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Chapter 1: Small regulatory RNAs in bacteria: introduction, functions, and mechanism 

Small RNAs (sRNAs) have emerged as important players in bacterial gene regulation. 

Studies over more than a decade have led to the discovery of more than one hundred and fifty 

validated and putative sRNAs in E. coli alone.1-2 Advancements in technology have further helped 

the discovery of new sRNAs.3-5 sRNAs have been established as major contributors to the swift 

regulation of genes required under the various stresses incurred due to changing environmental 

conditions between hosts and surroundings. Bacteria face such conditions frequently over their 

lifetimes, and unlike long term adaptations like antibiotic resistance, which involves the 

acquisition and/or mutation of genes, rapid adaptation is required for survival. Adaptations to 

rapidly changing conditions such as changes in temperature, and concentration of salts and oxygen 

require fast and fine tuning of the existing system by altering expression and regulation. Hence, 

sRNAs add another layer of gene regulation in addition to the regulatory proteins. 

1.1.1 Introduction and function 

sRNA is a rapidly expanding class of non-protein posttranscriptional regulators of bacterial 

gene expression. As their name implies, these generally do not code for proteins. Few exceptions 

include the SgrS gene that encodes for a peptide SgrT,6 SR1 in B. subtilis 7 and RNAIII in S. 

aureus.8 Several types of sRNAs have been identified over the years including riboswitches, 

thermo-sensors, cis-acting and trans-acting sRNAs, and crRNA of the CRISPR-Cas system. 

Previously thought to be solely coded in intergenic regions, sRNAs have surprised us with their 

widely distributed origins. sRNAs originating from 5’ or 3’ untranslated regions of the mRNA, or 

near transcriptional termination regions have also been identified.9-11 Many sRNAs are generated 
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as byproducts of natural processing of mRNAs in vivo.12-13 Premature transcription termination 

prevents the expressions of downstream ORFs and the transcript generated, in some cases, can act 

as sRNA.14 Transcript expression from the same or antisense DNA strands with overlapping 

regions could also give rise to anti-sense regulatory RNAs.10 Recent studies have shown that 

specific tRNA fragments (tRFs) sequester sRNAs by base pairing. Bacterial tRFs that act like 

sRNAs have shown higher affinity towards other sRNAs (RyhB and RybB sRNAs used for the 

study).3 In bacteria tRFs mediate the regulation by sequestering sRNAs under normal conditions. 

Fig 1.1: Origins of sRNAs from DNA/RNA with respect to their target genes. (A) a typical trans acting sRNA 
expressed from loci different than its target gene. Riboswitch-sRNA would fall in this category. (B) Small RNAs 
produced by the processing of an mRNA transcript or a poly-cistronic pre-tRNA transcript. Processing here 
implies immature termination or processing of the transcripts by one or more ribonuclease producing non-
translating fragments. These fragments could be from 5’/3’UTR or from anywhere in a coding sequence, and they 
may act as trans acting small RNA targeting other genes. This class would include the 5’ riboswitches that induces 
premature transcription termination of the adjacent downstream coding gene and the premature transcript 
fragment display sRNAs like activity. (C) and (D) Represent the cis-acting regulatory RNA coding sequence 
embedded towards the 5’ region and 3’ region of a protein coding gene respectively. This class would also include 
3’ riboswitches (E) The presence of small RNA on the antisense strand of a coding gene, commonly known as 
cis-acting antisense RNA. The position of small RNA could be anywhere in/overlapping to the target ORF. (F) 
Anti-sense regulatory RNAs originated after processing of transcripts of protein coding genes expressed in 
opposite directions, from complementary DNA strands. The transcripts have complementary overlapping region.  
Blue line (DNA), blue arrow (promoter), yellow box (sRNA gene), green boxes (mRNA or polycistronic tRNA 
gene as shown), light Green arrow (non-small RNA transcript from the corresponding gene) and red pacman 
(ribonucleases which process the transcripts) 17 
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Similar to the diversity of their origins (Fig 1.1)15, sRNAs seem to adapt to diverse operational 

mechanisms as far as modes of gene regulations are concerned. tRFs are also known to exist in 

human cells. However, unlike bacterial tRFs, the genes are regulated by tRFs base pairing to 

mRNAs16 or by promoting cell proliferation.17 

1.1.2 Mechanisms of sRNAs mediated gene regulation 

sRNAs are divided into two classes based on the position of target genes with respect to 

the position of sRNA encoding region: cis-acting sRNAs and trans-acting sRNAs. RNAs from 

both classes have adapted to different mechanisms by which they achieve regulatory outcomes 

(From this point, the term sRNA will be used to refer specifically to trans-acting small 

RNAs). Cis-acting small RNAs affect the gene of the same loci. For instance, riboswitches which 

were classically recognized as cis-acting regulatory elements present in 5’ UTRs, regulate the 

expression of the adjacent downstream open reading frames (ORFs). Riboswitches have an 

aptamer region and an expression platform. The aptamer motifs can bind to metabolites or small 

molecules (ligands) and change the confirmation of the expression platform, which results in 

transcriptional or translational modulation of the gene (Fig 1.2A left and middle panel).18-19 

However, recent discoveries have established dual roles for riboswitches, where a single small 

RNA is both a cis-acting riboswitch and a trans-acting sRNA. Such examples were found in 

Listeria monocytogenes and Clostridium acetobutylicum where the riboswitch present towards the 

3’ end of an ORF regulates the expression of upstream adjacent genes. This riboswitch regulates 

the expression of an anti-sense RNA which in turn interacts with the target gene; hence, the 

riboswitch indirectly controls the target gene. 20-21 Reports suggest that riboswitches can also be a 

part of an sRNA which, in the absence of its binding ligand act as an sRNA and regulate the gene 

by sequestering the RNA binding response regulator and hence downregulating the gene. When 
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the ligand is present, riboswitch binds to the ligand and restructures the sRNA half in such a way 

that the motif required to sequester the RNA-binding regulator does not form, thus rendering the 

 
Fig 1.2: Mechanisms of action used by sRNAs in bacteria to modulate the regulatory outcomes. (A) Left and 
middle panel: A typical cis-acting riboswitch with an aptamer region (red) which binds with the ligand. Ligand 
binding to aptamer region results in the structural region (yellow) which either releases the previously occluded 
ribosome binding site (left panel) or vice-versa (middle panel) and hence results in either downregulation or 
upregulation of adjacent downstream gene. Right panel shows presence of a riboswitch motif 5’ to the seed 
sequence of an sRNA molecule. In absence of ligand the sRNA sequesters the regulator protein and hence down 
regulating the target gene. Upon ligand binding conformational rearrangement results in to the release of regulator 
proteins and hence upregulating the expression. (B) A typical cis-acting small RNA which binds to its target with 
perfect complementarity which leads to translational repression by occluding the RBS or degradation of mRNA. 
(C) Trans-acting small RNA (sRNA) expressed from a loci different than its target genes loci. Upon abundant 
expression, sRNAs bind to their target mRNAs (often more than one targets) and either down-regulate the genes 
by occluding the RBS or mRNA degradation or up-regulate by releasing the pre-occluded RBS. (ribosome binding 
site, RBS, shown in light blue; ligand as pink circle; regulator protein shown as dimer blue box and green circle; 
blue line and thick arrow indicates the genomic DNA and the gene respectively; black lines and thick arrow 
indicates the transcript and translatable portions respectively; yellow arrows represents small RNAs’ location 
when touching the blue line and free yellow arrow represents the sRNA transcript; promoters of small RNA and 
coding genes are shown by the horizontal arrow on the stick of matching colors) 22-26 
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target gene upregulated (Fig 1.2A right panel).22-24 Other cis-acting small RNAs affect the gene of 

the same loci but are coded on the antisense strand of its target gene, also known as antisense RNA 

(asRNA). asRNA base pairs perfectly to its target mRNA. Upon binding to its target sequence, an 

asRNA can lead to translational up/down regulations or mRNA degradation (Fig 1.2B).25-27  

sRNAs (trans acting small RNAs), on the other hand, are coded on entirely different and 

independent loci than their target mRNAs. Hence, base pairing between sRNAs and their target 

mRNAs are imperfect. Once bound to their target these sRNAs operate like cis-acting RNAs (Fig 

1.2C).26 The ability of sRNA to regulate their target mRNA by imperfect paring turns out to be an 

advantage, as one sRNA can target multiple mRNAs and modulate their expression 

simultaneously. The imperfect complementarity of sRNAs to their target mRNAs results in a 

complex regulatory network where an sRNA can target multiple genes and at the same time, a 

single gene can be targeted by multiple sRNAs (Fig 1.3).26 

Many membrane transporter proteins, sigma-factors, toxins and virulence genes fall under 

the category of the sRNA’s targets. Despite many regulatory sRNAs having been discovered, the 

involvement of protein partners has also been speculated to bring regulatory outcomes. Proteins 

could contribute to the sRNA mediated regulatory pathway either directly by interacting with the 

sRNAs or indirectly via interaction with other proteins. 
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1.2 sRNA mediated regulations in E. coli require a protein partner: Hfq 

Hfq is the most common protein partner of sRNA mediated regulation and has been widely 

studied.28-33 It is required by most of the sRNAs in E. coli to perform their regulatory functions. 

Investigations to reveal plausible protein partners contributing directly or indirectly to sRNA 

mediated systems have revealed more than 30 proteins or protein complexes in interactions with 

Hfq.34 Only a few of these Hfq-protein/complex interactions are known for their regulatory 

contributions so far and are discussed later. However, the interaction of sRNAs with proteins other 

 
Fig 1.3: Schematic representation of the sRNA-mRNA mediated regulatory network; red circles: the mRNA 
targets, yellow box: sRNA, blue circles: the regulated gene which are transcription regulators, green lines: up-
regulation of target gene and, red lines: indicates the down regulation of target gene. 26 
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than Hfq have also been reported. Examples include ProQ and CsrA proteins, which are discussed 

in section 1.3 and 1.4.35-37  

Initially identified as a host factor for bacteriophage Qβ RNA replication in E. coli, Hfq 

has established its role as a global regulator of sRNA mediated regulation in gram-negative 

bacteria.31, 38-40 Hfq is a homo-hexameric protein, homologous to eukaryotic Sm/Lsm proteins. The 

N-terminal half of Hfq is highly structured and conserved, however the C-terminal half shows high 

sequence and length variability among different bacterial species.41 Also, the C-terminal region is 

predicted to be unstructured. Hfq deletion strains show reduced growth rate, increased stress 

sensitivity, reduced virulence to pathogenic strains, and alteration in the expression level of around 

50 proteins.42 The Hfq monomers arrange to form a doughnut shaped hexameric protein, with two 

distinct faces. Crystallographic and biochemical studies have confirmed that the proximal face 

binds to AU-rich sequence while the distal face binds to (ARN)X motifs (fig 1.4).43-45  

Dr. N. Salim’s work suggests that the mRNA or sRNA might contact Hfq on both faces, to 

act as a bidentate ligand.46 Recent studies have emphasized the contribution of rim residues 

facilitating sRNA-mRNA pairing. Also, the presence and the number of positively charged 

 
Fig 1.4: Hfq structures. (A) PDB ID : 1KQ2, (2) Hfq model reconstructed using two independent crystal structures 
1KQ2 and 3GIB. Proximal face bind two A9 molecules and the distal face binds AU5G. Figure was prepared using 
Chimera.43-45 
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arginine residues in the rim have been found to affect sRNA-mRNA annealing.47-48 Schu et al., 

recently proposed a model like our two-point contact model where sRNA instead of mRNA 

contacts Hfq at two different points. According to the proposed models sRNA can (i) contact Hfq 

on proximal face using the poly-U tail and the second point of contact could be on the rim of Hfq; 

or, (ii) sRNA can contact on the proximal face using the poly-U tail and then wraps around to 

make a second contact on the distal face of Hfq (Fig:1.5).49 Nonetheless, the new model of sRNA 

making multi-point contact with Hfq supports the previously proposed multi-point contact model 

suggesting that an RNA molecule can make contacts with Hfq on more than one surfaces.46 

Binding of both the sRNA and mRNA to the Hfq results in a ternary complex, which facilitates 

the pairing of an RNA couple by increasing the proximity of partner RNAs and inducing some 

structural changes.28 Most of the Hfq studies so far have focused on the more structured N-terminal 

half of Hfq while the truncated versions of Hfq (Hfq with first 65 and 76 amino acids) seem to act 

as full length Hfq as far as assisting the sRNA-mRNA pairing is concerned.50 In a study where the 

C. difficile Hfq was constitutively expressed from a low copy number plasmid in the Δhfq E. coli 

strain, the C. difficile Hfq was able to substitute the native Hfq functions emphasizing the 

importance of the conserved N-terminal half of Hfq.51-52 However, the Woodson lab has recently 

reported a new role for the C-terminal region of Hfq. Data suggest that this region is not critical 

for the pairing of sRNAs with their target mRNAs but instead is required for the release of sRNAs 

and double stranded RNAs (sRNA-mRNA pair) from the Hfq hexamer and hence plays an 

important role in recycling of the Hfq in vivo.53 
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Hfq interacts with proteins and/or protein complexes. As mentioned earlier, Hfq’s 

interaction with 30 proteins or large protein complexes have been experimentally identified. Most 

of the proteins or partners of protein complexes play important roles in transcription, translation, 

