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GENERAL INTRODUCTION 

Cholera is a disease caused by the human pathogen Vibrio cholerae.  It is 

characterized by voluminous watery diarrhea that is followed by dehydration and loss of 

electrolytes.  If left untreated, patients can go into hypotensive shock, possibly followed 

by death, referred to as cholera gravis.  Cholera patients can shed up to 1 L per hour of 

what is known as rice-water stool because of its similarity in appearance to water that has 

been used to wash rice.  Other symptoms exhibited by infected individuals include 

sunken eyes, clammy skin, and loss of skin turgor. Treatment includes IV fluids as well 

as oral rehydration and, when properly and promptly administered, can improve mortality 

rates from more than 50% to less than 2% (164).   

 Cholera likely originated in the Indian subcontinent as there are descriptions of a 

cholera-like disease in Sanskrit dating back to 5 BC.  The first cholera described beyond 

India was along trade routes beginning in 1817, when the disease spread throughout 

Southeast Asia then to the Middle East, East Africa and the Mediterranean.  After this 

initial spread, six cholera pandemics were described between 1817 and 1923. The seventh 

pandemic, which started in 1961, continues to the present day.  The WHO estimates three 

to five million cases of cholera and over 100,000 deaths annually, although the true 

burden may never be known as cases are vastly underreported (164).  The areas currently 

affected by cholera are predominately in Asia and Africa where the bacterium is endemic.  

Specifically, outbreaks arise in regions with poor access to clean water and sanitation.  In 

2010, an outbreak occurred in Haiti following a severe earthquake that caused a perfect 

storm of the breakdown of health infrastructure, very high population density and poor 

sanitation following the effects of the earthquake.  As cholera had not been described in 
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Haiti for at least 100 years, the population had no immunity to the disease.  The result has 

been over a half million cases, 7,000 deaths, and likely a permanent public health 

problem (26). 

 Extensive studies on cholera have led to substantial contributions to the field of 

microbiology.  In 1854, London physician John Snow identified the link between cholera 

and the ingestion of contaminated water which was a breakthrough epidemiological study 

at the time (173).  During the same time period, Italian anatomist Filippo Pacini identified 

a possible causative agent isolated from cholera patients’ intestines (12).  He named these 

microbes Vibrios and described them as comma-shaped under a microscope although his 

work at the time was not widely accepted.  Later, in 1883, Robert Koch rediscovered the 

organism and identified it as being the bacterium responsible for cholera and named it 

Kommabazillen (84).  The name Vibrio comma was used for several years before Pacini 

was recognized as the original discoverer and the bacterium was renamed Vibrio 

cholerae. 

 Vibrio cholerae is classified by its liposaccharide (LPS) O antigen. Although 

there are over 200 serogroups of V. cholerae based on the O antigen that have been 

isolated from the environment, the O1 serogroup is responsible for all seven cholera 

pandemics (54, 164).  The O139 serogroup also caused outbreaks of cholera beginning in 

1992 and these outbreaks are sometimes referred to as the eighth cholera pandemic (14, 

48, 139).  The O1 serogroup contains two biotypes: the classical and El Tor.  The 

classical biotype was responsible for the first six global pandemics.  In 1961, the seventh 

pandemic began with the El Tor biotype (54, 164).  This V. cholerae O1 biotype was 

named after the El Tor quarantine station in Sinai where it was first isolated.  More recent 
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work determined that the O139 strains that caused cholera were derivatives of O1 El Tor 

strains (15, 132). The O1 serogroup can be further divided into three serotypes called 

Inaba, Ogawa, and Hikojima.  These are based on antigenic groups A, B, and C found in 

the O antigen.  Inaba produces groups A and B with a small amount of C while Ogawa 

produces only A and C (164).  Hikojima produces all three but is rare and unstable. 

 V. cholerae naturally survives in aquatic environments where cholera is endemic.  

Survival in this environment can be either in a free-living state or in association with a 

variety of organisms including copepods, shellfish, vertebrate fish, and insect egg masses 

(20, 30, 71, 88, 169).  Producing a chitinase allows it to attach to chitinous surfaces such 

as crustacean shells and utilize them as carbon and nitrogen sources (8, 124, 140).  V. 

cholerae is capable of creating biofilms in the aquatic environment, enhancing its 

survival on a variety of surfaces (3).  The biofilms are thought to be one way that humans 

ingest a high infectious dose of V. cholerae and, because bacteria in biofilms can survive 

acidic environments better, it also provides a possible mechanism for the bacteria to 

survive the acidity of the human stomach (126).  In addition to being able to survive on 

chitin, V. cholerae can also survive in a ‘viable but non-culturable' (VBNC) state in 

which they are unable to be cultured in standard laboratory media but still maintain basic 

metabolic function (45, 64, 70).  Lastly, the bacterium may also survive in a “rugose” or 

“wrinkled” colony state where they are surrounded by an exopolymer of carbohydrates 

that makes them less susceptible to chlorine and other disinfectants while maintaining 

their full virulence capacity (135). 

 Transmission into a human host from contaminated food or water requires  an 

infectious dose of approximately 108 bacteria (92).  Prior to being ingested the bacteria 
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are motile and have active chemotaxis genes.  After ingestion, the bacteria migrate to the 

duodenum of the upper small intestine and down-regulate genes that regulate motility and 

chemotaxis.  Motility was thought to be an important to aid in establishing the infection 

by getting the bacteria to the preferred point of colonization in the upper small intestine.  

However, there is some controversy in the area of chemotaxis and motility and their roles 

in facilitating infection and colonization.  In regards to motility, there are conflicting 

results regarding the classical strain but El Tor depends on motility for colonization (62, 

98, 107, 160).  Strains with defective chemotaxis systems are able to colonize infant 

mouse guts albeit in different locations throughout the small intestine than wild-type 

strains (59, 60). 

 While the bacteria are colonizing the small intestine, dramatic changes occur in 

gene expression within V. cholerae.  The motility genes are downregulated and the 

virulence genes are upregulated at this point of the life cycle.  At the late stage of 

infection, the bacteria initiate the “mucosal escape response” in which they detach from 

the epithelium, downregulate virulence, upregulate motility, and escape the host through 

the stool (145).  The bacteria are reintroduced back into the environment in a 

hyperinfectious state; fewer than 100 bacteria can cause infection (22, 144, 198).  This 

explains how outbreaks can magnify at a high rate. 

A major turning point in Vibrio cholerae pathogenesis research was the discovery 

of the cholera toxin in 1959 by S.N. De (42).  Using ligated ileal loops of adult rabbits, he 

was able to demonstrate that cell-free culture filtrates produce the characteristic “rice 

water” stool in the intestine.  Confirmation followed by intravenously injecting Evans 

Blue which is known to bind to plasma proteins and mimic albumin.  The contents of the 
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lumen after being exposed to the cell-free cultures were subsequently colored blue, 

signifying the increased permeability of the intestinal capillaries. 

Cholera toxin was further characterized in the 1960s by Richard Finkelstein who 

isolated and purified the toxin (56-58).  Two “versions” of the toxin were found: the 

“cholaragen” and the “choleragenoid” (56).  The choleragen was shown to be highly 

active in inducing experimental cholera in rabbit models.  The choleragenoid was also 

isolated and found to contribute to cholera symptoms but itself was not toxic.  Since the 

original discovery, we now know that CT is a classical AB5 toxin which means it has one 

28 kDa A “heavy”  or toxic-active subunit and several B “light” subunits with a 

combined size of 56 kDa.  The choleragen that was discovered earlier was the AB5 

holotoxin while the choleragenoid was the B5 subunits.  During the same time period, the 

cell membrane receptor of CT was identified by King & van Heyningen in 1973 as being 

ganglioside galactosyl-N-acetylgalactosaminyl-(sialyl)-galactosylglucosylceramide 

(GM1) (95).   Further studies by other groups confirmed that GM1 is indeed the receptor 

for CT by showing that CT binds to GM1 in equimolar proportions and indicating there is 

a direct correlation between cellular GM1 and the number of CT receptors (82, 83).  

Additonally, adding exogenous GM1 to cell membranes increases the number of binding 

receptors and consequently amplifies the action of CT (37, 82).  Finally, when CT is 

bound to GM1, it prevents tritiation via galactose oxidase of GM1 by sodium [3H] 

borohydride reduction (137). 

CT structure studies have further expanded our knowledge about the toxin.  As 

with other AB5 toxins such as Shiga toxin and pertussis, it contains one active subunit 

surrounded by a stable ringlike pentamer of B subunits.  CT is also closely related to the 
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heat-labile enterotoxin (LT) produced by enterotoxigenic E. coli (ETEC) (38).  The A 

subunit is originally a single polypeptide chain but it undergoes proteolytic modification 

to generate two fragments, A1 and A2.  These subunits remain linked by a disulfide bond 

and the ADP ribosylating activity of the toxin remains in the A1 subunit.  The CT crystal 

structure also provided clues as to the mechanism of translocation of the A1 subunit into 

the intestinal cells (199).  The A2 subunit contains a unique KDEL sorting signal at the 

carboxyl terminus that extends past the B subunits when CT is in the holotoxin form.  

The B subunits bind to GM1 gangliosides; B subunits can bind up to five gangliosides at a 

time on the cell surface although it has been shown that a toxin molecule may only need 

to bind to one receptor to gain entry into the cell (91).  Additionally, V. cholerae 

produces a neuraminidase which has been hypothesized to enhance CT binding by 

catalyzing gangliosides into GM1, providing more binding sites and greater fluid 

excretion (82, 95).  The toxin associates with lipid rafts then enters the cell via 

endocytosis and is sorted to the ER by retrograde transport, meaning it goes from the 

early endosome to the Golgi complex then to the ER.  In the ER, the A1 chain is unfolded 

but then refolds when it is released into the cytosol to avoid ubiquitin.  The A1 chain was 

widely believed to need unfolding before entering the cytosol; however, it has since been 

determined that a protein-disulfide isomerase (PDI), a so-called “unfoldase”, is required 

for disassembly of the CT holotoxin to release but not unfold the A1 chain (180). 

CTA1 is activated by ADP-ribosylation factors (ARFs) and catalyzes the ADP 

ribosylation of GSα component of adenylate cyclase (AC).  Afterwards, the AC stays in 

the GTP-bound state, which increases AC activity and consequently increases 

intracellular cAMP.  This increased concentration of cAMP decreases sodium uptake by 
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the cell and increases chloride expulsion by the cystic fibrosis trans-membrane 

conductance regulator (CFTR).  The combination of decreased sodium uptake and 

chloride secretion skews the direction of water flow from normally entering the cell to 

being secreted from it.  The result is massive water loss to the lumen and the subsequent 

characteristic voluminous watery diarrhea associated with the cholera disease.   

 Patients that have cholera get treatment through oral rehydration solution (ORS) 

and, in severe cases, intravenous infusion of fluid.  ORS is used to replace the electrolytes 

that have been excreted in the stool and also contains glucose and potassium to aid in the 

absorption of sodium and water (17, 134, 178).  Antibiotics can be used to help shorten 

the duration of the disease and reduce the amount of ORS needed, but are not essential 

for survival (115).  Human volunteer studies provide the strongest evidence for infection-

derived immunity, which can last at least three years (24, 25, 111, 112).  This is 

supported by the frequency of infections among different regions.  In areas where cholera 

is endemic, those most susceptible to infection are children aged 2-9 years old as well as 

women aged 15-35 years (65).  Areas with little or no prior exposure to cholera 

experience cases in all age groups (65, 81). 

 There has been a considerable amount of work done to develop an effective 

cholera vaccine, dating back to the 1890s.  A parenteral cellular killed vaccine was 

created in the 1960s but was mostly ineffective in children under 5 and adults were only 

protected for up to 18 months after immunization (11, 136).  Later, it was discovered that 

CT itself acts as a mucosal adjuvant and the B subunit alone can trigger immune 

responses (51, 165).  This led to the development of the oral cellular killed vaccine, 

which has a 50% efficacy after three years (34).  However, this vaccine required at least 
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two doses and protection does not last more than four years, similar to a naturally 

acquired immunity, and children aged 2-5 years were protected for an even shorter 

amount of time (34, 185).  Similar results were seen with a live-attenuated vaccine (161).  

The whole-cell killed vaccines are currently used in regions endemic with cholera.  

Further research is being carried out to make vaccines more affordable, effective for 

young children, and to induce a long-term immunity (16).  

 The key differences between Vibrios responsible for pandemics and those that are 

not is the presence of two important virulence factors: CT and the toxin coregulated pilus 

(TCP).  The CT A and B subunits are encoded by the ctxAB locus, which is carried within 

the genome of the CTXΦ, a filamentous lysogenic bacteriophage. After acquisition by 

horizontal gene transfer, the CTXΦ site-specifically integrates into the V. cholerae 

chromosome.  The entire CTX genetic element is a 6.9-kb DNA segment and is 

historically referred to as the “virulence cassette”.  It is divided into two regions: the core 

and the RS2 domain (186).  The core of the CTX genetic element contains genes 

encoding CT as well as major and minor phage coat proteins, Psh, Cep, OrfU, and Ace 

and a protein required for CTXΦ assembly, Zot (186).  The RS2 region encodes genes 

rstA, rstB, and rstR responsible for replication, integration, and regulation, respectively 

(187).   

 The TCP is a type IV pilus that is absolutely required for intestinal colonization of 

mammals by V. cholerae as demonstrated by infant mouse and rabbit cholera models and 

human volunteer studies (76, 163, 181).  The genes required for TCP production and 

assembly are located on the Vibrio pathogenicity island (VPI), which itself may be a 

mobile element (93).  Non-pathogenic Vibrios can also become toxigenic via mobile 
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elements in extracellular CTXΦ particles.  Waldor and Mekalanos identified in V. 

cholerae that filamentous bacteriophages are involved in lysogenic conversion of 

bacterial pathogens and horizontal gene transfer (186).  These results also support the co-

evolution of the TCP and CTXΦ, for which TCP is a receptor.  CT and TCP are both 

regulated by the same virulence cascade that is activated by environmental cues in the 

gastrointestinal tract, therefore providing an ideal niche for the movement of genetic 

elements (186).  

