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Section 1: HIV-1 Multidrug Resistant Protease with Residue 28 Insertion 

CHAPTER I: INTRODUCTION 

1.1 HIV-1 Viral Background 

 Human immunodeficiency virus (HIV) is a positive-sense, enveloped lentivirus that infects 

CD4+ T cells and can lead to the development of acquired immune deficiency syndrome (AIDS)	

[2]. 

1.2 Clinical Background 

 The Center for Disease Control (CDC) estimates that 1.2 million people are living with HIV in 

the United States as of 2013 and about 36.7 million people worldwide as of June 2016 (CDC, 

2016). HIV remains a worldwide concern as fatalities due to opportunistic infections continue to 

occur [3]. HIV is a retrovirus predominantly found as the HIV-1 strain [4, 5] . HIV-1 contains 

different viral proteins necessary for propagating its viral life cycle, one of which is the HIV-1 

protease [6-9] .  

1.3 Viral Mechanism/Protease Significance 

 HIV-1 protease (HIV-1 PR) is a 99 amino acid aspartyl protease that cleaves the Gag and Gag-

pol polyproteins in 9 locations to release mature proteins required for new virion assembly [6, 7, 

10-12]. The mechanism underlying the cleavage of the polyproteins is an almost symmetric 

interaction between the substrate and the catalytic aspartate residues from each monomer [13, 

14]. 

1.4 Mutations/Insertions 

 Inhibiting the HIV-1 PR with one of nine FDA-approved protease inhibitors (PI) has proven to 

be a successful strategy to prevent viral maturation; however, drug resistance mutations in HIV-1 

PR may act as a survival mechanism for the virus under pharmacologic pressure [15]. Multidrug 
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resistant mutations acquired by HIV-1 PR render conventional protease treatments less effective 

[12, 15-20], thus increasing the survival of the virus [12].  

 Insertion mutations are vastly underrepresented in the literature and their role remains unclear. 

We have recently identified a clinical isolate from the Wayne State University Infectious Disease 

Clinic in Detroit, MI which contains a five residue insertion between codons 28 and 29 of 

multidrug resistant HIV-1 protease. 

1.5 Specific Aim 

 To study the effects of the five residue insertion on HIV-1 PR function, we created a homology 

model of the insertion mutant and submitted the model to a 40 ns molecular dynamics 

simulation.  
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CHAPTER II: MATERIAL AND METHODS  

2.1 Phenotypic and Genotypic data 

 Phenotypic data for MDR28 was obtained by Phenosense® HIV drug resistance assay as 

performed at the Detroit Medical Center [21]. Genotypic data from the sequence of the mutant 

PR was provided by the Viroseq® HIV-1 genotyping system [22].  

2.2 Homology Modeling 

 A homology model of multidrug resistant HIV-1 PR (MDR) containing a five amino acid 

insertion, Asp-Asp-Thr-Ile-Leu (DDTIL), immediately to the c-terminal side of the 28th residue 

(MDR28) was created using SWISS-MODEL [23-26].  A wild-type (WT) HIV-1 PR crystal 

structure, 2O4S.pdb was obtained from the RCSB protein data bank and used as a template for 

the MDR28 homology model [27]. A homology model for MDR without the insertion was made 

using the same template (2O4S.pdb). The crystal structure 2O4S was used as a WT control. The 

resulting homology model for the MDR28 was a homodimer containing a total of 208 amino 

acids. The WT and MDR models each contained 198 amino acids. All of the models were 

subjected to 40ns molecular dynamics(MD) simulations. 

2.3 Molecular Dynamics Simulations  

2.3.1 Protease Complex Preparation 

 Visual Molecular Dynamics (VMD) software (VMD v.1.9.2) [27] was used to prepare the 

systems for MD simulations. WT, MDR, and MDR28 were prepared without a peptide (apo) 

resulting in three systems, respectively.  
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2.3.2 System Preparation 

 The preparation of the system for the MD simulation was carried out using VMD software 

(VMD v.1.9.2) [28]. The PR complexes as well as the apo structures were placed in a 12 Å 

TIP3P water box and were then neutralized with 0.15 M MgCl2. The simulations were performed 

for 40ns using NAMD (e) V 2.9. [29] and CHARMM force field 36 to set parameters [30] as 

previously described [31]. All simulations were run on the Wayne State University Grid 

(www.grid.wayne.edu). 

2.4 Analysis 

2.4.1 Structural Analysis  

All structural analysis was carried out using VMD (VMD v1.9.2) [28]. Frame 17,000 was 

selected as a model frame for WT, MDR, and MDR28 out of the 20,000 frame simulation. This 

frame was chosen as it is located further into the simulation after the proteases have had time to 

adjust and stabilize. 

RMSD values were calculated over the last 10 ns of the simulation using VMD (v 1.9.2). 

RMSF values were calculated for all 40 ns of the simulation. Secondary structural analysis was 

completed using the Ramachandran plot analysis tool. Ramachandran plots were used to analyze 

residues 23-42 of all three protease models for the last 10 ns of the simulation. RMSD model 

alignments of the full length PR, the hinge region, and the flap region were taken at 5 ns intervals 

of each PR RMSD. Model averages of MDR and MDR28 aligned with WT were also taken at 5 

ns intervals throughout the simulation using the RMSD alignment tool in the PyMOL Molecular 

Graphics System (Version 1.8 Schrödinger, LLC). 
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CHAPTER III: RESULTS 

3.1 Reduced replicative capacity and drug resistance of MDR28  

 In a Phenosense® susceptibility test, clinical isolate MDR28 displayed full or partial 

resistance to the following protease inhibitors (PIs): atazanavir (ATV/r), amprenavir (AMP/r), 

indinavir 

(IDV/r), 

tipranavir 

(TRV), and 

nelfinavir (NFV) 

(Table 1). 

Viroseq®, a 

genotypic 

antiretroviral drug 

resistance report 

was then 

performed, and 

MDR28 showed 

resistance 

mutations 

impacting the PIs IDV, LPV, 

fosamprenavir (FPV), and 

possible resistance to TPV, DRV, and ATV. Saquinavir (SQV) was the only inhibitor for which 

there were no known resistance mutations present (Table 1). A list of resistance mutations found 

Table	2.	MDR28	resistance	mutations	and	corresponding	PI	resistance.	
Summary	of	Viroseq®	HIV-1	genotype	report	with	possible	PI	resistance	
profile.	

Table	1.	Phenotypic	and	genotypic	susceptibility	data.	Summary	of	phenotypic	and	genotypic	resistance	
data	provided	by	Phenosense®	and	Viroseq®.	
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in MDR28, and their contributions 

are available in Tables 1 and 2. 

Genotypic reports are more 

predictive of future drug resistance, 

and the phenotypic data can be 

predictive of the clinical outcome. It 

was also determined in a 

Phenosense® replicative capacity assay 

that in the absence 

of inhibitors the 

isolate MDR28 

functioned at a 

reduced replicative 

capacity compared 

to WT (only 29% of 

WT) (Figure 1).  

 

3.2 Homology modeling of MDR28, WT, and MDR of MDR28, WT, and MDR: 

Wildtype (WT) HIV-1 PR is a 99 amino acid aspartyl-protease. Two 99 amino acid 

monomers form a homodimer to create active HIV-1 PR. [7, 8, 11, 12]. In dimer form, both WT 

and multidrug resistant HIV-1 PR (MDR) contain 198 amino acids. MDR and the corresponding 

Figure	2.	Sequence	alignment	MDR28,	WT,	and	MDR.	The	
absence	of	an	insertion	is	indicated	by	dashes	(-),	homology	
indicated	with	by	the	presence	of	an	asterisk	(*),	mutations	
denoted	by	a	colon	(:).			

Figure	1.	Replicative	Capacity.	Comparison	of	replicative	
capacity	as	percentage,	visualized	as	a	bar	graph.	MDR28	
represented	with	green,	WT	represented	with	blue.	



	 	

	

7	

homology model showed 6 mutations within each monomer sequence. These mutations are 

consistent in both MDR and our multidrug resistant HIV-1 PR (MDR28) isolate with an insertion 

immediately following the carboxyl terminus of amino acid 28. This added insertion results in a 

homodimer with 208 amino acids. (Figure 1) 

The 5 residue insertion in MDR28 appears to promote the formation of an alpha helix in 

the hinge region that is not present in WT or MDR (Figure 2).The hinge region of the proteases 

are composed of amino acids 34-42 [2] , which normally affect the flap region and subsequent 

conformational ability [2]. The flap region is composed of residues 43-59 [2] and is responsible 

(a)	

(c)	

(b)	

Figure	3.	Ribbon	representations	of	HIV-1	PR	structures.	(a)	WT	shown	in	magenta,	catalytic	
asp25	in	red	(b)	MDR28	shown	in	in	green,	multi-drug	mutations	in	orange,	asp25	in	red,	and	
insertion	residues	in	yellow.	(c)	MDR	shown	in	cyan	with	multidrug	resistant	mutations	in	
orange	and	asp25	in	red		
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for the proteases ability to take on an “open” or “closed” conformation, affecting its ability to 

bind to the substrate [11]. 