RNA metabolism and protein folding. The nature of interactions between Hfq and most of these 

complexes that are either (i) direct, or (ii) indirect via RNA or DNA molecules that have not been 

well elucidated. A few of the Hfq- protein or protein complex interactions which have been well 

 
Fig 1.5: Modes of sRNA-mRNA pairing mediated by Hfq. (A) proximal (red), rim (violet) and distal (blue) faces 
of Hfq hexamers are shown as cartoon pic. Two different class of Hfq binding sRNAs are shown, with Rho 
independent terminator (proximal face binding) poly U tail (red line) and the rim binding region (violet line) in 
class I sRNA, and distal face binding region (blue line) in class II sRNA. Two classes of mRNA, class I with ARN 
binding motif(s) (blue line) and class II with rim binding UA motifs (purple line) are shown as cartoons. (B) Class 
I sRNA binds to the proximal face of Hfq using proximal face binding motif (red line portion of sRNA) and makes 
a second contact using the rim binding UA motifs (red line). Class I binds to the Hfq on distal face using ARN 
motif(s) (blue line portion of mRNA. Formation of sRNA-Hfq-mRNA quartnery structure is followed by the 
pairing of sRNA with the target mRNA and release of Hfq (shown above the dotted line). Class II sRNA binds to 
the Hfq on both proximal and distal faces using corresponding binding motifs. Binding of class II mRNA to the 
Hfq rim results in quartnery structure lead to sRNA-mRNA pairing and release of Hfq. 49 

 

A 
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studied include Hfq interactions with RNaseE, the ribosomal protein S1 and the RNA polymerase 

(RNAP) complex. 54-58 

1.2.1 Hfq interactions with RNaseE: The RNaseE-Hfq interaction is one of the most prominent 

example of Hfq’s direct interaction with a protein.59 RNaseE is a ribonucleolytic protein that plays 

a central role in RNA degradation via the RNA-degradosome in E. coli. Under normal conditions, 

RNA-degradosome is a hetero-multimeric assembly of RNaseE, RhlB (a DEAD-box RNA 

helicase), enolase and polynucleotide phosphorylase (PNPase).60 However, the H. Aiba group has 

shown that the Hfq interaction with RNaseE is independent of the degradosome components and 

doesn’t require RhlB or enolase. Hfq anchors itself on the RNaseE C-terminal scaffold between 

amino acid residues 702-811 and facilitates the degradation of bound sRNA-mRNA pairs.56-58 

PNPase, which is a part of degradosome, also interacts independently with Hfq and does not need 

RNaseE mediation.61 One of the proposed models for Hfq-RNaseE mediated sRNA-mRNA 

degradation suggests that Hfq binds to the C-terminal scaffold of RNaseE followed by sRNA 

binding to Hfq.57 The bound sRNA then searches and pairs up with its target mRNA with the help 

of Hfq followed by RNaseE mediated ribonucleolytic degradation. sRNA-mRNA-Hfq-RNaseE 

complex could lead to the degradation of bound RNAs (Fig 1.6A).60, 62 An alternate model suggests 

the recruitment of RNaseE by the sRNA-Hfq-mRNA ternary complex followed by the degradation 

of RNAs (Fig 1.6B).  Allosteric activation of RNaseE by certain sRNAs has been proposed by 

Bandyra et al..63 Their results show that RNaseE activation occurs with Hfq bound sRNA where 

sRNA carries 5’ monophosphate. Upon recognition of the 5’ monophosphate of sRNAs, allosteric 

activation of RNaseE leads to the degradation of mRNA, allowing sRNAs to be released from the 

truncated mRNAs to recycle the sRNAs (Fig 1.6C).63 
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Fig 1.6: Hfq-RNaseE mediated degradation of sRNA-mRNA complex. (A) RNaseE binds with Hfq followed by 
sRNA to make the ternary complex. sRNA finds the target mRNA and leads to the target degradation at RNaseE 
site, which could be near or distant to the RNaseE-Hfq-sRNA anchoring site on target mRNA. (B) RNaseE 
recruitment by sRNA-Hfq-mRNA ternary complex followed by the rapid degradation of RNAs (C) Binding of 5’ 
monophosphate of sRNA to the RNaseE leads to the allosteric activation of RNaseE. RNaseE then cuts the mRNA 
and allow the release of sRNA; recycling of sRNA. 60, 62,63 
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1.2.2 Hfq forms a protein complex with ribosomal protein S1 and RNA polymerase (RNAP): 

Ribosomal protein S1 and the RNAP beta-subunits have been pulled down along with Hfq from 

E. coli extract when different sRNA baits (DsrA, MicF, OxyS, RyhB or Spot42) were used.54 

However, recombinantly expressed Hfq shows little to no interactions in vitro with the RNAP core 

region and S1 protein separately, which might be indicative of some RNA acting as a common 

platform for all three proteins.55 Another pull down assay, which used Hfq as bait and E. coli 

extracts treated with nuclease, revealed the presence of both S1 protein and RNAP subunits in the 

protein complex, indicating that these proteins might interact together at the interface to form 

larger protein complexes.34 

1.2.3 Hfq interaction with Rho inhibits transcription termination: In a recent study Rabhi et 

al., showed that Hfq interacts with the transcription termination factor Rho and forms a stable 

binary complex in vitro. Hfq interaction with Rho inhibits the helicase and ATPase activities of 

Rho to impedes the Rho-dependent transcription termination.64 However the affects of Hfq 

mediated Rho antitermination on gene regulation is not well understood. 

1.2.4 Catabolite regulator Crc interacts with Hfq to form a co-complex: Crc is a global 

regulator and plays an important role in the catabolite repression and optimization of metabolism 

in Pseudomonas under nutrient constrained situations. Inactivation of the Crc gene results in the 

altered expressions of at least 134 genes in Pseudomonas putida, as verified by transcriptomic and 

proteomic analyses.65 Most of the altered genes are involved in sugar and amino acid uptake and 

assimilation. Under limiting nutrient condition Crc modifies the expression of different transport 

proteins responsible for amino acid uptake by selectively downregulating some transporter genes 

in comparison to others.66-67 Crc is known to bind to an AAnAAnAA motif (where ‘A’ is Adenine 

and ‘n’ could be any nucleotide in a transcript; AAnAAnAA motif is also known as catabolite 
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activity motif) present in the mRNA, and inhibits translation. Hence Crc also acts as a 

posttranscriptional regulator.68-70 An in vitro study has shown that Crc itself does not bind to the 

AAnAAnAA; however it binds to this motif in the presence of Hfq, forming a co-complex. 

Inactivation of either crc or hfq results in impaired catabolite repression to similar extents. Thus, 

it has been proposed that Crc and Hfq come together and form a co-complex with the AAnAAnAA 

motif to inhibit translation initiation.71-72 

1.2.5 RelA promotes Hfq multimerzation: RelA synthesizes the (p)ppGpp molecules as a part 

of a stringent response under amino acid starvation condition in E. coli. It is a ribosome associated 

(p)ppGpp synthetase that, when activated, synthesizes (p)ppGpp molecules, the accumulation of 

which inhibit rRNA and tRNA synthesis.73-76 A recent study has shown that RelA promotes the 

multimerization of Hfq and stimulates Hfq binding to sRNA RyhB.77 

1.2.6 YbeY also modulates Hfq dependent sRNA expression: YbeY RNase is a single strand-

specific endonuclease. It plays an important role in 16s rRNA maturation as well as rRNA 

promoter transcription antitermination. Deletion of ybeY causes defective ribosomal activity and 

assembly and translational infidelity.78-80 A ybeY deficient E. coli strain is temperature sensitive 

and has a reduced ability to recover from high temperature stress.81 YbeY also plays a determining 

role in how E. coli responds to hydroxyurea. It was suggested that YbeY can also interact with 

sRNAs and might contribute to sRNA mediated gene regulation in an Hfq dependent and/or 

independent manner.82 Differential expression of twenty-eight sRNAs were observed when ∆ybey 

and wt E. coli were exposed to hydroxyurea. Out of 28 YebY dependent sRNAs, 12 sRNAs 

including the widely studied OxyS, DsrA, and SgrS, are Hfq dependent, whereas other 16 sRNAs 

(Table. 1) were found to be Hfq independent.83 Further investigations to validate the mechanisms 
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by which YbeY regulates sRNA-mRNA interactions and the direct or indirect involvement of Hfq 

would augment our understanding.  

  Hfq dependent Hfq independent 
sRNAs binding to 
YbeY 

OxyS, DsrA, CyaR, ArcZ, 
RybB, MicA, GlmZ, RyeA, 
RyeB, CydC, RyjB, SgrSs. 

Ffs, RygD, CsrC, RdlD, RdlA, 
GadY, PsrD, RygC, RyfD, RyfA, 
RybA, RyrC, RyeD, RydB, IsrB, 
IsrC. 

Table 1: sRNAs whose expression where altered in ΔybeY strain. Both Hfq dependent (12/28) and independent 
RNAs (16/28) were found with altered expression. 

 

1.3. ProQ-sRNA interaction: ProQ is a newly declared global post-transcriptional regulator with 

the capacity to bind and mediate sRNAs’ expression and regulatory functions in Salmonella. ProQ 

has been reported to affect the expression of osmoregulatory protein ProP by a mechanism which 

is not yet understood well.84 ProQ also has a separate N-terminal domain which resembles the 

RNA binding protein FinO, and a C-terminal domain which resembles Hfq.84-86 Studies using the 

individual domains of ProQ have also shown that the N-terminal domain of ProQ can form strong 

interactions with RNA, while the C-terminal domain can perform RNA duplexing and strand 

exchange.84 A recent study, where an attempt was made to classify RNAs as per their cognate 

RNA binding protein partner(s), identified ProQ as a global transcriptional regulator. ProQ binds 

to about 100 RNAs identified by a co-immunoprecipitation study, which include sRNAs, 

transcription attenuators, and RNAs which act as sponges for sRNAs. The binding affinity of ProQ 

to sRNAs is high and very similar to Hfq and CsrA. One striking difference is that ProQ binds to 

highly structured sRNAs whereas Hfq and CsrA bind to single stranded region of sRNAs. ProQ 

deletion affected expression of >800 transcripts and the expression of ProQ binding sRNAs 

modulated in a ProQ dependent manner.36-37, 87  

1.4. CsrA-sRNA interaction: CsrA is a carbohydrate metabolism regulator that affects glycolysis, 

gluconeogenesis, glycogen degradation and glycogen biosynthesis. Apart from that, CsrA is also 
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involved in regulation of bacterial motility and biofilm formation among many genes. Active CsrA 

is present as a homodimer. CsrA is an activator of its own inhibitor sRNA CsrB.88-89 CsrA binds 

specifically to the GGA ribonucleotide motif present in multiple hairpin loop structures of the 

transcript CsrB. CsrA binds to CsrB in an unusually high stoichiometric ratio of 18:1.90-91 

Therefore, CsrA is effectively sequestered by the CsrB, making it unavailable to bind for the CsrA 

regulated transcripts and hence up or down-regulating the target genes. Besides binding to CsrB, 

CsrA binds to another sRNA McaS, which is a validated Hfq-dependent regulatory sRNA. CsrA 

binds to McaS in stoichiometric ratio of 2:1.92 A bioinformatics study investigating CsrA binding 

to sRNAs used the presence of AGGA/ARGGA motif as one of the criteria to identify its sRNA 

partners, after having successfully found the known sRNA partners, they predicted several other 

possible partners of CsrA in the many bacterial species. 93 A recent study has shown that CsrA 

binds to the consensus sequence ANGGA when present in hairpin loops in the target transcripts.35  

1.5. Investigating other protein partners of Hfq-sRNAs mediated gene regulation 

Besides the above-mentioned proteins, there might be other proteins which contribute to sRNA 

mediated gene regulation in an Hfq dependent or independent manner. To identify such proteins, 

Dr. Lee performed an Hfq-ribonucleoprotein (Hfq-RNP) pull down assay using three known Hfq 

binding sRNAs RydB, DsrA and SgrS, separately as baits. After orthogonal purification, the Hfq-

RNP complexes obtained were analyzed by LC-MS and MALDI-TOF and several protein partners 

were identified, which may or may not directly interact with Hfq (Fig 1.7). As expected many 

known RNA binding proteins were identified in all three RNP complexes. However, few proteins 

were present only in specific RNP complexes. Among several proteins which appeared in specific 

RNP complexes RhlB and RhlE are particularly very interesting. RhlB appeared in an RNP 
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complex when RydB sRNA was used as bait. RhlE appeared twice, in complexes pulled down 

using SgrS and DsrA sRNAs. RhlB and RhlE are among the five DEAD box helicases found in E. 

coli. Under normal conditions RhlB is the helicase partner of the E. coli RNA degradosome, the 

machinery responsible for rapid clearance of transcripts in RNaseE dependent manner. RNP pull 

down results showed the presence of RNaseE, enolase and PNPase in all three RNP complexes as 

expected. But, RhlB appearing only in one RNP complex and was replaced by RhlE in other two 

RNP complexes was an interesting find. Results from Dr. Lee’s RNP pull down assays and the 

information available on DEAD-box helicases led us to hypothesize that specific DEAD box 

helicase can be recruited by the sRNA-Hfq complexes under certain conditions to assist in 

their regulatory functions. 

