(26), as well as sarcomerogenesis.  

Additionally, SMYD2 is expressed in cardiac muscle as well during cardiogenesis 

(27) and both SMYD1 and SMYD2 enzymes are expressed during muscle development in 
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Xenopus laevis (28). SMYD2 is also reported to methylate HSP90 and altered chick muscle 

functions(29).  

In zebrafish, SMYD3 is vital in heart and trunk muscle development. Knockdown 

of SMYD3 ends up in abnormal expression of heart chamber markers and myogenic 

regulatory factors(30).  

The knockdown of SMYD4 in embryos of Drosophila cause 80% of knockdown 

flies remained trapped in the pupal case and died during the eclosion stage. Eclosion 

requires movement of the abdominal muscles to make flies be able to escape from the case. 

Suggesting that s4 is likely to play a role in controlling muscle development(31). 

However, SMYD5 is not required for heart and skeletal muscle development. 

Recent research suggests that SMYD5 plays an important role in hematopoiesis(32).  
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1.2.3 SMYD family methylate histone and non-histone protein 

 

SMYD proteins methylate a diverse group of histone and non-histone proteins that 

contribute to their critical roles in cell regulation such as chromatin remodeling, transcription, 

signal transduction, and cell cycle control.  Methylation substrates of SMYD family members 

are summarized in the following table (Table 2). 

Table 2: Summary of known substrates for the SMYD family of methyltransferases.(20,33) 

 

    

 
 

 

 

 

 

  

Enzyme name Substrate 
Histone Non-histone 

   
SMYD1 H3K4 Myosin, skNAC 

HSP90 
   
   
   

SMYD2 H3K4 
H3K36 

p53, RB1, PARP1,  
ERα HSP90 

   
   

SMYD3 H3K4  
H4K5 

VEGFR1 
MAP3K2 

HSP90 
   
   

SMYD4 ? ? 
   
   
   

SMYD5 H4K20 ? 
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1.3 SMYD5 
  

1.3.1 SMYD5 methylate H4K20 
 

According to a recent report, histone H4 lysine 20 (H4K20) can be trimethylated 

by SMYD5(34). Associated with NcoR chromatin remodeling complexes, the methylation 

represses the inflammatory response through restricting of toll-like receptor 4 (TLR-4) 

mediated expression in mouse primary macrophages. Removal of H4k20me3 by PHF2 can 

activate the expression (Figure 5). 

 

 

 

 

 

 

 

 

 

 

Figure 5: Role of H4K20me3 in the regulation of TLR4-responsive genes.(34) 

 

 However, the roles of this repressive histone modification in biological 

development and pluripotency are largely elusive.  

Epigenetic regulations of chromatin states are assumed that involved in the self-

renewal and differentiation of embryonic stem (ES) cells. The latest study showed that the 

histone lysine methyltransferase SMYD5 regulates ES cell self-renewal, alters cell 

differentiation (35).  
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Knockdown of SMYD5 leads to ES cell colony morphology abnormality, where 

shSmyd5 ES cell colonies became flat and scattered and lost contacting between cells at 

the colony periphery (Figure 6). Also, deletion of SMYD5 results in dysregulate expression 

of pluripotency regulators OCT4 targets, and disturbed ES cell differentiation.  

 

This paper also reported that SMYD5 regulates H4K20me3 modification at 

heterochromatin in ES cells. 

Heterochromatin is a tightly packed formation of DNA and localizes at the 

periphery of the nucleus. It was thought inaccessible of polymerases and not transcribed. 

However, since 2007, many studies have demonstrated that it is actually transcribed into 

noncoding RNA molecules containing telomeric and subtelomeric sequences(36). 

Heterochromatin plays an essential role in gene expression during development and 

Figure 6: Bright-field microscopy of ES cells infected with shLuc or shSmyd5 lentiviral 
particles and wild-type (WT) SMYD5 or an enzymatically mutant (mut) version of SMYD5 
(H315L and C317A) lentiviral particles and stably selected with puromycin and 
G418.(35) 
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differentiation (37) and maintains genome integrity. It was identified that associate with 

H3K9 methylation, which is controlled by LSD1 and ESET/Setdb1(38), and H4K20 

methylation. 

Depletion of SMYD5 led to a downregulation in H4K20me3 levels, but not 

H4K20me2 or H4K20me1, demonstrating that SMYD5 endows H4K20me3 

methyltransferase activity. Overexpressing a shRNA-resistant version of wild-type 

SMYD5 restored the level of H4K20me3. Knockdown of SMYD5 also reduced levels of 

H3K9me2/3 and HP1α. Because H4K20me3 is reported to co-localize with H3K9me3 at 

heterochromatic regions (5,39) and H3K9me3 is necessary for recruitment of HP1 and 

heterochromatin formation, it is possible that delocalization of  HP1 and H3K9me3, 

depending upon the lacking of SMYD5 and H4K20me3, may tend to reduced 

heterochromatin. 

Overall, a loss of SMYD5, which silence heterochromatin adjacent genic domains, 

results in increased expression of lineage-specific genes, contributing to the decreased self-

renewal and disturbed differentiation of SMYD5-kockdown ES cells.(35) 
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1.3.2 SMYD5 regulate hematopoiesis in zebrafish embryos 
 

Unlike SMYD1-4, Smyd5 is not required for heart and skeletal muscle 

development. Knockdown of SMYD5 in zebrafish embryo showed no abnormality (Figure 

7)(32). 

 

 

 

 

 

 

Figure 7: Knockdown of smyd5 results in normal growth of zebrafish embryo, including heart 
and skeletal muscle. (32) 

 

Also, the gene expression patterns of cardiac and myogenic markers, the structure 

of sarcomere of heart, fast-and-slow skeletal muscle were indistinguishable between 

control embryo and knock down embryo(32). These results indicate that SMYD5 has 

physiological functions which are distinct from those played by the other members. 