3.3 Secondary structure analysis  

 To determine whether the alpha helix in MDR28 was transient or present throughout the VMD 

simulation (VMD v.1.9.2) [28], the hinge regions of each model were analyzed with 

Ramachandran diagrams. Ramachandran diagrams plot phi vs. psi angles of the peptide linkages 

between amino acids, which compose the protease backbone [32]. Each data point represents one 

of 5,000 frames that were analyzed (materials and methods). Plots were generated of the 

insertion and the surrounding residues for each monomer (denoted as monomer A and monomer 

B) over the last 10 ns of the simulation. The MDR28 insertion residues were labeled 28a-28e 

(Figure 5). A change in secondary structure for MDR28 is consistent throughout the last 10ns of 

the simulation. Alpha helix formation is observed at residues 29-35 in MDR28, corresponding to 

residues 34-40 in WT and MDR (Figure 6). No comparable secondary structure changes were 

seen in WT or MDR. No additional deviations in secondary structure were seen in surrounding 

residues. (Figure 4, Figure 7). 
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3.3.1 Prior to insertion 

 

  

 

	Chain	P’	
	
	 23	 24	 25	 26	 27	 28	

MDR	28	

	 	 	 	 	 	

MDR	

	 	 	 	 	 	

WT	

	 	 	 	 	 	

	
Chain	P	
	
	 23	 24	 25	 26	 27	 28	

MDR	28	

	 	 	 	 	 	

MDR	

	 	 	 	 	 	

WT	

	 	 	 	 	 	

Figure	4.	Ramachandran	plots	prior	to	insertion.	MDR28,	MDR,	and	WT	
residues	23-28	shown	above.	No	obvious	structural	deviations	noted.		
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3.3.2 Insertion residues 

 

	
Chain	P	

	 29/28a	 30/28b	 31/28c	 32/28d	 33/28e	

MDR	28	

	 	 	 	 	

MDR	

	 	 	 	 	

WT	

	 	 	 	 	 	
Chain	P’	

	 29/28a	 30/28b	 31/28c	 32/28d	 33/28e	

MDR	28	

	 	 	 	 	

MDR	

	 	 	 	 	

WT	

	 	 	 	 	

Figure	5.	Ramachandran	plots	corresponding	to	insertion	
residues.	MDR	and	WT	residues	29-33,	and	MDR28	residues	28a-
28e	shown	above.	No	obvious	structural	differences	noted.	
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3.3.3 After insertion 

  

 

 

 

	

Chain	P	

	 34/29	 35/30	 36/31	 37/32	 38/33	 39/34	 40/35	

MDR	28	

	 	 	 	 	 	 	

MDR	

	 	 	 	 	 	 	

WT	

	 	 	 	 	 	 	

Monomer	A	

	

Chain	P’	

	 34/29	 35/30	 36/31	 37/32	 38/33	 39/34	 40/35	

MDR	28	

	 	 	 	 	 	 	

MDR	

	 	 	 	 	 	 	

WT	

	 	 	 	 	 	 	

Monomer	B	

Figure	6.	Ramachandran	plots	after	insertion.	WT	and	MDR	residues	34-40,	
and	MDR28	residues	29-35	shown	above.	Alpha	helix	formation	observed	in	
residues	31-35	of	MDR28	only.	
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Chain	P	

	 41/36	 42/37	 43/38	 44/39	 45/40	 46/41	 47/42	

MDR	28		
	

	 	 	 	 	 	 	

MDR	

	 	
	

WT	

	 	

	

Chain	P	

	 41/36	 42/37	 43/38	 44/39	 45/40	 46/41	 47/42	

MDR	28		
	

	 	 	 	 	 	 	

MDR	

	 	
	

WT	

	 	

Figure	7.	Ramachandran	plots	after	insertion.	MDR28,	MDR,	and	WT	
residues	following	insertion.	No	obvious	structural	changes	observed	
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3.4 Flexibility analysis through RMSF calculations  

 To determine if the addition of an alpha helix affected hinge and flap flexibility, RMSF was 

analyzed across the 40 ns simulation. The RMSF calculations were analyzed with VMD software 

(VMD v.1.9.2) [28]. Averages of the monomers of all three proteases— WT, MDR, and MDR28 

were visualized as graphs (Figure 8) and models (Figure 9). No obvious changes in flexibility 

were noted. RMSF values were visualized for the hinge (Figure 10) and flap residues (Figure 

11) to ensure no changes were seen. The RMSF analysis did not show substantial changes in 

flexibility between the proteases in any location. 

3.4.1 RMSF averages of monomers  

Figure	8.	RMSF	Averages	of	monomers.	a)	RMSF	Averages	represented	as	line	graph	with	
average	RMSF	vs	residue.	b)	RMSF	averages	for	all	residues	represented	by	bar	graph		

 (a)	  (b)	
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3.4.2 RMSF flexibility models  

 

3.4.3 RMSF averages hinge region 

 (c)	

 (a)	  (b)	

Figure	9.	RMSF	Represented	by	Model	
Highlighting.	Red	indicates	a	high	degree	
of	flexibility,	blue	indicates	low	degree	of	
flexibility.	a)	WT	b)	MDR	c)	MDR28	

Figure	10.	RMSF	Averages	Hinge	Residues.	a)	RMSF	hinge	residues	
represented	by	RMSF	vs	Residue	line	graph	b)	RMSF	hinge	residues	
visualized	as	bar	graph	

 (a)	  (b)	
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3.4.4 RMSF flap region 

  

3.5 RMSD analysis  

Due to the presence of an alpha helix throughout the 40 ns simulation in MDR28, the 

effect of this structure on the flap and hinge dynamics were examined. RMSD analysis was 

calculated using VMD (VMD V.1.9.2.) [25] to determine whether the alpha helix altered the 

atomic coordinates in MDR28 compared to WT and MDR structures. Averaged RMSD values of 

each protease were taken and represented as line and bar graphs (Figure 12). In the hinge region, 

a peak is present at residue 39 of MDR28 (Figure 13). This deviation is not observed in WT or 

MDR. The flap residues were visualized using the same graphing methods (Figure 14). 

Comparatively, the dynamics of the flap region appear altered as well.  

 

 

 (b)	

Figure	11.	RMSF	Averages	Flap	Residues.	a)	RMSF	flap	residues	
graphed	as	RMSF	vs	residue.	b)	RMSF	flap	residues	visualized	as	a	bar	
graph	

 
(a)	

 (a)	
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3.5.1 RMSD averages homodimers and monomers 

 

3.5.2 RMSD hinge region 

 

 

 

 (b)	

Figure	12.	RMSD	Averaged	Monomer	Values.	a)	Averaged	monomer	
values	represented	as	line	graph	(RMSD	vs	residue).	b)	Averaged	residues	
visualized	by	bar	graph	

 (a)	

 (a)	  (b)	

Figure	13.	Average	hinge	region	RMSD	values.	a)	RMSD	hinge	averages	for	WT	
(blue),	MDR	(red),	and	MDR28	(green)	represented	by	line	graph	(RMSD	vs	
residue	b)	Averaged	hinge	region	RMSD	represented	by	bar	graph	
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3.5.3 RMSD flap region 

 

 

 

 

 

3.6 RMSD model analysis at 5 ns intervals suggests increased structural similarity: 

To determine whether the dynamics information translated to similarities in structural 

alignment, RMSD values of MDR and MDR28 aligned with WT were taken at 5 ns intervals 

throughout the simulation. The model alignment values were measured using the RMSD 

alignment tool in the PyMOL Molecular Graphics System (Version 1.8 Schrödinger, LLC). The 

results suggest that over time MDR28 acts with increased structural similarity to WT. MDR28 

consistently showed higher average similarity to WT in all three datasets—full length PR 

(Figure 15), hinge region (Figure 16), and flap region (Figure 17). The data for MDR and 

MDR28 were visualized using line graphs representing RMSD compared to WT vs time. Data 

averages for each region were visualized using bar graphs. The largest deviation in structural 

similarity between MDR and MDR28 when compared to WT, was seen between the flap regions 

(Figure 17), where MDR28 continued to show the highest amount of similarity to WT. The flap 

 (a)	  (b)	

Figure	14.	Average	flap	region	RMSD	values.	a)	RMSD	flap	region	averages	
for	WT	(blue),	MDR	(red),	and	MDR28	(Green)	represented	by	line	graph	
(RMSD	vs	residue).	b)	Averaged	flap	region	RMSD	represented	by	bar	graph	
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region is imperative in accessibility to the active site, and subsequent substrate recognition and 

cleavage [33]. Furthermore, in previous studies mutant isolates were compared and those 

differing in only the insertions showed higher overall rates of replication [14]. MDR28 appears 

to compensate for MDR mutations by increasing structural similarity to WT. These results may 

indicate compensation to promote viral fitness as the underlying mechanism that promotes 

cleavage of the polyproteins. Subsequently, this would be dependent on proper structure and 

subsequent interactions between the substrate and the catalytic residue asp25 [13, 14]. 

