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1 INTRODUCTION 

1.1 Obesity Epidemic and the Rise of Metabolic Disease. 

The prevalence of obesity in the United States has risen dramatically in the 

last several decades. The Centers for Disease Control and Prevention (CDC) 

reported in 2011 that over a third of the adult population was obese, a sharp rise 

since 1985, when obesity rates in most US states were below 10% [1]. Moreover, 

recent analyses suggest that the body mass index (BMI) measure used to diagnose 

obesity in these reports may underestimate the prevalence of obesity. BMI, 

calculated as body mass in kilograms divided by height in meters squared, does not 

take into account body composition. As a result, individuals with diminished muscle 

weight, in particular elderly women, are commonly misclassified as not obese [2]. 

The reverse misclassification of individuals with high muscle mass, such as athletes, 

as overweight (25<BMI<30) or obese (BMI>30) also occurs, but the overall effect 

of the use of the BMI system in the general population is an underestimation of 

obesity prevalence. Based on these findings, alternative age-specific BMI cutoffs 

have been proposed, and by these new criteria the prevalence of obesity is even 

higher, about two-thirds [3]. Regardless of the metric used, the rising rates of 

obesity have led to its recognition in the US as an epidemic. 

Obesity is a significant risk factor for a host of metabolic and cardiovascular 

disorders, and in particular it is highly associated with type II diabetes. The CDC 

reports a steep rise in the prevalence of diagnosed diabetes in the US that is 

concomitant with the obesity epidemic, up from 3.5% in 1980 to 9.1% in 2010, and 

predicting a continued increase [4]. This statistic holds true in the age-adjusted 

model as well, indicating that the increase in diabetes prevalence is independent of 
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the aging of the population. The inability to clear glucose from the bloodstream in 

diabetic individuals leads to microvascular and macrovascular complications, 

multiple end-organ damage and increased morbidity and mortality. Furthermore, 

insulin resistance is often associated with hypertension and dyslipidemia as part of 

the metabolic syndrome, leading to additional health risks. As a result, the toll from 

the obesity and diabetes epidemic on public health and healthcare spending is vast, 

and research to understand the mechanisms behind metabolic syndrome-related 

diseases is an important ongoing effort. 

 

1.2 Nuclear Receptors in Metabolic Regulation. 

Energy metabolism at the cellular levels is regulated in large part by the 

gene transcription activity of nuclear receptors. The nuclear receptor superfamily 

includes steroid hormone receptors, peroxisome proliferator-activated receptors 

(PPARs), thyroid hormone receptor, retinoic acid receptor and a number of others, 

as well as some orphan nuclear receptors with unidentified ligands. The 

characteristic feature of hormone receptors is their capacity to bind specific ligands, 

recognize and bind specific regulatory DNA sequences, and interact with gene 

transcription coregulators. Through these mechanisms nuclear receptors respond to 

changes in the extracellular environment, which are signaled by specific ligands, 

often hormones, and regulate the gene transcription program of the cell to adjust 

to these changes. Different types of nuclear receptors act by slightly different 

mechanisms. Type I, including the sex hormone receptors and the glucocorticoid 

receptor, dissociate from cytoplasmic heat shock proteins upon ligand binding, 

translocate into the nucleus and bind to hormone response elements as 
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homodimers [5]. PPARs are type II nuclear receptors, which are bound to DNA as 

heterodimers with the 9-cis-retinoic acid receptor (RXR), and recruit transcription 

corepressors to the local chromatin [6] (Figure 1). In the presence of ligands, the 

receptor undergoes a conformational change which alters its interaction with ATP-

dependent chromatin remodeling and histone modifying enzymes, such as nuclear 

receptor corepressors NCoR and SMRT, BRG-1 associated factor (BAF) family, 

nuclear receptor coactivators SRC-1, the p300-CBP coactivator family and the 

mediator complex [7-9]. This transcriptionally active conformation favors the 

release of corepressors and recruitment of transcription coactivator complexes 

including histone acetyltransferases, altering the histone acetylation pattern and 

increasing transcription of nearby genes. The nuclear receptor and its associated 

protein complex cycle on and off the DNA molecule and are degraded by the 

proteasome as part of a carefully controlled transcriptional regulation equilibrium 

[10]. 
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Figure 1. Schematic Representation of Transcription Regulation by Type II 

Nuclear Receptors.  

Ligand binding induces a switch from gene repression (top panel) to activation 

(bottom panel). Some representative members of the coactivator and 

corepressor complexes are shown. Chromatin marks associated with repressed 

and activated states are indicated. Adopted from Rosenfeld et al. [11]. 

 

All nuclear receptors have homologous domains for DNA binding and ligand 

binding, separated by a hinge [12]; PPARs also share an N-terminal domain that is 

adjacent to the DNA binding domain [13]. The ligand binding domain is comprised 
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of several α-helices that create a ligand pocket and contain transcription 

coregulator interaction surfaces. Structurally, the DNA-binding domain is comprised 

of two zinc finger motifs. The “knuckle region” at the base of zinc finger one 

contains the six-amino-acid “P-box” (Figure 2). This is the region of the receptor 

that fits into the major groove of the DNA molecule and is important for the 

recognition of DNA binding sites [14-17]. The binding sites, or response elements, 

are cis-acting regulatory DNA sequences that are located within the promoters, 

gene coding sequences, or up to 100,000 base pairs away from the transcription 

start sites of the receptor target genes [18-20]. The response elements are 

receptor-specific; they are often direct or inverted repeats of a short base pair 

sequence with a variable number of spacing nucleotides. However, each receptor 

can recognize many deviations of its response element from the consensus 

sequence - a versatility that enables one receptor to regulate hundreds of genes. 

Moreover, it has been observed that there is a high degree of evolutionary 

conservation between the same response element in different species [21], 

indicating that the DNA sequence from which a nuclear receptor regulates the 

expression of a particular gene is of non-trivial importance. However, exactly how 

the interaction between a receptor and its DNA binding site directs subtle changes 

in gene transcription is not presently clear.  
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Figure 2. Schematic Representation of the Domain Structure of PPARγ.  

Bottom panel shows conserved nuclear receptor domains: AF, activation 

function; DBD, DNA-binding domain; LBD, ligand-binding domain. Top panel 

represents the zinc finger structures in the DNA binding domain, with the p-box 

amino acids shaded and glutamate 157 shown in boldface. Adopted from Temple 

et al. [22]. 