With the goal of defining the function of Smyd5 in zebrafish, scientists focused on 

the development of hematopoietic cells, derived from the mesoderm as heart and skeletal 

muscle. Hematopoietic cells generate blood cells of all lineages through the process 

of hematopoiesis. Similar to the other vertebrates, zebrafish hematopoiesis has two stages, 

primitive and definitive hematopoiesis(40).  
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To investigate the role of SMYD5, they tested the expression of genes related to 

hematopoiesis by performing a method of whole-mount in situ hybridization (WISH), to 

detect the target gene expression in the whole embryo. When knockdown of SMYD5, the 

expression of pu.1, mpx, l-plastin (Figure 8) increased during primary state and mpx, l-

plastin, cmvb(Figure 9) increased during definitive state (32).  The elevated expression of 

myeloid markers in SMYD5 loss-of-function zebrafish embryo, suggests that SMYD5 

negatively regulates the expression of genes related to primitive and definitive 

myelopoiesis in zebrafish.  
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Figure 8: Expression of markers for primitive hematopoietic lineages in smyd5 morphants by 
WISH(32) 

 
 

 

 

 

 

 

 

 

 

 

Figure 9: Expression of markers for definitive hematopoietic lineages in smyd5 morphants by 
WISH.(32)  
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1.3.3 SMYD5 in Cancer 
 

SMYD5 was reported to involve in breast cancer, the most common among women 

and the second most frequent cancer worldwide.  

In the present study, people explored the expression profile of SMYD5 in breast 

tumors and contiguous non-tumor samples, in breast cancer cells and some normal tissues. 

qPCR revealed expression level of SMYD5 was decreased in 7 breast cancer cell lines 

comparing to normal breast tissues. These findings led them to investigate the role of 

SMYD5 in cell proliferation. They observed that downregulation of SMYD5 expression 

through shRNA in HEK293 cells induced culture growth acceleration.(41)  

Furthermore, the generation of MDA-MB-231 tumor cell sublines expressing 

different levels of SMYD5 revealed varying proliferative profiles. SMYD5 expression 

oppositely related with growth rate in highly proliferative cultures but slow proliferating 

cells do not seem to be altered by SMYD5 levels. This observation shows that specific 

subgroup of highly proliferative cells might depend on SMYD5 downregulation to display 

this phenotype. (41) 

However, another study revealed that SMYD5 inhibited the capacity of metastatic 

breast cancer cells to colonize the lung.(42) 
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Figure 10: ErbB2-TGL cells stably transduced 
with empty vector or the indicated genes 
(Numb, Left; Smyd5, Right) were inoculated i.v. 
into syngeneic mice. Lung metastasis was 
measured by bioluminescent imaging. The panels 
show representative images (Top), and the graphs 
show the normalized photon flux at the indicated 
times (Bottom). (42)  
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1.4 Statement of Hypothesis  

 
 

Biological roles of SMYD5 have started to emerge in the area of immune reaction, 

embryonic stem cell regulation, hematopoiesis regulation, and cancer inhibition, but the 

biochemical and structural features needed to facilitate SMYD5 mediated methylation of 

histone H4, as well as other potential substrates, has not been clearly explored.  

The lacking of C-terminal TPR domain makes SMYD5 different from the other 

protein members while a poly-E region (Figure 11) at the end of C-terminal draw our 

attention, which tends to associate with metal ions, like calcium.  

 

Figure 11: hSMYD5 poly-E region(19) 

 
 

 

Figure 12: hSMYD5 mitochondrial targeting sequence 

Moreover, we found that SMYD5 contains a mitochondrial targeting sequence 

(Figure 12) at the N-terminal indicating that SMYD5 could potentially be a mitochondrial 

protein. It is well-known that mitochondria is a calcium sensor which confirmed our 

assumption about the relation between SMYD5 poly-E tail and calcium ions. According to 

these, we assuming that SMYD5 might be a mitochondrial protein and its poly-E tail could 

associate with calcium thus affect the enzymatic activity of SMYD5. 
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Hypothesis: 

 Crystal structure would provide better view of its specific biochemical               

function and structural features. 

 SMYD5 has a potential to be a mitochondrial protein. 

 The poly-E tail of SMYD5 might affect protein activity. 

 

Aims: 

 Overexpression of SMYD5 in E.coli. 

 Obtain purified SMYD5 to perform biochemical and structural studies. 

 Determine the crystal structure of SMYD5 by using X-ray crystallography. 

 Characterize the enzymatic activity of methyltransferase SMYD5. 
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CHAPTER 2: SMYD5 Molecular cloning and 
expression 

  
To perform biochemical and structural studies, the protein preparation must be 

pure and homogeneous, molecular cloning and expression are inevitable processes to get 

purified SMYD5 protein. 

2.1 Molecular cloning 
 

2.1.1 Material and Method 
 

To get human SMYD5 gene, DH10B cells were purchased from the Open 

Biosystem company. Gene accession number is BC073806 (Table 3), and a full-

length open frame sequence of SMYD5 is 1254 base pairs (bp). SMYD5 gene was 

in the POTB7 vector. To create a plasmid that SMYD5 gene will be inserted in 

pCDF-SUMO vector (Figure 13), primers were designed to curtail the interest gene 

from its original vector by PCR. 

                      Figure 13: pCDF-SUMO vector map 
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5' primer length is 36 bp, GTATAAGAAGACATAGGTATGGCGGCCTCCATG 

TGC(Tm=64.5ºC), included a BbsⅠ restriction site. 3' primer is 33 bp, CAC 

GCCTCGAGTTACACATCAGTCATCTCATC (Tm=63.6ºC), included a XhoⅠ 

restriction site. Ordered primer from Invitrogen Company.  