3.6.1 RMSD full length model analysis:  

 

 

 

 

 

 

(b)	(a)	

Figure	15.	RMSD	Model	Alignment.	a)	RMSD	PR	alignments	at	5	ns	intervals	
visualized	by	line	graph	(RMSD	compared	to	WT	vs	Time).	b)	RMSD	Alignment	
PR	averages	visualized	as	bar	graph.	
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3.6.2 RMSD hinge region model analysis:  

 

 

3.6.3 RMSD flap region model analysis:  

 

 

 

 

 

Figure	16.	RMSD	Model	Alignment	Hinge	Region.	a)	RMSD	hinge	region	
alignments	at	5	ns	intervals	visualized	by	line	graph	(RMSD	compared	to	WT	vs	
Time).	b)	RMSD	Alignment	hinge	region	averages	visualized	as	bar	graph.	

(a)	 (b)	

Figure	17.	RMSD	Model	Alignment	Flap	Region.	a)	RMSD	flap	region	
alignments	at	5	ns	intervals	visualized	by	line	graph	(RMSD	compared	to	WT	vs	
Time).	b)	RMSD	Alignment	flap	region	averages	visualized	as	bar	graph.	

(b)	(a)	
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CHAPTER IV: CONCLUSION AND DISCUSSIONS 

4.1 Overview 

HIV is an incurable virus that accounts for many deaths in the US and worldwide as documented 

by the CDC (https://www.cdc.gov/hiv/basics/statistics.html). HIV often progresses to AIDS [6], 

which ultimately decreases lifespan via modes such as opportunistic infections [2]. HIV protease 

plays a crucial part in the viral life cycle [5, 6, 9-11] and without its ability to function the virus 

is incapable of completing replication [1, 33]. Though protease inhibitors have been effective in 

treating HIV infections [7, 9, 18, 34], HIV-1 PR has mutated as a potential means of preserving 

its viral life cycle [14]. Multidrug resistant HIV is caused by specific mutations [11, 35]. 

Additionally, strains of multidrug resistant HIV-1 are more difficult to treat [11, 14-19] 

potentially due to different intermolecular forces created by the changes in 6 key amino acids 

[36]. It has been suggested that insertions may compensate for resistance mutations, but little 

literature currently exists [14].  

4.2 Key Findings 

 The insertion found in our clinical isolate created a shift in the protease structure, due to the 

addition of an alpha helix to the hinge region. This altered hinge region appears to act as a 

compensatory mechanism, reestablishing structural similarities to WT, which are necessary for 

efficient cleavage of viral polyproteins [13, 14].  The structural change is a likely contributor to 

the proteases ability to adopt “open” and “closed” conformations, as the hinge region is 

implicated in making conformational changes [18] by controlling the movement of the flap 

regions [10]. The flap residues are responsible for accessibility to the active site and subsequent 

substrate recognition and cleavage [33]. The change in hinge structure and dynamics resulted in 

a change in flap dynamics. The similarity in RMSD flap values for WT and MDR28 serves as 
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evidence of compensation and structural restoration. The insertion itself may be, in part, due to 

polymerase slippage [34] creating the consequential five amino acid repeat seen within the 

isolate. However, it is reasonable to think that the MDR28 hinge alteration is a viral adaptation 

as a means of promoting structural restoration, replicative capacity, and consequential viral 

fitness.  

4.3 Concluding Remarks 

 Further studies will need to be conducted to decisively conclude the role of insertions in viral 

fitness. 
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Abstract 

Human immunodeficiency virus-1 (HIV-1) is a widespread, incurable retrovirus known to cause 

immunodeficiency and a shortened life span. Despite successful treatment methods, HIV-1 

frequently mutates, resulting in antiviral resistance. Many therapies target the HIV-1 protease 

(PR), which is responsible for cleaving the viral polyprotein essential for its life cycle. HIV-1 PR 

often evades treatment by way of mutations and less commonly through residue insertions. We 

have identified a clinical isolate with a five residue insertion between residues 28 and 29. 

Through molecular dynamics simulations we analyzed the protease protein structure and 

determined that the residue insertion created a change in the secondary structure of the hinge 

region of the viral protease. Elucidating the role of insertions could both aid in understanding 

viral mutations as well as the theoretical effect on patient treatment/outcome. 
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Section 2: Chikungunya nsP2 Protein Optimization, Purification, Expression and Drug 
Design 

CHAPTER I: INTRODUCTION  

1.1 Chikungunya Virus Background: 

 Chikungunya virus (CHIKV) is a +ssRNA arbovirus belonging to the Alphavius genus, and the 

Togavirdae family [35-50]. Chikungunya is considered a neglected tropical disease by the World 

Health Association (WHO, http://www.who.int/neglected_diseases/diseases/en/), but is becoming 

a growing concern as an emergent virus to non-tropical climates, resulting from climate change 

and its consequential global warming, creating an increase in temperatures around the world [50-

56]. As an emerging virus, CHIKV may be most notable for severe arthralgia in infected patients 

spanning from days to years	[35-39, 41, 44, 45, 47, 49, 50, 57]. The pain is notoriously agonizing.  

The name “Chikungunya” is derived from the Makonde language meaning, “that which bends up” 

which serves as a descriptor of the contorted stance those plagued by severe arthralgia secondary 

to CHIKV infection exemplify [49, 55, 56, 58]. CHIKV was first identified in East Africa during 

the 1950s Tanzania outbreak [35, 37, 46, 49, 55, 59], but now affects a minimum of 45 countries 

spanning the Caribbean, and the Americas [39, 40, 51, 54, 55, 57, 58, 60]. The ability for CHIKV 

to span many countries is partially due to its mosquito vector. Its spread is additionally due to its 

capacity to mutate as an RNA virus [35, 40, 49, 59-62]. Originally, vectored by the mosquito Aedes 

aegypti, a mutation created the ability for a second, more aggressive mosquito Aedes albopictus to 

vector and spread the virus [35, 37, 39, 40, 45-47, 49, 52-56, 58, 60-63, 64]. As the climate 

continues to change, and mutations continue to occur, CHIKV will likely have the capability to 

continually adapt and spread to new locations. Subsequently, a good understanding of the virus 

and the viral life cycle is imperative. Furthermore, no FDA drugs are currently approved for the 
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treatment of CHIKV which garners a need for development of drug therapies and vaccines to 

prevent the spread of the disease to previously unaffected areas.  

 1.1.1 Cause: 

 CHIKV is caused by a mosquito vectored +ssRNA arbovirus [38, 41, 49, 50, 55, 56, 64]. It is a 

zoonotic virus, passed between humans and non-human primates via mosquito bite [39, 40, 45, 

46]. As an RNA virus CHIKV does not have proof-reading capabilities, making it adaptable by 

way of mutations [62]. Because of its small genome, one point mutation can make a substantial 

difference in transmission/vector compatibility [35, 40, 49, 59-62].  

 

 1.1.2 Viral Mechanism/Protease Significance:  

 The CHIKV genome is comprised of two open reading frames—one responsible for encoding 

the nonstructural protein precursor polyprotein, and the second for the encoding of the precursor 

polyprotein responsible for the three structural proteins [39, 45, 50]. There are four nonstructural 

proteins: nsp1, nsp2, nsp3, and nsp4 [39, 41, 45, 48]. Structural proteins are responsible for 

CHIKV viral enzymatic activities. The structural proteins are C (capsid), E1, and E2 (envelope 

proteins) [39, 41, 45, 48]. These are responsible for non-enzymatic, protective components of the 

virus. The nonstructural polyprotein is P1234, which is self-cleaved by the protease activity of 

nsP2 [41, 44-46, 48-50]. The nonstructural proteins, after cleavage, form a replication complex 

responsible for viral replication [41, 44-46, 48-50, 63]. Each nonstructural protein plays an 

important role. Nsp1 plays a functional role in attaching the replication complex to the cell 

membrane, thus acting as an anchor for the complex [41, 45]. Nsp2 has dual roles—cleaving 

imperative viral nonstructural proteins of the replication complex with its protease and helicase 

activity. Additionally, the nsp2 plays an active role in evading the host innate immune system by 
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means of activating the transcription-coupled repair mechanism in the host cell. This repair 

mechanism destroys polymerase II catalytic subunit, Rbp1, by ubiquitination and degradation. 

This mechanism also suppresses JAK-STAT signaling pathway in the host cell —both of which 

are necessary for viral propagation and survival in the host. Additionally, nsp2 has nucleoside 

triphosphatase (NTPase) and RNA-dependent 5-triphosphatase capabilities [41, 44-49, 63]. Nsp3 

functions as cofactor for nsp4 [41] and also acts as part of the replication complex. Aside from 

its involvement as a cofactor, the function of nsp3 is not fully understood [45]. Lastly, nsp4 is the 

RNA-dependent RNA polymerase responsible for replication [41, 45, 49]. Because of its 

essential role in both evasion of the immune system and viral life cycle, nsp2 has been 

recognized as a promising pharmaceutical target [44-48, 63].  