     
Fig 1.7: Proteins identified from the Hfq-RNP complex pulled down experiments using different sRNAs as bait. 
Proteins specific to RNP complexes and present in multiple RNP-complexes are shown using a Venn diagram. 
Underlined proteins are part of the RNA degradosome, RhlB and RhlE are underlined as were identified in RydB-
Hfq-RNP complex and DsrA/SgrS-Hfq-RNP complexes respectively. 

 



17 
 

 
 

Discussion on DEAD box helicases and my work related to RhlB and RhlE and their possible roles 

in sRNA-Hfq mediated gene regulation are presented in chapter 2. 
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Chapter 2: Stimulation of DEAD-box helicase RhlB and RhlE by sRNA and mRNA of Hfq-

mediated gene regulatory pathways.  

2.1 DEAD-box RNA helicase: the omnipresent partners of RNA metabolism 

DEAD-box RNA helicases are the largest class of RNA helicases and have nine conserved 

motifs including Asp-Glu-Ala-Asp (D-E-A-D), from which the name DEAD-box helicases has 

been derived.94 DEAD-box RNA helicases are associated with pre-mRNA splicing, mRNA 

turnover, translation initiation and termination, RNA transport, and ribosome biogenesis.95–98 

These proteins are present in all three domains of life. DEAD-box helicases play central and, in 

many cases essential physiological roles in RNA metabolism.98–101 The number of DEAD-box 

RNA helicases varies depending on the organism and can range from as few as 5, as with E. coli, 

to as many as 27 in Saccharomyces cerevisiae or 37 in humans.102–104 Despite being the largest 

class of RNA helicase proteins, DEAD-box proteins have poor helicase activity and are less 

processive than other helicases when acting on long RNA duplexes.105–107  

DEAD-box proteins are ATP driven motors that can unwind or anneal the RNA strands. 

These enzymes can also restructure and refold a misfolded RNA. The D-E-A-D motif has been 

found to be important for the ATPase and the RNA unwinding activity exhibited by DEAD-box 

helicases. The role of ATP in unwinding and translocation of the double stranded RNA by these 

helicases is not very clear. However, ATP is required for the recycling of the enzyme. Hence, the 

ATP hydrolysis by DEAD-box helicases is not a direct requirement of strand displacement or 

unwinding activities. However, the binding of the enzyme to the RNA substrate stimulates the 

ATPase activity of these helicases.108 DEAD-box helicases can bind to their specific RNA targets 

to perform specialized functions. Figure 2.1 depicts the different modes of substrate targeting used 

by DEAD-box helicases that have been previously identified109 including: (A) the specific 
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recognition of an RNA hairpin loop by the helicase core, which occurs during the binding of 

hairpin 92 in the 23S rRNA and DbpA by the YxiN DEAD-box helicases;1110-113 (B) Nonspecific 

binding of structured RNAs mediated by C-terminal basic tail regions possessed by DEAD-box 

helicases as with SrmB, Mss116p, and Ded1p;114,115 (C) Nonspecific targeting by multimerization 

of helicases allowing multiple interactions with structured RNA substrates; example: the 

interactions of the dimerization domain of Hera;116 and (D) Targeting the RNA substrate by 

protein-protein interaction of helicase core with specific proteins as in the case of helicase 

Dbp5p.117 A recent study suggests that the binding of DbpA is region specific and DbpA binds to 

hairpin 92 using its C-terminal RNA binding domain. Once anchored to helix 92, the catalytic core 

of DbpA can unwind any nearby double helix. Although, not completed understood, many 

 
Figure 2.1. Modes of substrate recognition and binding of DEAD-box helicases.109 (A) Recognition of specific 
RNA hairpin loop structure by DEAD-box helicases;110-113 (B) Nonspecific binding of structured RNAs mediated 
by C-terminal basic tail regions of DEAD helicases;114,115 (C) Nonspecific targeting by multimerization of helicases 
allowing to form multiple interactions with structured RNA substrate;116 (D) Targeting the RNA substrate through 
protein-protein interaction of helicase core with accessory proteins.117  
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examples of similar interactions between DEAD-box helicases and specific proteins have found 

suggesting that DEAD-box proteins may be involved in many cellular functions and pathways.118  

E. coli has five DEAD-box helicases (CsdA, DbpA, RhlB, RhlE and SrmB), which have 

been associated with ribosome biogenesis and mRNA turnover.104 Studies suggest that the E. coli 

strains lacking one or more helicases do not exhibit adverse growth defects under normal 

conditions. Experiments have demonstrated that E. coli can grow and survive even with the 

successful deletion of all five DEAD-box helicases. This suggests that, despite their abilities to 

anneal, unwind and restructure RNAs, DEAD-box helicases are dispensable in E. coli. However, 

under alternative growth conditions, defects in ribosome and growth in DEAD-box helicase 

deficient strains become more pronounced.119-120  

Results from our lab (Figure 2.1), where RhlB and RhlE selectively appeared in different 

RNP-complexes indicate that there might be a possibility of RhlB and RhlE being recruited by 

Hfq or the sRNAs to facilitate the sRNA-Hfq mediated gene regulations. Studies from Blasi and 

co-workers suggested that the regulation of rpoS by sRNA DsrA requires CsdA at cold 

temperatures (15 °C). Hfq fails to facilitate the regulation of rpoS by sRNA DsrA on its own, 

unlike during normal growth conditions, supporting the idea that Hfq or Hfq-sRNA/RNP may 

recruit DEAD-box helicases under stressful or specific conditions.121 In this study focuses on the 

roles of RhlB and RhlE in sRNA mediated regulations and effects of Hfq on RhlB and RhlE. 

RhlB is an integral part of the RNA-degradosome machinery in E. coli, along with PNPase, 

enolase and RNaseE.122-124 RhlB facilitates the PNPase mediated degradation of RNAs with strong 

secondary structures. The coordination between RhlB and PNPase requires the association of these 

two proteins with RNase E which acts as a scaffold to anchor all the other components of 

degradosome. The association of RhlB with the C-terminal end of RNase E (between amino acids 



21 
 

 
 

696–762), or a peptide fragment from RNase E (including amino acids 696–762), is known to 

stimulate the RNA unwinding as well as the ATPase activity of RhlB. The RNA unwinding and 

ATPase activity further aid the PNPase mediated degradation of structured RNAs.125-127 However, 

an RNase E independent RhlB-PNPase complex has been reported that can efficiently mediate 

RNA degradation.128-129 A recent report suggests that the interaction of the RNase E independent 

RhlB-PNPase complex is involved in cysteine homeostasis in E. coli. Northern blot analyses 

showed the accumulation of cysB transcript that encodes for a transcriptional activator of the cys 

operon. Microarray analyses showed the upregulation of 11 out of 14 cysteine biogenesis genes 

validating the high cellular level of cysteine and enhanced antioxidative response.129 In vitro, RhlB 

shows poor 5’→3’ RNA helicase activity while requiring a 5’ overhang and fails to unwind blunt 

end RNA duplexes.130 RhlB shows stimulated ATPase activity in the presence of an RNA substrate 

which increases with addition of RNase E peptide fragment (including amino acids 696–792). 

However, this increased activity is 6–7 fold less than the ATPase activity shown by RhlE and 

SrmB when total RNA extract from S. cerevisiae was used as susbstrate.125 The low ATPase 

activity could be because: (a) RhlB has inherently slow ATPase activity; or (b) RhlB is only 

stimulated by a very specific substrate that could be either less abundant or less available to RhlB 

due to the competition between RhlB specific and nonspecific substrate RNAs present in the total 

RNA extract. However, any RNA sequence or region specific binding or stimulation of RhlB’s 

ATPase activity has not been previously reported.  

RhlE on the other hand, can unwind dsRNA with 5’ or 3’ overhangs and RNA duplexes 

with blunt ends. Unwinding of blunt RNA duplexes is an ability unique to RhlE among the five 

DEAD-box helicases of E. coli.104,131 RhlE has exhibited higher ATPases activity than RhlB, and 

to the similar ATPase activity to SrmB when a total RNA extract of S. cerevisiae was used as RNA 
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substrate.125 Bizebard et al. have previously used multiple RNA oligomers to study stimulation of 

ATPase activity of RhlE, SrmB, CsdA and a CsdA mutant (ΔCsdA). RNA oligomers were used 

in a high concentration to obtain maximal stimulation. Results have shown that stimulation of 

DEAD-box helicases occur in a substrate dependent manner. SrmB demonstrates the least 

stimulation, while the CsdA and ΔCsdA showed moderate stimulation. RhlE exhibits the highest 

stimulation of the four helicases in the study using data from the same substrate.131 Results from 

this study, using specific RNA oligomers, are inconsistent to the results obtained using whole RNA 

extract of S. cerevisiae, where SrmB and RhlE have shown similar activities.125,131 One possible 

explanation for the observations from both the studies could be that RhlE is less specific and 

therefore shows near maximal stimulation under both experimental conditions. However, 

stimulation of SrmB occurred only when total RNA extract was used. The RNA oligos used by 

Bizebard et al. might not be the optimal substrates for SrmB, emphasizing the fact that DEAD-

box helicases might have a sequence or structural preference while binding to their substrate.  

RhlE can partially alleviate the effects of the ΔcsdA mutation when overexpressed but 

exacerbates the ΔsrmB related phenotypes under cold stress. It has been proposed that RhlE aids 

SrmB and CsdA in ribosome biogenesis by acting on 50S subunit of the ribosome. The higher 

RhlE concentration favors the ribosome biogenesis via SrmB mediated pathway instead of the 

CsdA mediated pathway.119-120 

Like RhlB, RhlE also anchors to RNase E and binds to a site different binding site than 

RhlB.132 In the gram negative bacteria, Pseudomonas syringae Lz4W, it has been observed that 

under cold stress conditions RhlB gets replaced by RhlE.133 In vitro studies demonstrate that a 

complex constituted with RNaseE, PNPase and RhlE or CsdA can degrade the structured RNA in 

PNPase dependent manner, similar to RhlB.132,134 Iresha’s work from our lab has previously shown 
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that the ΔrhlE strain grows as robustly as the wild type E. coli strain under normal growth 

conditions. Also, the ΔrhlE strain does not show any growth defects when exposed to cold shock, 

osmotic stress, sugar stress or oxidative stress conditions. However, the ΔrhlE Δhfq strain shows 

a growth pattern like Δhfq strain under cold shock and osmotic stress conditions. Normal growth 

is partially restored in the ΔrhlE Δhfq strain compared to the impaired growth normally exhibited 

by the Δhfq strain under sugar stress condition. Furthermore, in the ΔrhlE Δhfq strain normal 

growth is completely restored compared to the Δhfq strain under oxidative stress conditions. 

Considering all these data, it was hypothesized that RhlB and RhlE work synergistically with Hfq 

to modulate sRNA-mediated gene regulations. 

2.2 Investigating the roles of RhlB and RhlE in Hfq-sRNA mediated gene regulation in E. 
coli: approach, results, and discussion 

The goal of these experiments was to understand the roles of RhlB and RhlE in Hfq-sRNA 

mediated gene regulations during the response to stress. We hypothesized that Hfq and RhlB or 

RhlE can work synergistically or complementarily to modulate the gene regulation. To address 

this question, a multi-pronged approach was designed.  

First the in vitro approach has the advantage of the ATPase activity of DEAD-box 

helicases. Since, DEAD-box helicases are stimulated upon binding to an RNA substrate the 

hydrolysis of ATP by RhlB or RhlE can be measured using lactate dehydrogenase-pyruvate kinase 

coupled enzyme assay. The rate of ATP consumption by RhlB or RhlE can be calculated by 

measuring the decrease in concentration of NADH which absorbs distinctly at wavelength 340 nm 

(Figure 2.2). We hypothesized that RhlB and RhlE would have differential stimulation with 

different RNAs because of their preferential binding to certain structural or sequence motifs  
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present in substrates. To understand the differential affinity and stimulation of RhlB and RhlE a 

variety of RNA substrates were chosen.  

RNAs substrate 
for RhlB and 

RhlE 

Description of RNA substrates  

rA18  poly-A tails are posttranscriptional modification to mRNA; binds to Hfq. 
fhlA53  –53 upstream to AUG of fhlA +60  
fhlA220 –220 upstream to AUG of fhlA to +60  

rpoS    –134 upstream to AUG of rpoS to +3 
ompC  –81 to 60 
ompF –110 to 60 
sdhC –220 to 60 
hns  –30 to 60 

glmS –143 to 60 
OxyS Full length 
DsrA Full length 
GlmZ Full length 
GlmY Full length 
RyhB Full length 
RybB Full length  

 
Table 2.1. List of RNAs used to test the ATPase activity of RhlB and RHlE in presence and absence of Hfq. All 
RNA substrates were prepared by in vitro transcription using T7 RNAP except rA18 which was purchased from 
Dharmacon Research.  
 