 

Table 3: human SMYD5 DNA sequence  

CDS:  
>gi|154689857:30-1286 Homo sapiens SMYD family member 5 (SMYD5), mRNA 
ATGGCGGCCTCCATGTGCGACGTGTTCTCCTTCTGCGTGGGCGTGGCGGGCCGCGCGCGGGTCTCCGTGG 
AAGTCCGTTTCGTGAGCAGCGCCAAGGGAAAGGGGCTGTTTGCCACACAGCTCATCCGGAAGGGGGAGAC 
CATCTTCGTAGAACGGCCCCTGGTGGCTGCACAGTTTCTCTGGAATGCACTTTATCGCTACCGAGCCTGT 
GACCACTGCCTTAGGGCACTAGAGAAGGCAGAGGAGAATGCCCAGAGGCTGACCGGGAAACCAGGCCAGG 
TTCTGCCTCACCCAGAGCTGTGCACTGTGCGCAAAGACCTCCACCAGAACTGTCCCCATTGCCAAGTGAT 
GTACTGCAGTGCAGAATGTCGGTTGGCAGCCACTGAGCAATACCACCAGGTCCTGTGCCCAGGCCCCTCC 
CAGGATGACCCCTTGCATCCTCTCAATAAGCTTCAGGAGGCATGGAGGAGTATTCACTACCCACCTGAGA 
CTGCAAGCATCATGTTGATGGCTAGGATGGTGGCCACAGTGAAGCAGGCGAAGGACAAGGACCGTTGGAT 
CAGACTCTTTTCCCAGTTTTGTAACAAAACAGCCAATGAAGAGGAGGAAATTGTCCATAAACTTCTGGGA 
GACAAATTCAAGGGCCAACTGGAACTTCTGCGGAGACTCTTCACAGAGGCCCTCTATGAGGAAGCAGTCA 
GCCAGTGGTTCACTCCAGATGGATTCCGGTCTCTCTTTGCTCTTGTTGGGACCAATGGCCAAGGAATCGG 
GACCAGCTCCCTAAGCCAGTGGGTCCATGCCTGTGACACTCTGGAGTTGAAGCCTCAGGACCGTGAGCAG 
CTTGACGCCTTCATTGACCAGCTATACAAGGACATCGAGGCAGCAACTGGAGAGTTTCTTAACTGTGAAG 
GATCTGGCCTCTTTGTGCTTCAGAGCTGCTGCAACCACAGTTGTGTGCCCAATGCAGAGACCTCCTTTCC 
AGAAAACAACTTCCTTTTGCATGTCACTGCTCTGGAGGATATTAAGCCAGGAGAGGAAATTTGTATCAGC 
TACTTGGACTGCTGTCAGCGGGAGCGCAGCCGCCACAGCCGCCACAAGATCCTCAGGGAGAACTATCTAT 
TTGTCTGTTCCTGTCCCAAATGCCTGGCAGAGGCTGATGAACCCAATGTGACCTCAGAAGAGGAAGAGGA 
AGAGGAGGAGGAGGAGGAAGGAGAGCCAGAAGATGCAGAGCTGGGGGATGAGATGACTGATGTGTGA 
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Figure 14: 0.8% Agarose gel (A) SMYD5 gene in POTB7 vector, bands located as expected  

(B) SMYD5 gene PCR product. 1/2/3 indicated 2Mm/3Mm//4Mm MgCl2 

 

First, SMYD5 commercial plasmid is going to transferred into DH5α cell and 

saving as glycerol stock. DH10B cells grew in 5ml LB media contains 34 µg/mL 

chloramphenicol at 37 ºC overnight. The clones were purified by mini prep kit (Qiagen 

Company) and got purified POTB7-SMYD5 plasmid. Product was analyzed on a 0.8% 

agarose gel for 30mins at 100V to check the size, which should be around 3k as the size of 

SMYD5 is 1254 bp and POTB7 vector length is 1815 bp (Figure 14). 1.0 ng of vector was 

transformed into 20 µL of DH5α cells and heat shocked for 45 seconds at 42˚C. Then, a 

250µL volume of warm SOC medium was added and transformed cells were shaken for 

1hour. Next, 50µL volume of transformed cells were plated onto chloramphenicol resistant 

LB Agar plates. LB plates were grown overnight at 37˚C. One single colony was selected 

and grew in in 5mL LB media contains 34 µg/mL chloramphenicol at 37 ºC overnight. 

DH5α culture was aliquoted into 1mL with 300 µL glycerol in 2ml coring tubes, saved in   

-80 ºC for future use.  
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Secondly, SMYD5 gene is going to be inserted into pCDF-SUMO vector in DH5α 

cells. SMYD5 gene was amplified through PCR, then analyzed on a 0.8% agarose gel for 

30mins at 100V to check the PCR product size (Figure 14). The bands were at the expected 

position. PCR product was purified using PCR clean up kit (Qiagen Company) and 

SMYD5 gene was obtained as an insert fragment. 2 restriction enzymes and their buffer 

were added into SMYD5 tube and vector tube respectively, 2 tubes were incubated for 1 

hour at 37 ºC to let enzyme cut the sequences at restriction site to reveal the sticky ends 

(Figure 15).Then a 0.8% agarose "blue gel" contained crystal violet was made to use, which 

can stain DNA in the gel to make it visible to naked eyes, result in preventing DNA from 