 

PPARs are nuclear receptors that have evolved to regulate energy 

homeostasis by recognizing various fuel molecules as signals of metabolic changes 

in the body. PPARα, β/δ, and γ are isotypes of the PPAR family with unique tissue 

expression profiles and roles in metabolic regulation. PPARα is expressed most 

abundantly in the skeletal muscle and the liver, and functions to promote fatty acid 

oxidation. PPARβ/δ is expressed ubiquitously and is involved in the regulation of 

circulating lipoprotein particles [23]. PPARγ is expressed in multiple tissues, but 
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most abundantly in adipose, and is a potent promoter of insulin signaling, 

adipogenesis and lipid storage.  

 

1.3 PPARγ is a Central Player in Energy Metabolism. 

PPARγ entered the spotlight as a major player in metabolic regulation in the 

early 1990s [24] through the discovery of thiazolidinediones (TZDs) as potent 

synthetic insulin-sensitizing drugs. TZDs quickly passed clinical trials and became 

front-line agents in the treatment of type II diabetes for their robust glucose-

lowering action, although their popularity has recently decreased due to safety 

concerns. The TZD prototype troglitazone, which has since been withdrawn for 

idiopathic hepatotoxicity, was shown to be a ligand activator of PPARγ, spurring an 

in-depth investigation of this receptor, which revealed its activity as a potent 

inducer of adipocyte differentiation [25]. Many synthetic PPARγ ligands, both TZDs 

and other classes, are  thoroughly characterized and widely used both in the clinic 

and in basic science. Endogenous PPARγ ligands are less well known, but thought to 

be certain fatty acid metabolites, such as 15-deoxy-12,14-prostaglandin J2 [26-

28], an intermediate in the arachidonic acid metabolism pathway. 

Activation of PPARγ results in systemic insulin sensitization through complex 

mechanisms involving multiple organs. In the adipose tissue, PPARγ promotes lipid 

uptake and storage, increases the number of smaller adipocytes and recruits 

alternatively activated macrophages, resulting in a more plastic, less inflammatory 

adipose phenotype which acts as a better buffer of circulating lipids and reduces 

ectopic lipid accumulation. In the skeletal muscle, PPARγ potentiates insulin action, 

and in the liver it acts to suppress gluconeogenesis, altogether leading to lower 
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blood glucose levels. In addition to its central role in energy homeostasis, PPARγ 

has been recognized for its anti-inflammatory [25, 29-33] and anti-tumorigenic 

[34] activities. The former has been attributed in part to PPARγ-mediated 

downregulation of macrophage inflammatory cytokines and induction of the 

alternative macrophage phenotype. The latter is most likely due to a general pro-

differentiation and anti-proliferation effect of PPARγ. Other areas of demonstrated 

PPARγ involvement include bone metabolism [35-37], nerve myelination [38], 

reproduction [39, 40], atherosclerosis and cardiovascular disease [25].  

The PPARγ gene is expressed via alternative mRNA splicing into four 

transcript variants, each controlled by a separate promoter, which are translated 

into two distinct protein isoforms [41]. PPARγ1 (477 amino acids in the human) is 

expressed in a variety of tissues but most abundantly in the liver, muscle, intestine, 

and kidney [42]; PPARγ2 (505 amino acids in the human), which includes an 

additional 30-amino acid sequence at the N terminus, is expressed almost 

exclusively in adipocytes [43]. The two isoforms behave similarly in gene 

transcription and DNA binding assay, with minor differences in adipogenic potential 

and ligand responsiveness [44, 45]. 

Genome-wide DNA binding site analyses have confirmed the consensus PPAR 

response element (PPRE) as a direct repeat sequence with a single spacing 

nucleotide (DR1): AGGTCA A AGGTCA [19, 20].  As other type II nuclear receptors, 

PPARγ binds DNA as a heterodimer with RXR [46, 47]; however, the orientation of 

the heterodimer on the PPRE is reversed compared to other RXR-binding nuclear 

receptors: PPARγ makes contact with the 5’ half of the PPRE, while RXR binds to the 

3’ half [48, 49]. 
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Comprehensive sets of PPARγ target genes in adipocytes have been 

generated using mRNA profiling and ChIP-seq approaches [50-52]. During 

adipogenesis, PPARγ induces a gene transcription program consisting of several 

thousand genes that are involved in adipocyte differentiation, intracellular lipid 

metabolism, insulin signaling and other pathways. The PPREs from which PPARγ 

regulates the expression of many of its genes have been identified and confirmed in 

in vitro studies, and present a useful tool for studying the interaction of PPARγ with 

its DNA binding sites. The DNA binding affinity of PPARγ varies between different 

PPREs, however it is not clear what the determinants of this target DNA selectivity 

are; it appears that deviation of the PPRE from consensus is not the only factor, 

and may not play a role at all [53]. Furthermore, there has been some debate on 

the validity of the current PPRE consensus, and proposals of expanding it to include 

the 5’ flanking nucleotides due to some evidence that PPARγ binding to its half-site 

is flexible, while the five nucleotides directly adjacent to the half site may be 

important for this binding, as may also be the spacing nucleotide [22, 49, 53]. Lack 

of recent studies involving the broad spectrum of PPREs further contributes to the 

present gaps in understanding of the selectivity of PPARγ/PPRE interaction.  

While the molecular biology of PPARγ has been studied in detail, there are 

still large gaps in our understanding of how PPARγ transcriptional activity results in 

the wide-spectrum physiological changes in vivo. Genetic mutations in the PPARγ 

gene that cause clear diabetes-related phenotypes, such as the E157D mutation 

that is the subject of this dissertation, present a unique opportunity to develop a 

better understanding of the molecular mechanisms mediating the role of PPARγ in 

maintaining energy homeostasis and the development of metabolic disease.  
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1.4 Human PPARγ Mutations and Familial Partial 

Lipodystrophy. 

1.4.1 General Characteristics of Familial Partial 

Lipodystrophy. 

Human mutations in the PPARγ gene occur with a low frequency (estimated 

1:100,000 in populations of North-European descent [54], but cause a severe 

metabolic phenotype called familial partial lipodystrophy (FPLD) type III [55]. 