 

1.2 Clinical Background 

 1.2.1 Impact/Demographic: 

 CHIKV was initially isolated in the early 1950s in Tanzania and northern Mozambique [35, 37, 

46, 49, 55, 59]. At first it was thought to be a self-limiting tropical virus; however, it has been 

reported to result in severe complications and fatalities [60, 61]. Throughout the last several 

decades, CHIKV has continued to spread to new, unaffected regions and is now found in at least 

45 countries [39, 40, 51, 57, 58, 60]. Presently, outbreaks cease to be contained to tropical 

climates. The ability to infect other climates may increase due in part to mutations and infected 

travelers, as well as climate change potentially influencing the vectors [37, 47, 50, 53, 55]. 
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 1.2.2 Symptoms: 

 CHIKV is characteristically known for the symptom of extreme arthralgia, which can be either 

acute or chronic [35-39, 41, 44, 45, 47, 49-51, 53, 56, 57, 65]. The name of the CHIKV came 

from the notorious, severe arthralgia it is known for. Its name means “that which bends up,” 

which describes the contorted posture of an infected patient [49, 55, 56, 58]. The joint pain can 

be debilitating and has the ability to progress into deforming arthritis [66]. Additionally, chronic 

arthralgia can occur which can span for over a year post infection [57]. Chronic patients may 

exhibit high levels of interleukin 6, as well as high levels of granulocyte macrophage colony-

stimulating factor without the normal increase in TNF or IL-1b characteristic of other forms of 

inflammation triggered arthritis [61]. With the ongoing threat of spread due to increases in 

globalized travel, global warming, and viral mutations facilitating adaption to new vectors [37, 

47, 50, 53, 55], rheumatologists are likely to face challenging and unexpected cases of arthralgia 

due to CHIKV as the virus migrates to more temperate, northern climates.  

 Normally symptoms are acute in nature, lasting from 3-10 days [50, 57]. Other symptoms 

associated with CHIKV include an acute onset of high fever, nausea, vomiting, maculopapular 

rash, myalgia, headache, and chills [35, 36, 39, 41, 44-47, 50, 53-56, 58, 64]. CHIKV patients 

presenting with Guillain-Barre syndrome and associated neurological symptoms have been 

reported [67]. Guillain-Barre syndrome is a rare condition, which can progress to troubling 

symptoms such as flaccid quadriparesis and decreased swallowing and/or breathing capability 

[67]. Although these symptoms are normally reversible, fatalities can occur due to 

complications. Initially CHIKV was thought to be a self-limiting illness [39, 51, 53, 61], 

however, its spread in Reunion Island resulted in 254 reported deaths related either directly or 

indirectly to CHIKV [61]. With the potential emergence of CHIKV to previously unaffected 
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areas it is important that medical professionals are prepared to diagnose and treat the condition 

efficiently. Quick treatment may decrease the likelihood of chronic and debilitating symptoms 

such as neurological complications, or even death. 

 

 1.2.3 Treatment/Prognosis: 

 No known FDA approved antivirals currently exist [68], although, a recent study conducted a 

drug screen with potential for berberine, abamectin, and ivermectin (used as anti-insect or anti-

parasitic agents, with the potential for wide-spectrum antiviral use).  These three agents showed a 

reduction in viral RNA synthesis, although the mechanism of action is not fully understood [38]. 

Currently, treatments are focused on alleviating symptoms and inflammation. 

 

1.3 Global Warming and Drug Design Urgency  

 1.3.1 Global Warming Predictions: 

 Over the past several decades, atmospheric changes have resulted from an increase in 

greenhouse gases. Gasses indicated in the atmospheric changes include carbon dioxide, methane, 

and nitrous oxide	[69]. The increase of gasses due to manmade activity, such as fossil fuel 

combustion, has led to a warming of the earth’s surface. [69, 70]. This increase in temperature 

may facilitate an increase in diseases	[69-71]. Viruses vectored by mosquitos, such as CHIKV, 

present a threat of emergence with climate change as their vectors have the potential to carry out 

their life cycle in new areas, due to the increased heat, moisture, deforestation, and other 

ecological changes [55, 69-71]. CHIKV presents a substantial threat of complications to northern 

climates with naïve populations, who are largely unexposed to the virus	[64]. Unaffected 
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populations have the potential to quickly spread the virus, suffer severe complications, and even 

potential fatalities, due to exposure [60].  

 

 1.3.2 Vectors and Distribution: 

 CHIKV is primarily vectored by the Aedes aegypti and Aedes albopictus mosquitos [52-56, 58, 

60, 61, 64]. CHIKV underwent a mutation first discovered in the 2006 La Reunion viral 

outbreak, which created the ability for Aedes albopictus to act as a vector [60,	61].	Aedes 

albopictus is capable of spreading the virus to a larger geographical range, due to its ability to 

survive variable conditions—both rural and urban [52, 55 , 56, 58, 60, 61, 64]. Climate 

predictions yielded varying results on the outcome for CHIKV vectors due to climate change 

[72-83]. Although vector predictions vary, it is essential to be prepared as climate change 

escalates. Furthermore, it is imperative that effective antiviral therapy is available to combat the 

potential emergence of CHIKV and other vectored viruses in new geographic locations with 

unaffected, at-risk populations.  

 

1.4 Specific Aims: 

 The goal of this research is to optimize, express, and purify CHIKV nsP2 protease, with the 

future direction of small molecule drug design to inhibit nsP2.  

 

1.5 Significance:  

 Currently there are no known FDA approved CHIKV treatments. CHIKV outbreak is treated by 

alleviating symptoms, as no known, effective antiviral exists. With the threat of Arboviral 

emergence to unaffected areas of the world, pharmaceutical treatments are imperative. 
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CHAPTER II: MATERIALS AND METHODS  

2.1 Cloning and Small Scale Expression: 

  Chikungunya virus nsp2 protease (CHIKV) was cloned into a SUMO vector at EZbiolab, inc. 

(EZBioLab, 2015). A fusion protein was made with a 6x His attached to a SUMO tag, followed 

by the nsp2 CHIKV sequence with an Ampicillin resistance gene. The clone was transformed 

into Escherichia coli BL21 Codon Plus (DE3) cells for protein expression.  

 Protein expression optimization was preformed using 5 mL, small scale cultures. The SUMO 

tagged CHIKV protein was grown in 5 mL LB medium in the presence of Ampicillin. Protein 

expression was induced by addition of isopropyl-β-D-thiogalactoside (IPTG). To optimize 

protein overexpression the following variables were tested: optical density(OD600) prior to 

induction, IPTG concentration, and temperature. Induction of the cell cultures was carried out at 

OD600 0.5 or 1.0 with the addition of IPTG at the following concentrations: 0.1mM, 0.5mM, or 

1.0mM. Following IPTG induction of the cell culture, protein expression was carried out at 

either 37°C for three hours or 15°C overnight. After the incubation period the cells were lysed 

using lysozyme and polyacrylamide gel electrophoresis(SDS-PAGE) (15% w/v polyacrylamide) 

was used to determine protein expression levels and solubility (Figure 18). Results of 

optimization summarized in Figure 19.  
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Temp:	37	⁰C	
[IPTG]:	0.5mM	

0.5	OD600	 1.0	OD600	

66.4	kDa	
55.6	kDa	

27.0	kDa	

Temp:	37	⁰C	
OD600:	1.0		

1.0	mM	IPTG	
0.1	mM	IPTG	 0.5	mM	IPTG	

66.4	kDa	
55.6	kDa	

27.0	kDa	

Figure	18.	Nsp2	Optimization.		
Protein	optimization	of	CHIKV	
nsp2.	First	gel	(top)	tested	the	
OD600	condition.	Second	set	
of	gels	(middle)	tested	IPTG	
concentration.	The	third	set	of	
gels	(bottom)	tested	
temperature.	Constant	
conditions	are	listed	and	
boxed	to	the	left	of	the	
corresponding	SDS-PAGE	gel.		

Temp:	15	⁰C		

66.4	kDa	
55.6	kDa	

27.0	kDa	

Temp:	37	⁰C		

66.4	kDa	
55.6	kDa	

27.0	kDa	

[IPTG]:	0.5mM	
OD:	1.0	

Figure	19.	Optimization	Results.	Summary	
of	optimization	results	for	nsp2.	
Optimization	showed	the	best	
temperature	is	15°C,	IPTG	concentration	
as	0.5mM,	and	the	best	OD600	as	1.0.			

[IPTG]	

0.1	mM	 15°C	 0.5	

Temp.	 OD
600

	

0.5	mM	 37°C	 1.0	

1.0	mM	
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2.2 Large Scale Protein Expression and Purification:  

 Large scale protein expression was attained using 2 liter cultures. The optimized condition for 

growth of the cultures was as follows: induction with 0.5mM concentration of IPTG, OD600 of 

1.0, expression at 15°C overnight. The following day the cells were harvested via centrifugation 

and lysed by French Press. A Ni2+ affinity column (HisTrap™ HP, GE) was used to purify the 

soluble fraction. The SUMO tag was separated from CHIKV by proteolytic cleavage of the His6-

SUMO tag with yeast SUMO Protease 1 after the elution of the fractions. The cleaved protein 

was subjected to an additional round of Ni2+ purification followed by size-exclusion 

chromatography (Superdex 200, GE). Purified CHIKV was collected and concentrated to ~19 

mg/mL. The accuracy of the purified protein in the elution fractions were tested using SDS-

PAGE (15% w/v polyacrylamide). The gels were used to analyze the filtrate based on size and 

Coomassie Brilliant Blue staining was used to visualize the protein bands. 