 

 
Figure 2.2. Schematics of the coupled enzyme assay. RhlB or RhlE in presence of Mg+2 and an appropriate RNA 
substrate show stimulated ATPase activity, converting the ATP into ADP. Pyruvate kinase converts 
phosphoenolpyruvate to pyruvate regenerating ATP from ADP in the process. The pyruvate is converted to lactate 
by lactate dehydrogenase oxidizing NADH to NAD+. NADH absorbs light at 340 nm (Molar extinction 
coefficient = 6220 L mol-1 cm-1) and with the decrease in concentration of NADH, the absorbance at λ340 decreases 
as measured spectrophotometrically. The ATP:NADH consumption ratio is 1:1 therefore the rate of NADH 
consumption indirectly gives the rate of ATP consumption by the enzyme of interest( RhlB or RhlE). 
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Several Hfq dependent sRNAs and their target mRNAs were selected as substrates to study 

the stimulation of ATPase activity of RhlB and RhlE (Table 2.1). Plasmid constructs with 

sequences from fhlA53, fhlA220, rpoS, OxyS and DsrA were available from previous studies in 

the Feig laboratory and the rA18 RNA oligos were purchased from Dharmacon. DNA sequences 

for the final nine RNA constructs were cloned into pUC19 using the restrictions sites as described 

in Table 2.3. A T7 RNA polymerase promoter sequence was incorporated into the plasmid for in 

vitro transcription. All sequences were constructed using PCR with a TOP-10 E. coli strain 

template using Taq DNA polymerase and the appropriate primers and conditions (Table 2.3, 

Materials and Methods). The identity of each clone was verified by sequencing. In vitro 

transcription experiments were performed using the corresponding linearized plasmids and the 

RNA products were gel purified. RhlE and RhlB were purified before SDS-PAGE analysis for 

protein purity (Figure 2.3).  

                                          
Fig 2.3: Gel analysis of purified RhlB and RhlE. RhlB was purified by Ni+2 affinity chromatography and the 
eluted fraction is loaded on the SDS-PAGE gel (4% stalking, 15% PAGE separation gel). RhlE was purified as 
mentioned in materials and methods section, and the elution fraction after 2nd Ni+2 affinity column was collected 
as final purified protein, shown here.   
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Hfq dependent sRNAs and their partner mRNAs but not the rA18 oligomers stimulated 

RhlB (Figure 2.4). Coupled enzyme assays were performed using 50 nM of RhlB and 200 nM of 

RNA substrates to investigate the differential stimulation, if any, while using different RNA 

substrates. RhlB was stimulated by most of the sRNAs and mRNAs used as substrates but no 

stimulation was observed with rA18 substrate in the absence of Hfq. However, these ATPase 

assays were done in absence of RNase E or RNase E peptide fragments (696–762 amino acids) 

and substrate dependent stimulation of RhlB was observed. Stimulations of RhlB with the RNAs 

used for this study are multiple fold higher than reported by Worrall et al.125 This could be because 

of the difference in substrates used between these two experiments. It is important to mention that 

 

 
Figure 2.4. RhlB ATPase activity to identify the RNA dependent stimulation. Lactate dehydrogenase-Pyruvate 
kinase coupled enzyme assay was used to track the progress of reaction. Rate of reaction (ATP hydrolysis) was 
measured indirectly by measuring the decrease in concentration of NADH at λ340, over the course of 10.0 min 
reaction time. The measurements were taken at every 30.0 s. Results were analyzed using Microsoft excel. 50.0 
nM of RhlB, and 200.0 nM of each RNA substrate was used. The results plotted here are the mean of the results 
from two independent sets of experiments. Average deviation has been used as error bar. To assess the effect of 
Hfq, 100nM was used. The number on X-axis indicate the number of moles of ATP hydrolyzed per mole of RhlE, 
per minute.Data is given in table 2.2. 

* RybB data for +Hfq reaction is the data obtained from one set of experiment hence there is no error bar indicated. 
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in my work RhlB has been tested in lower concentrations of substrate. Therefore, the numbers 

here, most likely, do not represent the maximum stimulation of RhlB by any substrate. 

In presence of Hfq (100.0 nM), stimulation of RhlB has shown a mixed pattern. As evident 

from Figure 2.3 and Table 2.2 presence of Hfq resulted in higher stimulation of RhlB (more than 

two folds) for rA18, OxyS, RpoS, SdhC, GlmZ and RyhB substrate. Significant decrease (more 

than two folds) in stimulation occurred only for RybB and Hns. RybB data is from a single 

experiment and therefore it is hard to draw any conclusions from it. Presence of Hfq has not made 

any significant difference in ATPase activity of RhlB for rest of the RNA substrates.  

  
50.0nM RhlB + 200.0 nM 

RNAs 

fold change 
(+Hfq/–Hfq) 

25.0nM RhlE + 200.0 nM 
RNAs 

fold change 
(+Hfq/–Hfq) 

RNAs avg rate   
(–Hfq) 

avg rate 
(+Hfq; 

100.0 nM) 
avg rate     
(–Hfq) 

avg rate 
(+Hfq;  

100.0 nM) 
Blank 3.8 ± 0.7 2.1 ± 0.5 0.55 7.4 ± 0.0 15.6 ± 6.0 2.12 
A-18 0.4 ± 0.2 8.6 ± 2.8 22.15 92.7 ± 23.7  40.5 ± 8.4 0.44 

fhlA220 11.7 ± 2.9 7.9 ± 0.2 0.67 190.3 ± 29.1 209.9 ± 18.2 1.10 
fhlA53 7.7 ± 1.2 5.6 ± 0.3  0.72 291.5 ± 28.0 228.6 ± 3.0 0.78 
rpoS 1.6 ± 0.1 5.8 ± 0.5 3.56 149.4 ± 10.1 170.0 ± 1.5 1.14 
DsrA 7.1 ± 0.4 7.3 ± 4.6 1.03 320 ± 15.5 328.3 ± 23.1 1.02 
OxyS 6.0 ± 0.3 15.1 ± 1.1 2.52 167.9 ± 16.6 146.6 ± 9.2 0.87 
sdhC 4.4 ± 1.4 11.1 ± 1.0 2.52 205.1 ± 5.5 134.8 ± 39.4 0.66 
ompC 14.3 ± 0.3 11.9 ± 0.3 0.83 197.2 ± 12.7 139.6 ± 21.4 0.71 
ompF 13.2 ± 0.6 17.3 ± 0.7 1.30 188.2 ± 19.5 126.0 ± 14.0 0.67 
glmS 14.8 ± 0.8 12.0 ± 0.9 0.81 181.7 ± 1.2 162.1 ± 1.1 0.86 
GlmY 9.3 ± 1.5 5.1 ± 1.4 0.55 119.4 ± 10.6 108.2 ± 7.5 0.91 
GlmZ 4.9 ± 0.2 18.2 ± 1.1 3.69 133.8 ± 1.4 110.2 ± 2.3 0.82 
RyhB 2.2 ± 1.0 8.4 ± 1.8 3.87 332.7 ± 37.9 229.2 ± 9.0 0.69 
RybB 8.8 ± 0.5 1.40* 0.16 481.6 ± 70.5 347.3 ± 13.1 0.72 
hnS 16.4 ± 0.8 6.2 ± 0.0 0.38 240.3 15.0 174.0 ± 24.0 0.72 

Table 2.2: RNA stimulated RhlB/RhlE ATPase activity data. The results given here are the mean of the results 
from two independent sets of experiments. Average deviation has been used as error bar (±). To assess the effect 
of Hfq, 100 nM was used as indicated. The numbers indicate the number of moles of ATP hydrolyzed per mole 
of helicase (RhlB or RhlE), per minute; in presence of 200.0 nM of corresponding RNA substrate. 

*RybB data for +Hfq reaction is the data obtained from one set of experiment hence there is no error indicated. 
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RybB caused the strongest stimulation of RhlE’s ATPase activity among all the RNA 

substrates used (Figure 2.5). All RNA substrates caused strong stimulation of ATPase activity 

however, stimulation by RybB was the strongest followed by RyhB, DsrA and fhlA53. rA18 

caused the weakest stimulation among all the RNA substrates however, the result is consistent 

with the literature reported value for rA16 (110 min–1) and rA18 (120 min–1). Again, it is important 

to note that the RNA substrates used are not in such high concentrations which yields the maximum 

stimulation. Therefore, the number obtained for stimulation of ATPase in presence of rA18 (92.7 

± 23.7) could be higher if higher concentration of rA18 being used. Presence of Hfq invariably 

decreased the RNA substrate stimulated rate of ATP hydrolysis.  

 
Figure 2.5: RhlE ATPase activity to identify the RNA dependent stimulation. Lactate dehydrogenase-Pyruvate 
kinase coupled enzyme assay was used to track the progress of reaction. Rate of reaction (ATP hydrolysis) was 
measured indirectly by measuring the decrease in concentration of NADH at λ340, over the course of 10.0 min 
reaction time. The measurements were taken at every 30.0s. Results were analyzed using Microsoft excel. 25.0 
nM of RhlE, and 200.0 nM of each RNA substrate was used. The results plotted here are the mean of the results 
from two independent sets of experiments. Average deviation has been used as error bar. To assess the effect of 
Hfq, 100nM was used. The number on X-axis indicate the number of moles of ATP hydrolyzed per mole of RhlE, 
per minute. Data is given in table 2.2. 
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Presence of Hfq invariably decrease the rate of ATPase stimulation in case of RhlE, whereas 

it displays entirely different behavior with RhlB. To explain the effects of Hfq on RhlB and RhlE, 

we offer few possibilities and explanation to their outcomes. (a) RhlB and RhlE binds to the RNA 

at the same site as Hfq: this could lead to the competition between two proteins or sequestration 

of free RNA substrates by Hfq, and hence the decrease in ATPase activity would be observed. (b) 

RhlB and RhlE binds to the RNA substrate at an entirely different site than Hfq without causing 

any change to the RNA structure. Therefore, presence of Hfq would not have a big impact on 

ATPase activity of helicases. The binding sites for the two proteins would be distinctly available 

except, when the two sites are too close and cause steric hindrance or assists other protein to bind 

to the substrate (cooperative binding of protein). In that case, ATPase activity could either decrease 

or increase, respectively. (c) Binding of Hfq results in remodeling of RNA substrate and could (i) 

expose, (ii) seclude, or (iii) show no effect at the helicase binding sites. Depending on the outcome 

of Hfq mediated remodeling the ATPase activity could increase, decrease or remain unaffected. 

Nonetheless, this data presented raised a few interesting questions.  

(a) Does RhlB prefer a structural or sequence element during the substrate selection? 

(b) Does RhlB require assistance of Hfq, in vivo, to accomplice its function as a component of 

RNA degradosome under normal or certain stress conditions? 

It is tempting to speculate that RhlB which acts as regular component of RNA could use 

assistance of Hfq, under certain conditions. However, higher processive RhlE might not need Hfq 

assistance to perform its function.  

To study the roles of RhlB and RhlE, in vivo, ΔrhlB, ΔrhlB Δhfq, ΔrhlB ΔrhlE, and ΔrhlB ΔrhlE 

Δhfq were prepared (data not shown). The ΔrhlE, ΔrhlE Δhfq strains were prepared by our previous 

lab member Iresha Rahnayake. The goal was to use these strains to understand the effect of the 
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deletion of rhlB, rhlE and hfq on growth, by exposing the E. coli strains to different stress 

conditions. Due to certain constrains the in vivo studies could not be done. 

So far, this study has shown that RhlB and RhlE get significantly stimulated with the Hfq 

binding sRNAs and mRNAs. Further, investigations would be required to understand the effects 

of Hfq on RhlB activities. Understanding the contribution of RhlB and RhlE to sRNA-Hfq-

mediated gene regulation would enrich our knowledge of regulatory pathways, and help eradicate 

the pathogenic bacteria.  
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Chapter 2: Materials and methods 

Cloning of RhlB: rhlB was PCR amplified using Taq-DNA polymerase (1X MgCl2-free Taq DNA 

polymerase buffer, 0.5 mM MgCl2, 0.8 mM dNTPs mix, 0.2 µM each primer and 5.0 µL of boiled 

Top-10 E.coli cells). rhlB forw and rhlB rev primers were and corresponding temperature profile 

as mentioned in table 2.3. PCR reaction was analyzed using 1.2 % Agarose gel, visualized using 

ethidium bromide.  The identified PCR product was cleaned up using PCR clean up kit (E.Z.N.A. 