These mutants act by a variety of mechanisms biochemically (discussed below), but 

all are inherited in a dominant pattern. Individuals with FPLD are phenotypically 

normal until puberty, when subcutaneous adipose tissue in the extremities is 

depleted, leading to a characteristic sharply-defined appearance of the limb 

musculature. At the same time, visceral central fat depots in the regions of the 

abdomen, shoulders, upper back, neck and occasionally the face become enlarged, 

and fatty infiltration of the liver and skeletal muscle is apparent on MRI [54]. It is 

not clear what induces this change, but there is likely to be increased adipose tissue 

remodeling during puberty, a process that apparently goes awry in the absence of 

two healthy copies of the PPARγ gene. Visceral adipose tissue is more lipolytic and 

inflammatory than subcutaneous fat, and is associated with metabolic syndrome, 

and this association is especially pronounced in FPLD patients, who develop insulin-

resistant diabetes as early as in their 20s. Consistent with insulin resistance and 

adipose tissue dysfunction, biochemical evaluations show elevated plasma levels of 

glucose, insulin, C-peptide, triglycerides and glycosylated hemoglobin, as well as 

decreased HDL and adipose-derived insulin-sensitizing hormones leptin and 
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adiponectin [56-62]. In one case report, a lamin A mutation lead to the 

development of severe insulin resistance without the other abnormalities typically 

observed in FPLD [63], suggesting that insulin resistance may be an initial step in 

the development of FPLD, as it is in diabetes. In addition to lipodystrophy and 

diabetes, FPLD often includes hypertension, dyslipidemia, acanthosis nigricans and 

polycystic ovary syndrome with hirsutism in the females - all components of the 

metabolic syndrome [64]. Hypertriglyceridemia leads to the development of hepatic 

steatosis, pancreatitis and eruptive xanthomas; vascular complications of diabetes 

are observed, including neuropathy, retinopathy, nephropathy, and secondary 

atherosclerosis. Notably, the management of lipodystrophies is similar to diabetes, 

focusing on control of hyperglycemia, lipid lowering, and a low-fat diet; moreover, 

thiazolidinediones have been shown to improve metabolic function in lipodystrophy 

patients and preferentially increase subcutaneous fat stores [65, 66].  

Although FPLD is a rare disease, it presents a useful model to improve the 

understanding of adipose tissue and the metabolic syndrome - an association that, 

as discussed above, is plainly evident from public health data, but poorly 

understood on a mechanistic level. In this model, a disruption of a single 

transcription factor - PPARγ - results in a severe and well-defined metabolic 

phenotype that closely resembles the common form of multi-factorial type II 

diabetes, but presents in a more exaggerated way. For this reason, FPLD III has 

been accepted as a monogenetic model of diabetes [67], and has been studied 

extensively, lending a large contribution to our current knowledge of the role of 

PPARγ in energy homeostasis and metabolic disease. 
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1.4.2 Known FPLD mutations. 

More than a dozen naturally-occurring mutations in the human PPARγ coding 

region have been identified and reported as case studies [56-59, 61, 62, 68-73]; 

many of these have been examined on a molecular level by our group and others. 

These include single amino-acid substitutions and non-sense mutations in the 

ligand binding domain and the DNA binding domain, as well as frameshift mutation 

that results in a deletion of the DNA binding domain. In addition, two common 

polymorphisms have been identified within the PPARγ gene which confer modest 

protection from insulin resistance [74-78]. The molecular mechanisms by which 

these mutants disrupt PPARγ transcriptional activity are diverse: some of the 

ligand-binding domain mutants are dominant negative by way of binding the DNA 

and failing to induce transcription (V290M, Y355X, P467L); some have impaired 

transactivation without dominant negative activity (F388L, R425C). Among the DNA 

binding domain mutants, the loss of function can be accompanied by dominant 

negative activity in a non-DNA-binding mechanism (C114R, C131Y, C152W), or not 

(C190S, R194W). Considering the complex structure-function relationship of the 

PPARγ protein, including the zinc fingers in the DNA binding domain and the 

intricate spatial organization of helices in the ligand binding domain, it is not 

surprising that mutations in different regions of the molecule affect PPARγ activity 

by such a variety of mechanisms. However, any disruption in the receptor function 

reported to date, regardless of the molecular mechanism, has resulted in the typical 

FPLD presentation. 
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1.5 E157D PPARγ Cohort. 

1.5.1 Unique Clinical Presentation of the E157D PPARγ 

Cohort. 

The E157D mutation was discovered in a large French-Canadian kindred by 

clinical collaborators of our research group, Drs. Gagne, Campeau and Hegele. FPLD 

features were identified in the proband on a clinic visit for severe dyslipidemia; 

family history revealed similar appearance in many relatives. After a thorough 

clinical investigation of multiple family members and DNA sequencing, a diagnosis 

of FPLD caused by a novel PPARγ mutation, E157D, was made. Heterozygous family 

members are affected with the characteristic partial lipodystrophic fat distribution, 

have early-onset insulin-resistant diabetes, hypertriglyceridemia often complicated 

by pancreatitis, hypertension, and PCOS in several women. In addition, this FPLD 

cohort is unique for presenting with several abnormalities not previously associated 

with FPLD type III cases: there is an increased prevalence of neuromuscular and 

hematological abnormalities such as tinnitus, carpal tunnel syndrome, 

pancytopenia, bone fractures and myalgias. It has been noted that the small sizes 

of mutant PPARγ cohorts reported to date have limited our ability to draw 

meaningful conclusions about the relative severity of dominant versus 

haploinsufficient genotypes, as well as the relative environmental contribution to 

the disease presentation [69]. The E157D PPARγ cohort spans three generations 

and includes fifteen affected individuals (Figure 3) - by far the largest FPLD cohort 

known to date, affording an unprecedented opportunity to examine the effects of a 

single PPARγ mutation with some statistical power. 
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Figure 3. Family Tree of the E157D PPARγ Cohort.  

Filled-in shapes represent individuals heterozygous for the mutation. Clinical 

presentations of study participants are summarized. 
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1.5.2 Potential implications of the p-box mutation. 

The E157D PPARγ mutation is not only unique in its clinical phenotype but 

also on a molecular level. The amino acid substitution is localized to the p-box of 

the receptor (indicated in boldface in Figure 2) - a region comprised of only six 

amino acids that is notable for its importance in the interaction of the receptor with 

DNA and binding site selectivity, as described above. The p-boxes of various 

nuclear receptors have been studied in detail. The sequence of the PPARγ p-box is 

identical to those of its close evolutionary relatives, the thyroid hormone and 

retinoic acid receptors, while other receptors have evolved to have slightly or 

significantly different p-box sequences [79, 80]. This diversity is believed to be 

important for the ability of different nuclear receptors to recognize their cognate 

DNA binding sites. The E157D PPARγ mutation is the first reported case of a 

naturally-occurring p-box mutation in PPARγ. However, synthetic p-box mutations 

in PPARγ have been made by site-directed mutagenesis with the goal of 

investigating the role of these amino acids in DNA binding site recognition [22]. In 

this in-vitro study, alanine substitutions at positions 157 and 158 of the receptor 

did not abolish its ability to bind PPREs and activate gene transcription. However, 

the mutation changed the relative affinity of PPARγ for various PPREs, and this 

change was mirrored by transcriptional activity levels on the different PPREs. The 

E157D mutation is a more conservative substitution that the alanine mutations 

studied in vitro by Temple et al: the negative charge of the side chain is preserved, 

and the only difference is one unit of the carbon chain. We therefore reasoned that 

it is unlikely to dramatically affect the ability of the receptor to bind DNA, but more 

likely acts via a subtle mechanism such as observed by Temple et al, altering the 
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DNA binding site selectivity of PPARγ. We postulated a hypothesis that the E157D 

mutation causes lipodystrophy and diabetes by altering the target gene selectivity 

of the receptor. We expected to find a small set of genes that was misregulated by 

E157D PPARγ, revealing novel genes of interest for diabetes pathophysiology. 