 

2.3 Characterization of Enzyme Activity   

 FRET-based fluorometric enzyme assay was used to test the enzymatic activity of CHIKV. 

CHIKV was diluted in reaction buffer containing Tris 50mM, NaCl 10mM, at a pH of 9.1 to a 

final concentration of 539 nM. The reaction was initiated by adding FRET substrate (AnaSpec 

Inc.). The substrate used is based on the P4-P5’ residues of the nsp1/nsp2 (residues 

RAGAGIEK), nsp2/nsp3 (RAGCAPSYK), and nsp3/nsp4 (RAGGYIFSK) cleavage sites. The 

FRET substrate was serially diluted from concentrations of 100 µM to 39 nM and 75µM to 

37.5µM then added to the reaction to determine the kinetic parameters. The final reaction 

volume within the well was 100 µL. A microplate reader (SpectraMax M5, Molecular Devices, 

Sunnyvale, CA, USA) was responsible for monitoring the fluorescence emitted by substrate 
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cleavage at 488 nm excitation wavelength with an emission wavelength of 520 nm. The reaction 

was performed at 37°C with readings taken every minute for a total duration of 21 minutes. 

Standard curves were created, data was plotted and analyzed using GraphPad Prism v. 6.07. 

 

 

CHAPTER III: RESULTS  

 3.1 Overexpression and Purification of CHIKV 

Protease: 

 Using the optimized overexpression conditions 

outlined in section 2.1, a 2 liter culture of E. coli 

was used to overexpress CHIKV. The resulting 

cells were collected via centrifugation and 

lysed by French press, Figure 20 [1]shows a 

flowchart representing the order in which 

purification occurred. Expressed SUMO-

CHIKV fusion protein is seen at ~ 55.6 kDa 

molecular weight on a 15% v/w polyacrylamide SDS-PAGE gel as shown in Figure 21. The first 

Ni2+ column was applied with the elution of SUMO-CHIKV protein as a result of an imidazole 

gradient. Figure 21 shows the results from the first Ni2+ column as well as the desalting column, 

visualized on SDS-PAGE. The elution fractions B1-B6 were cleaved by yeast SUMO protease to 

remove the SUMO tag from CHIKV prior to the second Ni 2+purification. CHIKV was eluted 

from second a Ni2+ column as seen in Figure 22. Partial ULP cleavage was observed, and SDS-
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ULP-1		
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2.		

3.		 4.		1.		

Figure	20.	Protein	Purification	Scheme	[1].	
Purification	was	accomplished	through	two	Ni2+	
affinity	columns	(with	ULP-1	cleavage	of	SUMO	
between),	and	subsequent	Size	Exclusion	
chromatography.		
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55.6	kDa	

27.0	kDa	

66.4	kDa	

42.4	kDa	
34.6	kDa	

PAGE showed three protein bands.  

CHIKV is expected to present with the 

molecular weight of 37.4kDa, but bands 

were displayed at the experimental 

molecular weight of ~55.6kDa, ~35kDa, 

and ~19kDa on SDS-PAGE gel as seen in 

figure D. These results indicate partial 

ULP-1 cleavage, resulting in fusion 

protein, nsp2, and SUMO protein, 

respectively.  

 A final round of purification was 

obtained using size-exclusion 

chromatography. A strong, symmetrical 

peek is seen at ~86 mL indicting the 

beginning of CHIKV elution. The 

symmetrical peak indicates successful 

protein purification representative of only 

one species (Figure 23). Fractions D3-

D12 were concentrated to ~19mg/mL. 

 

 

 

 

66.4	kDa	

27.0	kDa	
34.6	kDa	
42.4	kDa	
55.6	kDa	

66.4	kDa	

27.0	kDa	

55.6	kDa	

34.6	kDa	
42.4	kDa	

Figure	21.	Optimization,	First	Nickel	Column,	and	
Desalting	Column.	(Top)	SDS-PAGE	gel	containing	the	
following:	lane	1:	marker;	lane	2:	induced;	lane	3:	
uninduced;	lane	4:	total,	lane	5:	supernatant;	lane	6	&	7:	
fractions	after	first	Ni2+	column;	Lanes	8	&	9:	before/after	
ULP	cleavage;	lane	10:	desalt	column.		Protein	is	soluble,	
but	incomplete	ULP	cleavage	is	observed.	(Bottom)	SDS-
PAGE	gel	containing	the	following:	lane	1:	marker;	lanes	2-
7:	1st	Ni2+	column	elution	fractions;	lanes	8-10	blank.		
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3.2 Characterization of 

Enzyme Activity   

FRET based assays were 

used to test enzymatic 

activity of purified CHIKV 

as described in section 2.3. 

Each substrate was tested to 

determine enzyme activity in 

the presence and absence of 

DTT in relation to the 

following cleavage sites 

(residues P4-P5’): nsp1/nsp2, 

nsp2/nsp3, and nsp3/nsp4. 

Each peptide contained a 

fluorescent tag (Hilyte Fluor 

TM, AnaSpec, Inc.) on the N-

terminus of the P4 Arginine.  

The enzyme optimization data is 

shown in Figure 24 as relative 

fluorescent units (RFU) as a 

function of enzyme 

66.4	kDa	
55.6	kDa	

27.0	kDa	

34.6	kDa	
42.4	kDa	

Figure	23.	Size-exclusion	Elution.	Results	for	the	size	exclusion	
elution.	The	sample	shows	a	symmetric	peak	(top)	when	
measuring	the	absorbance	vs	mL	of	sample,	and	one	protein	band	
(bottom)	in	SDS-PAGE	gel,	indicating	successful	purification	of	
CHIKV	nsp2.	The	lanes	of	the	SDS-PAGE	are	as	follows:	lane	1:	
marker;	lane	2:	gel	load;	lanes	3-10:	size-exclusion	elution	
fractions.		
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concentration. The nsp1/nsp2 

cleavage site showed the highest 

RFU (~0.3 RFU) without DTT at 

~256nM enzyme concentration. 

The nsp2/nsp3 cleavage site 

showed similar RFU values with 

and without DTT. The highest 

nsp2/nsp3 RFU (~0.25) was seen 

with DTT at ~512nM enzyme 

concentration. The nsp3/nsp4 did 

not show activity.  

 

 

CHAPTER IV: 

CONCLUSIONS AND 

DISCUSSIONS  

4.1 Overview: 

Expression, purification, and 

characterization of CHIKV was 

successful, yielding ~19 mg/mL or purified 

protein. The kinetic assays confirmed 

activity of CHIKV nsp2, further studies will 

Figure	24.	Enzyme	Activity	Assay.	Enzyme	
optimization	assay	results	measured	as	a	
function	of	RFU	as	a	function	of	enzyme	
concentration.	Results	recorded	without	
(top)	and	with	(bottom)	DTT.		
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aim at elucidating accurate binding information, as well as small molecule drug design.  

 

4.2 Key Findings: 

CHIKV appears to have an affinity for the gels used in purification. It is possible that this is due 

to ribose binding, as nsp2 is involved in the formation of the replication complex, and due to its 

NTPase activity, which provides energy for its helicase activity [41]. Additionally, when 

optimizing the protein, we found that it expresses best at lower temperatures (15 ⁰C). This may 

be in part due to its association with the replication complex docked to the cytosolic cell 

membrane [41]. The kinetic assays show enzymatic activity, creating the potential to test drug 

targets with nsp2, active protease.  

 

4.3 Concluding Remarks: 

In summary, we successfully optimized, expressed, and purified CHIKV nsp2 and conducted 

enzyme characterization assays which validated the enzymes activity. No FDA approved 

treatments currently exist for CHIKV, but with the threat of an Arborviral migration to 

previously unaffected climates due to global warming and other globalization factors, drug 

design to inhibit fundamental portions of the viral cycle is imperative. Future studies will aim to 

conduct drug screens and to crystalize wildtype CHIKV to yield accurate results for potential 

small molecule protease inhibitors.   
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Abstract: 

Chikungunya virus (CHIKV) is an incurable Arbovirus creating the most notable symptom of 

severe and sometimes chronic arthralgia. CHIKV is considered a neglected tropical virus by the 

World Health Association (WHO), with the potential of becoming a larger scale threat in part 

due to the influence of global warming on the mosquito population that serve as vectors for 

CHIKV. The virus has a life cycle is dependent on its nonstructural protein function, one of 

specific interest is nsP2. We have successfully expressed, optimized, and purified active CHIKV 

nsP2. Future studies will look at small peptidomimetic drug design.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 	

	

38	

 