UV damage of the imager. Both insert and vector were loaded on the gel, run for 30mins 

at 100V, and needed DNA segments were cut out from the gel. Gel pieces were placed in 

separate tubes and mass the segments, then genes were extracted from blue gel using gel 

extraction kit (Qiagen Company). Purified insert and purified vector were mixed with quick 

ligase and buffer, incubated at room temperature for 7mins then all ingredients were added 

into 20 µL DH5α cells. Transformation was performed using heat-shock method, 

transferring SMYD5-pCDF-SUMO plasmid into cells. Then, a 250µL volume of warm 

SOC medium was added and transformed cells were shaken for 1hour. Next, 100µL 

volume of transformed cells were plated onto streptomycin resistant LB Agar plates. LB 

plates were grown overnight at 37˚C. 3 colonies were selected and grew in in 5mL LB 

media contained 100 µg/mL streptomycin at 37 ºC overnight. Cell culture of each colony 

was aliquoted into 1mL with 300 µL glycerol in 2ml coring tubes, saved in -80 ºC for future 

use. The left clones were purified by mini prep kit (Qiagen Company). Plasmid samples 

were sent to Genewiz Company for sequence.  
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Figure 15: Molecular cloning mechanism 

 
 
 

2.1.2 Molecular Cloning Result  
 

SMYD5 gene was successfully inserted into pCDF-SUMO vector. According to 

the sequencing result (Table 4), this clone contains one silent mutant 132EE 

(GAGGAA), which raises the usage in E.coli. Conclusively, the SMYD5 gene was 

successfully cloned into the pCDF-SUMO vector and this plasmid can be used for the 

continuous experiment. 

 

Table 4 Human SMYD5 sequencing result (pCDF-SUMO vector) 

5'-3' 

Query  76   ATGGCGGCCTCCATGTGCGACGTGTTCTCCTTCTGCGTGGGCGTGGCGGGCCGCGCGCGG  135 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1    ATGGCGGCCTCCATGTGCGACGTGTTCTCCTTCTGCGTGGGCGTGGCGGGCCGCGCGCGG  60 
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Query  136  GTCTCCGTGGAAGTCCGTTTCGTGAGCAGCGCCAAGGGAAAGGGGCTGTTTGCCACACAG  195 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  61   GTCTCCGTGGAAGTCCGTTTCGTGAGCAGCGCCAAGGGAAAGGGGCTGTTTGCCACACAG  120 

 

Query  196  CTCATCCGGAAGGGGGAGACCATCTTCGTAGAACGGCCCCTGGTGGCTGCACAGTTTCTC  255 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  121  CTCATCCGGAAGGGGGAGACCATCTTCGTAGAACGGCCCCTGGTGGCTGCACAGTTTCTC  180 

 

Query  256  TGGAATGCACTTTATCGCTACCGAGCCTGTGACCACTGCCTTAGGGCACTAGAGAAGGCA  315 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  181  TGGAATGCACTTTATCGCTACCGAGCCTGTGACCACTGCCTTAGGGCACTAGAGAAGGCA  240 

 

Query  316  GAGGAAAATGCCCAGAGGCTGACCGGGAAACCAGGCCAGGTTCTGCCTCACCCAGAGCTG  375 

            ||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  241  GAGGAGAATGCCCAGAGGCTGACCGGGAAACCAGGCCAGGTTCTGCCTCACCCAGAGCTG  300 

 

Query  376  TGCACTGTGCGCAAAGACCTCCACCAGAACTGTCCCCATTGCCAAGTGATGTACTGCAGT  435 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  301  TGCACTGTGCGCAAAGACCTCCACCAGAACTGTCCCCATTGCCAAGTGATGTACTGCAGT  360 

 

Query  436  GCAGAATGTCGGTTGGCAGCCACTGAGCAATACCACCAGGTCCTGTGCCCAGGCCCCTCC  495 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  361  GCAGAATGTCGGTTGGCAGCCACTGAGCAATACCACCAGGTCCTGTGCCCAGGCCCCTCC  420 

 

Query  496  CAGGATGACCCCTTGCATCCTCTCAATAAGCTTCAGGAGGCATGGAGGAGTATTCACTAC  555 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  421  CAGGATGACCCCTTGCATCCTCTCAATAAGCTTCAGGAGGCATGGAGGAGTATTCACTAC  480 

 

Query  556  CCACCTGAGACTGCAAGCATCATGTTGATGGCTAGGATGGTGGCCACAGTGAAGCAGGCG  615 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  481  CCACCTGAGACTGCAAGCATCATGTTGATGGCTAGGATGGTGGCCACAGTGAAGCAGGCG  540 

 

3'-5' 

Query  87    ACACATCAGTCATCTCATCCCCCAGCTCTGCATCTTCTGGctctccttcctcctcctcct  146 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1255  ACACATCAGTCATCTCATCCCCCAGCTCTGCATCTTCTGGCTCTCCTTCCTCCTCCTCCT  1196 
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Query  147   cctcttcctcttcctcttctGAGGTCACATTGGGTTCATCAGCCTCTGCCAGGCATTTGG  206 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1195  CCTCTTCCTCTTCCTCTTCTGAGGTCACATTGGGTTCATCAGCCTCTGCCAGGCATTTGG  1136 

 

Query  207   GACAGGAACAGACAAATAGATAGTTCTCCCTGAGGATCTTGTGGCGGCTGTGGCGGCTGC  266 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1135  GACAGGAACAGACAAATAGATAGTTCTCCCTGAGGATCTTGTGGCGGCTGTGGCGGCTGC  1076 

 

Query  267   GCTCCCGCTGACAGCAGTCCAAGTAGCTGATACAAATTTCCTCTCCTGGCTTAATATCCT  326 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1075  GCTCCCGCTGACAGCAGTCCAAGTAGCTGATACAAATTTCCTCTCCTGGCTTAATATCCT  1016 

 

Query  327   CCAGAGCAGTGACATGCAAAAGGAAGTTGTTTTCTGGAAAGGAGGTCTCTGCATTGGGCA  386 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1015  CCAGAGCAGTGACATGCAAAAGGAAGTTGTTTTCTGGAAAGGAGGTCTCTGCATTGGGCA  956 

 