Hence, this subtle, naturally-occurring PPARγ p-box mutation that causes a severe 

metabolic phenotype was promising to be a valuable tool for gaining insight into 

how PPARγ interacts with the DNA what molecular pathways are involved in its 

regulatory role in energy homeostasis. 
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2 MATERIALS AND METHODS 

2.1 In-Silico Structure Prediction. 

2.1.1 SIFT. 

Sorting Intolerant from Tolerant (SIFT) is a method for predicting the effect 

of a mutation on protein function by assessing its degree of conservation in 

homologous proteins, and has been shown to be fairly accurate in identifying 

mutations which have a strong phenotype [81]. The identity of the residue and its 

chemical properties (eg, if it’s always hydrophobic) are factored into the score.  

Therefore, a change in a highly conserved region is predicted to affect protein 

function. The protein sequence of E129D PPARγ1 was analyzed by SIFT Human 

Protein [82] in order to predict whether the substitution would have a major effect 

on the protein function.  

 

2.1.2 Swiss-Model. 

The structure of E157D mutant PPARγ was modeled using Swiss-Model [83]. 

The crystal structure of rosiglitazone-bound PPARγ1-RXRα-PPRE complex (PDB ID 

3dzy, [84] was loaded into Swiss-Pdb viewer [85] as template, and glutamate 129 

was changed to aspartate to represent the E157D mutant. Both the wild-type and 

mutant complexes were subjected to energy minimization using the GROMOS 

algorithm [86]. Hydrogen bond contacts were defined as 1.2 - 2.76 Å with a 

hydrogen atom present and 2.195 - 3.3 Å with no hydrogen present. 

 



18 
 

 

2.1.3 MolSoft ICM. 

E157D PPARγ segment H122-I144 was used in homology modeling with 3dzy 

as template. Global energy minimization and Monte Carlo side chain optimization 

[87]; [88] were implemented to predict the folding of the E157D PPARγ segment. 

Local energy minimization was used to calculate hydrogen bond distances for E129 

(or D129) and C4012 (which corresponds to the third position of the 5’ half site of 

the PPRE) with default parameters defining the hydrogen bond. 

 

2.2 Cell Lines and Culture. 

NIH3T3 fibroblasts were maintained in Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with 10% fetal bovine serum, 100 units/mL penicillin and 

100 μg/mL streptomycin, and passaged at sub-confluency.  

3T3-L1 fibroblasts were grown to confluence in DMEM with 10% calf serum, 

then switched to 10% fetal bovine serum for two days, at which time adipogenic 

differentiation was induced as described previously [89]. 

293FT cells were maintained in DMEM with 10% fetal bovine serum, 0.1 mM 

non-essential amino acids, 100 units/mL penicillin, 100 μg/mL streptomycin and 

500 μg/mL geneticin.  

NLacZ, NPγ1 and NPγ2 cells were maintained as NIH3T3 cells with the 

addition of 2μg/mL blasticidin. 

10% DMSO was added to freezing medium for all cell lines. Geneticin and blasticidin 

were omitted from the medium for the first day after thawing the corresponding cell 

lines. 
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2.3 Cloning of Plasmids. 

Single-stranded oligonucleotides containing PPREs listed in Table 1 with NheI 

restriction site overhangs at the 5’ end and XhoI overhangs at the 3’ end were 

synthesized by IDT and annealed by slow cooling down from 100ºC in annealing 

buffer (10mM Tris pH 8.0, 1mM EDTA, 50mM NaCl). Double-stranded PPREs were 

then either biotinylated for the EMSA or inserted into the multiple cloning site of the 

pGL3-TK luciferase reporter plasmid (Promega).  

Mammalian PPARγ1 expression plasmid (pTR151) was constructed by our lab 

previously using the tet-regulated pTRE vector system and contains an N-terminal 

double flag tag. The E157D mutation was introduced using site-directed 

mutagenesis (Stratagene) according to the manufacturer’s directions using the 

following mutated primer: 5’-CACTATGGAGTTCATGCTTGTGACGGATGCAAGGGT-3’ 

(mutated nucleotide is indicated in boldface and underlined).  Wild-type and E157D 

PPARγ2 expression plasmids were constructed by inserting the N-terminal unique 

segment of PPARγ2, amplified from human adipose cDNA by PCR, into the NcoI site 

of pTR151, and the correct orientation of the insert was verified by sequencing. 

Lentiviral vectors for stable PPARγ expression were constructed using the Gateway 

cloning system (Invitrogen). The Gateway entry clone was generated by inserting 

2Xflag-tagged PPARγ1 or PPARγ2 cDNA into the pENTR4 vector, which was then 

recombined with the destination vector pLenti6.3/V5-DEST using LR Clonase II to 

generate the lentiviral PPARγ expression vectors.  

The NCoR1 expression plasmid was generously provided by Dr. Ronald N. 

Cohen. 

 



20 
 

 

2.4 Transient Transfection. 

NIH3T3 cells were plated to be ~90% confluent the next day in antibiotics-

free medium. On the day after plating, the medium was replaced with a reduced 

volume of fresh antibiotics-free medium, and the lipofectamine 2000 transfection 

mix was added dropwise. After 12 hours of incubation, lipofectamine complexes 

were removed and replaced with fresh antibiotics-free medium. Cells were 

harvested 24 hours after the start of transfection. 