The TCP is composed of TcpA pilin subunits. Once produced, TCPs induce 

aggregation of V. cholerae cells on the surface of epithelial cells, creating microcolonies 

(97).  In vivo colonization of infant mice revealed microcolonies on the epithelial cell 

surfaces and field-emission scanning electron microscopy (FESEM) visualized the 

bacteria surrounded by pilin matrices (103).  This autoagglutination may serve to protect 

bacteria from the intestinal environment, which contains complement, defensins, and bile, 

and is similar to the protective role of pilin in ETEC (33).  In mutant studies where tcpA 

is not expressed, V. cholerae is unable to colonize both humans and infant mice and 

cannot cause disease (76, 182).  

 TcpA is just one of several genes that belong to what is referred to as the tcp 

operon, which includes a total of 12 genes.  TcpA is processed during secretion by TcpJ, 

a prepilin peptidase (94).  TcpF is another protein that is part of the operon which is 

required for intestinal colonization and is secreted by the TCP apparatus (96).  Many of 

the tcp operon genes are necessary for the assembly of a viable pilus (19). 

 The VPI also contains several genes that are co-regulated with the tcp and ctxAB 

operons. These co-regulated genes include acfA, acfB, acfC, and acfD, which encode 
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accessory colonization factors that are required for optimal intestinal colonization in the 

infant mouse model and may be important for chemotaxis and environmental signaling 

(52, 151).  Additional co-regulated genes found on the VPI include tarA, tagA, aldA and 

tcpI.  A small regulatory RNA located upstream from tcpI, TarA regulates ptsG, encoding 

a glucose transporter and V. cholerae mutants lacking TarA have decreased colonization 

in infant mice compared to wild type (159).  tagA encodes a secreted protease that 

cleaves mucin, which may aid V. cholerae in colonization (179). aldA has an unknown 

role in pathogenesis but encodes an aldehyde dehydrogenase (149).  The role of tcpI is 

equally unclear but it encodes a putative methyl-accepting chemotaxis protein (72). 

 The regulation of virulence in V. cholerae is complex and depends on a number of 

different regulators and environmental signals.  The virulence gene cascade responsible 

for the transcription of tcp and ctxAB is often called the “ToxR regulon” because ToxR 

was the first protein identified as a positive regulator.  It is now known that virulence is 

controlled by a cascade of multiple positive regulators, with ToxR being on one level of 

the cascade. The major role of ToxR is to induce production of ToxT, the regulatory 

protein directly responsible for the transcription of most of the virulence genes in V. 

cholerae.   

 The presence of ToxT within V. cholerae is the result of a series of activated 

proteins upstream of the virulence cascade (Fig 1).  The transcription of toxT depends on 

the activity of two integral membrane protein pairs, ToxR/ToxS and TcpP/TcpH (44, 73, 

78, 105).  ToxR dimerizes with ToxS for stability and directly binds to the toxT promoter 

(43, 49, 152).  In addition to activating the transcription of toxT, ToxR also regulates 

ompU and ompT, which encode outer membrane porins (Omp).  ToxR activates ompU 
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and represses ompT transcription (35, 113, 130).  OmpU is highly expressed during host 

infection and is the dominant porin in the presence of bile and in minimal media when 

supplied with specific amino acids (106, 156, 175).  This response to bile has a protective 

effect for the bacteria when they are in the small intestine during infection (114).  OmpT 

is the dominant and more permeable porin under nutrient-limiting conditions and during 

environmental growth (114, 130) . 

 The other membrane protein pair that is required for toxT transcription is the 

TcpP/TcpH dimer (73, 105).  TcpP is an integral membrane protein similar to ToxR that 

is stabilized and protected from proteolysis by TcpH (9, 23).  TcpP binds to the toxT 

promoter between positions -54 and -32 relative to the transcriptional start site while 

ToxR binds closely upstream between positions -104 and -68 (105).  The interaction 

between ToxR and TcpP at the toxT promoter is not well understood and the current 

model suggests that ToxR recruits TcpP to the promoter through protein-protein 

interactions. However, TcpP alone can activate toxT transcription if it is over expressed 

(73, 104, 105, 138).  Therefore, the presence of ToxR dictates the mechanism by which 

toxT is activated by TcpP (67). 

 Production of TcpP/TcpH is mediated by the binding of AphA, a winged helix 

DNA binding protein, and AphB, a LysR-type regulator, to the tcpPH promoter (41, 99, 

102, 172).  These two proteins have overlapping binding sites, -101 to -71 relative to the 

transcription start site for AphA and -78 to -43 for AphB, on the tcpPH promoter and 

directly interact with each other to activate transcription (100).  Production of AphA is 

controlled by quorum-sensing signals and its intracellular expression decreases with high 

cell density, indicating AphA has an important role in translating environmental cues into 
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virulence gene expression (101, 128). Quorum sensing master regulator HapR represses 

AphA production by binding to the aphA promoter and repressing its transcription (101).  

The result is levels of AphA that are too low to activate the transcription of tcpPH.  HapR 

also regulates biofilm formation by repressing the VPS (Vibrio polysaccharide) operon 

which encodes the exopolysaccharide of biofilms (200).  HapR positively controls HapA, 

a secreted hemagglutinin (HA) and protease involved in detaching bacteria from 

intestinal epithelial cells during the “mucosal escape response” (55, 90).  

 The activity of HapR is controlled by at least three different quorum sensing 

systems (109).  The first system includes the autoinducer CAI-1 and the two component 

sensor-kinase CqsS.  The second system involves autoinducer AI-2, LuxP binding 

protein, and LuxQ, a two component sensor.  At low cell density, LuxO is 

phosphorylated and activated leading to the production of four regulatory sRNAs, Qrr1-4, 

which destabilize hapR mRNA in the presence of the chaperone protein Hfq (110).  The 

third system serves to inhibit the global regulator CsrA which can activate LuxO.  The 

VarS/VarA sensor kinase pair activates three sRNAs (CsrBCD) which leads to the 

inhibition of CsrA (109).  These quorum sensing systems are important for regulation of 

virulence based on cell density.  At high cell density, HapR is produced and virulence 

gene expression decreases, while at low cell density, HapR protein levels are very low 

and virulence genes are expressed.  However, the requirement of hapR-based quorum-

sensing for virulence varies in different V. cholerae strains.  For example, some El Tor 

biotype strains possess a natural frame-shift mutation in hapR that renders it 

nonfunctional (201).  
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 toxT transcription is activated by TcpP/H and ToxR/S by binding to the toxT 

promoter (44, 73, 78, 105).  However, once ToxT protein is expressed within the 

bacterial cells, a longer transcript that contains toxT is produced from the tcp operon 

through ToxT activity and starts an autoregulatory loop, producing more ToxT and 

further inducing virulence (78, 195).  The deactivation of ToxT and consequently the 

interruption of the autoregulatory loop involves decreasing activation at both the toxT 

promoter and the tcpA promoter where ToxT autoregulates.  TcpP, which binds to the 

toxT promoter, is inhibited by cAMP-CRP based on the availability of glucose as a 

carbon source (100).  TcpP is also degraded by the protease YaeL and another unknown 

protease despite having TcpH to prevent proteolysis (122). 

  One model for the down-regulation of virulence is the degradation of ToxT (2).  

Recent studies have shown that, when V. cholerae is grown in non-virulence inducing 

conditions, ToxT undergoes degradation. This proteolysis disrupts the ToxT 

autoregulatory loop and subsequently deactivates virulence.  The proteolytic cleavage in 

ToxT has been localized to a position between amino acids 100-110, a region of ToxT 

that was not resolved in the crystal structure but has also been implicated in binding to 

ToxT effectors (2, 118).  

ToxT is a member of the AraC/XylS family of transcriptional regulatory proteins 

found in gram negative bacteria (79).  It contains a sequence of 100 amino acids in the C-

terminal domain (CTD) with two helix-turn-helix domains that is common in other AraC 

family proteins (61, 78, 183).  The remaining 176 amino acids comprise the N-terminal 

domain (NTD) of ToxT and do not share any homology with other proteins.  The ToxT 

NTD is thought to be important in protein dimerization or effector binding that can 
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modify ToxT activity.  LexA domain swapping experiments and two-hybrid analyses 

suggested that dimerization of ToxT NTD alone occurs; however these studies did not 

include the CTD of ToxT (31, 155, 170).  Crystal structure studies and alanine 

substitution experiments with ToxT reveal that certain residues in the NTD have a role in 

virulence gene expression (31, 118).   

There is some controversy regarding ToxT binding to DNA as monomer or a 

dimer.  Within the AraC/XylS family of proteins, there are examples of proteins that bind 

as monomers such as MarA, SoxS, and Rob and proteins that bind as dimers including 

AraC and RhaS (50, 74, 121, 193).  As mentioned above, dimerization studies with ToxT 

have been done using LexA fusion assays and bacterial two hybrid assays and suggest 

that the ToxT NTD is able to dimerize independent of the CTD (31, 155).  Additionally, 

virstatin, a small molecule ToxT inhibitor, has been shown to inhibit activity at certain 

ToxT-driven promoters but not all of them; ToxT dimerization has been proposed to be 

inhibited by virstatin (170).  The variability in these results suggests it is not obvious that 

ToxT needs to dimerize before binding to DNA.  This is demonstrated by the aldA 

promoter that contains only one ToxT binding site, therefore requiring only one ToxT 

monomer for transcriptional activation (192).  Additionally, if DNA is inserted between 

two ToxT DNA binding sites to rotate them relative to each other DNA binding by ToxT 

is not affected (162,163). These results strongly suggest that ToxT binds to DNA as a 

monomer, although ToxT dimerization may occur after DNA binding and may be 

important for ToxT activity.  

Both positive and negative ToxT effectors have been identified. Bile has a 

negative effect on ToxT activity, as do specific unsaturated fatty acids (UFA) such as 
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oleic acid, as well as chemical compounds virstatin and capsaicin. All of these negative 

effectors decrease both ToxT dependent tcp and ctxAB transcription (29, 70, 86, 87, 168, 

170).  The crystal structure of ToxT has a cis-palmitoleate UFA buried in the NTD that 

has been proposed to inhibit ToxT activity by locking it in a structure that is unable to 

dimerize (118). ToxT also responds to the positive effector bicarbonate, found in high 

concentrations in the upper small intestine, which increases the expression of both CT 

and TCP within V. cholerae when added to culture medium (1).  This supports the human 

volunteer studies which found that supplementing inocula with sodium bicarbonate 

reduce the infectious dose of V. cholerae from 108 to 104 (24).   

When ToxT is produced in V. cholerae, it activates the transcription of virulence 

genes by binding to DNA elements that are referred to as toxboxes (191).  These are 

degenerate thirteen base pair DNA sequences that are present in the promoters of the 

virulence genes that ToxT activates.  The consensus sequence of ToxT binding sites was 

first proposed by Withey and DiRita after analyzing ToxT binding sites in acfA and acfD 

(190).  These are two inverted repeat binding sites that ToxT binds to between the 

promoters of acfA and acfD.  In addition to identifying a consensus sequence, mutations 

to one binding site did not affect binding to another.  Coupled with the observation that 

insertional mutations of 5 or 10 base pairs did not affect ToxT binding to DNA, the 

hypothesis that ToxT binds to toxboxes as a monomer was proposed.  However, both 

binding sites were required for activation by ToxT.  Similar studies were performed with 

the promoters of tagA and aldA (192).  The tagA promoter analysis revealed two 

toxboxes arranged as an inverted repeat while aldA has only one toxbox.  This further 
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confirms that ToxT binds as a monomer but also complicates the mechanism by which 

ToxT activates transcription.  

Further studies were performed using the tcpA promoter to characterize toxboxes.  

Thus far, the only common features among the toxboxes was the presence of a T tract of 

nucleotides at the 5’ end of the binding site and that they are located upstream of the -35 

promoter element (Fig 2).  The tcpA promoter has a few potential ToxT binding sites that 

fit the toxbox requirements and experimentation was done to investigate which of these 

are directly involved in ToxT binding.  The result was the identification of two binding 

sites that, unlike the previously characterized promoters, were orientated as direct repeats 

(191).  When comparing the toxboxes from the various promoters, there is an obvious 

variability in ToxT binding requirements (Fig 3).  Even though the toxboxes are all 

upstream of the -35 promoter element, the exact position of their proximal endpoint 

relative to the transcriptional start site varies from -44  to -62.  ToxT either has one or 

two binding sites within the promoter and when two are present, they are either direct or 

indirect repeats.  Therefore, identifying toxboxes in other promoters, such as ctxAB, is 

impossible to do without further experimentation. 

 AraC/XylS family of proteins often bind to degenerate binding sites and examples 

include the MarA, SoxS and Rob proteins which bind to the same 20 base pair sequence 

(69, 121).  Consistent with toxboxes, these binding sites are A/T rich but a significant 

difference is that they are found in both class I and class II promoters.  Class I promoters 

have transcriptional regulator DNA binding sites upstream of the -35 promoter element 

while class II promoters binding regions overlap with the -35 region.  The location of 

activator protein binding to DNA can dictate which subunit of the RNA polymerase 
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(RNAP) will be used for interaction (21).  Class I promoter activator proteins generally 

interact with the α-subunit of RNAP while class II promoters interact with the σ-subunit, 

and in some cases, both the σ-subunit and α-subunit (80, 89).  However, many activator 

proteins are not exclusive to one promoter class.  For example, SoxS, which has been 

found to interact with both of the RNAP subunits, can bind to both class I and class II 

promoters (197).  There are two mechanisms by which this can occur: “prerecruitment” 

and recruitment pre-binding.  Prerecruitment suggests that activator proteins interact with 

RNAP prior to DNA binding and then the complex searches for binding sites within 

promoters.  This is the proposed pathway for SoxS-dependent transcriptional activation 

(68, 120).  Pre-binding, in contrast, recruits RNAP to the DNA after the activator protein 

has already bound to its appropriate DNA binding sites near the promoter, as seen with 

SoxS at the micF and nfo promoters and as has been suggested for other promoters (157). 