Query  387   CACAACTGTGGTTGCAGCAGCTCTGAAGCACAAAGAGGCCAGATCCTTCACAGTTAAGAA  446 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  955   CACAACTGTGGTTGCAGCAGCTCTGAAGCACAAAGAGGCCAGATCCTTCACAGTTAAGAA  896 

 

Query  447   ACTCTCCAGTTGCTGCCTCGATGTCCTTGTATAGCTGGTCAATGAAGGCGTCAAGCTGCT  506 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  895   ACTCTCCAGTTGCTGCCTCGATGTCCTTGTATAGCTGGTCAATGAAGGCGTCAAGCTGCT  836 

 

Query  507   CACGGTCCTGAGGCTTCAACTCCAGAGTGTCACAGGCATGGACCCACTGGCTTAGGGAGC  566 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  835   CACGGTCCTGAGGCTTCAACTCCAGAGTGTCACAGGCATGGACCCACTGGCTTAGGGAGC  776 

 

Query  567   TGGTCCCGATTCCTTGGCCATTGGTCCCAACAAGAGCAAAGAGAGACCGGAATCCATCTG  626 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  775   TGGTCCCGATTCCTTGGCCATTGGTCCCAACAAGAGCAAAGAGAGACCGGAATCCATCTG  716 

 

Query  627   GAGTGAACCACTGGCTGACTGCTTCCTCATAGAGGGCCTCTGTGAAGAGTCTCCGCAGAA  686 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  715   GAGTGAACCACTGGCTGACTGCTTCCTCATAGAGGGCCTCTGTGAAGAGTCTCCGCAGAA  656 

 

Query  687   GTTCCAGTTGGCCCTTGAATTTGTCTCCCAGAAGTTTATGGACAATTTCCTCCTCTTCAT  746 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  655   GTTCCAGTTGGCCCTTGAATTTGTCTCCCAGAAGTTTATGGACAATTTCCTCCTCTTCAT  596 
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Query  747   TGGCTGTTTTGTTACAAAACTGGGAAAAGAGTCTGATCCAACGGTCCTTGTCCTTCGCCT  806 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  595   TGGCTGTTTTGTTACAAAACTGGGAAAAGAGTCTGATCCAACGGTCCTTGTCCTTCGCCT  536 

 

 
 
 
 
 
 
 

2.2 Protein Expression  
 

2.2.1 Material and Method 
 

First, SMYD5 plasmid is going to be transferred into host cell BL21 for protein 

expression. Once the co-construct vector was obtained, 1.0 ng of vector was transformed 

into 20µL of codon optimized BL21 cells and heat shocked for 45 seconds at 42˚C. Then, 

a 250µL volume of warm SOC medium was added and transformed cells were shaken for 

1hour. Next, 100µL volume of transformed cells were plated onto streptomycin resistant 

LB Agar plates. LB plates were grown overnight at 37˚C. 1 colony was selected and grew 

in 5mL LB media contained 100 µg/mL streptomycin at 37 ºC overnight. BL21 cell culture 

was aliquoted into 1 mL with 300 µL glycerol in 2mL coring tubes, saved in -80 ºC for 

future use.  

Second, a small scale and a large scale protein expression test is performed. 30µL 

BL21 overnight cell culture was added into 3mL fresh LB media, then growth continued 

at 37 ºC once the pre-induction OD600 reached 0.4-0.6. A 1.0 mL volume of culture was 

saved to test for non-induced expression and the remaining culture was slowly cool down 

to 15 ºC, sat for half hour, and induced with 0.1 mM IPTG. Induced culture was grown for 

20-22 hours at 15˚C and collected for SDS-PAGE. Cells were sonicated and centrifuged to 
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make supernatant and pellet samples to test protein solubility. Samples were analyzed on 

15% SDS-PAGE. 

Large scale test is an 100 times amplification of small scale test. 5mL overnight 

BL21 culture was added into 500mL fresh LB media, then growth continued at 37 ºC once 

the pre-induction OD600 reached 0.4-0.6. A 1.0 mL volume of culture was saved to test 

for non-induced expression and the remaining culture was slowly cool down to 15 ºC, sat 

for half hour, and induced with 0.1 mM IPTG. Induced culture were grown for 20-22 hours 

at15˚C and collected for SDS-PAGE (Figure 16). Cells were French pressed to get cell 

lysate for purification.  

 
 
 
 
 
 

 

 

 

 

 

   

Figure 16 : 15% SDS-page of large scale protein expression test 

"UnI"-un-induced cell, "Ind"-induced cell, "T"-total cell lysate, "S"-supernatant of cell lysate 
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CHAPTER 3: SMYD5 Purification 
 
3.1 Material and Method 

 
3.1.1 Purification Strategy  

 
The SUMO protein has a His tag which can bind to the His-trap nickel column 

agarose matrix (GE Company). Loading cell lysate on the 1st Ni column and SUMO-

SMYD5 bound to the column because of the SUMO His tag (Figure 17). However, 

imidazole is part of the structure histidine binding to Ni ions and it competes with His for 

Ni binding sites (Figure 17). 

 

  
Figure 17: Histidine (A) and Imidazole (B) binds to Ni 

 

Low concentration of imidazole prevents the non-specific and low affinity binding 

of background protein. After washing with low concentration imidazole buffer, SUMO-

SMYD5 protein was eluted out by high concentration of imidazole buffer.  

SUMO protease was added to cut protein at 4 ºC overnight. As protein is in elution 

buffer, next step is using desalting column to replace the elution buffer with binding buffer. 

When load protein samples, which have been cut, on the 2nd his trap, SMYD5 directly 

A B 
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passed through the Ni column whereas sumo protein bound to the column. Eventually, gel 

filtration column separates protein based on size (Figure 18). Larger proteins were eluted 

earlier while smaller proteins were eluted later and provide a better resolution. 