 

2.5 Luciferase Transcription Reporter Assays. 

For luciferase reporter assays, cells were grown in 12-well plates and each 

well was transfected in a total volume of 0.5 mL with the following plasmids: 200 

ng of luciferase reporter, 100 ng of pTREshuttle2 vector or PPARγ (γ1 or 2, wild-

type or E157D), 50 ng of tet-off, 100 ng of RXRα, 50 ng of β-galactosidase and 200 

ng of blue script (pBS) as carrier.  The plasmids were mixed in 50 μL of Opti-MEM 

and incubated with lipofectamine 2000 (2 μL per well) as instructed by Invitrogen 

before the start of transfection. Rosiglitazone (20 μM) or DMSO vehicle control was 

added to the media for the duration of transfection. Each transfection condition was 

replicated by two wells, and each experiment was repeated three times. At the end 

of transfection, the cells were washed with phosphate-buffered saline (PBS) and 

lysed with 150 μL of passive lysis buffer (Promega). For the luciferase assay, 20 μL 

of the cell lysate were diluted into 100 μL of luciferase assay buffer (15mM KH2PO4 

pH 7.8, 15mM MgSO4, 4mM EGTA, 2mM ATP, 1mM DTT) in a white 96-well plate, 

then 30 μL of D-luciferin was added for a final concentration of 60 μg/mL. The light 

output was quantified immediately using a luminometer, integrated over 10 
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seconds. The β-galactosidase assay was used to account for transfection efficiency.  

20 μL of the cell lysate were mixed with 30μL of lysis buffer and then with 2X β-

galactosidase assay buffer (200mM sodium phosphate pH 7.3, 2 mM MgCl2, 100 

mM β-mercaptoethanol, 1.33 mg/mL o-nitrophenyl-β-galactoside). Absorbance at 

420 nm was read after 30 minutes at 37°C by the VersaMax microplate reader. 

For transcription coregulator interaction assays, NIH3T3 cells were grown 

and transfected as above, with the addition of 200 ng of the indicated coregulator 

plasmid instead of pBS. 

 

2.6 Electrophoretic Mobility Shift Assays. 

The consensus PPRE and ADN PPRE oligonucleotides were biotinylated on the 

5’ end by IDT. All other double-stranded PPRE oligonucleotides were labeled with 

biotin-dUTP using Klenow DNA Polymerase (Fisher) according to the instructions. 

NIH3T3 cells were grown in 100mm plates and transfected with the following 

plasmids: 5 μg of pTREshuttle2 or PPARγ1 (wild-type or E157D), 5 μg of RXRα, and 

2 μg of tet-off. Nuclear extracts were prepared using the NE-PER kit (Pierce) after 

24 hours of transfection. The 20 μL EMSA binding reaction was optimized to contain 

1.25 fmol/μL probe, 1 μL nuclear extract, 67 ng/μL poly dI:dC, 1% glycerol, 0.05% 

NP-40 and 1 mM MgCl2 in the EMSA binding buffer (Pierce). A 200-fold molar 

excess of unlabeled probe was used as competitor. 1 μg of M2-Flag mouse 

monoclonal antibody (Sigma) or non-immune mouse IgG (Millipore) was used in 

supershift binding reaction. The binding reactions were incubated, separated on a 

5% native polyacrylamide gel, transferred onto Biodyne-B membranes and detected 

using the Light-Shift EMSA kit (Pierce) as directed by the protocol. 
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2.7 Western Blotting. 

Whole cell lysates for protein analysis by western blotting were prepared by 

washing the cells with PBS, incubating on ice in RIPA buffer for 10 minutes, then 

sonicating for a total of 30 seconds in 5-second bursts alternating with cooling the 

tube on ice. The lysates were cleared by centrifugation and stored at -80°C. Bio-

Rad mini-protean system was used for SDS-PAGE with 20-80 μg of cell lysate per 

lane, normalized by measuring the protein concentration using the Bradford assay. 

Separated samples were transferred onto a PVDF membrane for blocking and 

detection. Primary antibodies used were PPARγ (E-8, Santa Cruz 7273), M2-Flag-

HRP (Sigma), His-probe (G-18, Santa Cruz 804), TFIID (TBP) (SI-1, Santa Cruz 

273), and GAPDH (FL-335, Santa Cruz 25778). Chemiluminescent signal was 

detected using the SuperSignal West Dura (Pierce) luminol/peroxide system by the 

gel DOC detector. 

 

2.8 Lentivirus Packaging and Infection. 

Lentiviral PPARγ expression vectors were grown in Stbl3 competent E.coli 

and purified using a plasmid midiprep kit with the addition of 10mM EDTA to the 

resuspension buffer in order to inhibit the endonuclease in this endA1+ strain. 

293FT cells were grown in 100mm plates and transfected with 9 μg of lentiviral 

packaging mix, 3 μg of lentiviral PPARγ expression vector (PPARγ1 to make NPγ1 

cells, or PPARγ2 to make NPγ2 cells) and 36 μL of Lipofectamine 2000 in a total 

volume of 8 mL of antibiotic-free medium. The control plasmid was pLenti6.3/V5-

GW/lacZ, supplied with the ViraPower HiPerform Lentiviral Expression Systems kit 
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(Invitrogen). Medium was replaced on the day after transfection, and virus-

containing supernatant was collected two days later, clarified by centrifugation and 

used directly for infection. 

NIH3T3 cells were plated without antibiotics in six-well plates to be ~50% 

confluent the following day, when the medium was replaced by virus-containing 

supernatant with 4 μg/mL Polybrene (Sigma). The next day, virus-containing 

medium was removed and replaced with fresh medium without antibiotics. The 

following day, 100 units/mL penicillin, 100 μg/mL streptomycin and 2μg/mL 

blasticidin were included in the medium to select stable infected cells. The selection 

continued for two weeks, during which time the cells were passaged normally. At 

the end of selection, frozen stocks of NPγ1, NPγ2 and NLacZ cells were prepared 

and used for all subsequent experiments to control for transgene expression, which 

we have observed to decrease over transgenic cell passages. 

 

2.9 Reverse Transcriptase PCR. 

Cells were grown in 6-well plates and, when indicated, treated with 20 μM 

rosiglitazone or DMSO vehicle for 24 hours, then washed with PBS and harvested in 

1 mL of TRI Reagent (Sigma). RNA was isolated with 1-bromo-3-chloro-propane 

and precipitated with isopropanol as instructed by Sigma, washed with 70% 

Ethanol, resuspended in 50 μL of RNase-free water,  and stored at -80°C. RNA 

quality for reverse transcription and PCR was confirmed by the ratio of UV 

absorbance at 260/280 nm, quantified by Nanodrop, which ranged between 1.91 

and 2.02. cDNA was made from 2 μg (100 ng/μL) of total RNA using the High 
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Capacity Reverse Transcriptase kit (Applied Biosystems), according to the 

manufacturer’s instructions.  