 Many AraC/XylS family proteins also increase transcription by antirepression. 

Typically this involves H-NS, a global transcriptional repressor commonly found in 

Gram-negative bacteria.  H-NS preferentially binds to intrinsically curved AT rich 

regions of xenogeneic DNA which are located in or near virulence genes for many 

bacteria (119, 142, 143, 148, 153, 184, 194).  H-NS represses transcription by inducing 

hairpin-like structures that bridge two double strands of DNA and either prevent RNAP 

from binding or prevent transcription if RNAP is able to bind (polymerase trapping) (39, 

40, 167).  H-NS is abundant within bacteria and overcoming its repression is vital to 

activating transcription of virulence genes. 

 The mechanism by which the AraC/XylS family of proteins counteracts the 

repression by H-NS varies for different promoters (176).  One obvious mechanism 



18 

 

involves displacing H-NS from the promoter completely by transcriptional activator 

competition. An example of this in Salmonella is SlyA/RovA, which competes for 

binding with H-NS at hlyE (117).  At other promoters that are activated by SlyA/RovA, 

complete dissociation of H-NS is not observed but rather the H-NS-DNA complex is 

altered to allow other transcription factors to interact with RNAP (75, 141, 150).  In some 

pathogenic E. coli strains, H-NST, a protein similar to the N-terminal portion of H-NS, 

has been shown to behave in a dominant negative action and can inhibit H-NS from 

dimerizing and forming complexes that repress promoter function (7, 189).  Temperature 

can also mediate H-NS repression as investigated at the virF locus in Shigella (153, 154).  

At room temperature, two H-NS binding sites are aligned properly at an intrinsically bent 

region of the virF promoter but the binding sites are misaligned when the temperature is 

increased and H-NS repression is alleviated (53, 153).   

V. cholerae H-NS is encoded by the vicH locus (13).  H-NS is capable of 

silencing virulence gene expression at the tcpA, toxT, and ctxAB promoters, all of which 

are AT-rich and present on mobile elements within the bacterial chromosome (63, 146, 

196).  In addition to repressing virulence genes, H-NS also has a negative effect on flrA 

and rpoN, genes involved in motility and hapA, encoding HA/protease (171, 188).  H-NS 

is expressed in the cells throughout the life cycle and H-NS antirepression is key to 

expressing genes vital for virulence. 

H-NS was first determined to have a major influence in the ToxR regulon by Nye 

et al (146).  Using classical V. cholerae ∆hns strains, they demonstrated that expression 

of toxT, tcpA, and ctxAB increased significantly under both inducing and non-inducing 

conditions.  In wild-type V. cholerae strains, virulence transcription is induced in a 
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laboratory setting by growth at 30� C and in LB with a starting pH of 6.5.  Non-inducing 

conditions raise the LB pH to 8.5 and the temperature to 37� C.  By having such a 

dramatic effect in non-permissible conditions, it suggests that H-NS represses 

transcription at these promoters under normal conditions.  Additionally, expression of 

ctxAB increased under non-inducing conditions as well as in a ∆toxT strain, further 

solidifying that H-NS has a direct influence on the ctxAB promoter (146). 

The antagonism of H-NS by ToxT was investigated by Yu et al., and the 

mechanism by which ToxT activates transcription was further elucidated (196).  This 

study included nested deletions of the ctxAB promoter and coupled them with DNase I 

footprinting to identify which region of the DNA was important for binding and 

activating transcription.  The region extending to -76 relative to the transcriptional start 

site is important for ctxAB activation and the footprints revealed ToxT binding from -111 

to -41 at high ToxT concentrations and -118 to -112 and -40 to -13 at low concentrations.  

ctxAB activation was also analyzed in E. coli to determine the effects of H-NS and ToxT 

on the promoter.  In accordance with findings by Nye et al., the E. coli hns- strain also 

had much higher activation of ctxAB than wild type (146).  This suggests that ToxT needs 

to counteract H-NS repression to activate transcription.  Additionally, this group also 

performed an in vitro transcription assay and found that ToxT was required for 

transcription of both ctxAB and tcpA in the presence of RNAP, indicating that ToxT, like 

other AraC family proteins, interacts with the RNAP to activate transcription.  With these 

findings, the group proposed a model for the activation of ctxAB in which H-NS binding 

represses transcription from the promoter and that ToxT displaces H-NS, the de-
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repression step, and interacts with RNAP, the true activation step, to activate 

transcription (196). 

 The mechanism by which H-NS represses the ctxAB promoter is similar to other 

bacteria in that in addition to binding DNA, H-NS also needs to oligomerize and occupy 

multiple consecutive sites near the promoter (147).  Though previous studies had 

examined its role in repressing transcription, the region of DNA H-NS binds was 

determined by Stonehouse et al (177).  Using DNase I footprinting and promoter deletion 

analysis, H-NS binding encompasses the ToxT binding region previously discussed, the -

35 promoter element and two regions downstream of the +1 transcriptional start site.  

With H-NS overlapping with the ToxT binding site, the previous model describing 

transcriptional activation of ctxAB by ToxT displacing H-NS is still feasible.  However, 

the identification of ToxT and H-NS binding sites by DNase I footprinting has its 

limitations.  The ctxAB promoter is A/T rich which can interfere with DNase I cleavage 

resulting in possible low resolution footprints.  Identifying specific binding sites of ToxT 

and H-NS at ctxAB will further characterize the mechanism by which transcription of 

ctxAB is activated and aid in understanding the interplay of these two proteins. 

 The studies described in this dissertation build upon the above work to generate a 

more complete picture of how CT production is controlled by ToxT and H-NS.  The 

DNA binding sites were identified and characterized for ToxT and H-NS at the cholera 

toxin promoter.  Combining high resolution copper-phenanthroline DNA footprinting 

with site-directed mutagenesis, ctxAB transcription activation is now better understood in 

the context of ToxT and H-NS.  Having a better understanding of the mechanism by 
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which ctxAB is activated can potentially lead to novel therapeutic approaches for 

managing cholera outbreaks in the future. 
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Figure 1: Virulence regulatory network in V. cholerae.  The circles represent proteins 
and the rectangles are a schematic of genes found on the DNA with bent arrows showing 
transcriptional start sites.  The solid arrows indicate positive regulation by the indicated 
protein while the blunt-ended lines highlight negative regulation in the promoter regions 
upstream of the transcriptional start sites.   
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Figure 2: Alignment of ToxT binding sites.  The toxbox sequences of ToxT regulated 
genes are indicated.  The gene names are identified on the left side and the consensus 
sequence is shown in the form of a weblogo (36) at the bottom of the figure. 
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Figure 3: Toxboxes within ToxT-activated promoters in V. cholerae. 
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CHAPTER ONE 

Identification and Characterization of the Functional Toxboxes in the Vibrio cholerae 

Cholera Toxin Promoter 

 

ABSTRACT 

Following consumption of contaminated food or water by a human host, the 

Vibrio cholerae bacterium produces virulence factors including cholera toxin (CT), 

which directly causes voluminous diarrhea, producing cholera. A complex regulatory 

network controls virulence gene expression and responds to various environmental 

signals and transcription factors. Ultimately ToxT, a member of the AraC/XylS 

transcription regulator family, is responsible for activating transcription of the virulence 

genes. ToxT-regulated promoters all contain one or more copies of the toxbox, a 13 base 

pair DNA sequence that ToxT recognizes. Nucleotides two through seven of the toxbox 

sequence are well conserved and contain an invariant tract of four consecutive T 

nucleotides, whereas the remainder of the toxbox sequence is not highly conserved other 

than being A/T rich. The binding of ToxT to toxboxes is required to activate the 

transcription of virulence genes and toxboxes have been characterized in several 

virulence gene promoters. However, the toxboxes required for activating transcription 

from the cholera toxin promoter, PctxAB have not been identified. PctxAB contains a 

series of heptad repeats (GATTTTT) each of which matches the 5' end of the toxbox 

consensus sequence and is a potential binding site for ToxT. Using site-directed 

mutagenesis and high resolution Copper-Phenanthroline footprinting, we have identified 

the functional toxboxes required for ToxT activation of PctxAB. Our findings suggest that 
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ToxT binds to only two toxboxes within PctxAB, despite the presence of several other 

potential ToxT binding sites within the promoter. Both toxboxes are essential for DNA 

binding and full activation of ctxAB transcription. 

 

INTRODUCTION  

Vibrio cholerae is a curved, gram-negative noninvasive bacterium responsible for 

the severe diarrheal disease cholera. V. cholerae is found predominately in coastal 

regions and is transmitted to humans by ingestion of contaminated water (54). The 

resulting infection is characterized by voluminous fluid loss leading to extreme 

dehydration if left untreated. Of the more than 200 V. cholerae serogroups present in the 

environment, only the O1 and O139 serogroups are associated with epidemic disease 

(158, 164).  The O1 serogroup is further divided into classical and El Tor biotypes based 

upon phenotypic differences (48, 164). The current cholera pandemic, caused by El Tor 

V. cholerae, has persisted since 1961 and is estimated to affect approximately 5 million 

people annually (48, 164). 

The diarrhea characteristic of cholera is directly caused by the secretion of cholera 

toxin (CT) in the upper small intestine. CT is a classic AB5 toxin containing one active A 

subunit and 5 binding B subunits, which form a pentameric ring structure (64, 174). CT 

binds to the GM1 ganglioside of epithelial cells in the upper small intestine, allowing the 

active subunit to be translocated into the cells, where it is activated by proteolysis  

(32, 108). The resulting active A1 subunit ADP ribosylates the regulatory G protein Gαs, 

which results in constitutive activity of adenylate cyclase, increasing cAMP levels within 

the cells and resulting in secretion of sodium, chloride, and water into the lumen (174).   
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V. cholerae virulence gene expression is controlled by a complex network of 

transcription regulators that is historically referred to as the ToxR regulon because that 

protein was the first to be discovered (123, 151). However, the direct activator of 

virulence gene expression is ToxT, whose expression depends upon ToxR (78, 79, 104). 

A pair of integral membrane proteins, ToxR and TcpP, in association with their 

respective cofactors, ToxS and TcpH, bind to the promoter region upstream of toxT and 

activate its transcription (44, 73, 78, 79, 105). Once produced, ToxT is responsible for 

activating transcription of the virulence genes necessary for pathogenesis. These 

virulence genes include the ctxAB genes encoding CT, which are located within the 

genome of a lysogenic bacteriophage, CTXΦ (85, 105, 186, 190−192, 196). 

ToxT is a 32 kDa member of the AraC/XylS family of proteins, having a 100 

amino acid family domain in the C-terminus that contains two helix-turn-helix domains 

for DNA binding (61, 78, 183). The N-terminal 176 amino acids of ToxT form another 

domain, the ToxT NTD, which does not have significant sequence similarity to any other 

proteins. However, the ToxT NTD has been proposed to be important for effector binding 

and dimerization (31, 170, 190, 191).  The ToxT crystal structure revealed some 

structural similarity between the ToxT NTD and the AraC NTD, which is responsible for 

binding of AraC to its effector, arabinose, and for AraC dimerization (118). ToxT was 

monomeric in the crystals used for structural studies, and there is significant evidence 

that ToxT binds DNA as a monomer (190-192). However, bacterial two-hybrid studies 

and LexA fusion experiments revealed that the ToxT NTD is capable of dimerization 

when separated from the CTD, and ToxT dimerization after DNA binding may be 

important for transcription activation of some virulence genes (31, 155, 170). The ToxT 



28 

 

crystal structure also contained a buried unsaturated fatty acid, cis-palmytoleic acid, 

which has been proposed to be a negative ToxT effector (118). Addition of unsaturated 

fatty acids or bile to V. cholerae growth medium causes a reduction in virulence gene 

expression (28, 70) .  

ToxT binds to 13 base pair sequences called toxboxes which are located upstream 

of all the genes whose transcription it activates (191). These are characterized by a well 

conserved 5' portion containing a poly-T tract and a degenerate 3' portion that is generally 

A/T rich. In addition to having somewhat degenerate sequences, toxboxes also vary in 

configuration and location relative to the transcriptional start site (10, 190-192). 

However, toxboxes are invariably located upstream of the -35 sequence recognized by 

RNA polymerase (RNAP) σ
70, suggesting that ToxT interacts with the RNA polymerase 

α subunit C-terminal domains (α-CTDs) to activate transcription (21). The different 

configurations of toxboxes likely dictate varying interactions with the two RNA 

polymerase α-CTDs (191).  

The ToxT-responsive toxboxes at V. cholerae virulence genes have been 

identified at every virulence promoter except arguably the most important, ctxAB (190-

192). Previous DNase I footprinting studies localized the ToxT binding region within 

Pctx to between -111 and -41 relative to the transcription start site (196). Within this 

region, there are a series of heptad repeats of GATTTTT which fit the highly conserved 5' 

segment of the toxbox consensus sequence (191).  The number of these repeats varies 

among the O1 biotypes; classical strain O395 has 6 perfect direct repeats, whereas most 

El Tor strains have 3 direct repeats. Nested deletion analysis of the ctxAB promoter 

(PctxAB) determined that the region extending from the transcription start site upstream 



29 

 

to -76 was sufficient for transcriptional activation by ToxT, correlating with the three 

heptad repeats proximal to the promoter being involved in ToxT binding (196). However, 

the exact binding sites remain unidentified, as there are several potential toxboxes within 

this sequence. 