 

 
 
 
 
 

 

 

 

 

Figure 18 Gel filtration Column Mechanism 

 
 

 
Figure 19: Overview of SUMO-SMYD5 purification strategy 
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3.1.2 Buffer preparation  
 

Binding buffer - 20 mM Tris, pH7.4, 0.5 M NaCl, 20 mM imidazole, 5% glycerol, 

5 mM BME; Elution buffer - 20 mM Tris, pH7.4, 0.5 M NaCl, 500 mM Imidazole, 5% 

glycerol, 5 mM BME; Gel Filtration Buffer - 20mM Tris pH8.0, 150 mM NaCl, 5% 

glycerol, 5mM BME. All the buffers were filtered and degassed.  

  

3.2 Purification Result 
  

3.2.1 1st Ni column  
 

In the chromatogram (Figure 20), the green line represents continuous flow 

of increasing imidazole, (20mM/500mM) and the blue line represents the UV 

absorbance of eluted protein. The first peak indicated washed out heat-shock 

protein 70 with weak binding affinity to nickel column, and the second peak clearly 

showed SUMO-SMYD5 protein was eluted out, which is also shown on the SDS-

PAGE gel (Figure 21), Fractions A9-B2 were pooled together. 15 µL SUMO 

protease was added into collection and incubated at 4 ºC overnight to cut SUMO 

protein off. 
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Figure 20: SUMO-SMYD5 Purification 1st Ni Column. 1st Peak-HSP 70, 300 mAU, eluted by 
28% elution buffer. 2nd peak-SUMO-SMYD5, 471 mAU, eluted by 40% elution buffer. 

  

 
 

 
 

Figure 21: 15%SDS-PAGE of SUMO-SMYD5 Purification 1st Ni Column  

"1st L"-1st Ni Column Loading, "FT"- Flow Through 

 

 
 
 
 
 
 
 
 
 
 
 
 

         M    A6     A8     A9     A10   A11    B1    B3    B5    B8 

66.4 
55.6 
 
 
 
27.0 
 
20 

Load 4 uL 

SUMO-
SMYD5 
59 kDa 



35 
 

 

3.2.2 Desalting column 
 

 The desalting column is used to separate soluble macromolecules from 

smaller molecules or replace the buffer system. Proteins flow pass the beads, salts 

and small molecules flow through the beads so proteins flow faster through the 

column. In the chromatogram (Figure 22), there was only one peak. According to 

this UV absorbance, fractions A5-B1 were collected, and analyzed on the 15% SDS 

gel (Figure 23) 

Figure 22: SUMO-SMYD5 Purification Desalting Column.Peak:1200mAU. 

 

 

 

 

 

 

 

 

 

 

Figure 23: 15%SDS-PAGE of SUMO-SMYD5 Purification Desalting Column  

"B.C"-before cut, "A.C"-after cut, "D.L"-desalting load, "D.FT"-desalting flow through, "D.P"-

desalting pool  
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3.2.3 2nd Ni column  
 

After desalting column and incubation with SUMO protease, SMYD5 and 

SUMO protein were separated in the binding buffer system. When loading the 

sample on the 2nd Ni column, SMYD5 directly passed column while SUMO 

protein bound to Ni column because of the His tag.  SMYD5 was collected in the 

flow through fraction and SUMO protein was washed out by elution buffer (Figure 

24).  

 

 

 

 

 

 

 

 

 

Figure 24: SMYD5 Purification 2nd Ni Column Elution. 

1st peak-HSP 70, eluted by 28% elution buffer. 2nd peak-SUMO protein, eluted by 41% elution 
buffer. 
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3.2.4 Gel filtration column  
 

SMYD5 was concentrated to 1mL, and loaded on gel filtration column. According 

to the gel filtration standard (Figure 25), the elution volume 79ml was consistent with 

SMYD5 molecular weight 47kDa (Figure 26). Also the bands on SDS-PAGE were on the 

expected position (Figure 27). Fractions B5-B10 were collected. SMYD5 protein was 

filtered and concentrated. 1.35mg purified SMYD5 protein was obtained. 

Figure 25: Gel filtration standard 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 26: SMYD5 Purification Gel Filtration Column. 

1st peak-void peak. 2nd peak-SMYD5, 54mAU, eluted at 79ml. 
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Figure 27 : 15% SDS-PAGE of SMYD5 Purification Gel Filtration Column."B.C"-before 

concentration, "A.C"-after concentration, "G.L"-gel filtration load. 
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CHAPTER 4: GST-SMYD5 Molecular Cloning, 
Expression and Purification 
 

In order to get more variable references in SMYD5 activity assay, GST-SMYD5 

purification was performed. 

4.1 Molecular Cloning 
 
Clone human SMYD5 gene into pGEX-6P-2 vector (Figure 28). 

 
4.1.1 Material and Method 

 
Figure 28: pGEX-6P-2 vector map 

The whole procedure was basically as same as the approach of cloning SUMO-

SMYD5.   
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Size of 5' primer is 33 bp, TACTTAGGATCCATGGCGGCCTCCATGTGCGAC 

(Tm=68.1ºC), included a BamHⅠ restriction site. Size of 3' primer is 33 bp, CAC 

GCCTCGAGTTACACATCAGTCATCTCATC (Tm=63.6ºC), included an XhoⅠ 

restriction site. Ordered primer from Invitrogen Company.  

4.1.2 Molecular Cloning Result 
 

SMYD5 gene was successfully inserted into pGEX vector, and no mutant occurred. 

 

4.2 Expression  
 

Since the GST-SMYD5 is 76kDa, bigger than 60kDa, lower percentage SDS-

PAGE was selected to promote the 66-212 kDa range protein separation (Figure 29).  