Genes that were upregulated in NIH3T3 cells by lentivirus-infected PPARγ in 

previously published work [90], either specifically or by more than one PPAR 

species, were selected for qPCR analysis. PCR primers were designed and verified 

for specificity in the mouse transcriptome using Primer-BLAST (NCBI) with obligate 

inclusion of an intron in the PCR product and, when possible, an exon junction 

within the primer sequence. Primer sequences are listed in Table 1. Gene 

expression was analysed by end-point PCR using the Amplitech Gold DNA 

polymerase kit, or by quantitative PCR using ABsolute Blue QPCR CYBR Green Low 

Rox mix (Thermo Scientific), with 2 μL of the cDNA-containing product as template. 

End-point PCR products were separated by electrophoresis on a 2% agarose gel 

and visualized by ethidium bromide UV fluorescence. qPCR products were 

synthesized and detected using the Stratagene MX3000P thermocycler, and 

assessed for the presence of nonspecific amplification by multiple absorbance 

peaks; minimum threshold of detection was determined automatically. Gene 

expression was normalized to PPIA as the internal control using the 2-ΔΔCT method 

[91].  
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Table 1. PCR Primers for Measurement of PPARγ Target Gene Expression. 

*, Primers do not amplify human PPARG cDNA; PCR product spans two introns 

**, Primers amplify both the human and mouse PPARG cDNA; no introns in the PCR product 

Gene 

symbol Forward primer Reverse primer 

PCR 

product 

size, bp 

Primer 

spans exon 

junction 

Fabp4 CCCTCCTGTGCTGCAGCCTT GTGGCAAAGCCCACTCCCACT 148 yes 

Adipoq AGGGAGAGAAAGGAGATGCAGGTCT ACAGTGACGCGGGTCTCCAG 181  yes 

Cd36 TGTGGAGCAACTGGTGGATGGT CGTGGCCCGGTTCTACTAATTCATGC 148 yes 

Plin4 AGACTGCCACCTCCAGCCCC TCCGGGCAGAGCTGAAGCCA 133 yes 

Pcx GGTGCTTGGCTGGTACAAGATGC CGCCGGACATTTGGGGAGGC 111 yes 

Pla2g16 AGCAAAGGCATCCACGCTGC CTGCCCCAGCTCCTGCGATT 198 yes 

Cpt2 GAAGCAGCGATGGGCCAGGG CAGGGGCAAAGCCACCGAGG 181 yes 

Acox1 TGCTGCAGACGGCCAGGTTC GGCCAGACTGCCACCTGCTG 133  yes 

Hsl AGGCCTCAGTGTGACCGCCA GCAGGCGGCTTACCCTCACA 200 yes 

Facl2 TGCCTGAGCTTGCCCGGAGA ACACACCTCACCCTCGCCCT 126 yes 

mPPARG* ACGGGGTCTCGGTTGAGGGG TCCGAAGTTGGTGGGCCAGA 182 no 

PPARG** CTCCAGCTGAAGCTGAACCAC AAATGTTGGCAGTGGCTCAG 209 no 

Sncg CAAGGAGCAGGCCAATGCCGT CCAAGTCCTCCTTGCGCACCAC 125 yes 

Mtap2 CAGCCACAGTGGAGGAAGCAGC GACCTGGTGGTCCGTCGTGC 229 yes 

 

2.10 Chromatin Immunoprecipitation 

NIH3T3 cells were grown in 100mm dishes and transfected with expression 

plasmids for biotinylated PPARγ (pNBio WT, E157D, 5.5 µg, or empty vector, 4.5 

µg), RXR (1 µg), tet-off (1 µg), GFP (1 µg), and the empty pNBio vector (3.5 µg), 

mixed with 36 µL Lipofectamine 2000. Cells were incubated with 25 uM biotin for 48 

hours, then crosslinked in 1% formaldehyde and harvested. Chromatin was sheared 

using the Branson 450 digital sonicator in repeated 15-second bursts optimized to 

yield 500-1000 bp-long DNA fragments, then precipitated with streptavidin-coated 

beads, washed and eluted as previously described [92]. Input and precipitated DNA 
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samples were analyzed by PCR using primers for the mouse aP2 PPRE region 

(forward:  5'- GCC ATG CGA CAA AGG CAG AAA -3', reverse: 5'- GTG TTT GGG CTG 

TGA CAC TTC C -3'), mouse adiponectin promoter spanning the region that is 

aligned with the human PPRE (forward: 5’-CTT ATG GGA AAG GGA GGT CTC C-3’, 

reverse: 5’-AAT AGC CAA TGA GTG GGC CC-3’), and a control region downstream 

of the aP2 gene which contains no known PPREs (forward: 5’-CTG TCC CCT GTA 

CAC CGT CT-3’, reverse: 5’-TCT CTT GGA ACT GGT AGC GCA G-3’). 

 

2.11 Microarray Analysis of Gene Expression. 

NPγ2WT and NPγ2E157D cells were grown in 6-well plates and treated with 

20 μM Rosiglitazone or DMSO vehicle for 24 hours. NPγ2 cells were thawed from 

frozen stocks for three independent experiments. Total RNA for microarray 

hybridization was isolated as described above, purified on RNeasy columns (Qiagen) 

and diluted to 50 ng/μL. RNA integrity measured by Agilent Bioanalyzer 2100 

ranged between 7.2 and 10. The average RNA integrity number was uniform across 

treatments (Figure 4). RNA was amplified using cDNA synthesis and purification, 

followed by in vitro cRNA transcription, then hybridized to Illumina Mouse WG-6 

v2.0 cDNA arrays as directed by the manufacturer. The Illumina gene expression 

image files obtained from the Illumina iScan scanner were uploaded to 

GenomeStudio (version 2010.3) using the Gene Expression module (v1.8.0). The 

quality of the samples was assessed using the Control Summary plots; all samples 

were accepted for analysis based on the number of genes detected (Figure 5 A; 

acceptable number is 10,000 - 15,000 genes) and the signal-to-noise ratio (Figure 

5 B; typically close to 40). No outliers were detected on a dendrogram of all the 
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samples (Figure 6). Data were normalized using the Rank Invariant method. 

Differentially expressed probes were identified using the Illumina Custom Error 

Model with Benjamini and Hochberg False Discovery Rate. The genes considered to 

be differentially expressed were uploaded to the Genomatix Software Suite to 

determine over-represented Gene Ontology Biological Processes.  