In this study, we used a combination of site-directed mutagenesis and high 

resolution copper- phenanthroline (CP) footprinting to characterize the ToxT binding 

sites that control ctxAB transcription. The location of the toxboxes was further confirmed 

by electrophoretic mobility shift assays that assessed the effects of toxbox mutations on 

DNA binding by ToxT.  Our results suggest that there are two functional toxboxes 

located upstream of ctxAB that are required for control of the promoter. 

 

MATERIALS AND METHODS 

V. cholerae strains and plasmids.  The strains used in this study were Vibrio 

cholerae classical biotype strain O395 and its ∆toxT derivative (JW150) (27). 

PctxAB::lacZ fusions for β-galactosidase assays were constructed on plasmid pTL61T 

(116) in strains O395 and ∆toxT.  The strains were grown at 37ºC in Luria broth (LB) 

medium for overnight cultures or in LB adjusted to start at pH 6.5 at 30ºC for inducing 

conditions. Promoter constructs of ctxAB were constructed using WT O395 colonies as a 

template for PCR. All promoter constructs were cloned between HindIII and XbaI sites of 

pTL61T (116). Antibiotic concentrations were 100 µg/ml ampicillin and 100 µg/ml 

streptomycin. Plasmid sequences were confirmed by the University of Michigan DNA 

sequencing core and Genewiz. V. cholerae was transformed with plasmid DNA by 

electroporation using a Bio-Rad MicroPulser. 
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DNA manipulation . Plasmids were purified using Promega Wizard Plus 

Miniprep kits.  PCR was performed using Taq DNA polymerase (Denville Scientific) as 

specified by the manufacturer in an Eppendorf Mastercycler gradient thermocycler. 

Restriction enzymes were purchased from New England Biolabs and used as specified by 

the manufacturer. 

β-galactosidase assays. Vibrio cholerae strains were grown overnight at 37ºC in 

LB then subcultured at a 1:40 dilution into fresh inducing medium and grown for 3 hours 

at 30ºC with vigorous aeration. Bacteria were then placed on ice with the addition of 0.5 

mg/ml chloramphenicol. Assays were performed using the procedure described by Miller 

(127). 

Protein purification. ToxT-MBP was purified from E. coli strain JM109 with the 

plasmid pMALC2e containing the ToxT-MBP construct. E. coli was grown overnight at 

37� C then subcultured 1:40 into fresh LB and grown at 37� C until OD600 reached 0.5. 

The culture was induced for 3 hours by addition of IPTG to 0.25 mM. Bacterial cells 

were collected by centrifugation then resuspended in buffer containing 20 mM Tris pH 

8.0. The cells were French pressed and the lysate was centrifuged at 12,000 rpm for 10 

minutes. The supernatant was passed over an amylose column (New England Biolabs) 

using a peristaltic pump. The column was washed with 20 mM Tris pH 8.0 buffer three 

times before the protein was eluted with 20-1 mL fractions of 20 mM Tris pH 8.0 and 10 

mM maltose. Samples were analyzed by SDS-PAGE and elutions containing ToxT-MBP 

were dialyzed against a solution containing 50 mM Na2HPO4, pH 8.0; 10 mM Tris, pH 

8.0; 100 mM NaCl then again against the same solution with 20% glycerol and aliquots 
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were frozen at -70 C. Protein concentration was determined using ThermoScientific 

Protein Assay Reagent as per manufacturer’s directions. 

Electrophoretic Mobility Shift Assays (EMSA). DNA probes were produced by 

PCR using plasmid templates containing appropriate promoter fragments with one 

unlabeled primer and one primer end labeled with γ-32P (PerkinElmer) by T4 

polynucleotide kinase (New England Biolabs). The assays were set up in a final volume 

of 30 µl with varying concentrations of ToxT-MBP, 10 µg/ml salmon sperm DNA, 100 

ng of labeled DNA probe, and binding buffer with a final concentration of 10 mM Tris, 

pH 7.4; 1 mM EDTA, pH 7.0; 100 mM KCl, 1 mM DTT, 0.3 mg/ml bovine serum 

albumin (BSA) and 10% glycerol. The binding reactions were incubated at 30� C for 30 

minutes prior to loading into a 6% acrylamide gel at 4� C. Gels were dried then analyzed 

by autoradiography. 

CP Footprinting. CP footprinting was performed as previously described (190-

192).  Chemical cleavage was done in gel after separation of free DNA and bound ToxT-

DNA complex by EMSA. Polyhistidine-tagged ToxT was purified as previously 

described (196). The ratio of ToxT to DNA used was adjusted empirically such that 

approximately 50% of labeled DNA formed a bound complex with ToxT. The sequence 

ladder was created using SequiTherm EXCEL II DNA Sequencing Kit (Epicentre) with 

the same 32P-end –labeled primer used make the PCR products for EMSAs to minimize 

offset reactions as per manufacturer’s instructions. 

 

RESULTS 
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General map of ToxT binding. We began our investigation of the requirements 

for ToxT binding to PctxAB in V. cholerae by analyzing the DNA sequence. The most 

notable feature of PctxAB is the presence of heptad repeat sequences, TTTTGAT (Fig. 4), 

which have been previously proposed to be binding sites for transcriptional activators 

such as ToxR and ToxT (27, 113, 125, 129, 177, 196). The number of perfect heptad 

repeats differs among V. cholerae strains; classical biotype V. cholerae typically have six 

repeats, whereas El Tor biotype V. cholerae typically have only three. If written in a 

slightly different way, the sequence of each heptad repeat, GATTTTT, is consistent with 

the 5' end of the toxbox consensus sequence illustrated in Figure 2 by a sequence logo 

(36, 166, 191). In classical strain O395, used in all of the experiments described here, 

there are six perfect heptad repeats, followed by one repeat having two substitutions 

proximal to the promoter (Fig. 4). Therefore, several potential toxboxes could be 

identified by sequence analysis, but experimentation was required to determine which 

toxboxes are functional at PctxAB. 

To pinpoint the location of the functional toxboxes within PctxAB, we performed 

site-directed mutagenesis of the heptad repeat sequences. In our initial analysis, we 

created double point mutations within each individual heptad repeat to produce a large 

effect on ToxT activity and clarify the most important repeat sequences. The poly-T tract 

within a heptad repeat, corresponding to the highly conserved T tract present in toxboxes, 

was interrupted by mutating the fourth and fifth position nucleotides from thymidines to 

cytosines. The mutant promoter constructs were cloned in pTL61T (116), a vector 

containing a multi-restriction enzyme cloning site upstream of a promoter-less lacZ gene, 

allowing us to measure PctxAB activity in Miller units by β-galactosidase activity (127). 



33 

 

These constructs were transformed into wild type and ∆toxT strains of classical V. 

cholerae strain O395, assessed for ToxT-dependent activity and compared to wild type 

PctxAB::lacZ. In addition, we included a truncated mutant promoter, pJW211, which 

extends to -76 relative to the transcription start site and thus includes only the promoter-

proximal three heptad repeats (Fig. 4). Previous studies found that constructs extending to 

-76 were fully activated by ToxT but shorter constructs were not activated by ToxT 

(196), indicating the DNA sequences required for ToxT activity are located between -76 

and the -35 box. As shown in Fig. 5, the truncated promoter that extends only to -76 was 

not only activated by ToxT, the fold difference in transcription induced by ToxT was 

twice that of full length PctxAB, indicating that this truncated promoter is fully 

functional. 

The results of our double mutagenesis experiments provided the first evidence for 

the location of functional toxboxes at PctxAB (Fig. 5). Mutagenesis of repeats 1 and 2, at 

-97/-96 and -90/-89 relative to the transcriptional start site, caused no defects in ToxT-

dependent transcription, which is consistent with the previous work showing only 

sequences downstream of -76 are required for ToxT activity (196). Mutagenesis of repeat 

3 at -83/-82 caused decreased transcription with or without ToxT; however the fold 

difference between wild type and ∆toxT was consistent with WT PctxAB constructs, 

indicating ToxT could still function.  In contrast to these results, mutagenesis of repeat 4 

at -76/-75 caused a complete loss of ToxT activity, suggesting this sequence may be 

necessary for ToxT dependent transcription activation. Mutagenesis of repeat 5 at -69/-68 

also caused a complete loss of ToxT activity. Furthermore, the ToxT-independent 

transcriptional activity in this mutant strain was twice as high as in the WT PctxAB strain, 
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suggesting this sequence may comprise part of a repressor binding site or may play a 

structural role that is favorable for ToxT-independent transcription when mutated. 

Mutagenesis of repeat 6 at -62/-61 reduced overall transcription levels but did not cause a 

significant defect in ToxT-dependent transcription, suggesting that it probably does not 

have a crucial role in ToxT binding. Mutagenesis of the imperfect heptad repeat 7 at 

positions -55/-54, which has substitutions at the two 3' nucleotides, resulted in 

significantly reduced ToxT activity, suggesting it does have an important role. Finally, 

the region downstream of the heptad repeats, at positions -52/-51, was included in the 

mutagenesis analysis because of its rich A/T content, similar to the somewhat degenerate 

3' portion of the consensus toxbox sequence. Mutations to -52/-51 caused a complete loss 

of activation by ToxT, suggesting this sequence is also necessary for ToxT activity and 

therefore this region was further analyzed in subsequent experiments.   

The above results indicate that ToxT activation of PctxAB transcription requires 

the region downstream of -76 and are consistent with previous PctxAB studies by Yu et 

al. (196).  However, we now see that, at most, only repeats 4 (-76/-75), 5 (-69/-68), and 7 

(-55/-54) as well as the A/T rich region immediately downstream of the heptad repeats 

are the necessary components for ToxT activity. 

Comprehensive site-directed mutagenesis of PctxAB. To characterize more 

precisely which nucleotides are necessary for ToxT activity within PctxAB, single point 

mutations were created at each position ranging from -79 to -39, coinciding with the 5' 

end of repeat 4 and extending through the A/T rich region downstream of the heptad 

repeats (Fig. 2). Each A or T nucleotide was changed to a G or C, respectively, and each 

G or C was changed to an A. These mutant promoter constructs were cloned in pTL61T 
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and transformed into wild type O395 and its ∆toxT derivative. Promoter activity was 

measured by β-galactosidase activity and results are shown in Fig. 6. 

This analysis identified numerous individual base-pairs that are important for 

ToxT activity. Any single point mutations within heptad repeat 5 abrogated ToxT 

activation of PctxAB transcription, indicating that this sequence is essential for ToxT 

activity. Similarly, mutagenesis of the T tract within heptad repeat 6 also abrogated ToxT 

activity. Surprisingly, single point mutagenesis of heptad repeat 4 had little effect on 

ToxT activity with the exception of positions -75 and -76, which caused decreased ToxT 

activation when mutated. These results are consistent with the double point mutagenesis 

studies described above, in which mutations at positions -76/-75 abrogated ToxT activity. 

However, these results also suggest that the remainder of repeat 4 is not important for 

ToxT activity. 

Mutagenesis of imperfect heptad repeat 7 did not cause significant defects in 

ToxT activity. However, the A/T-rich region downstream of the heptad repeat 7 revealed 

that some of these base-pairs are important for ToxT activity. Mutations between -52 and 

-45, and also  -43, and -41 caused significant defects in ToxT-dependent transcription of 

PctxAB, suggesting this region is important for ToxT function. 

Previous work at other ToxT-activated promoters characterized the toxbox as a 

somewhat degenerate 13 base pair sequence with a conserved poly-T tract near the 5' end 

(Fig. 2) (190-192). The PctxAB mutagenesis experiments described here revealed a clear 

region required for ToxT activity between -72 and -59, comprising repeats 5 and 6, that 

we designate toxbox 1 (Arrows in Figs. 4-6). Additionally, single point mutagenesis of 

the A/T-rich region downstream of the heptad repeats caused some defects in activation, 
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suggesting a second ToxT binding site, toxbox 2, between -58 and -46 (Figs. 4-6), that 

apparently has less sequence specificity. Interestingly, the mutation at position -53, which 

changes a C nucleotide to the consensus toxbox T nucleotide at this position, resulted in 

elevated transcription (Fig. 6). 

Copper-phenanthroline footprinting of ToxT at PctxAB. To complement our 

genetic analysis and confirm the locations of ToxT binding, we performed in vitro DNA 

footprinting experiments. Previous studies using DNase I footprinting identified a region 

of ToxT protection from -111 to -41 upstream of PctxAB (196). However, DNase I 

footprinting is problematic at PctxAB due to the presence of numerous A tracts, which 

interfere with DNase I cleavage even in the absence of bound proteins. To achieve higher 

resolution footprinting of ToxT on PctxAB, we performed copper 1,10-phenanthroline 

(CP) footprinting analysis, which not only generates a higher resolution image of the 

base-pairs protected by ToxT but is also largely insensitive to DNA sequence. This 

technique was previously used to characterize ToxT binding at the tcpA, aldD, acfA, acfD 

and tagA promoters (190-192).  

The CP footprint of ToxT at PctxAB revealed two distinct regions of protection. 

The upstream region encompassing toxbox1, spanning -72 to -60 and including heptad 

repeats 5 and 6, is very strongly protected by ToxT (Fig. 7). These data correlate 

distinctly with the results of the mutagenesis experiments described above, suggesting it 

is an authentic toxbox that is required for DNA binding and PctxAB activation by ToxT. 

The second region of protection, within toxbox2, ranges from -58 to -49 

(ATTTCAAAT).  This includes imperfect heptad repeat 7 and the A/T-rich region 

directly downstream of the heptad repeats that mutagenesis indicated may be important 
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for ToxT activity (Figs 5,6). In general the protection of this region was much weaker 

than protection observed at toxbox1. In particular, positions -51 and -52 were found to be 

important for ToxT activity and are somewhat protected in the CP footprint (dots in Fig. 