References 

[1]	Kuiper,	B.D.,	Slater,	K.,	Spellmon,	N.,	Holcomb,	J.,	Medapureddy,	P.,	Muzzarelli,	K.M.,	et	al.	Increased	
activity	of	unlinked	Zika	virus	NS2B/NS3	protease	compared	to	linked	Zika	virus	protease.	Biochem	
Biophys	Res	Commun.	2017.	
[2]	Liu,	Z.,	Huang,	X.,	Hu,	L.,	Pham,	L.,	Poole,	K.M.,	Tang,	Y.,	et	al.	Effects	of	Hinge-region	Natural	
Polymorphisms	on	Human	Immunodeficiency	Virus-Type	1	Protease	Structure,	Dynamics,	and	Drug	
Pressure	Evolution.	J	Biol	Chem.	2016,	291,	22741-56.	
[3]	Chow,	A.,	Tey,	J.,	Win,	M.K.,	Leo,	Y.S.	Causes	of	death	and	factors	associated	with	early	death	among	
human	immunodeficiency	virus	(HIV)-infected	persons	in	Singapore:	pre-highly	active	antiretroviral	
therapy	(HAART)	and	Peri-HAART.	Ann	Acad	Med	Singapore.	2012,	41,	563-70.	
[4]	Bandaranayake,	R.M.,	Kolli,	M.,	King,	N.M.,	Nalivaika,	E.A.,	Heroux,	A.,	Kakizawa,	J.,	et	al.	The	effect	
of	clade-specific	sequence	polymorphisms	on	HIV-1	protease	activity	and	inhibitor	resistance	pathways.	
J	Virol.	2010,	84,	9995-10003.	
[5]	Wlodawer,	A.,	Miller,	M.,	Jaskolski,	M.,	Sathyanarayana,	B.K.,	Baldwin,	E.,	Weber,	I.T.,	et	al.	
Conserved	folding	in	retroviral	proteases:	crystal	structure	of	a	synthetic	HIV-1	protease.	Science.	1989,	
245,	616-21.	
[6]	Liu,	Z.,	Wang,	Y.,	Brunzelle,	J.,	Kovari,	I.A.,	Kovari,	L.C.	Nine	crystal	structures	determine	the	substrate	
envelope	of	the	MDR	HIV-1	protease.	Protein	J.	2011,	30,	173-83.	
[7]	Sayer,	J.M.,	Agniswamy,	J.,	Weber,	I.T.,	Louis,	J.M.	Autocatalytic	maturation,	physical/chemical	
properties,	and	crystal	structure	of	group	N	HIV-1	protease:	relevance	to	drug	resistance.	Protein	Sci.	
2010,	19,	2055-72.	
[8]	Bannwarth,	L.,	Rose,	T.,	Dufau,	L.,	Vanderesse,	R.,	Dumond,	J.,	Jamart-Gregoire,	B.,	et	al.	Dimer	
disruption	and	monomer	sequestration	by	alkyl	tripeptides	are	successful	strategies	for	inhibiting	wild-
type	and	multidrug-resistant	mutated	HIV-1	proteases.	Biochemistry.	2009,	48,	379-87.	
[9]	Meher,	B.R.,	Wang,	Y.	Exploring	the	drug	resistance	of	V32I	and	M46L	mutant	HIV-1	protease	to	
inhibitor	TMC114:	flap	dynamics	and	binding	mechanism.	J	Mol	Graph	Model.	2015,	56,	60-73.	
[10]	Yu,	Y.,	Wang,	J.,	Shao,	Q.,	Shi,	J.,	Zhu,	W.	Effects	of	drug-resistant	mutations	on	the	dynamic	
properties	of	HIV-1	protease	and	inhibition	by	Amprenavir	and	Darunavir.	Sci	Rep.	2015,	5,	10517.	
[11]	Louis,	J.M.,	Roche,	J.	Evolution	under	Drug	Pressure	Remodels	the	Folding	Free-Energy	Landscape	of	
Mature	HIV-1	Protease.	J	Mol	Biol.	2016,	428,	2780-92.	
[12]	Agniswamy,	J.,	Shen,	C.H.,	Aniana,	A.,	Sayer,	J.M.,	Louis,	J.M.,	Weber,	I.T.	HIV-1	protease	with	20	
mutations	exhibits	extreme	resistance	to	clinical	inhibitors	through	coordinated	structural	
rearrangements.	Biochemistry.	2012,	51,	2819-28.	
[13]	Andersson,	H.O.,	Fridborg,	K.,	Lowgren,	S.,	Alterman,	M.,	Muhlman,	A.,	Bjorsne,	M.,	et	al.	
Optimization	of	P1-P3	groups	in	symmetric	and	asymmetric	HIV-1	protease	inhibitors.	Eur	J	Biochem.	
2003,	270,	1746-58.	
[14]	Silva,	A.M.,	Cachau,	R.E.,	Sham,	H.L.,	Erickson,	J.W.	Inhibition	and	catalytic	mechanism	of	HIV-1	
aspartic	protease.	J	Mol	Biol.	1996,	255,	321-46.	
[15]	Cai,	Y.,	Myint,	W.,	Paulsen,	J.L.,	Schiffer,	C.A.,	Ishima,	R.,	Kurt	Yilmaz,	N.	Drug	Resistance	Mutations	
Alter	Dynamics	of	Inhibitor-Bound	HIV-1	Protease.	J	Chem	Theory	Comput.	2014,	10,	3438-48.	
[16]	Nair,	A.C.,	Miertus,	S.,	Tossi,	A.,	Romeo,	D.	A	computational	study	of	the	resistance	of	HIV-1	aspartic	
protease	to	the	inhibitors	ABT-538	and	VX-478	and	design	of	new	analogues.	Biochem	Biophys	Res	
Commun.	1998,	242,	545-51.	



	 	

	

39	

[17]	Kim,	E.Y.,	Winters,	M.A.,	Kagan,	R.M.,	Merigan,	T.C.	Functional	correlates	of	insertion	mutations	in	
the	protease	gene	of	human	immunodeficiency	virus	type	1	isolates	from	patients.	J	Virol.	2001,	75,	
11227-33.	
[18]	Ding,	F.,	Layten,	M.,	Simmerling,	C.	Solution	structure	of	HIV-1	protease	flaps	probed	by	comparison	
of	molecular	dynamics	simulation	ensembles	and	EPR	experiments.	J	Am	Chem	Soc.	2008,	130,	7184-5.	
[19]	Nakashima,	M.,	Ode,	H.,	Suzuki,	K.,	Fujino,	M.,	Maejima,	M.,	Kimura,	Y.,	et	al.	Unique	Flap	
Conformation	in	an	HIV-1	Protease	with	High-Level	Darunavir	Resistance.	Front	Microbiol.	2016,	7,	61.	
[20]	Appadurai,	R.,	Senapati,	S.	Dynamical	Network	of	HIV-1	Protease	Mutants	Reveals	the	Mechanism	
of	Drug	Resistance	and	Unhindered	Activity.	Biochemistry.	2016,	55,	1529-40.	
[21]	Petropoulos,	C.J.,	Parkin,	N.T.,	Limoli,	K.L.,	Lie,	Y.S.,	Wrin,	T.,	Huang,	W.,	et	al.	A	novel	phenotypic	
drug	susceptibility	assay	for	human	immunodeficiency	virus	type	1.	Antimicrob	Agents	Chemother.	
2000,	44,	920-8.	
[22]	Cunningham,	S.,	Ank,	B.,	Lewis,	D.,	Lu,	W.,	Wantman,	M.,	Dileanis,	J.A.,	et	al.	Performance	of	the	
applied	biosystems	ViroSeq	human	immunodeficiency	virus	type	1	(HIV-1)	genotyping	system	for	
sequence-based	analysis	of	HIV-1	in	pediatric	plasma	samples.	J	Clin	Microbiol.	2001,	39,	1254-7.	
[23]	Biasini,	M.,	Bienert,	S.,	Waterhouse,	A.,	Arnold,	K.,	Studer,	G.,	Schmidt,	T.,	et	al.	SWISS-MODEL:	
modelling	protein	tertiary	and	quaternary	structure	using	evolutionary	information.	Nucleic	Acids	Res.	
2014,	42,	W252-8.	
[24]	Kiefer,	F.,	Arnold,	K.,	Kunzli,	M.,	Bordoli,	L.,	Schwede,	T.	The	SWISS-MODEL	Repository	and	
associated	resources.	Nucleic	Acids	Res.	2009,	37,	D387-92.	
[25]	Arnold,	K.,	Bordoli,	L.,	Kopp,	J.,	Schwede,	T.	The	SWISS-MODEL	workspace:	a	web-based	
environment	for	protein	structure	homology	modelling.	Bioinformatics.	2006,	22,	195-201.	
[26]	Guex,	N.,	Peitsch,	M.C.,	Schwede,	T.	Automated	comparative	protein	structure	modeling	with	
SWISS-MODEL	and	Swiss-PdbViewer:	a	historical	perspective.	Electrophoresis.	2009,	30	Suppl	1,	S162-
73.	
[27]	Muzammil,	S.,	Armstrong,	A.A.,	Kang,	L.W.,	Jakalian,	A.,	Bonneau,	P.R.,	Schmelmer,	V.,	et	al.	Unique	
thermodynamic	response	of	tipranavir	to	human	immunodeficiency	virus	type	1	protease	drug	
resistance	mutations.	J	Virol.	2007,	81,	5144-54.	
[28]	Humphrey,	W.,	Dalke,	A.,	Schulten,	K.	VMD:	visual	molecular	dynamics.	J	Mol	Graph.	1996,	14,	33-8,	
27-8.	
[29]	Phillips,	J.C.,	Braun,	R.,	Wang,	W.,	Gumbart,	J.,	Tajkhorshid,	E.,	Villa,	E.,	et	al.	Scalable	molecular	
dynamics	with	NAMD.	J	Comput	Chem.	2005,	26,	1781-802.	
[30]	Best,	R.B.,	Zhu,	X.,	Shim,	J.,	Lopes,	P.E.,	Mittal,	J.,	Feig,	M.,	et	al.	Optimization	of	the	additive	
CHARMM	all-atom	protein	force	field	targeting	improved	sampling	of	the	backbone	phi,	psi	and	side-
chain	chi(1)	and	chi(2)	dihedral	angles.	J	Chem	Theory	Comput.	2012,	8,	3257-73.	
[31]	Dewdney,	T.G.,	Wang,	Y.,	Kovari,	I.A.,	Reiter,	S.J.,	Kovari,	L.C.	Reduced	HIV-1	integrase	flexibility	as	a	
mechanism	for	raltegravir	resistance.	J	Struct	Biol.	2013,	184,	245-50.	
[32]	Salisburg,	A.M.,	Deline,	A.L.,	Lexa,	K.W.,	Shields,	G.C.,	Kirschner,	K.N.	Ramachandran-type	plots	for	
glycosidic	linkages:	Examples	from	molecular	dynamic	simulations	using	the	Glycam06	force	field.	J	
Comput	Chem.	2009,	30,	910-21.	
[33]	Soares,	R.O.,	Torres,	P.H.,	da	Silva,	M.L.,	Pascutti,	P.G.	Unraveling	HIV	protease	flaps	dynamics	by	
Constant	pH	Molecular	Dynamics	simulations.	J	Struct	Biol.	2016,	195,	216-26.	
[34]	Jordan,	P.S.,	Poon,	A.,	Eron,	J.,	Squires,	K.,	Ignacio,	C.,	Richman,	D.D.,	et	al.	A	novel	codon	insert	in	
protease	of	clade	B	HIV	type	1.	AIDS	Res	Hum	Retroviruses.	2009,	25,	547-50.	
[35]	Carrera,	J.P.,	Diaz,	Y.,	Denis,	B.,	Barahona	de	Mosca,	I.,	Rodriguez,	D.,	Cedeno,	I.,	et	al.	Unusual	
pattern	of	chikungunya	virus	epidemic	in	the	Americas,	the	Panamanian	experience.	PLoS	Negl	Trop	Dis.	
2017,	11,	e0005338.	