 

 

 
 
 
 

 

 
 
 
 
 
 

Figure 29: 12% SDS-PAGE of GST-SMYD5 expression test. "UnI"-un-induced cell,"Ind"-
induced cells, "T"-total cell lysate, "S"-supernatant of cell lysate 
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4.3 Purification 

 
4.3.1 Purification strategy  

 
The purification strategy is based on the high affinity of GST for glutathione (Figure 

30). To let GST tagged protein bind to matrix, we choose the condition that favor 

interaction of the GST with the glutathione column which is around PH7.5. Therefore, 

binding buffer should be between PH 7.2-7.5. When sample was applied to the affinity 

matrix, GST fusion proteins bound to the glutathione ligand, and impurities were removed 

by washing with binding buffer. When column was washed with a PH8.5 elution buffer 

contained glutathione, tagged proteins were eluted from the chromatography resin under 

mild, non-denaturing conditions that preserve both protein structure and function. 

 

 

 

 

 

 

 

 

 

Figure 30: GST-SMYD5 Purification strategy 
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4.3.2 Buffer preparation 
 

Binding buffer-50mM Tris pH 7.5, 200mM NaCl, 1mM EDTA, 1mM BME, 5% 

glycerol. Elution buffer-50mM Tris pH 8.5, 500mM NaCl, 1mM EDTA, 1mM BME, 5% 

glycerol, 10mM reduced glutathione. Gel Filtration Buffer-20mM Tris pH 8.0, 150 mM 

NaCl, 5% glycerol, 5mM BME. All the buffer was filtered and degassed.  

4.3.3 Purification result  
 

4.3.3.1 GST-trap column  
 

GST-SMYD5 was eluted out quickly (Figure 31). GST-SMYD5 protein didn't show 

either in the flow through or wash according to the SDS-PAGE analysis. 

Figure 31: GST-SMYD5 purification GST-trap column. Peak-GST-SMYD5:350mAU.  

 

 
 

Figure 32: 12%/15% SDS-PAGE OF GST-SMYD5 purification.  

M     A3    A4     A5     G.P   D.L    D.F.T   D.P   Con   C.FT 

97.2 
66.4 
 
 
 
27.0 
 

97.2 
 
66.4 
 
 
 
 
27.0 
 

GST-SMYD5 
76 kDa 

     8        1       1       3       3        3       10        3       0.5      10   (uL) 



43 
 

 

"G.L"-GST-trap load, "FT"-flow through, "D.L"-desalting load, "D.F.T"-desalting flow 
through", "Con"-concentrated, "Con"-concentration flow through 
 
 

4.3.3.2 Desalting column 
 
Desalting column replaced GST elution buffer by gel filtration buffer 
(Figure 33). 
 
1.6mg purified GST-SMYD5 protein was obtained. 

Figure 33: GST-SMYD5 purification desalting column   
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CHAPTER 5: SMYD5 Protein Analysis 
 
5.1 Crystal Structure  

 
Sequence alignment of SMYD5 with the other members of the SMYD family 

revealed several structural differences not found in the sequences of the other SMYD 

proteins. These observations indicate that SMYD5 recognizes its substrate using divergent 

structural determinants comparing to SMYD1-3. Obtaining a crystal structure of SMYD5 

would reveal how these differences translate into specificity. 

5.1.1 Material and Method 
 

There are 2 common methods used in crystal screening, sitting drop and hanging 

drop (Figure 34), sharing the same principle which is the sample drop contains a lower 

reagent concentration than the reservoir. Water vapor leaves the drop and finally ends up 

in the reservoir to achieve equilibrium. Because water leaves the drop, the sample 

experiences an increase in relative supersaturation. Both the sample concentration and 

reagent concentration increase because water leaves the drop for the reservoir.  

Sitting drop vapor diffusion: Time efficient. • Often easier when using detergents, 

organics and hydrophobic reagents. • Drops can be positioned in a stable sitting spot.  

Hanging drop vapor diffusion: Easy access to crystals. • Could perform multiple 

drops with a single reservoir. 

Figure 34:  Sitting drop & Hanging drop 

Sitting drop                         Hanging drop 
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5.1.2 Result 
 

During the approach to crystalize SMYD5, several promising conditions (Figure 35) 

were achieved in hundred contentions. To check the protein quality, SMYD5 protein 

samples were prepared to run on a 6% native gel. After staining by Coomassie blue, an 

additional upper band occurred (Figure 35). We assumed that the band might be a protein 

dimer formed by non-specific disulfide bonds. Therefore, some reducing agent were added 

to SMYD5 samples as reducing agent could break the bonds. An observation that the bands 

were removed by high concentration reducing agent confirmed the speculation that the 

band might be protein dimer formed by non-specific disulfide bonds.  

More crystal screens were set up with conditions contained 50mM DTT. After 

introducing DTT, some previous precipitate conditions turned into clean or light 

precipitate. These phenomena suggested that high concentration DTT may increase protein 

solubility. Although crystallization of SMYD5 has not been successful, increasing DTT 

concentration may promote protein solubility and facilitate chance of crystallization. 

 
 
 
Figure 35: Crystal screen analysis.(A)promising crystal screen condition: face separation.(B)6% 

native gel of SMYD5 protein 

A                                                                                            B 
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5.2 SMYD5 Methyltransferase Activity Assay  
 

The reason why SMYD5 is unique, is not only about lacking of C-terminus 

TPR domain, but also the additional poly-glutamate stretch tail ( 

Figure 36), which brings more negative charge to SMYD5. 

 

Figure 36: poly-E region of SMYD5 sequence 

 
On other hand, SMYD5 has a potential to be a mitochondria protein, as it contains 

a mitochondria targeting sequence (Table 5) at the N-terminus, which consists of an 

alternating pattern of hydrophobic and positively charged amino acids to form an 

amphipathic helix, which direct a newly synthesized protein to the mitochondria.   