7). However, positions -48 to -45, which also caused significant defects when mutated, 

are not visibly protected. These CP footprinting experiments were performed with both 

the full length PctxAB, which includes all seven heptad repeats, and with the truncated 

promoter, pJW211, which includes only repeats 4-7 (Fig. 7); results are shown for the 

latter but were essentially identical for both constructs (data not shown). 

These results suggest that PctxAB contains two toxboxes, both of which are 

generally consistent with the previously described toxbox consensus sequence. The 

PctxAB toxboxes are also consistent with other ToxT-activated virulence genes in both 

number and relative distance from the transcriptional start site (190-192).  

 ToxT binding to wild-type and mutant PctxAB constructs.  The genetic and 

biochemical analyses described above narrowed down the region of ToxT binding to two 

specific binding sites that are consistent with the toxbox consensus sequence. However, 

the footprinting experiments showed relatively weak protection of toxbox2, calling into 

question whether it is truly a ToxT binding site or instead a region possibly important for 

contact between RNA polymerase and ToxT. To confirm that mutations to these 

designated toxboxes cause defects in DNA binding by ToxT, we performed EMSAs 

using DNA probes that contain the double point mutations created for general mapping of 

ToxT binding (Fig. 5). ToxT binding to DNA was compared between wild-type PctxAB 

and the mutant promoter sequences (Fig. 8). In these experiments the first lane of each 

gel contains DNA probe only and the subsequent lanes from left to right have increasing 
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amounts of ToxT. As ToxT concentration was increased in combination with the wild-

type probe, two different shifted species were observed. This observation is consistent 

with one ToxT monomer occupying one toxbox at lower [ToxT] and then a second ToxT 

monomer occupying the second toxbox at a higher [ToxT], producing the slower 

migrating species. In contrast, the mutant promoter sequences shown in panels A-D of 

Fig. 8 did not produce the slower migrating band, even at the highest [ToxT], suggesting 

that only the non-mutated toxbox could be occupied. This result is evident with all the 

mutants that alter one of the two toxboxes we identified by mutational analysis, verifying 

their importance for ToxT binding.  

To confirm that the abrogation of ToxT binding to toxboxes is specific to 

mutations within the identified toxboxes, we analyzed ToxT binding to a probe with 

mutations at -76/-75. These mutations are located within heptad repeat 4 upstream of 

toxbox 1 and caused a defect in ToxT-dependent transcription activation in β-

galactosidase assays (Fig. 5). However, when comparing EMSA of the -76/-75 mutant 

probe to EMSA of wild-type probe, no difference is evident, suggesting the defects in 

transcription activation caused by the -76/-75 mutations are perhaps due to other factors 

such as reduced RNA polymerase interaction with DNA and not the result of decreased 

ToxT binding. 

The above results are consistent with our designation of two toxboxes within 

PctxAB being correct. To test our hypothesis that disrupting both toxboxes would 

eliminate ToxT binding, we performed EMSAs using probes with both toxboxes mutated, 

at positions -69/-68 and -55/-54 (Fig. 8F). A very weak shifted band was observed in 

these experiments that did not significantly increase in intensity as [ToxT] was increased. 
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These results suggest that ToxT is unable to bind specifically to probe having mutations 

in both toxboxes even at higher ToxT concentrations. This in vitro result is supported by 

in vivo β-galactosidase assays on PctxAB::lacZ containing the double toxbox mutations in 

WT and ∆toxT O395 backgrounds, which produced 1776 ± 22.79 and 1755 ± 89.35 

Miller units of activity, respectively.  

 

DISCUSSION 

The experiments described here were designed to characterize the DNA sequence 

requirements for ToxT to activate transcription of ctxAB, resulting in production of CT 

and subsequently diarrhea in cholera patients. Previous studies characterized the ToxT 

binding sites, or toxboxes, at several other known ToxT-activated promoters, but detailed 

information about the functional toxboxes at ctxAB, arguably the most important 

virulence locus in V. cholerae, remained lacking (Fig. 2) (190-192). The presence of 

GATTTTT heptad repeat sequences, each of which resembles the conserved 5' portion of 

a toxbox (191), made identification of the functional ToxT binding sites impossible 

without further experimentation. Double and single point mutations were made within the 

GATTTTT heptad repeats to identify which of the seven repeats within the classical V. 

cholerae ctxAB promoter are vital for transcription activation and these results were 

verified by CP footprinting and EMSA experiments using purified DNA and ToxT. 

Results from the double point mutation experiments provided a general outline of 

the requirements for ToxT binding to the ctxAB promoter. The mutations to heptad 

repeats 4, 5, 6, and 7, as well as the A/T-rich region downstream of the repeats, caused 

severe defects in ToxT-dependent transcriptional activity, strongly suggesting that these 
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sequences are important for ToxT binding. In addition to abrogating ToxT activation of 

ctxAB, the mutations to repeat 5 also increased ToxT-independent transcription. This 

result could be due to disruption of an H-NS binding site previously identified by 

Stonehouse et al. (177), which would prevent repression of ctxAB expression by H-NS. 

H-NS preferentially binds to A/T rich regions such as this one which cause DNA to be 

intrinsically curved, and interrupting this stretch of nucleotides with a G or C may 

prevent H-NS from binding at nucleation sites and oligomerizing along the DNA (47, 

143).  Another possible explanation is that altering the DNA curvature may enhance 

interaction of RNA polymerase with the promoter region, diminishing the requirement 

for ToxT to activate transcription. The difference in DNA curvature may also explain the 

decreased expression observed when heptad repeat 3 was mutated. In this case the overall 

transcription magnitude decreased but the fold difference in expression between wild 

type and ∆toxT strains was similar to that of wild-type PctxAB constructs, indicating 

ToxT activity was not affected by the mutations.   

The DNA sequence requirements for ToxT activity at ctxAB were determined at 

higher resolution using ctxAB::lacZ constructs with single point mutations in the region 

between -79 and -39. Individual point mutations within a region spanning -72 to -59 

caused severe defects in ToxT dependent activity, with the exception of positions -65 and 

-64. This 13 base pair sequence, which we designated toxbox1, is consistent with 

previously characterized ToxT binding sites in both sequence and proximity to the 

transcriptional start site (10, 190-192). Interestingly, there are no single point mutations 

within toxbox1 that significantly increased ToxT-independent activity, unlike the double 

point mutation within heptad repeat 5. This suggests that a single nucleotide change from 
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a thymidine to a cytosine is not enough to enhance ToxT independent transcription by 

whatever mechanism is responsible for this effect. However, this does not rule out the 

possibility that mutations to nucleotides other than cytosine may be sufficient to enhance 

ToxT independent transcription. 

Unlike the mutations that led us to identify toxbox1, the single point mutations 

that led us to identify toxbox2 did not reveal such an obvious contiguous region 

important for ToxT binding. Only six mutations, at positions -52, -51, and the region 

from -48 to -45, caused significant decreases in ToxT-dependent transcription. This 

difference between the two toxboxes and ToxT sequence requirements is visualized in the 

CP footprinting experiments. These results indicate two separate regions of DNA 

protection by ToxT: -72 to -60 (toxbox1) and -58 to -49 (toxbox2). These regions 

strongly correlate with the results from the mutagenesis experiments. For toxbox 1, 

mutation to eleven out of the thirteen nucleotides caused severe defects in transcription 

activation and this segment is strongly protected by ToxT in the footprint.  For toxbox 2, 

mutation to only six nucleotides caused significant defects in activation, and only eight 

nucleotides were protected, albeit weakly, by ToxT in the footprint. Combining these 

results with the mutagenesis experiments, we designate toxbox 2 as spanning the region 

between -58 to -46.  This is consistent with some other ToxT-activated promoters in 

which toxboxes most proximal to the -35 promoter element are less specific in their 

sequence requirements than toxboxes located distally (190-192). Furthermore the 

orientation and position of this toxbox most closely resemble the single toxbox at the 

aldA promoter, which produces relatively weak activation (41).  
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The sequences of each of the toxboxes identified within PctxAB fit the consensus 

sequence, although toxbox2 has a variation at position 6, which is part of the conserved T 

tract in every other toxbox (191). This change from T to C in toxbox2 could explain the 

weaker protection in footprinting experiments, and it is notable that mutating that 

position to the consensus T resulted in higher transcription levels.  

Designation of the functional toxboxes was confirmed by EMSA experiments that 

compared ToxT binding to wild-type or double point mutant PctxAB DNA probes. 

Mutations that are within the identified toxboxes visibly altered ToxT binding when 

compared to WT PctxAB. The absence of the second, slower migrating ToxT-bound 

species suggests that ToxT could only occupy the non-mutated toxbox and is unable to 

bind to the mutated toxbox, supporting the in vivo transcriptional activation experiments 

of the double point PctxAB mutants. Additionally, double point mutations within both 

toxboxes resulted in the complete abrogation of ToxT binding and transcription 

activation in vivo as expected. The EMSAs also support the hypothesis that mutations 

within heptad repeat 4 do not disrupt the ToxT binding region as the results in Figure 5 

suggested. Instead, this region of PctxAB may be important for interaction of ToxT bound 

to toxbox1 with the α-CTDs of RNA polymerase and the mutations negatively affected 

this interaction, resulting in lower transcription activation in the presence of ToxT. 

The PctxAB toxboxes are located upstream of the -35 promoter element, 

classifying it as a class I promoter (21). This is also the case for the toxboxes identified in 

every other ToxT-activated promoter that has been characterized (190-192). Class I 

promoters require an interaction between the activator protein and the α-CTD of RNAP 

for transcriptional activation (21).  Because two toxboxes were identified within PctxAB, 
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we hypothesize there is a specific interaction between two ToxT monomers and two α-

CTDs. Our previous ToxT and α-CTD interaction models propose that when two 

toxboxes are present, there are two distinct points of interaction between individual ToxT 

monomers and α-CTD (191). An alternative hypothesis is that one ToxT monomer 

contacts RNA polymerase and the other ToxT monomer stabilizes this interaction, 

possibly by ToxT dimerization. The mutagenesis experiments illustrated that mutating 

one toxbox, particularly toxbox1, is sufficient to decrease overall transcription, 

suggesting that ToxT must occupy both toxboxes for full activation. The weak protection 

conferred by ToxT to toxbox2 raises the possibility that interaction with α-CTD may be 

important for enhanced binding to this sequence by ToxT. Another  possible explanation 

for the weak footprint observed at toxbox2 is that a positive ToxT effector, such as 

bicarbonate, is required to increase binding specificity (1); future experiments will 

determine if either of these possibilities is indeed the case. 

In this study, we focused on the classical biotype strain O395 V. cholerae, which 

contains six perfect GATTTTT repeats and one imperfect repeat. However, other strains 

possess a varying number of repeats. El Tor biotype strains generally contain only three 

of the heptad repeats but otherwise retain the same DNA sequence as classical strain 

O395 at PctxAB. The absence of the distal heptad repeats does not negatively impact 

ToxT activated transcription as the toxboxes we identified in O395 encompass the heptad 

repeats that are most proximal to the transcriptional start site and would be included in 

the El Tor promoter region. ToxT was also not observed to bind to the distal heptad 

repeats in the footprinting experiments (data not shown).  The significance of the distal 

heptad repeats in classical biotype V. cholerae is still unclear but they may play a role in 
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H-NS binding, may contribute to the curvature of the DNA, or could be important for the 

ToxR mediated activation of PctxAB observed in the presence of bile, which was only 

observed in classical biotype (86). 

In summary, we have characterized the specific sequence requirements for 

binding to PctxAB and transcription activation by ToxT. The DNA sequences of the 

identified toxboxes are consistent with the consensus toxbox in that they are degenerate 

but contain the 5′ poly-T tracts common among all known ToxT DNA binding sites (190-

192). The toxboxes in PctxAB are also consistent with other ToxT-activated promoters in 

their positioning relative to the transcriptional start site (10, 190-192). Alhough ToxT is a 

flexible transcription activator in regard to sequence requirements, configuration, and 

number of binding sites, it has specific requirements for activation of PctxAB and a single 

mutation within one the two toxboxes is enough to severely decrease transcription 

activation by ToxT. 
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Figure 4: ToxT binding to the ctxAB promoter.  The black bar over the sequence 
indicates DNase I footprinting protection by ToxT (196). ToxT binding sites, toxbox1 
and toxbox2, determined in this study by mutagenesis and copper-1,10-phenanthroline 
footprinting, are illustrated by the arrows.  The base-pair at -76 is boxed to indicate the 
endpoint of the minimal ctxAB construct that is activated by ToxT. Heptad repeats are 
numbered underneath the sequence and indicated by dotted arrows; imperfect repeat 7 is 
indicated by a dashed arrow. The transcriptional start site is indicated by a bent arrow and 
the putative -10 and -35 promoter elements are boxed. 
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Figure 5:  Effects of double point mutations to heptad repeats on ctxAB transcription. β-
galactosidase results from ctxAB::lacZ double point mutations are shown. Results from 
the WT full length promoter strain are at the far left. The truncated promoter extending 
only to -76 is marked as p211. The double point mutations are indicated in italics within 
the sequence.  Heptad repeat are numbered and shown as dotted arrows; imperfect repeat 
7 is indicated by a dashed arrow. The black bars indicate O395 WT toxT strains and the 
grey bars are O395 ∆toxT strains.  The fold difference in β-galactosidase between WT 
and ∆toxT strains is labeled above each promoter. Each experiment was repeated a 
minimum of three times and the data shown are mean values with the standard deviation 
indicated by error bars. 
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Figure 6:  Effects of single point mutations on ctxAB transcription. β-galactosidase 
results from ctxAB::lacZ single point mutations are shown. Results from full length WT 
and truncated WT (p211) promoter constructs are shown at the far left. Individual 
mutation results correlate with the nucleotide underneath the x-axis. Heptad repeats 
included in the mutagenesis are numbered and indicated by dotted arrows; imperfect 
repeat 7 is illustrated by a dashed arrow.  Black bars are O395 WT toxT strains and white 
bars are O395 ∆toxT strains. The asterisks indicate statistically significant differences in 
β-galactosidase results between WT O395 PctxAB and mutant O395 PctxAB strains 
where according to Student’s t-test (P<0.03). 
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Figure 7:  CP footprinting of ToxT on PctxAB. Toxbox 1 and toxbox 2 are indicated by 
solid arrows with the correlating numerical position from the transcriptional start site. ‘C, 
T, A, G’ on the top left of the figure refers to the nucleotide lanes of the sequencing 
ladder. The dotted arrows and numbers show the locations of the GATTTTT repeats. The 
solid lines and black dots to the right of the toxboxes indicate the locations of ToxT-
dependent transcriptional defects identified in the single point mutagenesis experiments. 
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Figure 8: ToxT binding to wild-type and mutant PctxAB constructs.  Electrophoretic 
mobility shift assays (EMSAs) were carried out with each mutant PctxAB construct as 
indicated below the right panel of each EMSA. Lane one of each gel is free probe with no 
ToxT present. ToxT-MBP concentrations increase across the gel from left to right as 
indicated by the black triangle. ToxT-MBP concentrations used in each EMSA are 2.3 
nM, 4.6 nM, 6.9 nM, 9.2 nM, 11.5 nM, and 13.8 nM.  
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CHAPTER 2 