	 	

	

40	

[36]	Pastula,	D.M.,	Hancock,	W.T.,	Bel,	M.,	Biggs,	H.,	Marfel,	M.,	Lanciotti,	R.,	et	al.	Chikungunya	virus	
disease	outbreak	in	Yap	State,	Federated	States	of	Micronesia.	PLoS	Negl	Trop	Dis.	2017,	11,	e0005410.	
[37]	Tsetsarkin,	K.A.,	Chen,	R.,	Weaver,	S.C.	Interspecies	transmission	and	chikungunya	virus	emergence.	
Curr	Opin	Virol.	2016,	16,	143-50.	
[38]	Varghese,	F.S.,	Kaukinen,	P.,	Glasker,	S.,	Bespalov,	M.,	Hanski,	L.,	Wennerberg,	K.,	et	al.	Discovery	of	
berberine,	abamectin	and	ivermectin	as	antivirals	against	chikungunya	and	other	alphaviruses.	Antiviral	
Res.	2016,	126,	117-24.	
[39]	Agarwal,	A.,	Dash,	P.K.,	Singh,	A.K.,	Sharma,	S.,	Gopalan,	N.,	Rao,	P.V.,	et	al.	Evidence	of	
experimental	vertical	transmission	of	emerging	novel	ECSA	genotype	of	Chikungunya	Virus	in	Aedes	
aegypti.	PLoS	Negl	Trop	Dis.	2014,	8,	e2990.	
[40]	Tsetsarkin,	K.A.,	Weaver,	S.C.	Sequential	adaptive	mutations	enhance	efficient	vector	switching	by	
Chikungunya	virus	and	its	epidemic	emergence.	PLoS	Pathog.	2011,	7,	e1002412.	
[41]	Bourai,	M.,	Lucas-Hourani,	M.,	Gad,	H.H.,	Drosten,	C.,	Jacob,	Y.,	Tafforeau,	L.,	et	al.	Mapping	of	
Chikungunya	virus	interactions	with	host	proteins	identified	nsP2	as	a	highly	connected	viral	component.	
J	Virol.	2012,	86,	3121-34.	
[42]	Leung,	J.Y.,	Ng,	M.M.,	Chu,	J.J.	Replication	of	alphaviruses:	a	review	on	the	entry	process	of	
alphaviruses	into	cells.	Adv	Virol.	2011,	2011,	249640.	
[43]	Thomas,	S.,	Rai,	J.,	John,	L.,	Schaefer,	S.,	Putzer,	B.M.,	Herchenroder,	O.	Chikungunya	virus	capsid	
protein	contains	nuclear	import	and	export	signals.	Virol	J.	2013,	10,	269.	
[44]	Ramakrishnan,	C.,	Kutumbarao,	N.H.,	Suhitha,	S.,	Velmurugan,	D.	Structure-function	relationship	of	
Chikungunya	nsP2	protease:	A	comparative	study	with	papain.	Chem	Biol	Drug	Des.	2016.	
[45]	Fros,	J.J.,	Pijlman,	G.P.	Alphavirus	Infection:	Host	Cell	Shut-Off	and	Inhibition	of	Antiviral	Responses.	
Viruses.	2016,	8.	
[46]	Saisawang,	C.,	Sillapee,	P.,	Sinsirimongkol,	K.,	Ubol,	S.,	Smith,	D.R.,	Ketterman,	A.J.	Full	length	and	
protease	domain	activity	of	chikungunya	virus	nsP2	differ	from	other	alphavirus	nsP2	proteases	in	
recognition	of	small	peptide	substrates.	Biosci	Rep.	2015,	35.	
[47]	Bao,	H.,	Ramanathan,	A.A.,	Kawalakar,	O.,	Sundaram,	S.G.,	Tingey,	C.,	Bian,	C.B.,	et	al.	Nonstructural	
protein	2	(nsP2)	of	Chikungunya	virus	(CHIKV)	enhances	protective	immunity	mediated	by	a	CHIKV	
envelope	protein	expressing	DNA	Vaccine.	Viral	Immunol.	2013,	26,	75-83.	
[48]	Akhrymuk,	I.,	Kulemzin,	S.V.,	Frolova,	E.I.	Evasion	of	the	innate	immune	response:	the	Old	World	
alphavirus	nsP2	protein	induces	rapid	degradation	of	Rpb1,	a	catalytic	subunit	of	RNA	polymerase	II.	J	
Virol.	2012,	86,	7180-91.	
[49]	Fros,	J.J.,	Liu,	W.J.,	Prow,	N.A.,	Geertsema,	C.,	Ligtenberg,	M.,	Vanlandingham,	D.L.,	et	al.	
Chikungunya	virus	nonstructural	protein	2	inhibits	type	I/II	interferon-stimulated	JAK-STAT	signaling.	J	
Virol.	2010,	84,	10877-87.	
[50]	Pohjala,	L.,	Utt,	A.,	Varjak,	M.,	Lulla,	A.,	Merits,	A.,	Ahola,	T.,	et	al.	Inhibitors	of	alphavirus	entry	and	
replication	identified	with	a	stable	Chikungunya	replicon	cell	line	and	virus-based	assays.	PLoS	One.	
2011,	6,	e28923.	
[51]	Pineda,	C.,	Munoz-Louis,	R.,	Caballero-Uribe,	C.V.,	Viasus,	D.	Chikungunya	in	the	region	of	the	
Americas.	A	challenge	for	rheumatologists	and	health	care	systems.	Clin	Rheumatol.	2016,	35,	2381-5.	
[52]	Roiz,	D.,	Bousses,	P.,	Simard,	F.,	Paupy,	C.,	Fontenille,	D.	Autochthonous	Chikungunya	Transmission	
and	Extreme	Climate	Events	in	Southern	France.	PLoS	Negl	Trop	Dis.	2015,	9,	e0003854.	
[53]	Yactayo,	S.,	Staples,	J.E.,	Millot,	V.,	Cibrelus,	L.,	Ramon-Pardo,	P.	Epidemiology	of	Chikungunya	in	
the	Americas.	J	Infect	Dis.	2016,	214,	S441-S5.	
[54]	Kuri-Morales,	P.A.,	Guzman-Morales,	E.,	De	La	Paz-Nicolau,	E.,	Salas-Fernandez,	A.	[Emerging	and	
reemerging	diseases].	Gac	Med	Mex.	2015,	151,	674-80.	