Microelute cycle-Pure Kit; Omega, D6293-03). pET28a vector (2.0 µg) and the PCR product (2.0 

µg) were separately digested with NcoI and HindIII in 50.0 µL reaction size. Digested PCR 

product and vector were cleaned again using PCR clean up kit same as mentioned before. Cleaned 

PCR product was then inserted into pET28a vector using T4-DNA ligase (NEB, M0202S) 

following the manufacturer’s protocol. The ligation mixture was then transformed into Top-10 E. 

coli stain and plated on LB-Agar plate containing 30.0 mg/ml Kanamycin. Single colonies were 

analyzed for the presence of correct rhlB carrying pET28a plasmids using pET28a specific 

primers. Plasmid minipreps were done using E.Z.N.A plasmid DNA Mini Kit II (Omega, D6945-

02) and purified plasmids were used for restriction digestion to re-confirm the presence of rhlB in 

the purifies plasmid. Plasmids identified positive for the rhlB were then sequenced using pET28a 

specific sequencing primers as well rhlB internal reverse and forward primers. Selected plasmid 

was then transformed into the BL21(DE3) cells for expression purpose. Transformation of 

plasmids were done in our lab prepared electrocompetent cells of Top-10 and BL21(DE3) where 

needed, using Bio-Rad micropulser.  

Expression and purification of RhlB: BL21(DE3) cells were streaked on a LB-Agar-Kanamycin 

(30 mg/ml) plate. 5.0 ml LB-media was inoculated with cells picked from the single colony. The 

overnight culture was then used to inoculate fresh 1 L of LB-media and cells were grown (250 rpm 
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@ 37 °C), until OD600 of 0.4–0.5 have been reached. Cells were induced with IPTG (final 

concentration of 1mM) to express the protein for 4–5 hours. Cells were harvested (5000 g, 10min 

@ 4 °C) and cells pellet was stored in @ –20 °C until ready for purification. 

Cell pellet was thawed on ice and then suspended into ice cold lysis buffer (25 mM Tris-

HCl, 300.0 mM KCl and 10.0 mM imidazole; pH 8.1) up to the volume of 15.0 – 20.0 ml. Half a 

tablet of proteases inhibitor cocktail (ROCHE, cOmplete from Sigma – 11697498001) was added 

and the lysis was done by sonication (4–5 cycles of 30s pulse with 1.0 min pause @ 37 % 

amplitude). Lysed cells suspension was then clarified to obtain the clear supernatant by 

centrifugation (30,000 rpm for 45 min @ 4 °C, using JA-17 rotor). Clear supernatant was then 

filtered through 0.8 micron syringe filter and transported to cold room (2 – 6 °C) for further 

purification. The clear supernatant was loaded on to a charged Ni affinity column pre-equilibrated 

with lysis buffer. After loading of supernatant, the Ni column was washed with 10 column volume 

(CV) of lysis buffer followed by 10 CV of imidazole buffer (10 mM HEPES, 300.0 mM KCl and 

50.0 mM imidazole; pH 7.5), then 10 CV of high salt buffer (10 mM HEPES, 1.0 M KCl and 10.0 

mM imidazole; pH 7.5), before eluting the protein off the column using 10 CV of before elution 

buffer (10 mM HEPES, 1.0 M KCl and 300.0 mM imidazole; pH 7.5). Elution fraction collected 

was then used for analyzing the presence of protein using denaturing SDS-PAGE gel (4 % stalking, 

15 % separation gel), visualized by Coomassie staining. Eluted fraction then dialyzed twice, using 

1 L of dialysis buffer (10 mM HEPES, 300.0 mM KCl; pH 7.5) at 4 °C or in cold room, with gentle 

spinning. Dialyzed protein was kept on ice and filtered using 0.2 micron syringe filter before 

determining the concentration of protein using A280/260 ratio. Protein is then diluted, if needed, 1.0 

– 1.5 mg/ml concentration and stored at 4 °C to be used for coupled enzyme assay for next 15–20 

days. Protein older than 15–20 days stored at 4 °C were never used for coupled enzyme assay.  
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Expression and purification of RhlE: BL21(DE3) cells (prepared previously by Iresha 

Rathnayake) were streaked on a LB-Agar-Kanamycin (30 mg/ml) plate. 5.0 ml LB-media was 

inoculated with cells picked from the single colony. The overnight culture was then used to 

inoculate fresh 1 L of LB-media and cells were grown (250 rpm @ 37 °C), until OD600 of 0.4–0.5 

have been reached. Cells were induced with IPTG (final concentration of 1mM) to express the 

protein for 4–5 hours. Cells were harvested (5000 g, 10min @ 4 °C) and cells pellet was stored in 

@ –20 °C until ready for purification. 

Cell pellet was thawed on ice and then suspended into ice cold lysis buffer (25 mM Tris-

HCl, 300.0 mM KCl and 10.0 mM imidazole; pH 8.1) up to the volume of 15.0 – 20.0 ml. Half a 

tablet of proteases inhibitor cocktail (ROCHE, cOmplete from Sigma – 11697498001) was added 

and the lysis was done by sonication (4–5 cycles of 30s pulse with 1.0 min pause @ 37 % 

amplitude). Lysed cells suspension was then clarified to obtain the clear supernatant by 

centrifugation (30,000 rpm for 45 min @ 4 °C, using JA-17 rotor). Clear supernatant was then 

filtered through 0.8 micron syringe filter and transported to cold room (2 – 6 °C) for further 

purification. The clear supernatant was loaded on to a charged Ni+2 affinity column pre-

equilibrated with lysis buffer. After loading of supernatant, the Ni+2 column was washed with 10 

column volume (CV) of lysis buffer followed by 10 CV of imidazole buffer (10 mM HEPES, 

300.0 mM KCl and 50.0 mM imidazole; pH 7.5), followed by 10CV Urea buffer (10 mM HEPES, 

300.0 mM KCl, 1.0 M Urea and 10.0 mM imidazole; pH 7.5) 10 CV of high salt buffer (10 mM 

HEPES, 1.0 M KCl and 10.0 mM imidazole; pH 7.5), before eluting the protein off the column 

using 10 CV of before elution buffer (10 mM HEPES, 1.0 M KCl and 300.0 mM imidazole; pH 

7.5). Elution fraction collected was then used for analyzing the presence of protein using 

denaturing SDS-PAGE gel (4 % stalking, 15 % separation gel), visualized by Coomassie staining. 
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Eluted fractions were then aliquoted in two 5.0 mL fractions and loaded separately (two separate 

runs) on to the Superdex S-200 column for size exclusion chromatography using Bio-Rad NGC 

FPLC system and FPLC-buffer (10 mM HEPES, and 300.0 mM KCl; pH 7.5) for elution. The 

FPLC fractions containing protein were loaded on 2nd Ni+2 affinity column, charged and pre-

equilibrated with FPLC buffer, to concentrate the protein. Protein was then eluted like 1st Ni+2 

column without using any wash step. Eluted fractions (~ 10.0 mL) were then filled in to a dialysis 

cassette (10,000 MW) and dialyzed twice, using 1 L of dialysis buffer (10 mM HEPES, 300.0 mM 

KCl; pH 7.5) at 4 °C or in cold room, with gentle spinning. Dialyzed protein was kept on ice and 

filtered using 0.2 micron syringe filter before determining the concentration of protein using 

A280/260 ratio. Protein is then diluted, if needed, 1.0 – 1.5 mg/ml concentration and stored at 4 °C 

to be used for coupled enzyme assay for next 15–20 days. Protein older than 15–20 days stored at 

4 °C were never used for coupled enzyme assay. 

Expression and purification of Hfq-CH6-wt2: BL21(DE3) carrying the expression plasmid Hfq-

CH6-wt2 for cells (from lab stock) were streaked on a LB-Agar-Kanamycin (30 mg/ml) plate. 5.0 

ml LB-media was inoculated with cells picked from the single colony. The overnight culture was 

then used to inoculate fresh 1 L of LB-media and cells were grown (250 rpm @ 37 °C), until OD600 

of 0.4–0.5 have been reached. Cells were induced with IPTG (final concentration of 1mM) to 

express the protein for 4–5 hours. Cells were harvested (5000 g, 10min @ 4 °C) and cells pellet 

was stored in @ -20 °C until ready for purification. 

Cell pellet was thawed on ice and then suspended into ice cold lysis buffer (50 mM Tris-

HCl, 250.0 mM NH4Cl, 20.0 mM imidazole and 10 % glycerol; pH 7.5) up to the volume of 15.0 

– 20.0 ml. Half a tablet of proteases inhibitor cocktail (ROCHE, cOmplete from Sigma – 

11697498001) was added and the lysis was done by sonication (4–5 cycles of 30s pulse with 1.0 
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min pause @ 37 % amplitude). Lysed cells suspension was then clarified to obtain the clear 

supernatant by centrifugation (30,000 rpm for 45 min @ 4 °C, using JA-17 rotor). Clear 

supernatant was then filtered through 0.8 micron syringe filter and transported to cold room (2 – 6 

°C) for further purification. The clear supernatant was loaded on to a charged Ni+2 affinity column 

pre-equilibrated with lysis buffer. After loading of supernatant, the Ni+2 column was washed with 

10 column volume (CV) of lysis buffer followed by 10 CV of imidazole buffer (50 mM Tris-HCl, 

250.0 mM NH4Cl, 50.0 mM imidazole and 10 % glycerol; pH 7.5), followed by 10CV Urea buffer 

(50 mM Tris-HCl, 250.0 mM NH4Cl, 1.0 M Urea, 10.0 mM imidazole and 10 % glycerol; pH 7.5) 

10 CV of high salt buffer (50 mM Tris-HCl, 1.0 M NH4Cl, 10.0 mM imidazole and 10 % glycerol; 

pH 7.5), before eluting the protein off the column using 10 CV of before elution buffer (50 mM 

Tris-HCl, 250.0 mM NH4Cl, 50.0 mM EDTA and 10 % glycerol; pH 7.5). Elution fraction 

collected was then used for analyzing the presence of protein using denaturing SDS-PAGE gel (4 

% stalking, 15 % separation gel), visualized by Coomassie staining. Eluted fractions (~ 10.0 mL) 

were then filled in to a dialysis cassette (10,000 MW) and dialyzed twice, using 1 L of dialysis 

buffer (50 mM Tris-HCl, 250.0 mM NH4Cl and 10 % glycerol; pH 7.5) at 4 °C or in cold room, 

with gentle spinning. Dialyzed protein was kept on ice and filtered using 0.2 micron syringe filter 

before determining the concentration of protein using A280/260 ratio. Protein is then diluted, if 

needed, 1.0 – 1.5 mg/ml concentration and stored at – 20.0 °C for future usages. Hfq is highly 

stable at – 20.0 °C and can be stored for years for future usages. 

Expression and purification of His-6 tagged T7 RNA polymerase: BL21(DE3) carrying the 

expression plasmid for His-6 tagged T7 RNA polymerase was a kind gift from Dr. Christine Chow 

lab. Expression cells (from Dr. Chow lab stock) were streaked on a LB-Agar-Ampicillin (100 

µg/ml) plate. 5.0 ml LB-media was inoculated with cells picked from the single colony. The 
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overnight culture was then used to inoculate fresh 1 L of LB-media containing Ampicillin (100 

µg/ml) and cells were grown (250 rpm @ 37 °C), until OD600 of 0.4–0.5 have been reached. Cells 

were induced with IPTG (final concentration of 1mM) to express the protein for 4–5 hours. Cells 

were harvested (5000 g, 10min @ 4 °C) and cells pellet was stored in @ –20 °C until ready for 

purification. 

Cell pellet was thawed on ice and then suspended into ice cold lysis buffer (50 mM Tris-

HCl, 500.0 mM NaCl, and 20.0 mM imidazole; pH 8.0) up to the volume of 15.0 – 20.0 ml. Half 

a tablet of proteases inhibitor cocktail (ROCHE, complete from Sigma – 11697498001) was added 

and the lysis was done by sonication (4–5 cycles of 30s pulse with 1.0 min pause @ 37 % 

amplitude). Lysed cells suspension was then clarified to obtain the clear supernatant by 

centrifugation (30,000 rpm for 45 min @ 4 °C, using JA-17 rotor). Clear supernatant was then 

filtered through 0.8 micron syringe filter and transported to cold room (2 – 6 °C) for further 

purification. The clear supernatant was loaded on to a charged Ni+2 affinity column pre-

equilibrated with lysis buffer. After loading of supernatant, the Ni+2 column was washed with 10 

column volume (CV) of lysis buffer followed by 10 CV of high salt buffer (50 mM Tris-HCl, 1.0 

M NaCl, and 20.0 mM imidazole; pH 8.0), before eluting the protein off the column using 10 CV 

of before elution buffer (50 mM Tris-HCl, 500.0 mM NaCl, and 400.0 mM imidazole; pH 8.0). 

Elution fraction collected was then used for analyzing the presence of protein using denaturing 

SDS-PAGE gel (4 % stalking, 15 % separation gel), visualized by Coomassie staining. Eluted 

fractions (~ 10.0 mL) were then filled in to a dialysis cassette (10,000 MW) and dialyzed twice, 

using 1 L of dialysis buffer ((50 mM Tris-HCl, 500.0 mM NaCl in 50 % glycerol; pH 7.5) at 4 °C 

or in cold room, with gentle spinning. Dialyzed protein was kept on ice and filtered using 0.2 

micron syringe filter before determining the concentration of protein using A280/260 ratio. Protein 
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is then diluted, if needed, 1.0 – 1.5 mg/ml concentration and stored at – 20.0 °C for future usages. 