Differential control of cholera toxin production in classical and El Tor biotype V. 

cholerae is mediated by H-NS binding to heptad repeat sequences 

 

ABSTRACT 

 The bacterium Vibrio cholerae infects human hosts following ingestion of 

contaminated food or water and causes the severe diarrheal disease cholera.  The watery 

diarrhea that is characteristic of the disease is directly caused by production of cholera 

toxin (CT).  The regulatory network that controls CT and other virulence factors is 

complex. However, a single transcriptional activator protein, ToxT, directly binds to 

virulence gene promoters and activates their transcription.  Previously, we identified two 

ToxT binding sites, or toxboxes, within the cholera toxin promoter (PctxAB).  The 

toxboxes overlap with the two downstream-most of the six GATTTTT heptad repeats 

found within PctxAB. These heptad repeats were previously found to be within a large 

region bound by H-NS, a transcriptional repressor expressed in Gram-negative bacteria.  

The current model for control of PctxAB transcription requires H-NS displacement from 

the DNA by ToxT and then the subsequent activation of transcription by ToxT by 

contacting RNA polymerase (RNAP).  The goal of this study was to determine more 

precisely where H-NS binds to PctxAB and test the hypothesis that ToxT completely 

displaces H-NS from the PctxAB promoter before activating transcription. Results 

described here suggest that H-NS binds only to the region of PctxAB encompassing the 

heptad repeats.  Interestingly, the V. cholerae classical biotype has six heptad repeats at 

PctxAB while the El Tor biotype has only three, suggesting a varying degree of H-NS-

mediated repression at each of these promoters.  The results from promoter mutagenesis 
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and in vitro DNA binding experiments in this study call for a revision of the current 

model involving H-NS and ToxT at PctxAB. 

 

INTRODUCTION 

Cholera is a severe diarrheal disease that affects an estimated 5 million people 

annually.  Cholera is caused by the aquatic bacterium Vibrio cholerae, a Gram negative 

curved bacillus that is ubiquitous in coastal regions.  V. cholerae infection is the result of 

ingesting contaminated food or water (54).  If left untreated, cholera can cause severe 

dehydration and death in more than 50% of cases but that number falls to approximately 

1% when patients are treated with oral rehydration solution and IV fluids. Although more 

than 200 V. cholerae serogroups are present in the aquatic environment, epidemic cholera 

is only associated with the O1 and O139 serogroups (158, 164).  The current, ongoing 

seventh cholera pandemic, originating in 1961, is caused by the El Tor biotype of the O1 

serogroup (164).  The El Tor biotype is differentiated from the classical biotype, which 

was ostensibly responsible for the first six cholera pandemics, by a variety of factors 

including antibiotic resistance, production of hemolysin, and presence of mobile genetic 

elements (48). 

Pathogenic V. cholerae requires two major virulence factors to cause cholera: 

cholera toxin (CT), which is directly responsible for producing the characteristic diarrhea, 

and toxin-coregulated pilus (TCP), which is required for intestinal colonization.  CT is a 

classical AB5 toxin that is encoded by ctxAB, located within the genome of the CTXΦ 

lysogenic bacteriophage (64, 186).  CT binds via the pentameric B subunits to GM1 

gangliosides found on the intestinal epithelial cells and activates cAMP production by 
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translocation of the ADP-ribosylating A1 subunit into the cell (32, 174).  This 

subsequently leads to secretion of water and ions into the intestinal lumen (174).  TCP is 

a type IV pilus encoded by genes on the V. cholerae pathogenicity island (VPI). TCP is 

important for microcolony formation and serves as a receptor for CTX Φ (85, 186). 

V. cholerae virulence gene regulation is very complex and consists of a cascade of 

positive transcription activators along with transcription repressors and post-

transcriptional regulators (123).   Environmental cues such as the availability of nutrients, 

low pH, and anaerobiosis trigger the positive cascade and increase the intracellular 

production of proteins AphA and AphB (101, 128).  These two proteins directly interact 

and activate the transcription of tcpPH (99-102).  TcpP and its cofactor TcpH along with 

ToxR and its respective cofactor ToxS are integral membrane protein pairs that comprise 

the second level of the positive cascade and are responsible for the transcription of toxT 

(44, 73, 78, 79, 105).  ToxT, a 32-kDa transcriptional regulator that belongs to the 

AraC/XylS family, is directly responsible for activating the transcription of ctxAB and 

tcp, as well as other virulence genes (78, 79, 85).  Virulence gene expression levels are 

also affected by the presence of unsaturated fatty acids and bile, which decrease 

expression levels by decreasing ToxT activity, or by bicarbonate, which has been shown 

to enhance ToxT activity (1, 70, 86, 87, 168).   

We recently have characterized the ToxT binding sites, referred to as toxboxes, 

found within the ctxAB promoter (PctxAB) (45).  Toxboxes are 13 base pair degenerate 

DNA sequences that are located upstream of the -35 promoter element of all genes whose 

transcription ToxT activates (191).  The toxboxes at individual genes have some 

variability in their positions from the transcriptional start site and configuration (10, 190-
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192).  One common feature, however, is the presence of a 5’ poly(T) tract that is found in 

every toxbox.  PctxAB contains several potential ToxT binding sites that fit the toxbox 

consensus sequence and also directly overlap with where H-NS, a transcriptional 

repressor, is thought to bind DNA and act as a repressor of PctxAB (177). 

H-NS is a 15-kDa histone-like nucleoid associated protein.  It binds to xenogeneic 

DNA that has been acquired through horizontal transfer and represses transcription by 

oligomerizing along the DNA (119, 142, 162).  H-NS can form bridges to prevent 

transcription activators from binding DNA and some studies also indicate that H-NS can 

halt active transcription by trapping the RNA polymerase (RNAP) (39, 40, 167).  

Additionally, the expression of genes that are modulated by H-NS have been found to be 

responsive to environmental signals such as osmolarity, pH, and temperature (4-6, 46).  

There are many models that detail the derepression of H-NS by DNA binding proteins 

and the relationship between H-NS and transcriptional activators has been characterized 

in various Gram-negative bacteria including Escherichia coli and Salmonella enterica 

(see review(176)).  

The interplay between ToxT and H-NS in V. cholerae has been integral in 

understanding the expression of the virulence factors TCP and specifically CT (146, 177, 

196).  The current model indicates that H-NS, which is expressed constitutively within 

the bacteria, binds to the ctxAB promoter’s A/T rich regions under non-virulence 

inducing conditions.  Under virulence condions, ToxT is expressed and displaces H-NS 

from the promoter to activate transcription of ctxAB (196).  Stonehouse et al. proposed 

that the degree of displacement is dependent on the level of ToxT in the cell (177).  At 
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low levels, H-NS still binds to the promoter but is completely displaced by ToxT when 

the appropriate [ToxT] is achieved within the cell.   

The recently acquired detailed knowledge of the functional toxboxes in PctxAB 

further elucidates the complex relationship between H-NS and ToxT. In this study, we 

have identified the specific binding sites of H-NS using high resolution copper-

phenanthroline DNA footprinting. We then characterized the interplay between ToxT and 

H-NS by ctxAB promoter expression studies in E. coli and competitive electrophoretic 

mobility shift assays (EMSA) and propose a revised model to define the transcription 

regulation of ctxAB by ToxT and H-NS. 

 

MATERIALS AND METHODS 

 E. coli strains and plasmids.  The E. coli K5971 strain and derivatives used in 

these studies were previously used by Yu et al., (196). The strains either contain an 

inducible toxT-encoding plasmid (pMMTT) or the vector alone (pMMB208).  

PctxAB:lacZ fusions for β-galactosidase assays were previously constructed and the full-

length mutant promoter constructs created in this study were cloned into pTL61T using 

XbaI and HindIII sites of the plasmid (45).  The constructs were transformed into the E. 

coli strains by electroporation using a Bio-Rad MicroPulser.  The strains were grown at 

37º C in Luria broth (LB) medium for overnight cultures or in LB adjusted to start at pH 

6.5 at 30º C for inducing conditions.  Antibiotic concentrations were 100 µg/ml 

ampicillin and 30 µg/ml chloramphenicol.  Plasmid sequences were confirmed by 

commercial DNA sequencing (Genewiz.)   
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 DNA manipulation.  Plasmids were purified using Promega Wizard Plus 

Miniprep kits.  PCR was performed using Taq DNA polymerase (Denville Scientific) as 

specified by the manufacturer in an Eppendorf Mastercycler gradient thermocycler. 

Restriction enzymes were purchased from New England Biolabs and used as specified by 

the manufacturer. 

β-galactosidase assays. E. coli strains were grown overnight at 37º C in LB then 

subcultured at a 1:40 dilution into fresh inducing medium and grown for 3 hours at 30º C 

with vigorous aeration with the addition of 1mM isopropyl β-D-1-thiogalactopyranoside 

(IPTG). Bacteria were then placed on ice with the addition of 0.5 mg/ml 

chloramphenicol. Assays were performed using the procedure described by Miller (127). 

 Protein purification.  Polyhistidine tagged H-NS (H-NS-His) was purified from 

E. coli strain JM109 with the plasmid pBAD32 containing the H-NS-His construct. E. 

coli was grown overnight at 37º C then subcultured 1:40 into fresh LB and grown at 37º 

C until OD600 reached 0.7. The culture was induced for 3 hours by addition of arabinose 

to 0.2%.  Bacterial cells were collected by centrifugation then resuspended in buffer 

containing 50mM Na2HPO4, pH 8.0; 300 mM NaCl; 10 mM imidazole; 20 mM β-

mercaptoethanol and 25 mg lysozyme.  The cells were French pressed and the lysate was 

centrifuged at 12,000 rpm for 10 minutes.  The supernatant was collected and 4 mL of 

Ni-NTA resin (Sigma) was added.  The cells were mixed overnight at 4º C then packed 

into a column with the resin.  The column flow-through was collected and the resin was 

washed three times with 50mM Na2HPO4, pH 8.0; 300 mM NaCl; 20 mM imidazole.  H-

NS-His was eluted using 50mM Na2HPO4, pH 8.0; 300 mM NaCl; 250 mM imidazole in 

six 1 mL fractions.  The samples were analyzed by SDS-PAGE and the fractions 
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containing the protein were added to a dialysis cassette (Thermo Scientific) and were 

dialyzed against a solution containing 50 mM Na2HPO4, pH 8.0; 10 mM Tris, pH 8.0; 

100 mM NaCl then again against the same solution with 20% glycerol and aliquots were 

frozen at -70º C. Protein concentration was determined using ThermoScientific Protein 

Assay Reagent as per manufacturer’s directions. 

Electrophoretic Mobility Shift Assays (EMSA). DNA probes were produced by 

PCR using plasmid templates containing appropriate promoter fragments with one 

unlabeled primer and one primer end labeled with γ-32P (PerkinElmer) by T4 

polynucleotide kinase (New England Biolabs) or 5’-end labeled with Fluorescein 

(Sigma). The assays were set up in a final volume of 30 µl with varying concentrations of 

ToxT-MBP and H-NS-His, 10 µg/ml salmon sperm DNA, 100 ng of labeled DNA probe, 

and binding buffer with a final concentration of 10 mM Tris, pH 7.4; 1 mM EDTA, pH 

7.0; 100 mM KCl, 1 mM DTT, 0.3 mg/ml bovine serum albumin (BSA) and 10% 

glycerol. The binding reactions were incubated at 30� C for 30 minutes prior to loading 

into a 6% acrylamide gel at 4º C. Gels with γ-32P were dried then analyzed by 

autoradiography.  Gels containing Fluorescein-labeled DNA were visualized using Safe 

Imager 2.0 (Invitrogen). 

CP Footprinting. CP footprinting was performed as previously described (190-

192).  Chemical cleavage was done in gel after separation of free DNA and bound H-NS-

DNA complex by EMSA. Polyhistidine-tagged H-NS was purified as described above. 

The ratio of H-NS to DNA used was adjusted empirically such that approximately 50% 

of labeled DNA formed a bound complex with H-NS. The sequence ladder was created 

using SequiTherm EXCEL II DNA Sequencing Kit (Epicentre) with the same 32P-end –
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labeled primer used make the PCR products for EMSAs to minimize offset reactions as 

per manufacturer’s instructions. 

 

RESULTS 

Identification of H-NS binding sites by copper-phenanthroline footprinting.   