	 	

	

41	

[55]	Waldock,	J.,	Chandra,	N.L.,	Lelieveld,	J.,	Proestos,	Y.,	Michael,	E.,	Christophides,	G.,	et	al.	The	role	of	
environmental	variables	on	Aedes	albopictus	biology	and	chikungunya	epidemiology.	Pathog	Glob	
Health.	2013,	107,	224-41.	
[56]	Weber,	C.,	Konig,	R.,	Niedrig,	M.,	Emmerich,	P.,	Schnierle,	B.S.	A	neutralization	assay	for	
chikungunya	virus	infections	in	a	multiplex	format.	J	Virol	Methods.	2014,	201,	7-12.	
[57]	Feldstein,	L.R.,	Rowhani-Rahbar,	A.,	Staples,	J.E.,	Weaver,	M.R.,	Halloran,	M.E.,	Ellis,	E.M.	Persistent	
Arthralgia	Associated	with	Chikungunya	Virus	Outbreak,	US	Virgin	Islands,	December	2014-February	
2016.	Emerg	Infect	Dis.	2017,	23,	673-6.	
[58]	Gutierrez-Saravia,	E.,	Gutierrez,	C.E.	Chikungunya	Virus	in	the	Caribbean:	A	Threat	for	All	of	the	
Americas.	J	Pediatric	Infect	Dis	Soc.	2015,	4,	1-3.	
[59]	Christofferson,	R.C.,	Chisenhall,	D.M.,	Wearing,	H.J.,	Mores,	C.N.	Chikungunya	viral	fitness	measures	
within	the	vector	and	subsequent	transmission	potential.	PLoS	One.	2014,	9,	e110538.	
[60]	Chikungunya	disease:	gaps	and	opportunities	in	public	health	and	research	in	the	Americas.	Wkly	
Epidemiol	Rec.	2015,	90,	571-6.	
[61]	Madariaga,	M.,	Ticona,	E.,	Resurrecion,	C.	Chikungunya:	bending	over	the	Americas	and	the	rest	of	
the	world.	Braz	J	Infect	Dis.	2016,	20,	91-8.	
[62]	Arias-Goeta,	C.,	Moutailler,	S.,	Mousson,	L.,	Zouache,	K.,	Thiberge,	J.M.,	Caro,	V.,	et	al.	Chikungunya	
virus	adaptation	to	a	mosquito	vector	correlates	with	only	few	point	mutations	in	the	viral	envelope	
glycoprotein.	Infect	Genet	Evol.	2014,	24,	116-26.	
[63]	Mathur,	K.,	Anand,	A.,	Dubey,	S.K.,	Sanan-Mishra,	N.,	Bhatnagar,	R.K.,	Sunil,	S.	Analysis	of	
chikungunya	virus	proteins	reveals	that	non-structural	proteins	nsP2	and	nsP3	exhibit	RNA	interference	
(RNAi)	suppressor	activity.	Sci	Rep.	2016,	6,	38065.	
[64]	Diaz-Gonzalez,	E.E.,	Kautz,	T.F.,	Dorantes-Delgado,	A.,	Malo-Garcia,	I.R.,	Laguna-Aguilar,	M.,	
Langsjoen,	R.M.,	et	al.	First	Report	of	Aedes	aegypti	Transmission	of	Chikungunya	Virus	in	the	Americas.	
Am	J	Trop	Med	Hyg.	2015,	93,	1325-9.	
[65]	Scully,	C.,	Samaranayake,	L.P.	Emerging	and	changing	viral	diseases	in	the	new	millennium.	Oral	Dis.	
2016,	22,	171-9.	
[66]	Vijayan,	V.,	Sukumaran,	S.	Chikungunya	Virus	Disease:	An	Emerging	Challenge	for	the	
Rheumatologist.	J	Clin	Rheumatol.	2016,	22,	203-11.	
[67]	Agarwal,	A.,	Vibha,	D.,	Srivastava,	A.K.,	Shukla,	G.,	Prasad,	K.	Guillain-Barre	syndrome	complicating	
chikungunya	virus	infection.	J	Neurovirol.	2017.	
[68]	Nawas,	Z.Y.,	Tong,	Y.,	Kollipara,	R.,	Peranteau,	A.J.,	Woc-Colburn,	L.,	Yan,	A.C.,	et	al.	Emerging	
infectious	diseases	with	cutaneous	manifestations:	Viral	and	bacterial	infections.	J	Am	Acad	Dermatol.	
2016,	75,	1-16.	
[69]	Rossati,	A.	Global	Warming	and	Its	Health	Impact.	Int	J	Occup	Environ	Med.	2017,	8,	7-20.	
[70]	Barrett,	B.,	Charles,	J.W.,	Temte,	J.L.	Climate	change,	human	health,	and	epidemiological	transition.	
Prev	Med.	2015,	70,	69-75.	
[71]	Shope,	R.	Global	climate	change	and	infectious	diseases.	Environ	Health	Perspect.	1991,	96,	171-4.	
[72]	Escobar,	L.E.,	Romero-Alvarez,	D.,	Leon,	R.,	Lepe-Lopez,	M.A.,	Craft,	M.E.,	Borbor-Cordova,	M.J.,	et	
al.	Declining	Prevalence	of	Disease	Vectors	Under	Climate	Change.	Sci	Rep.	2016,	6,	39150.	
[73]	Cunze,	S.,	Kochmann,	J.,	Koch,	L.K.,	Klimpel,	S.	Aedes	albopictus	and	Its	Environmental	Limits	in	
Europe.	PLoS	One.	2016,	11,	e0162116.	
[74]	Equihua,	M.,	Ibanez-Bernal,	S.,	Benitez,	G.,	Estrada-Contreras,	I.,	Sandoval-Ruiz,	C.A.,	Mendoza-
Palmero,	F.S.	Establishment	of	Aedes	aegypti	(L.)	in	mountainous	regions	in	Mexico:	Increasing	number	
of	population	at	risk	of	mosquito-borne	disease	and	future	climate	conditions.	Acta	Trop.	2017,	166,	
316-27.	
[75]	Lima-Camara,	T.N.	Emerging	arboviruses	and	public	health	challenges	in	Brazil.	Rev	Saude	Publica.	
2016,	50.	



	 	

	

42	

[76]	Koch,	L.K.,	Cunze,	S.,	Werblow,	A.,	Kochmann,	J.,	Dorge,	D.D.,	Mehlhorn,	H.,	et	al.	Modeling	the	
habitat	suitability	for	the	arbovirus	vector	Aedes	albopictus	(Diptera:	Culicidae)	in	Germany.	Parasitol	
Res.	2016,	115,	957-64.	
[77]	Ogden,	N.H.,	Milka,	R.,	Caminade,	C.,	Gachon,	P.	Recent	and	projected	future	climatic	suitability	of	
North	America	for	the	Asian	tiger	mosquito	Aedes	albopictus.	Parasit	Vectors.	2014,	7,	532.	
[78]	Rochlin,	I.,	Ninivaggi,	D.V.,	Hutchinson,	M.L.,	Farajollahi,	A.	Climate	change	and	range	expansion	of	
the	Asian	tiger	mosquito	(Aedes	albopictus)	in	Northeastern	USA:	implications	for	public	health	
practitioners.	PLoS	One.	2013,	8,	e60874.	
[79]	Smith,	C.D.,	Freed,	T.Z.,	Leisnham,	P.T.	Prior	Hydrologic	Disturbance	Affects	Competition	between	
Aedes	Mosquitoes	via	Changes	in	Leaf	Litter.	PLoS	One.	2015,	10,	e0128956.	
[80]	Alto,	B.W.,	Juliano,	S.A.	Precipitation	and	temperature	effects	on	populations	of	Aedes	albopictus	
(Diptera:	Culicidae):	implications	for	range	expansion.	J	Med	Entomol.	2001,	38,	646-56.	
[81]	Adelman,	Z.N.,	Anderson,	M.A.,	Wiley,	M.R.,	Murreddu,	M.G.,	Samuel,	G.H.,	Morazzani,	E.M.,	et	al.	
Cooler	temperatures	destabilize	RNA	interference	and	increase	susceptibility	of	disease	vector	
mosquitoes	to	viral	infection.	PLoS	Negl	Trop	Dis.	2013,	7,	e2239.	
[82]	Thongsripong,	P.,	Green,	A.,	Kittayapong,	P.,	Kapan,	D.,	Wilcox,	B.,	Bennett,	S.	Mosquito	vector	
diversity	across	habitats	in	central	Thailand	endemic	for	dengue	and	other	arthropod-borne	diseases.	
PLoS	Negl	Trop	Dis.	2013,	7,	e2507.	
[83]	Samy,	A.M.,	Elaagip,	A.H.,	Kenawy,	M.A.,	Ayres,	C.F.,	Peterson,	A.T.,	Soliman,	D.E.	Climate	Change	
Influences	on	the	Global	Potential	Distribution	of	the	Mosquito	Culex	quinquefasciatus,	Vector	of	West	
Nile	Virus	and	Lymphatic	Filariasis.	PLoS	One.	2016,	11,	e0163863.	

 


	Wayne State University
	1-1-2017
	Elucidating Structure, Function, And Small Molecular Interactions Of Human Immunodeficiency Virus And Chikungunya Virus
	Kristin Nicole Slater
	Recommended Citation


	Microsoft Word - Kristin_Slater_Thesis_Final.docx