T7 RNAP is a stable protein and can be stored at – 20.0 °C for years for future usages. 

Cloning of RNA constructs: To transcribe the selected RNA sequences via in vitro transcription, 

first the corresponding DNA sequences were amplified using the primers from table 2.3, following 

the temperature profile mentioned. The amplified PCR products were then analyzed using agarose 

gel and purified using PCR clean up kit, as mentioned in previous section. The PCR products and 

the pUC19 cloning vectors were then digested and ligated after clean up using T4-DNA ligase. 

The ligation mixture was then transformed into XL-10 or Top-10 E. coli strains. Single colonies 

were obtained after plating the cells post-transformation and grown @ 37 °C for 16 h. Single 

colonies were then picked for colony PCR to identify the presence of correct plasmid construct, 

using standard pUC19 sequencing primers. Plasmids isolated from selected colonies by miniprep 

were used to do sequencing PCR (Sanger sequencing) following Feig’s lab standard protocol for 

DNA sequencing, using standard pUC19 sequencing primers. The sequencing PCR products were 

then cleaned and sequence analyzed using the SEQ 8000 sequence analyzer. Identified colonies 

carrying the constructs of interest were then stored in 50 % glycerol @ –80 °C for future usages. 

For list of constructed plasmids please check appendix I. 
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In vitro transcription, purification and analysis of RNAs: All the template plasmids were 

linearized with the restriction enzymes mentioned in Table 2.3, and phenol:chloroform:iso-amyl 

alcohol (25:24:1; pH – 8.1) extraction was done twice followed by chloroform extraction and 

ethanol precipitation following the standard phenol:chloroform extraction procedure for DNA. 

The linearized templates were resuspended using autoclaved MilliQ water and the concentrations 

were measured using A260/280 ratio to ensure the quantity and purity. In vitro transcriptions to 

prepare the required RNAs were done using Dr. Feig’s lab transcription protocol. T7 RNAP was 

purified as described in previous section and test reactions (40.0 mM Tris-HCl, 15.0 mM MgCl2, 
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0.01% Triton X-100, 2.0mM spermidine, 5.0mM DTT, 2.0 mM of each NTP (ATP, CTP, UTP 

and GTP), 20 ng of linearized plasmid templates and 1 µL of T7 RNAP (1.3 mg/ml)) were set up 

at 37 °C for 1 h. Upscale in vitro transcription reactions ( 20.0 mL reaction volume) were set-up 

following the same protocol as test transcriptions except that for 20.0 mL reactions only 100–200 

ng of linearized template DNA and 50 µL of T7 RNAP were used for each reaction. Reactions 

were incubated for 4 h @ 37 °C with intermittent shaking and spin (1000 rpm). RNAs were 

precipitated (using 0.5 M NH4OAc (pH 5.2), 100 % ethanol (3X to reaction volume) @ –20 °C). 

RNA obtained were further purified using denaturing Urea-PAGE gel (7.0 M Urea, 8% PAGE gel) 

following standard purification protocol. The RNAs obtained were resuspended and quantified 

using A260/280.  

Coupled enzyme assay for ATPase activity detection: To determine the ATPase activity of RhlB 

and RhlE, lactate dehydrogenase/pyruvate kinase coupled enzyme assays were done. Depletion of 

NADH was monitored at the wavelength 340 nm. The concentrations of reagents used in the assays 

were as mentioned in table 2.4.  

Measurement were made using UV-Vis 8453 spectrophotometer (Agilent), over a reaction 

time of 10.0 min and repeated measurement were taken at every 30s. Effects of Hfq was study at 

by adding Hfq (100 nM) to each reaction containing 200 nM of substrate RNA. 25.0 nM and 50.0 

nM of RhlE and RhlB has been used in both Hfq +/– reactions. A reaction without RhlB or RhlE 

was considered as background. Spectroscopic data were analyzed using Kaleidagraph and 

Microsoft Excel.  
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Reagents 
Stock 

Concentration 
Final 

Concentration 
HEPES (pH 7.5) 500 mM 10 mM 
KCl 500 mM 75 mM 
MgCl2 20 mM 2.0 mM 
ATP 100 mM 1.25mM 
Phosphoenol Pyruvate 5 mM 0.2 mM 
NADH 10 mM 0.15 mM 
PK 500 u/ml 10 u/ml 
LDH 1000 u/ml 20 u/ml 
Substrate RNAs 500 nM 200 nM 
RhlB or RhlE   25–50 nM 
Hfq (in + Hfq rxns 
only)   100 nM 
Table 2.4: List of coupled enzyme assay's components and 
concentrations. 
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Chapter 3: TcdA protein chimeras as cell-specific protein cargo delivery system 

3.1 Introduction: 

The targeted cellular delivery of drugs and proteins has tremendous scientific and therapeutic 

potential. In vitro delivery could lead to the better understanding of different signaling pathways, 

manipulation, and optimization of certain pathways for new therapeutic approaches, and/or 

generation of stem cells from pluripotent cells to name few. Similarly, in vivo delivery of a protein 

could replace or complement a lowly expressed, dysfunctional or unexpressed protein and hence 

giving a better control over cellular machinery or to help overcome deficiency related anomaly. 

However successful delivery of functional proteins across the cellular membrane is a very 

challenging task; for example: cell membrane largely keeps proteins from entering the cells, 

whereas endosomal isolation and degradation of proteins entering through vesicle formation could 

make it unproductive.135-137 Several approaches have been developed to address these challenges 

such as (a) knocking out the target gene(s), and (b) conditional expression of protein via plasmid 

DNA transfection and expression of the protein using inherent cellular machinery. Using these 

methods, however, has their own drawbacks such as knocking out a gene could potentially to 

knock out or incorporate an undesirable sequence. Also, controlled expression of a protein to the 

biologically relevant level using in-situ Tetracycline or T7/lac responsive elements is difficult and 

requires optimization at multiple steps.138-139 Another popular approach is a carrier-based 

approach, where biologically active molecules are directly delivered to the target cells using a 

carrier molecule. Usages of (a) cationic cell-penetrating peptides (CPPs), (b) supercharged 

proteins, (c) virus-like particle, (d) nano-particles, (e) liposomes and (f) polymers, are common 
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among several other carrier based protein delivery methods (Fig 3.1).135,140 All these methods have 

their own limitations and a lot has to be done before these could be used as reliable carriers. For 

example: CPPs have been used frequently for cellular delivery of proteins. CPPs are efficient in 

the cellular delivery of proteins when appended to the cargo protein but using CPP as a delivery 

 
Fig. 3.1:  Schematic illustration of popular protein delivery systems. (A) Cell penetrating peptides 
appended to the cargo protein, (B) supercharged protein, (C) nanoparticle carriers of proteins, (D) polymeric 
carriers, (E) virus-like particles loaded with cargo protein, and (F) Liposomal delivery of protein. Between 
two lipid bilayers nucleus (light blue eclipses), mitochondria (green eclipses) and the endosome (purple circle 
with entrapped protein) represent the cellular matrix and the general idea of cellular delivery of proteins.135 
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system has its own shortcomings. Nuclear delivery of CPP appended cytosolic proteins are one of 

the most undesirable outcomes. CPPs have shown higher cell toxicity and off-target effects. 

Besides attaining the cellular specificity in a real-life sample, cytosolic availability of the cargo 

proteins in their target cells is another challenge.136-137 Most carriers mediated cargos get trapped 

in the endosome and hence get degraded or unavailable to the cytosol to perform the desired 

functions. Therefore, there is a need for a cellular delivery system which can deliver big and/or 

small molecules and proteins across the cell membrane efficiently, and could also ensure the 

substantial cytosolic delivery of the cargo protein.  

Bacterial exotoxins have evolved with high target specificity and effective delivery of 

functional domains in sufficient quantities to modulate the cellular functions. Exotoxins from 

different bacteria adopt different mechanisms for targeted delivery and to escape the vesicle 

entrapment.141-142 Several studies have modified exotoxins to attain enhanced cellular targeting 

specificity and delivery of small proteins (Table 3.1).143-150 To achieve higher cellular specificity 

and delivery of protein/small-molecule using an exotoxin based carrier our lab focuses on 

developing a cargo delivery system which should be 

a) Specific: for targeting specific cells 

b) Non-toxic: the carrier should not affect the host cellular machinery 

c) Efficient: substantially cytosolic delivery of cargos and availability to bring the desired 

effect. 

d) Versatile: ideally the vehicle should be able to take any cargo irrespective of the size and 

origin and should be able to deliver it across the membrane.  

e) Traceless: post-delivery, the transporter should be easily degradable by the cell so that it 

should not cause any non-targeted cellular activity 
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f) Easy to use: the simplicity of design and ease in preparation and handling would allow the 

widespread use of the technology from research to the treatment of diseases. 

Our cargo delivery system design takes inspiration from the virulence factors or toxins of nasty 

nosocomial pathogen Clostridium difficile, also known as Clostridium difficile toxin A and B 

(TcdA/B) respectively. For the cargo delivery system design, our lab chose TcdA as explained 

below. 

 

 

 

 

 

 

 

Toxins Cargo delivered Ref. 
Clostridium botulinum toxin 
(C. botulinum) 

Targeted secretion inhibitor delivered to pituitary 
somatotroph cells 149 

Diphtheria toxin            (C. 
diphtheriae) 

Diphtheria toxin catalytic domain delivered to 
interleukin-2 receptor expressing malignant T-
lymphocytes  

116 

Exotoxin A                        (P. 
aeruginosa) 

P. aeruginosa exotoxin A catalytic domain to 
treat hairy cell leukemia 145 

Clostridium difficile  toxin-B 
(C. difficile) 

Alkylguanine DNA transferase (AGT) to 
neuronal cells 143 

Clostridium difficile toxin-A 
(C. difficile) 

Gaussia luciferase to vero cells 
150 

Anthrax toxin                  (B. 
anthracis) 

Diphtheria toxin catalytic domain delivered to 
EGF receptor expressing A431 cells  148 

   Table 3.1. Exotoxins engineered to prepare cargo delivery systems.  
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3.2 Tuning TcdA into a noble protein delivery system: 

Clostridium difficile (C. difficile) is a nosocomial, opportunistic pathogen which affects 

patients largely under prolonged antibiotics treatment. C. difficile infects and thrives on the 

compromised immunity and depleted gut micro-flora of a patient.151-152 Upon infection, C. difficile 

secrets two major virulence factors known as Enterotoxin A and Enterotoxin B (TcdA and TcdB). 

Both TcdA and TcdB contain three distinct regions; (a) head: Glucosyl transferase domain (GT-

domain; enzymatic part), (b) body: consists of cysteine protease domain (CPD) and translocation 

domain (TD) and, (c) tail: known as CROP (Fig 3.2).151–155 Both TcdA and TcdB have a high 

structural and sequence similarity except that CROP region of TcdB is considerably smaller than 

TcdA. For further discussion, TcdA will be used owing to its relevance to the current study and, 

 
Fig 3.2:  Clostridium difficile enterotoxins A/B. (A) Domains of enterotoxin A (TcdA) and enterotoxin B 
(TcdB) are shown from N- terminal to C-terminal; glucosyltransferase domain (GTD; maroon), cysteine 
protease domain (CPD; blue), translocation domain (TD; orange) and C-terminal repetitive oligopeptide 
(CROP; cyan). (B) Crystal structure of TcdA without CROP;19 domains are color coded as in (A), (C) CROP 
structure predicted from NMR-spectroscopy data.20,21 
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the similar mechanism of infection and striking structural homology among TcdA and TcdB. The 

CROP region binding and aggregation to the surface receptors leads to the signaling and 

internalization of TcdA via endocytosis. Upon acidification, highly acidic pH of endosome leads 

to a conformational change in the translocation domain allowing it for threading through the 

endosomal membrane into the cytosol exposing the GT and CPD. CPD then releases the 

enzymatically active GT-domain to the cytosol via an autolytic cleavage in the presence of inositol 

hexakisphosphate, in the cytosol. Further, GT-domain catalyzes the glucosylation of the Rho 

family GTPases resulting in cell death. Endosome encapsulated part of the toxin gets digested and 

hence leaves no traces (Fig 3.3).   