Previous studies on PctxAB indicated that H-NS binds to a large region encompassing the 

GATTTTT heptad repeats characteristic of the ctxAB promoter (Fig. 9), as well as to 

regions both upstream and downstream of these repeats (177).  This region includes ToxT 

binding sites and the -35 promoter element.  These studies utilized DNase I footprinting 

to identify the preferential binding regions for H-NS.  This method of DNA footprinting 

poorly cleaves A/T rich regions due to the narrowing of the minor groove in A tracts, 

making results difficult to interpret in a very A/T rich sequence such as that found at 

PctxAB.  To determine the exact DNA binding locations of H-NS, we used a higher 

resolution copper-1, 10- phenanthroline (CP) footprinting technique that previously 

identified ToxT binding sites at ctxAB, tcpA, aldD, acfA, and tagA promoters (45, 190-

192).  This technique is largely sequence-independent and allows for more specific 

characterization of protein contact sites on DNA. 

 Our DNA footprinting results significantly narrowed down the region of H-NS 

binding at PctxAB from the previously published DNase I results.  Using the full length 

classical biotype promoter of ctxAB, which contains six full heptad repeats and a seventh, 

imperfect repeat, we were able to visualize H-NS protection from cleavage by CP in the 

region from -100 to -59 relative to the transcriptional start site (Fig. 10).  This protected 

region includes only one of the previously characterized toxboxes that spans -72 to -60. 
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Neither the other, promoter-proximal toxbox between -58 and -46 nor the -35 promoter 

element were protected in our experiments as had been previously described (177).  

Additionally, the H-NS footprint contains hypersensitive sites that are likely to be the 

result of DNA bending, causing the DNA to be more susceptible to cleavage by CP.  The 

H-NS binding region also appears to be contiguous with no unprotected sites in the area 

of protection, suggesting that H-NS does oligomerize along the DNA when binding. 

Control of PctxAB by ToxT and H-NS in E. coli.  In our previous study that 

characterized the ToxT binding sites of PctxAB we created mutant promoter constructs 

fused to lacZ in reporter plasmid pTL61T. These mutant constructs altered individual 

GATTTTT heptad repeats that were potential ToxT binding sites by replacing two of the 

T nucleotides with two C nucleotides (45).  Based on the CP footprinting data that 

indicated where H-NS binds to PctxAB, we used these same mutant constructs to help 

characterize the relationship between H-NS and ToxT by measuring promoter activity in 

β–galactosidase assays.  We also analyzed two different length PctxAB constructs, the 

full length that extends to -182 and contains all six perfect heptad repeats that are found 

in classical biotype strain O395 and a truncated version that extends to -76 and has only 

three heptad repeats; the latter resembles the El Tor biotype PctxAB.  Yu and DiRita 

found that PctxAB constructs extending to -76 relative to the transcription start site can be 

fully activated by ToxT (196) and our previous work confirmed this to be true (11).   

To further understand the roles that ToxT and H-NS play at PctxAB, experiments 

with hns mutants were required. H-NS in V. cholerae is encoded by vicH, however, these 

mutants in V. cholerae are apparently unstable as we were unable to delete vicH without 

acquiring secondary mutations. Instead, we carried out promoter activity experiments in 
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an E. coli background as had been done previously (196).  For these experiments we used 

the  E. coli WT strain K5971 and E. coli hns- strain K5972 that Yu and DiRita used to 

characterize ToxT and H-NS at PctxAB.  These strains carry plasmids that either encode 

inducible toxT or an empty vector control (77, 78, 133).  These E. coli strains allow us to 

assess promoter activity in the presence and absence of both ToxT and H-NS and have 

the additional advantage of eliminating confounding V. cholerae factors that act directly 

on the ctxAB promoter such as ToxR (131). 

The result of these experiments using the full length ctxAB promoter construct, 

which contains all six of the heptad repeats, indicated the level of repression that H-NS 

manifests on the promoter (Fig. 11).  In the WT E. coli strain that expresses H-NS there is 

little promoter activity without ToxT.  However, once ToxT is expressed, there is a 5.43 

fold difference in expression, confirming that PctxAB activity is activated by ToxT in 

these E. coli strains (Table 1A).  This activation level accounts for both H-NS 

derepression and true activation by ToxT, as proposed by Yu and DiRita (196). In the E. 

coli hns- background, when ToxT is not expressed, the expression level is similar to the 

level produced by ToxT-dependent activation in E. coli hns+.  Expressing ToxT in E. coli 

hns- background then increases promoter activity to more than twice that observed when 

H-NS is present in the cells. This result shows that true activation by ToxT, presumably 

by contacting RNAP, occurs in the absence of H-NS as previously reported (196).  

Next we examined the effects of mutations to the heptad repeat sequences on 

control of ctxAB expression by ToxT and H-NS illustrated in Figure 11 and listed the fold 

differences between the strains in Table 1A. Mutation of the first heptad repeat at -97/-96 

resulted in expression levels not significantly different from those observed with the 



60 

 

wild-type construct. Mutation of heptad repeat 2 at -90/-89 resulted in loss of H-NS 

repression. There is no significant difference in the expression levels +/- ToxT in the WT 

hns and hns- backgrounds. This suggests that this repeat sequence is essential for H-NS 

repression of PctxAB.  Mutation to heptad repeat 3 caused an unexpected loss of ToxT-

dependent ctxAB expression but did not affect H-NS repression. These mutations are not 

near the toxboxes and caused no defect in ToxT-dependent expression in V. cholerae 

(45). Mutation to repeats 4 and 5, at positions -76/-75 and -69/-68, respectively, resulted 

in elevated basal expression levels that resemble the expression levels of the WT 

construct in the hns- background. However, H-NS was still an active repressor of these 

constructs, as expression levels were even higher in the hns- background.  

This result suggests two possibilities: 1) these repeats may be important for H-NS 

binding because the promoter activity independent of ToxT is increased in the mutants 

when compared to WT PctxAB and is consistent with previous promoter expression 

studies in V. cholerae with these mutant constructs; or 2) these mutations improve 

binding by RNAP or improve DNA contact sites for the RNAP  α-subunit C-terminal 

domains.  The mutations to repeats 4 and 5 also caused a loss of ToxT-dependent 

transcription as previously observed in V. cholerae (45). Mutations to repeat 6 at -62/-61, 

within the most downstream of the H-NS binding region we observed in the footprinting 

experiments, caused decreases in both ToxT-dependent transcription and H-NS 

repression.  Mutations to imperfect repeat 7 at -55/-54 and the downstream region at -52/-

51 are similar in that in the hns+ background, there is no ToxT-dependent activation.  

This is consistent with results from V. cholerae since these are mutations in toxbox 2.  

However, because these mutations are downstream of the H-NS binding region in the 



61 

 

footprint experiment, there is evidence of H-NS dependent repression similar to WT 

PctxAB. 

Comparison of H-NS effects on classical and El Tor PctxAB. Because the 

number of heptad repeats differs between the classical and El Tor V. cholerae biotypes, 

we explored whether PctxAB constructs that only contain three of the repeats (ala El Tor) 

would behave differently from the constructs having six repeats (ala classical.)  These 

constructs include the T-tract of repeat 4 and complete repeats 5-7.  The footprinting 

experiments indicated that H-NS binds to the region of DNA including repeats 4-6 but 

not the imperfect repeat 7 immediately downstream.  Eliminating the upstream-most 

repeats removes half of the H-NS DNA binding region and results in elimination of H-NS 

repression in the WT short construct (Fig. 12).  The background activity of the WT 

promoter increases by 4000 Miller units as compared to the full-length construct, to the 

same level as was observed in the hns- background.  When ToxT is expressed within the 

cells, expression greatly increased to levels much higher than those observed using the 

full-length promoter.  

 Mutagenesis of repeat 4 in the shortened PctxAB resulted in markedly different 

expression patterns than those observed using the full-length version of the promoter.  

The expression levels are similar in WT E. coli and in the hns- E. coli backgrounds, 

indicating H-NS has no effect on this construct, whereas H-NS was clearly acting as a 

repressor in the full length construct which is also seen in the fold differences between 

the strains (Table 1).  ToxT cannot activate transcription from this shortened mutant 

construct as we also observed using the full-length construct.  Mutagenesis of repeat 5 

also caused dramatic differences in activity between the shortened and full-length 
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constructs.  The shortened mutant promoter produced a dramatic increase in ToxT-

independent activity.  This suggests that this mutation may either alter the local DNA 

structure, making it more favorable for activation, or may facilitate better RNAP binding.  

Mutagenesis of repeats 6 and 7 produced similar results in the shortened promoter and the 

full-length promoter. However, overall expression was much higher in WT E. coli in the 

shortened promoter. 

Competitive DNA binding by ToxT and H-NS.  To further understand the 

interplay between ToxT and H-NS at PctxAB, we peformed competitive EMSAs using 

WT, full length PctxAB, i.e. containing all seven heptad repeats, as the probe.  In Figure 

13, the first lane of the gel is DNA probe only.  Lane 2 contains 23 nM ToxT bound to 

DNA with two separate bands indicating the occupancy of either one or both toxboxes.  

Lane 3 contains 260 nM H-NS bound to DNA, and this complex migrates further down 

the gel than the ToxT/DNA complexes.  In lanes 4 and 5 the concentration of ToxT used 

is 14 nM the concentration of H-NS used was 170 nM and 260 nM, respectively.  The 

band corresponding to the H-NS/DNA complex is still present in these lanes, as is the 

band corresponding to the ToxT/DNA complex.  However, in lanes 6 and 7, when the 

amount of ToxT was increased to 23 nM, there is a supershift that appears when H-NS is 

added, suggesting both ToxT and H-NS are simultaneously bound to the DNA.  When the 

concentration of H-NS was increased (lane 7), the supershift was not prominent and the 

H-NS/DNA band starts to reappear.  To confirm that the supershift seen does indeed 

contain both ToxT and H-NS, we performed the same EMSA but using a primer 5’ end-

labeled with fluorescein to make the DNA probe.  The supershift band was visualized, 

excised, and sent for mass spectrometry analysis, which confirmed that both proteins 
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were present.  Conversely, we repeated the EMSA using the shorter El Tor WT PctxAB 

as a probe (Fig 13B).  Using the same protein and DNA concentrations, the supershift 

that was visible in the O395 PctxAB EMSA was not present when the El Tor probe was 

used.  Instead, only the two bands representing bound toxboxes appear. This is consistent 

with our findings from the promoter-reporter experiments in E. coli that H-NS cannot 

repress this construct containing only three heptad repeat sequences. 

 

DISCUSSION 

 The experiments in this study were designed to elucidate the complex mechanism 

under which transcription of ctxAB is activated with respect to ToxT and H-NS.  The 

cholera toxin promoter is an A/T rich region of DNA for which H-NS has a strong 

affinity (142).  In our previous work, we used the CP footprinting technique as well as 

site directed mutagenesis experiments to successfully characterize ToxT binding sites at 

PctxAB (45).  Here, using similar methods, the H-NS binding area in PctxAB was 

identified which allowed us to better understand the role it plays in regulating ctxAB.  

 DNase I footprinting at PctxAB previously revealed that H-NS binds to a very 

large region of the DNA that includes areas both upstream and downstream of the 

GATTTTT repeats found in the promoter (177).  CP footprinting with H-NS revealed 

protection in the region spanning from -100 to -59, which only includes the six perfect 

heptad GATTTTT repeats in the promoter (Fig. 10).  Interestingly, this region of DNA 

overlaps with toxbox 1, where ToxT binds from -72 to -60 but not toxbox 2, which is 

located immediately downstream from -58 to -49.  Currently, it is accepted that ToxT 

needs to displace H-NS from PctxAB in order to activate transcription. However, with 
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such a small region of overlap between the two proteins observed in our experiments, the 

extent of the displacement was not clear (196). 

 V. cholerae biotypes El Tor and O395 have a varying number of heptad repeats 

within PctxAB, three and six perfect repeats, respectively.   To investigate the differences 

in H-NS repression between the two biotypes, double point mutations were created in 

each of the GATTTTT repeats in both full length (classical) and shortened (El Tor) 

PctxAB and analyzed by β-galactosidase assays in E. coli strains that have an inducible 

toxT-encoded plasmid (Figs. 11,12).  When comparing the two versions of the promoter, 

the overall background levels of activation increased in the shortened promoter to levels 

matching those of hns- in the full length promoter.  Because half of the known H-NS 

binding sites are not present in the shortened promoter and H-NS functions by 

oligomerizing on DNA, it is likely that H-NS does not have the same repressive effect in 

the shortened promoter, as also indicated by the doubling of fold differences between the 

WT H-NS and hns- background E. coli in the context of ToxT activation (Table 1).  

Additional binding sites, like those found in the full length promoter, allow for H-NS to 

repress transcriptional activation to a greater extent.  This is evident in the WT versions 

of both promoters; the classical promoter has an overall increase in transcription in hns- 

while there is no significant difference when H-NS is not present in the El Tor promoter 

(Table 1).  Double point mutations at repeats 2 and 6 have an effect on H-NS repression 

in the O395 PctxAB and this could be due to interrupting important H-NS oligomerization 

domains.  This is also seen at the virF promoter in Shigella and proU in E. coli (18, 153).  

Lastly, it is possible that the El Tor PctxAB does not provide enough H-NS binding sites 

for it to have an effective repressive role.  This is not due to H-NS’s inability to bind to 
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the El Tor promoter;  EMSAs were performed using the shortened promoter as the probe 

and H-NS is able to bind without any apparent binding differences when compared to the 

full length promoter (Fig. 13).  Additionally, the bound H-NS-DNA band appears at low 

concentrations of ToxT when it is only bound to one toxbox and not both toxboxes, 

suggesting protein competition for DNA binding at the shortened promoter. 