 

 

Figure 4. RNA Integrity in Hybridized Microarray Samples, as Assessed By the 

Bioanalyzer 2100.  

A, Total RNA before amplification. Sample identification numbers at the top of the 

lanes are: 1:WT; 2:MUT; 3:WT+Rosi; 4:MUT+Rosi. a, b and c denote the 

replicate numbers. B, RNA integrity number (RIN) by sample. No differences 

between groups were detected by ANOVA.  
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Figure 5. Summary of Quality Control Measurements for Hybridized Microarray 

Samples.  

A, Total number of detected genes detected on hybridized arrays at the 95% 

(blue line) and 99% (red line) confidence level, in each hybridized sample. The 

index on the x-axis indicates sample identification: 1-4, replicate a; 5-8, replicate 

b; 9-12, replicate c; order is WT, WT+Rosi, MUT, MUT+Rosi for each set of 

replicates. B, Signal-to-noise ratio for each sample presented as in panel C. 
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Figure 6. Dendrogram of All Hybridized Microarray Samples. 

 

2.12 Bioinformatic PPRE Prediction. 

Gene promoters were defined by the Gene2Promoter function of Genomatix 

and searched for PPARγ binding sites consistent with the matrices generated by 

Lefterova et al. (defined in Genomatix MatInspector as V$PPARG.02) and Nielsen et 

al. (V$PPARG.03). All of the gain-of-function promoters and 1000 randomly 

selected promoters of the loss-of-function set were scanned for PPREs. The 

incidences of PPREs in the promoters of gain-of-function and loss-of-function genes 

were compared using Fisher’s exact test. Human-mouse promoter alignments were 

done in Rvista 2.0 [93], which was also used to confirm the presence of the 

putative PPREs.  
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3 In Silico ANALYSIS OF E157D PPARγ STRUCTURE 

3.1 E157D Is Not a Tolerated Change in Nuclear Receptor 

Sequence Alignment.  

To gain a better perspective on the importance of glutamate 157 for PPARγ 

function, we analyzed the E157D mutation using SIFT, a program that predicts the 

functional impact of protein mutations based on the conservation of the mutated 

site in homologous proteins. Because the phenotypic impact of the E157D mutation 

in humans is already known in detail, the major goal of this experiment was to 

examine glutamate 157 as it relates to other members on the nuclear receptor 

superfamily. SIFT generated an alignment of 86 homologous human protein 

sequences centered around position 129 of PPARγ1, with a median sequence 

conservation score of 3.16, indicating that the prediction was not based on 

sequences that are too closely related. The E to D substitution was assigned a score 

of 0.00, indicating that this mutation is extremely likely to affect protein function. 

Given that the biochemical properties of the wild-type and mutant amino acids are 

taken into account in generating the score, the extremely strong score for the 

subtle E to D mutation indicates that either the glutamate at position 157 is very 

highly conserved across different nuclear receptors, or that steric effects play a 

major role in this part of the protein. The first explanation is unlikely considering 

our knowledge of the variability of nuclear receptor p-box sequences; in fact, HNF4 

is one nuclear receptor which has an aspartate in position 157, although the 

remainder of its p-box sequence is also very different from PPARγ. The proximity of 

the p-box to the DNA molecule may require very precise steric structure in order to 

properly recognize and bind the DNA, and the aspartate in position 157 may not be 
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viable for interacting with the DNA molecular without also changing the neighboring 

amino acids in the alignment. Clearly, glutamate 157 is an important part of the p-

box, and even such a minor change as deletion of one unit of its carbon chain 

results in major changes in the protein function. 

 

3.2 E157D Is Not Predicted to Change PPARγ Backbone 

Structure. 

Having ascertained that glutamate 157 is of crucial functional importance for 

PPARγ, we used in silico modeling to predict the effect of the E157D mutation on 

PPARγ structure. Figure 7 shows the crystal structure of the PPARγ1-RXRα-PPRE 

complex in Swiss-Pdb viewer. Glutamate 129 (equivalent to the glutamate 157 in 

PPARγ2) is located at the base of helix 1 of the DNA binding domain, and the side 

chain protrudes directly into the major groove of the PPRE 5’ half-site. The 

GROMOS energy minimization algorithm within the Swiss-Model software was 

applied to both the wild-type PPARγ template, and to its E129D mutated version. 

The backbone structure of the protein was not detectably altered by the mutation 

(Figure 7 A and B). Notably, mutating the same site to an alanine, glycine or 

histidine also did not alter the structure of the backbone, indicating that the 

functional importance of this site is not likely to be due to its effect on protein 

folding.  
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3.3 E157D May Compromise the Hydrogen Bonding Between 

PPARγ and the PPRE Molecule. 

The close relation of glutamate 157 to the PPRE molecule prompted us to 

examine its hydrogen bonding with the DNA and whether it is affected by the 

E157D substitution. Figure 7 C shows a magnified view of the helix 1 and the 

hydrogen bond that glutamate 129 makes with cytosine base of the guanine-

cytosine base pair in position three of the 5’ PPRE half-site (AGGTCA A AGGTCA). In 

panels D - F of Figure 7, three energy-favorable conformations of the mutated 

aspartate side chain are shown, of which only one variation comes within hydrogen 

bonding distance of the cytosine base, and this distance is longer (3.30 Å) than the 

wild-type hydrogen bond (3.02 Å). The shorter carbon chain of aspartate compared 

with glutamate moves the carboxyl group further away from the nitrogen atom on 

the cytosine base, weakening or eliminating the hydrogen bond. 

An important limitation of this approach is the fact that the topologies of 

nucleotides and sugars are not yet supported by the GROMOS algorithm, so the 

PPRE structure was not taken into account for energy minimization. Our conclusion 

about the mutant protein-DNA relationship is made on the assumption that the 

mutated DNA binding helix fits into the major groove in exactly the same spatial 

relationship as the wild-type, which is not necessarily true. To confirm our findings 

with another in silico approach, we used the Monte Carlo energy minimization 

algorithm within the ICM-Pre Mol-Soft program, which includes nucleic acids and 

works on a local environment for a defined residue rather than the whole protein. 

Using this approach, we detected the hydrogen bond between glutamate 129 and 

cytosine 4012, which was lost after mutating the glutamate to aspartate (not 
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shown), with a similar lengthening of the bond distance as we observed using the 

GROMOS force fields within the Swiss-Model program.  

Another important limitation for in silico structural analysis, which requires a 

template with known structure, is that the crystal structure has only been resolved 

for the consensus PPRE, so any structural changes induced to the protein by various 

DNA sequences are not taken into account in our experiment. Our in-vitro studies 

that followed were designed to address the fine differences between various PPRE 

sequences in their interaction with the wild-type and mutant PPARγ. 