 
Fig 3.3:  Schematic illustration of etiology of C. difficile toxins A/B(TcdA/B). TcdA has been used in 
scheme to the context of the details in text. (1) Crop binding to the cell surface receptor leads to the 
aggregation and internalization of TcdA via endocytosis, (2) Endosomal acidification leads to the 
conformational change of TD leads to threading out of GT and CPD, (3) self-cleavage of CPD in presence of 
IP6 (black hexagons) releases the GT into cytosol, (4) GT mediated glucosyltransferase activity ultimately 
leads to cell death, meanwhile (5) the remaining part of TcdA in endosome degrades over time.151 
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Inspired by the natural ability of TcdA to efficiently transduce the GT-domain, our lab 

prepared “cargo-TcdA/B” chimeric constructs as protein carriers. As a proof of concept, Emerald 

GFP and Gaussia luciferase genes were used to replace GT-domain of TcdA. The chimeric 

proteins were expressed using Bacillus megaterium (B. megaterium) expression system and the 

efficiency of toxin chimeras to deliver the cargos (Emerald GFP and Gaussia luciferase proteins) 

were measured.  Luciferase chimera (Luc-TcdA) was delivered into cytosol with an efficiency of 

50% whereas Emerald-GFP was unable to be released into the cytosol. The punctuate staining of 

cells incubated with Emerald-GFP lead to the speculation that the stable structure of Emerald-GFP  

does not allow it for threading out of the endosome. While for Luc-TcdA no internalization of 

chimera was observed at 4 °C but with the temperature being shifted to 37 °C the internalization 

of Luc-TcdA occurred. Further cytosolic delivery of Luc-TcdA was confirmed by cyto-

immunostaining (Fig 3.4).150 Estimated 50% efficiency was achieved as far as delivery of Luc-

TcdA is concerned as mentioned above. Similar to our lab’s Luc-TcdA chimera, Krautz-Peterson 

G et al. have used TcdB as a cargo delivery carrier where cell specificity was attained using 

botulinum neurotoxin receptor binding domain (RBD) to a neuronal cell. Also, they appended the 

 
Fig 3.4: Internalization of Luc-TcdA chimera studied by immunostaining using vero cells. (A) 
Incubation of vero cells with Luc-TcdA at 4 °C leads to the binding of chimera on cell surface without 
internalization as internalization is frozen/seized at lower temperature. (B) The temperature raise from 4 C to 
37 C facilitated the internalization. (C) Cells were treated with trypsin at 37 C to remove cell surface bound 
chimera, therefore the immunostaining shows only internalized chimera. Punctate staining was suggested to 
be the endosome entrapped chimera.150 
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cargo, an alkyltransferase, N-terminal to the GT-domain of TcdB, to prepare the AGT-TcdB-

BoNT/A-Hc.143  

3.3 Chimeric Cargo-Toxin-Receptor binding domain: innovation, design, and approach 

Our current work focuses on developing the existing Luc-TcdA in an easily adaptable 

delivery system. The aim was to develop a carrier construct on which cargos, as well as RBDs, 

could be swapped easily for versatile use and efficient expression. Significant design elements 

have been introduced to ensure the accomplishment of these properties.  First, we added BamHI 

and SpeI restriction sites to the N-terminal and C-terminal side of the body (CPD + TD) of TcdA. 

Insertion of these two restriction sites gives us the ability to switch the cargo and/or RBD with our 

choice of cargo and RBD in any existing chimera construct. Second, a Ybbr12-tag (13 amino acids 

sequence) was introduced at the C-terminus of cargo peptide and prior to the CPD cleavage site 

was also introduced. This tag will allows us to add a fluorophore/biotin label to the cargo using 

the Sfp enzyme which in turn would help us track/pull-down the released cargo domain in the 

cytosol for qualitative and quantitative estimation.156 Third, our innovation was to add a sortase-

tag to the C-terminus of CROP/RBD regions prior to an existing His-6 tag, which is used for 

purification of protein using affinity chromatography. The Sortase tag will allow us to add a second 

fluorophore label to the protein using the SrtA enzyme.157 Additionally, upon transfer of the 

fluorophore label to target sortase tag the His-6 tag will be released allowing us to easily separate 

the labeled protein (His-6 tag absent) from unlabeled protein (with his-6 tag) using one step Ni 

affinity chromatography.  Together the YbbR-12 and Sfp tags give us the ability of orthogonal 

labeling of the chimera along with better purification and in situ tracking.  

Multiple cargos were selected for this study. Bcl-2-associated X protein and Caspase 9 are 

pro-apoptotic and apoptosis inducer proteins, whereas an X-linked inhibitor of apoptosis (XIAP) 
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and Cyclin-dependent kinase 5 activator (p35) are apoptosis inhibitory proteins. Apoptosis or 

inhibition of apoptotic behavior by the cargos would provide a convenient visual mean for 

qualitative and quantitative estimations of the delivery of active cargos. Vascular endothelial 

growth factor (VEGF), epidermal growth factor (EGF) and the heavy chain of Botulinum 

neurotoxin A(BoNT/A) were our choices for the RBDs. Commercial availability of multiple cell 

lines exhibiting the positive and negative phenotypes of the RBDs’ specific receptor makes easy 

to explore and compare the cellular specificity of different chimeric constructs.  

Our chimera design (Fig: 3.5) allows swift swapping of the cargo and/or RBDs hence 

allows preparation of a chimera library where multiple cargos chimera can be constructed keeping 

the RBD unchanged, or vice-versa. All together the finished set of our chimeric proteins, (a) would 

allow us to prove the versatility and easy maneuverability of our constructs, (b) would allow us to 

compare the efficiency and effects of different RBDs on delivery of a cargo, and vice-versa, hence 

several layers of information could be obtained conveniently. 

Cloning of huge a chimera plasmid (>14 kbp after final cloning) was challenging and took 

meticulous planning. To make the cloning process easy several sub-cloning steps were required. 

Cargos and RBDs were first cloned separately and then assembled together at final step (Fig 3.6). 

The same cloning scheme was followed to assemble all the chimera and hence to avoid the 

repetition, cloning of Bax*-TcdA-CROP will be explained here as a representative clone. Bax* 

was made by site-directed mutagenesis of a single nucleotide to remove the BamHI restriction site 

inherited in Bax sequence, without changing the amino acid residue. Final verification for all the 

chimera assembly was done by sequencing and the list of chimeric construct prepared can be found 

in appendix II. First, the Bax* gene was amplified, from the corresponding parent vectors, using 

the cargo specific primers to introduce specific restriction sites and the Ybbr-12 tag. The amplified 
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Bax* was cloned into the pCR2.1®TOPO® TA vector (TOPO). Colonies of interests were 

identified by the colony-PCR (cPCR) using TOPO specific sequencing primers. Colonies carrying 

right plasmid construct and sequence of the insert were identified by sequencing the plasmid DNA. 

The Bax-TOPO construct and plasmid pWH1520* were digested using AvrII and BamHI and were 

then ligated together. Identification of colonies carrying the plasmids with right inserts was done 

by cPCR using the pWH1520* specific primers. pWH1520* is our lab modified (prepared by Dr. 

S. Kern) version of a commercially available pWH1520 plasmid which has been used successfully 

to clone and express Luc-TcdA and EGFP-TcdA chimeras. 

 
Fig 3.5: Chimera design with adaptable/replaceable cargo and RBDs. (A) Replaceable cargos (purple) 
and RBDs (green) were engineered into the chimera constructs by introducing unique restriction sites shown. 
Cargos were cloned with YbbR-12 (a 13 amino acids peptide tag) and RBDs were cloned with a sortase tag 
to provide handles for orthogonal labeling and purification. (B) List of cargo and RBDs used to prepare the 
chimera (cargo-TcdA-RBD) constructs. 
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Fig 3.6: Cloning strategy to prepare the Cargo-TcdA-CROP (A) Cargos Bax*, Casp 9, XIAP and p35 
were cloned from corresponding parent vectors and cloned into TOPO. Resulting cargo-TOPO vectors were 
digested with AvrII/BamHI and the inserted into pWH1520*. (B) pWH1520*-Cargo shuttle and plasmid 
pSK10401 were then digested with BamHI/SphI. Fragments were gel purified to obtain clean fragments of 
desired length which were then ligated to prepare Cargo-TcdA-CROP plasmids. Cargo-TcdA-CROP 
plasmids were used for both expression of Cargo-TcdA-CROP, as well as shuttle vector to be used for 
Cargo-TcdA-RBD plasmid assembly. 
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In the third step of cloning, the pWH1520*-Bax plasmid and pSK10401 (pWH1520* 

carrying wtTcdA) were digested with SphI and BamHI. Restriction digestion of both plasmids 

resulted into multiple fragments. Correct sized fragments were isolated using Agarose-gel 

separation and purification method. Isolated fragments were ligated together, transformed and 

single colonies obtained were used to miniprep the plasmid DNA carrying Bax*-TcdA construct. 

Correct colonies were identified by restriction digestion of plasmids obtained from miniprep (Fig 

3.7). Parallel to cargos, the RBDs were being cloned by Adam Boyden following similar strategy 

which resulted into RBD-shuttle (RBD in pWH1520*). Final assembly of Bax*-TcdA-RBD was 

done by Adam Boyden. Briefly, the Bax*-TcdA and RBD-shuttle were double digested with SpeI 

and XhoI followed by isolation and ligation of the desired bands. Transformation of ligation 

product yielded single colonies from which colonies of interest were identified primarily by cPCR. 

Following the cPCR, plasmids were isolated and restriction digested to identify the possible 

 

                  

 
Fig 3.7: Restriction double digest analysis of cargo-TcdA construct (Bax*-TcdA-CROP) 
using BamHI/KpnI (left) and BamHI/NheI (middle), and the plasmid map indicating the 
relative position of the digestion site. 100 bp marker and kbp marker were used (there is no 
7000 bp band in the marker) 
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colonies for sequencing. Final confirmation was done by sequencing the plasmids. All the cloning 

including the sequencing of the final Bax*-TcdA-RBD construct, prior to expression, were done 

in Top-10 E. coli strain. Primers used for the cloning of cargos and the sequencing of plasmids at 

different stages of chimera construct preparations could be found in appendix III and appendix IV, 

respectively. Bacillus megaterium (B. megaterium) was the organism of choice to express the 

chimera proteins.  

3.4 Expression of protein chimera and troubleshooting 

As mentioned above B. megaterium has been used for the expression of all the chimeric 

constructs prepared. B. megaterium was chosen based on previous success in expressing large 

proteins (~300 kDa), Luc-TcdA and EGFP-TcdA chimeras. It also lacks endotoxins, which is a 

desirable trait for expressing the proteins required for testing on human cell lines. Finally, the 

Bax*-TcdA-CROP construct was transformed into B. megaterium and tested for the expression. 

The standard growth and purification conditions to grow and express the Bax*-TcdA-RBD as used 

for Luc-TcdA and EGFP-TcdA was followed as reported by Dr. Stephanie Kern. Briefly, protein 

purification was done using the 

standard Ni column affinity 

chromatography procedure followed 

by size exclusion chromatography 

(SEC). A second Ni column 

chromatography step was used to 

concentrate the diluted protein 

fractions obtained from SEC. First 

few attempts to purify the proteins do  

 

Fig 3.8: Cargo-TcdA-
CROP chimeric protein 
purification was done 
following the protocol 
same as Luc-TcdA. 5 PL 
of protein ladder, cell 
debris and supernatant 
and 10 PL of elution 
fractions (after first Ni 
affinity column) were 
loaded in the 
corresponding lanes. 
SDS-PAGE gel was 
stained with Coomassie 
stain for visualization. 
No evidence of Bax-
TcdA protein was found.  
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not yield any visual evidence of the presence of Bax*-TcdA-RBD analyzed on SDS-PAGE gel 

and stained with    

 Coomassie stain Fig 3.8. To rule out the error in purification procedure or technique, parallel to 

me Adam Boyden also tried to purify XIAP-TcdA-EGF (XAE) chimera which yielded no protein 

either. After attempting several growth and induction conditions for chimeric protein expressions, 

there was no evidence of expression of protein. Our protein chimera has eukaryotic protein 

domains as cargos and RBDs. Expression of these proteins could be affected by the low relative 

abundance of tRNAs in B. megaterium. A codon bias analysis (done by me and Adam Boyden) 

shows that there is a high negative codon bias for 5 or more codons towards all the cargos and 

RBDs chosen for the study, except for the cargo XIAP. It is interesting to notice that the wt-TcdA 

protein was being successfully expressed even though it contains 2, 5 and 8 codons with high 

negative bias in GT-domain, CPD and Translocation domain, and CROP respectively. Also, 

BoNT/A which has been used as RBD domain by Feng group has 5 codons which show high 

negative codon bias when compared to B. megaterium codon usage. Based on this information, we 

hypothesized that the heavy negative codon bias to the N-terminal end of the protein could 

disrupt the protein translation and hence no protein is being observed in our purification 

attempts. Since XIAP shows no codon bias and the previous success with the purification of wt-

TcdA (with wt-CROP) makes XIAP-TcdA a strong candidate to test the expression of the chimeric 

protein. The XIAP-TcdA chimera was transformed in B. megaterium. XIAP-TcdA chimera was 

grown and expressed like Bax*-TcdA-RBD and the purification was done using Ni column 

chromatography. There was no protein visible when purification samples were analyzed on SDS-

PAGE gel. To further verify, the expression of protein chimera, XAIP-TcdA was expressed and 

analyzed by western blot using rabbit anti-His-6 primary and a horseradish peroxidase substrate 
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conjugated anti-rabbit-goat secondary antibody. The control lane was loaded with purified wt-

TcdA. As evident form Figure 3.9, no protein was found in lane loaded with XIAP-TcdA.  