Table 5: mitochondria targeting sequence 

                        10                         20                     30                         40                     50 

MAASMCDVFS FCVGVAGRAR VSVEVRFVSS AKGKGLFATQ LIRKGETIFV  

 

Moreover, as we all know, mitochondria functions as a calcium sensor and this 

poly-E region shows a potential of binding to Calcium as well. According to our predict 

structure, this region is close to SMYD5 C-terminal active site. Overall, we assumed that 

this poly-E region might effect S5 activity if it binds to calcium ion. 

 An antibody based activity assay (western blot) was performed to test SMYD5 

enzymatic activity. 
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5.2.1 Material and Method 

 
SMYD5 activity assay were carried out in methyltransferase reaction buffer, with 

histone H4 and SAM, incubated at 30 °C overnight. Reactions were stopped with the 

addition of SDS-PAGE loading buffer and boiled for 5 minutes, then were separated by 

SDS-PAGE. Proteins were transferred to nitrocellulose membrane using wet tank transfer 

method (Bio-rad), at 4°C 100V for1hour. 

Membrane was incubated in 2%BSA or milk for 1hour, washed with 0.0.5% TBST 

buffer 2 *5 mins then gently shaken in primary antibody anti-tri-methylated lysine (1:1000, 

Abcam) at 4°C overnight. Then membrane was washed with 0.0.5% TBST for 3 *5 mins. 

Second incubation was shaking membrane in secondary antibody Goat-anti rabbit for 1-

2hours. After this, membrane was washed again with 0.0.5% TBST buffer 3 *5 mins. 

ECL reagent was added equably on the whole membrane to expose membrane in 

the dark room of UV imager. 

Reaction buffer conditions were tested using 2mg/4mg/10mg SMYD5, 5mg GST-

SMYD5 with 1mg/1.5mg/2mg histone H4,  50mM/100mM/200mM SAM in 50mM buffer 

(Tris pH 7.5, 8.0 and 9.0, Bicine pH 9.0) with 0.5mM/50mM/DTT, 

0.1Mm/0.5mM/1mM/5Mm/10mM EDTA, 5mM/25mM CaCl2, 5mM/25mM MgCl2, 

25mM/50mM/100mM NaCl, 5%/25% Glycerol. 

5.2.2 Activity assay result 
 

So far, no obvious signal has been observed from either SMYD5 or GST-SMYD5 

in Tris buffer system. However, a weak signal showed in western blot result of Bicine 

buffer reaction (Figure 37).  
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Figure 37: Ponceau S staining and western blot result (exposure time 5 mins)of SMYD5 activity 
test.(A)PH9.0 Tris buffer (B)PH 9.0 Bicine buffer 

 
 
  

A B 
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CHAPTER 6: Discussion 
 

After successful expression and purification of SMYD5, to characterize SMYD5 

biochemical features, I expected to see what could enhance or repress SMYD5 enzymatic 

activity. However, SMYD5 didn't show a strong enzymatic activity on either histone H4 

or H4K20 peptide in comparison of SMYD3. I have raised several potentials. 

First, the SMYD5 protein I purified lost activity during the purification. As we all 

known, the matrix of His-trap column is Ni-agarose. Ni ions could be toxic to some 

proteins, making them inactive. SMYD5 also could bind to some molecules or inhibitors 

during the purification process. Therefore, we produced another construct, GST-SMYD5, 

to avoid Ni-column during purification. Unfortunately, it didn't show a significant 

difference from previous purified SMYD5. 

Second, SMYD5 need some co-factor to activate. SAM is the donor of methyl 

group in methylation reaction. The interact motif between SAM and SMYD5 still remain 

unknown. It is feasible that SAM is required a co-factor to achieve the binding site of 

SMYD5. 

Third, SMYD5 is a context-substrate dependent enzyme. For example, respiratory 

nitrate reductase complex (NarGHI) could exhibit two catalytically distinct forms of the 

enzyme because of the influence of substrate, pH and inhibitors (43). Histone H4 was 

reported as the first substrate of SMYD5 recently, and more related mechanisms need to 

further explore. 

However, according to the result I observed, the enzymatic activity of SMYD5 was 

improved by Ca and Mg ions in Bicine buffer and the higher concentration of metal ions 

provided a better result. This suggested that our hypothesis could be feasible and enabled 
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a deeper investigation on SMYD5 associated with Ca and mitochondria. Additionally, the 

predicted structure of SMYD5 (Figure 38) offered some clues. Although there is no 

predicted structure of SMYD5 poly-E tail so far, the last residue before it leans towards to 

the SET domain and remain close to the active site, raising a potential of altering the 

enzymatic activity of SMYD5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Predicted structure of SMYD5 (19-391). Yellow-SET domain, Blue-MYND domain, 
Green-C-terminal domain, Red-the last residue before poly-E tail. 
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CHAPTER 7: Future Direction 
  
 
• Incubate peptides with SMYD5 to applied in crystal screens or develop fusion 

linker protein construct to facilitate crystallization  of  SMYD5 

• Perform more crystal screens containing DTT and SAM or other cofactors 

• Truncate poly-E tail of SMYD5 to test methyltransferase activity 

• Explore more substrates of SMYD5 protein 

• Investigate subcellular localization of SMYD5 to reveal its association with 

mitochondria  
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Methylation of histones and non-histone proteins play vital roles in numerous 

cellular processes including gene expression regulation and DNA damage response. The 

identifications of methyltransferase SMYD protein family are not well characterized. 

SMYD5 is a unique but critical member of SMYD family involved in immune response, 

stem cell renew, hematopoiesis regulation and cancer metastasis. Understanding its 

function and structure is monumental to human disease. With the achievement of SMYD5 

expression and purification, the association between SMYD5 and its substrate histone H4 

has been investigated. While possessing a poly-E tail instead of the TPR domain included 

in other members, SMYD5 is assumed that associated with Calcium and could potentially 

be a mitochondrial protein. 
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