 The observed differences in H-NS dependent repression of ctxAB in the classical 

and El Tor strains calls for a revision of the current model regarding transcriptional 

activation of PctxAB.  The current model, devised by Yu et al., states that H-NS binding 

to DNA needs to be completely displaced by ToxT before transcription can be activated 

(196).  However, this model did not take into account variable H-NS binding sites found 

among V. cholerae biotypes and lacked the new knowledge of where ToxT binds at 

PctxAB.  We suggest an updated model for transcription activation of ctxAB based on our 

experiments (Fig. 14).  ToxT and H-NS only overlap from -72 to -60 relative to the 

transcriptional start site which coincides with toxbox 1.  ToxT displaces H-NS from this 

binding region in both promoters but not completely from the full length promoter, with 

evidence from both the competitive binding EMSA and the mass spectrometry results.   

 In addition to the differences between the promoters, it is interesting to note that 

the mutation at repeat 5 causes a similar effect on both the shortened and full length 

promoters.  The promoters in E. coli hns- strains have an elevated level of ToxT-

independent expression.  This trend is also seen when this mutant promoter is in V. 

cholerae, suggesting that this specific mutation changes the curvature of the DNA to 

make it favorable for transcription, possibly by enhancing RNAP binding. 
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 These studies were conducted in E. coli to avoid other V. cholerae factors that 

may have an effect on PctxAB.  One such factor is ToxR, which is known to have an 

effect on PctxAB transcription in the presence of bile in O395.  Recently, a ToxR 

consensus sequence was characterized and found to have multiple potential binding sites 

in PctxAB coinciding with the heptad repeats (66).  Mutations to repeat 6 and the 

imperfect repeat 7 have been shown to have a defect in ToxR-dependent activation and 

overlap with ToxT binding sites although the other repeats have not been investigated.  

ToxR is also thought to displace H-NS at the toxT promoter and it is possible for it to 

have a similar role in PctxAB (66, 146).   

 In summary, we have produced a higher resolution image of the H-NS binding 

region in PctxAB, a large A/T rich stretch of DNA that fits the requirements for H-NS 

binding.  The binding region was also characterized in two ctxAB promoter constructs 

having different numbers of heptad repeats, corresponding to differences between the 

classical and El Tor PctxAB.  These promoters have different requirements for activation 

and the mechanism by which H-NS represses activation.  Additionally, mutations to these 

promoters can drastically effect not only ToxT-dependent activation but H-NS-mediated 

repression.   
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GTATATTTTGATTTTTGATTTTTGATTTTTGATTTTTGATTTTTGATTTTTGATTTCAAATAATACAAA
CATATAAAACTAAAAACTAAAAACTAAAAACTAAAAACTAAAAACTAAAAACTAAAGTTTATTATGTTT

TTTATTTACTTATTTAATTGTTTTGATCAATTATTTTTCTGTTAAAC
AAATAAATGAATAAATTAACAAAACTAGTTAATAAAAAGACAATTTG

+1-35 -10
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 Figure 9: Map of the ctxAB promoter region in O395.  The solid black bar above the 
PctxAB sequence indicates the DNase I footprinting protection by H-NS (177).  The gray 
bar illustrates binding by H-NS characterized by copper-1,10-phenanthroline in this 
study.  The heptad repeats are designated by dotted arrows and numbered underneath the 
sequence; imperfect repeat 7 is designated by a dashed arrow.  The shaded gray boxes 
highlight previously identified toxboxes (45).  The shortened promoter used in this study 
extends to the boxed nucleotide at position -76.  The putative -35 and -10 promoter 
elements are also boxed and the transcriptional start site is indicated by the bent arrow.  



68 

 

G   A   T  C
DNA 
alone

H-NS 
+DNA

*

*

*

*

*

*

-100

-59

PctxAB

-182

1

2

3

4

5

6

 Figure 10: CP footprinting of H-NS on PctxAB.  H-NS binding is indicated by the solid 
arrows and the associated numbers correlate to the position from the transcriptional start 
site.  The asterisks highlight hypersensitive sites in the footprint that suggest DNA 
bending at those nucleotides.  “G,” “A,” “T,” and “C” at the top of the figure refer to the 
nucleotide in the lane of the sequencing ladder.  The dotted arrows represent each of the 
numbered GATTTTT heptad repeats.  The footprint was created using the full-length 
O395 promoter construct and extends to position -180. 
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Figure 11: Effects of double point mutations on full-length PctxAB transcription in E. 
coli.  The graph indicates the β-galactosidase results from ctxAB::lacZ promoter 
constructs.  The WT promoter construct is on the far left.  The double point mutations are 
highlighted in bold text and underlined.  Toxboxes are indicated by black solid arrows.  
The dotted arrows represent the numbered heptad repeats as well as the H-NS DNA 
binding region.  The imperfect heptad repeat is represented by the dashed arrow.  The 
white and light gray bars indicate WT E. coli K5971 with empty vector pMMB208 and 
toxT-encoding plasmid pMMTT, respectively.  The dark gray and black bars represent E. 
coli hns- strains with empty vector pMMB208 and toxT-encoding plasmid pMMTT, 
respectively.  Each experiment was repeated at minimum three times and the data show 
mean values with error bars showing standard deviation.
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 Figure 12: Effects of double point mutations on El Tor PctxAB transcription in E. coli.  
β-galactosidase results from El Tor ctxAB::lacZ promoter constructs.  The WT shortened 
promoter construct extends to -76 relative to the transcriptional start site is on the far left 
and labeled as pJW211.  The double point mutations are highlighted in bold text and 
underlined.  Toxboxes are indicated by black solid arrows.  The dotted arrows represent 
the numbered heptad repeats as well as the H-NS DNA binding region; the imperfect 
repeat is represented by the dashed arrow.  The white and light gray bars indicate WT E. 
coli K5971 with empty vector pMMB208 and toxT-encoding plasmid pMMTT, 
respectively.  The dark gray and black bars represent E. coli hns- strains with empty 
vector pMMB208 and toxT-encoding plasmid pMMTT, respectively.
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Figure 13: ToxT and H-NS binding to wild-type O395 and El Tor PctxAB constructs.  
Electrophoretic mobility shift assays (EMSAs) were performed with the full-length WT 
O395 PctxAB (A) and with the shortened El Tor PctxAB (B).  Lane 1 of each gel is the 
free probe without ToxT or H-NS.  Lane 2 contains 23 nM ToxT-MBP and lanes 3, 5 and 
7 contains 260 nM H-NS-His and the two arrows represent either one toxbox being 
occupied (lower arrow) or two toxboxes being occupied (upper arrow).  Lanes 4 and 6 
decrease the concentration of H-NS-His to 170 nM.
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Figure 14: Model for PctxAB activation in O395 and El Tor.  The dashed arrows 
highlight the H-NS binding region and the heptad GATTTTT repeats on PctxAB.  The 
solid arrows indicate the toxboxes.  The white circles represent H-NS which is bound to 
PctxAB under normal conditions and oligomerizes along the DNA.  Under ToxT-inducing 
conditions, ToxT, represented by the darker circles, displaces only H-NS monomers that 
overlap with toxbox 1 in O395 (A) or displaces H-NS completely from the promoter in El 
Tor (B), then subsequently binds to the toxboxes and activates transcription.
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2.45*3.441.391.00*-51

4.29*4.13*1.211.26*-54

2.64*2.251.481.70*-61

3.24*3.81*1.130.96*-68

2.34*3.351.190.85*-75

3.42*2.350.90*1.31*-82

1.11*1.00*2.012.55*-89

4.32*1.84*1.383.24*-96

6.972.572.105.43WT

toxT-ToxThns-H-NS

H-NS/hns-ToxT/toxT-

1.342.33*1.16*0.66*-51

1.271.32*1.471.41*-54

1.271.181.801.93*-61

1.201.98*1.15*0.71*-68

1.141.57*0.86*0.63*-75

1.200.692.213.78WT

toxT-ToxThns-H-NS

H-NS/hns-ToxT/toxT-

A B

 
 
Table 1: Relative fold differences between ToxT/toxT- and H-NS/hns- strains in wild-
type O395 (A) and El Tor (B) PctxAB constructs.  The fold differences represent the 
activation between ToxT/toxT- in H-NS and hns- E. coli strain on the left side of the 
tables and between H-NS/hns- in ToxT and toxT- E. coli strains on the right.  The PctxAB 
construct is indicated on the far left of the table.  Asterisks indicate statistically 
significant differences between the wild-type and mutant PctxAB constructs according to 
Student’s t test (P<0.03).
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CONCLUSIONS 

Vibrio cholerae possesses a complex regulatory network of virulence factors that 

enable it to infect human hosts and subsequently cause the severe diarrheal disease 

cholera.  Central to this cascade is ToxT, a positive transcriptional regulator that binds to 

and activates expression of most V. cholerae virulence determinants, including CT and 

TCP.  ToxT binds to toxboxes, which are found in the promoters of each virulence gene 

ToxT activates.  These toxboxes have been identified in many virulence gene promoters 

but, prior to this work, had not been characterized in PctxAB. PctxAB is arguably the most 

important promoter controlled by ToxT as V. cholerae cannot cause cholera if the 

bacteria cannot produce CT.  There are several repeats within PctxAB that fit the toxbox 

consensus sequence and previous studies had not revealed which of these are important 

for ToxT binding and activation of PctxAB transcription.  Additionally, H-NS, a global 

repressor, also binds to PctxAB and its interplay with ToxT had not been fully 

characterized prior to the work described here. 

The results of the work described in this dissertation indicated that ToxT binds to 

two toxboxes within PctxAB; one that encompasses two of the repeats found in the 

promoter and another that is immediately downstream.  This is a rather surprising finding 

given that each heptad repeat sequence could potentially comprise a toxbox, and the 

classical biotype PctxAB has six perfect heptad repeat sequences followed by a seventh, 

imperfect repeat, and thus seven potential toxboxes. However, only the sixth and seventh 

repeats are recognized by ToxT both in vitro and in vivo  The positioning of the toxboxes 

relative to the transcriptional start site classify PctxAB as a class I promoter, requiring 

that the activator protein, ToxT, interact with the α-CTDs of the RNAP to activate 
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transcription.  The potential DNA interaction or binding sites of the α-CTDs at PctxAB is 

unknown, as are the points of interaction between the α-CTDs and ToxT.  Future 

experiments could elucidate the interaction between the α-CTDs and ToxT to better 

understand the requirements necessary for PctxAB transcription activation.  The complex 

relationship between RNAP and activator proteins can then be used to investigate 

possible therapeutics against V. cholerae as well as other pathogens. 

PctxAB is also regulated by H-NS, by way of transcriptional repression.  It was 

commonly accepted that ToxT first derepressed PctxAB by entirely displacing H-NS from 

the promoter. This occurred by competitive binding to the DNA of ToxT, presumably 

because it bound to the promoter region with higher affinity than H-NS. The derepression 

step was followed by transcription activivation mediated by ToxT contacting RNAP.  

However, H-NS binding to PctxAB had not previously been characterized in detail.  The 

studies in this dissertation characterized H-NS binding sites at PctxAB, revealing that 

there is only a small region of DNA in which H-NS and ToxT binding sites overlap.  

Additionally, the degree of repression exerted by H-NS is dependent on the number of 

heptad repeats found in PctxAB; the number of heptad repeats varies between the 

classical and El Tor biotypes and even between individual strains of the same biotype.  

The observation that H-NS and ToxT binding sites have a relatively short region of 

overlap suggests that H-NS and ToxT may occupy PctxAB simultaneously and that full 

displacement of H-NS may not be necessary for full transcriptional activation by ToxT.  

Future studies could investigate the possible role of H-NS in controlling transcription 

levels after ToxT binding and whether other proteins such as ToxR and RNAP, which 

may also bind to PctxAB, are affected by H-NS repression.  The knowledge from these 
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experiments can glean new information about the role of H-NS on virulence promoters in 

V. cholerae and many other pathogenic Gram-negative bacteria.
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Vibrio cholerae is the bacterium responsible for the severe diarrheal disease 

cholera.  The disease is directly caused by cholera toxin, which is secreted by the 

bacterium in the upper small intestinal lumen during the course of infection.  Expression 

of cholera toxin, along with other virulence genes, is activated by the positive 

transcriptional regulator, ToxT.  ToxT binds to DNA sequences known as toxboxes that 

are found within promoters of virulence genes and subsequently ToxT activates 

transcription.  However, the toxboxes have not been previously characterized in arguably 

the most important virulence promoter in V. cholerae, the cholera toxin promoter 

(PctxAB).  Additionally, H-NS, a global transcriptional repressor found in Gram-negative 

bacteria including V. cholerae, also binds to PctxAB.  To activate transcription of PctxAB, 

ToxT needs to overcome the repression mediated by H-NS.  The mechanism for this, 

along with characterization of ToxT and H-NS binding to PctxAB, is investigated in this 

dissertation. 
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Chapter one characterizes ToxT binding to PctxAB and the experimental results 

identified two functional toxboxes in the promoter.  Mutagenesis to either of the toxboxes 

resulted in a significant defect in ToxT-dependent transcriptional activation and ToxT 

binding to DNA.  ToxT was also unable to bind the DNA when both toxboxes contained 

mutations and this led to a complete loss of ToxT activation of PctxAB.  Although there 

are other potential ToxT binding sites within the PctxAB promoter, ToxT requires only 

these specific regions of DNA for activation. 

Chapter two investigates the interplay between ToxT and H-NS at PctxAB.  

Different V. cholerae biotypes contain a varying number of heptad repeats that are also 

H-NS binding regions and it was previously thought that H-NS needs to be completely 

displaced from the DNA to relieve its repressive role.  However, the binding sites of 

ToxT and H-NS overlap in a small region of DNA and complete disassociation of H-NS 

from the promoter may not be necessary for PctxAB activation by ToxT.  Further 

experiments also revealed that ToxT and H-NS bind to the DNA simultaneously in 

promoters containing six heptad repeat sequences. This does not occur in the promoter 

that contains only three heptad repeat sequences.  These results suggest there is a direct 

correlation between the number of these heptad repeat sequences and the overall 

repression exerted by H-NS. 
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