 

At this point, the failure of the system to express the protein from a perfect looking plasmid 

construct is up for debate. The plausible reasons could be the codon bias, which is highly debatable 

comparing the codon bias of wt-TcdA to XIAP-TcdA. Another likely speculation could be the 

 
Fig 3.9: Western blot analysis of XIAP-TcdA-CROP chimeric protein expression. XIAP-TcdA-CROP 
purification was done  following the protocol same as Luc-TcdA. 5 µL of cell debris and supernatant and 10 
µL of elution fraction (after first Ni+2 coulmn) were loaded in the corresponding lanes. Pre-purified TcdA-
His6 was used as control. (a) SDS-PAGE gel was stained with coomassie stain for visualization. (b) and (c) 
are wester blot image done using PVDF membrane, and the blot was developed using rabbit anti-His-6 
monoclonal antibodies and goat anti-rabbit secondary antibodies conjugated with HRP. SDS PAGE gel for 
(a) and (b) were ran as duplicates. (c) only one gel was ran to do the western transfer shown in (c). 
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instability of the transcript of eukaryotic domains because of misfolding or lack of chaperone 

proteins contributing to the folding and stability of the transcripts. Nonetheless, the analysis and 

efforts made to fix the issue of chimeric protein expression have not yielded into a successful 

expression. 
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Chapter 3: Materials and methods 

Cloning of Cargos in TOPO vector: Bax and p35 were PCR amplified out of the commercial 

vectors. XIAP and Caspase 9 parent vectors used for amplification of corresponding cargos were 

kind gifts from Dr. Dukett Lab at University of Michigan. Primers 1–8 were used and the 

corresponding temperature profile (melting, annealing and elongation temperature) for each 

amplicon as mentioned in table 3.2. Pfu polymerase (1X Pfu buffer: 0.8 mM dNTPs, 0.2 µM 

individual primers concentration, 1 µl of Pfu from 1.6 mg/ml stock) was used for all the PCR 

amplifications and 10–50 ng/50 µl of template DNA was used per PCR reaction. For cloning the 

amplicon from the first step of PCR reactions, amplicons were first purified using EZNA 

Microelute cycle-Pure Kit (Omega, D6293-03). 250 ng of purified PCR product was set up for a 

Taq-polymerase (Fisher Scientific, 1X Taq buffer, 2.5 mM MgCl2, 0.8 mM dNTPs and 1 U Taq-

polymerase/10 µl reaction) at 72 °C for 5 min extension. The Taq-polymerase reaction was then 

used for ligation with pCR2.1®TOPO®TA vector (Invitrogen) following the manufacturer’s 

protocol. The ligation mixture was transformed into TOP-10 E. coli electrocompetent cells via 

electroporation using Bio-Rad micropulser and plated on LB-Agar plates with Kanamycin (30 

mg/ml). Single colonies obtained were used to verify the right clone by cPCR using TOPO vector-

specific forward and reverse primers (annealing temperature 48 °C, using Pfu-polymerase and 

same extension time as used for amplifying the targets from commercial vectors mentioned in table 

3.2) and analyzed by gel electrophoresis using 1.0–1.5 % Agarose gel. Plasmids miniprep were 

done for selected colonies using EZNA Plasmid DNA Mini Kit II (Omega, D6945-02) following 

manufacturer's protocol and cargo-sequence were verified by DNA sequencing. List of primers 

used for cargo cloning could be found in appendix III. 
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Creation of Cargo pWH1520* shuttles: 5 µg of each Cargo-TOPO shuttle and pWH1520* 

plasmids were restriction double digested using AvrII/BamHI (NEB) and AvrII/SpeI (NEB), 

following the manufacturer’s protocol. Fragments of appropriate size were gel purified using 0.5% 

Agarose gel and the DNA bands were visualized using Crystal violet stain. DNA fragments were 

extracted from the excised gel band using EZNA Gel Extraction Kit (Omega, D2500-01). Digested 

vector pWH1520* and cargo fragments were ligated together using T4-DNA ligase (NEB) 

following manufacturer’s protocol. The ligation mixture was transformed same as mentioned for 

cargo-topo shuttle preparation step. Ampicillin (100 mg/ml) containing LB-Agar plates were used 

for selection of colonies. Colonies carrying right constructs were identified by cPCR and 

restriction endonuclease digestion of miniprep plasmids from the selected colonies. 

Creation of Cargo-TcdA construct: Cargo-pWH1520* and pSK10401 plasmids were digested 

with BamHI/SphI (NEB), following manufacturer’s protocol. Digested band of the desired size 

were analyzed and extracted as mentioned above. Desired bands obtained from pSK10401 and 

Cargo-pWH1520* digestions were ligated together using T4-DNA ligase and transformed by 

electroporation into TOP-10 E. coli electrocompetent cells, as mentioned previously. Selection of 

colonies was made using Chloramphenicol (34 mg/ml) LB-Agar plates. Plasmids from selected 

colonies, verified by cPCR and restriction endonuclease digestion of miniprep plasmids, were 

sequence verified to identify the correct clone.   

Transformation of Cargo-TcdA/Cargo-TcdA-RBD into B. megaterium:  200 µL of B. 

megaterium protoplast was thawed on ice followed by addition of 0.5–1.0 µg of plasmid DNA and 

600 µL PEG-P (40% (w/v) PEG6000, 500 mM sucrose, 20 mM sodium malenieate, 20 mM MgCl2, 

at pH 6.5) and mixed gently. The mixture was incubated on ice for 2–3 min before transferring it 

to 15.0 ml conical centrifuge tube and bringing it to the room temperature. 2.0 ml SMMP added 
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and mixed by gentle swirling and cells were harvested (spin at 2000 g, for 10.0 min at 25 °C). 

Supernatant was removed carefully without disturbing the pellet and 500.0 µL of SMMP was 

added before incubating the protoplast suspension 100 rpm, at 37 °C for 90–120 min. 1.5 ml of 

melted Top-Agar (42 °C) was then added to the protoplast suspension and the total volume of the 

mixture was spread over two LB-Agar plates with Tetracycline (10 mg/ml). Individual colonies 

were obtained after 16–24 hours were re-streaked on fresh Tetracycline containing LB-Agar plates. 

Colonies from the re-streaked plates were used for expression of chimeric proteins. 

 Expression and purification of Cargo-TcdA/Cargo-TcdA-RBD: Single colony of chimera 

plasmid containing B. megaterium were grown overnight (16–20 h, 37 °C, at 200 rpm) in 5.0 ml 

LB containing Tetracycline (10 µg/Pl), which were used to inoculate 1l of fresh LB-Tetracycline 

(10 mg/ml) media and incubated (37 °C, 200 rpm) until OD600 of 0.4–0.5 have been reached. 

Expression was induced by adding 10.0 ml of 50.0% of D-xylose and incubation continued for 

further 5–6 hours. Cells were harvested (7,000–10,000 g, 10–15 min, 4 °C) and pellet were stored 

at -80 °C until ready to do the purification. Cells pellet were thawed on ice then lysis buffer (50.0 

mM Na2HPO4, 300.0 mM NaCl, 10.0 mM imidazole, pH 8.0) was added to bring the volume to 

50.0 ml followed by addition of half a tablet of EDTA-free protease inhibitors cocktail tablet 

(ROCHE, cOmplete from Sigma - 11697498001). Suspended cell were lysed by sonication (4–6 

cycles of 30 s pulse 1 min pause, 37% amplitude), and centrifuged (15,000 rpm, 4 °C, 45 min using 

JA-17 rotor) to obtain clear suspension. Supernatant was collected after filtering it through and 0.8 

micron and then 0.2 micron syringe filters. Crude lysate was loaded on a 1.0 ml Ni affinity column 

pre-equilibrated with lysis buffer. Column was then washed with 10 column volume of wash buffer 

(50.0 mM Na2HPO4, 300.0 mM NaCl, 50.0 mM imidazole, pH 8.0) and protein was eluted out 

using 10 column volume of elution buffer (50.0 mM Na2HPO4, 300.0 mM NaCl, 250.0 mM 
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imidazole, pH 8.0). The elution fractions of 1.0 ml each were collected and analyzed on SDS-

PAGE gel for the presence of protein. The column was then stripped using 10 column volume of 

stripping buffer (50.0 mM Na2HPO4, 300.0 mM NaCl, 50.0 mM EDTA, pH 8.0), then washed 

with 10–15 column volume of sterile water and column was stored in 20% ethanol. First 3.0 ml of 

elution fractions were passed through a size-exclusion chromatography (SEC) column (Superdex 

S-200) pre-equilibrated with lysis buffer. Lysis buffer was used to elute the protein of the SEC 

column attached to Bio-Rad NGC FPLC system. In case if protein were obtained from the FPLC 

run, a second Ni affinity column like 1st Ni column mentioned was proposed to concentrate the 

protein. The second Ni column however would avoid both the wash steps. 

All the protein purification process, from thawing the cells to the final second Niaffinity 

column, were performed at 4 °C. All the work related to B. megaterium were done in bio-safety 

level- 2 (BSL-2) room. The supernatant used for protein purification, Ni affinity column steps and 

the SEC were done in either cold room or the cold cabinet where NGC system is in, was taken out 

of the BSL-2 room only after the filtration step. Analysis were done using SDS-PAGE gel analysis 

(4% stacking and 10–12% separation gel, 1X SDS buffer, 165 V, 4 h), stained with Coomassie 

stain.  

Western blot analysis: Two identical SDS-PAGE (4% stacking, 8% separation gel) gel loaded 

with protein markers, TcdA as control protein and aliquots of Cargo-TcdA/Cargo-TcdA-RBD as 

samples were ran (165 V, 4, 1X SDS-PAGE buffer). One gel was stained with Coomassie stain 

while other gel was used for western blot purpose. After removal of stacking gel the remaining 

piece was first washed (3X, with gentle shaking for 5 min each) with MilliQ water. Gel piece was 

then soaked briefly (~5 min) in transfer buffer (25 mM Tris 250 mM glycine, 20% methanol), a 

piece of polyvinylidene (PVDF) membrane of the size of gel piece was cut and soaked in methanol 
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for 3–5 min. The gel piece was placed on the PVDF membrane and sandwiched between pieces of 

filter papers (3 on either side) presoaked in transfer buffer. The electrophoresis equipment was set 

up for the protein transfer from the gel to PVDF membrane and electrophoresis was ran using 

transfer buffer at low temperature for prolonged period (4 °C, 100 V, 12 hr). Once the transfer is 

done the PVDF membrane was washed with MilliQ water (3X wash with gentle shaking, 5 min 

each) followed by, developing the film for visualization using rabbit anti-His-6 primary and goat 

anti-rabbit horseradish peroxidase conjugated secondary antibodies following the manufacturer’s 

protocol. The PVDF film after transfer step was developed using HRP-substrate (Thermo-Pierce, 

32106) following the manufacturer’s protocol. 

 B. Megaterium codon bias analysis: Kazusa Codon Usage Database 

(http://www.kazusa.or.jp/codon) has been used to compare the codon usage of B. megaterium 

against the eukaryotic origin proteins (cargos and RBDs) as well as TcdA. The usage of all possible 

codons for every amino acid were compared between B. megaterium and the proteins mentioned. 

A codon for an amino acid which has been used <10% among all the codons for that amino acid 

has been termed as problem codon. Differential codon usage was calculated (codon usage in B. 

megaterium - codon usage of the protein of interest; done by Adam Boyden). 

 

 

 

 

 

http://www.kazusa.or.jp/codon
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Appendix I: List of plasmid constructs prepared for DEAD-box helicasess project 
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Appendix II: List of chimeric constructs                                                                                                                 
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Appendix III: List of chimera subcloning primers 
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Appendix IV: List of chimera sequencing primers 
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Abstract 

Number of small RNA (sRNA) gene regulators have mounted in E. coli over the years whereas 

the number of validated protein partners has not changed considerably. Hfq has remained the only 

well studied global regulatory partner of sRNAs in E. coli. However, direct or indirect involvement 

of other protein partners has always been speculated. Study from Blasi lab has shown that CsdA, 

one of the five DEAD-box RNA helicases of E. coli, is required for the DsrA mediated 

upregulation of rpoS under cold stress condition. Previous study from our lab has identified two 

other DEAD-box RNA helicases, RhlB and RhlE, as potential protein partner of Hfq-sRNA 

mediated gene regulatory pathway. The work presented here was focused to investigate the 

plausible roles of RhlB and RhlE, DEAD-box helicases in Hfq-sRNA mediated regulatory 

pathways. In this study, using Hfq dependent sRNAs and their target mRNAs as substrates, we 

have shown that RhlB and RhlE both shows differential stimulation in substrate dependent manner; 

example: rA18 significantly simulates RhlE but fails to stimulate RhlB. Contrary to literature 

reports, significant ATPase activity has been observed for RhlB with several RNA substrates used 

in this study. However, consistent with literature reported observations, RhlE shows several folds 

higher stimulation of ATPase activity than the RhlB. Presence of Hfq has very little effects on the 

RhlE ATPase activity whereas the ATPase activity of RhlB was significantly modulated. While 

further investigation is needed, this study has shown that Hfq dependent sRNA and mRNA could 

significantly stimulate RhlB and RhlE, indicating towards the potential contribution of these 

helicases in-vivo. 
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