 



35 
 

 

 

Figure 7. In Silico Modeling of E157D PPARγ.  

DNA binding domain of WT (A) and MUT (B) human PPARγ1 with a transverse 

view of helix 1. The ligand-binding domain of PPARγ and the entire RXRα protein, 

as well as their respective ligands, were hidden from this view to expose the p-

box PPARγ region. E129 of human PPARγ1, shown here, is equivalent to E157 of 

PPARγ2. C, Hydrogen bond contact between E157 and the PPRE. D-F, Hydrogen 

bond contacts of various orientations of D157 with the PPRE.  
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4 E157D PPARγ TRANSCRIPTIONAL ACTIVITY IN 

REPORTER ASSAYS 

4.1 NIH3T3 Cell Line and the Transient Transfection System. 

We selected the NIH3T3 cell line for our transient transfection and, later, 

lentiviral infection experiments. This is a mouse fibroblast cell line that does not 

express endogenous PPARγ, allowing us to study the activity of the mutant protein 

overexpressed transiently or by stable infection, without interference by the 

endogenous wild-type protein. NIH3T3 cells are efficiently (30%-50%) transfected 

with lipophilic agents, and have been widely used as a host cell line for transient 

transfection studies of PPARγ activity using the luciferase reporter gene system. 

To examine the effect of the E157D mutation on the transcriptional activity of 

PPARγ, we used a luciferase reporter assay in a transiently transfected cell culture 

model. The luciferase reporter assay is commonly used to quantify the activity of 

transcription factors with well-defined DNA binding motifs [94] [95], to characterize 

regulatory DNA elements [96-98], and has been used to measure the 

transcriptional activity of PPARγ on various PPREs [99-102], as well as its 

responsiveness to various ligands [103-106]. Our transcription reporter plasmid 

contains the firefly luciferase reporter gene under the control of the thymidine 

kinase promoter, with each of the PPREs listed in Table 2 inserted directly upstream 

of the promoter. Thus, each reporter plasmid is identical except for the 25-base-

pair PPRE sequence, allowing us to directly examine the influence of the DNA 

binding site on the transcriptional activity of PPARγ. When PPARγ is present in the 

cell, it binds to the PPRE and enhances the basal level of luciferase transcription, 

which is quantified by measuring luciferase activity in a luminescence assay of the 
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cell lysate. Addition of the PPARγ ligand rosiglitazone further increases the 

transcriptional activity readout. 

 

Table 2. PPREs from Known PPARγ Target Genes.  

The DR1 sequence for each PPRE is shown in bold-face. *, PPRE sequence is in 

the non-coding strand of the gene. 

Gene 

symbol 

PPRE 

symbol PPRE sequence 

Location 

rel. to  

TSS Function Species Ref. 

Fabp4 ARE7 CTTACTGGATCAGAGTTCACAGATC -5360 
Intracellular lipid 

metabolism 
mouse [43] 

Fabp4 ARE6 CTCTCTGGGTGAAATGTGCATTTCT -5263 
Intracellular lipid 

metabolism 
mouse [53] 

Slc27a1 FATP AGAAGAAGGGGAAAGGGCAGGAAGG -489 
Intracellular lipid 

metabolism 
mouse [107] 

Lpl LPL* GGAAGTGGGGCAAAGGGCACAGGAT -160 

Lipolysis of 

circulating 

triglycerides 

rat [108]  

Adipoq ADN* GAAGATGGGGCAAAAGTCAAAACCA -250 
Adipose derived 

hormone 
human [109] 

Sorbs1 CAP TGACACAGGCTAAAGGTCATCTGAA -1090 

Intracellular signal 

transduction 

protein 

mouse [110] 

Aqp7 AQP7* TTCTCCAGGGGAGAGGTCAGTAGGG -93 

Membrane 

channel; water 

balance 

mouse [111] 

Me1 MEp CTTTCTGGGTCAAAGTTGATCCCCC -382 
Pyruvate 

metabolism 
mouse [49] 

Acox1 ACO* GGGACCAGGACAAAGGTCACGTTCG -572 
Fatty acid beta-

oxidation 
rat [112] 

Pck1 PCK2 ACAACTGGGATAAAGGTCTCGCTGC -998 Gluconeogenesis rat [113] 
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4.2 E157D PPARγ Transcriptional Activity on Various PPREs. 

Transient transfection of NIH3T3 cells with PPARγ1 expression plasmids 

resulted in equal protein levels of the wild-type and E157D PPARγ1 (Figure 8 B), 

indicating that the mRNA stability, translation dynamics and protein turnover are 

not likely to be affected by the mutation. The codon frequency change 

corresponding to the E157D mutation is insignificant (0.03 to 0.026 [114]), so it is 

unlikely that tRNA availability would affect the rate of the mutant protein synthesis.  

PPARγ1 significantly induced luciferase transcription from several well-

characterized PPREs compared to the empty vector control (Figure 8 A), and 

addition of a receptor-saturating concentration of rosiglitazone further enhanced 

the transcription activation approximately two-fold, validating our assay system. 

The E157D mutant PPARγ1 was also transcriptionally active on many of these 

PPREs, and was responsive to ligand activation similarly as the wild-type receptor. 

However, the transcriptional activity of E157D PPARγ1 was quantitatively lower on 

almost all PPREs we tested. In fact, there was only one construct - the full extended 

promoter from the aP2 gene - that was more transcriptionally active in the 

presence of the mutant PPARγ than the wild-type. Furthermore, we observed that 

the extent of the transcriptional defect conferred by the mutation was not uniform 

across all PPRE sequences, but displayed a wide range of behaviors when 

normalized to the wild-type level of transcription (Figure 9 A). The E157D mutant 

PPARγ1 had wild-type level of transcriptional activity on the ACO PPRE, was mildly 

to moderately transcriptionally defective on the ARE6, FATP, ADN and MEp PPREs, 

and it was transcriptionally dead (no difference compared with the empty vector 

control) on the full promoter from the FATP gene, the LPL, AQP7 and PCK2 PPREs.  
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We repeated the experiment with several of the PPREs using PPARγ2 and 

found that the E157D mutant PPARγ2 behaves similarly as the mutant PPARγ1 

when compared to the respective wild-type protein (Figure 8 C and 9 B). The 

mutant γ2 isoform activates gene transcription from the four PPREs we examined, 

and is further induced by rosiglitazone. However, the mutation reduces its 

transcriptional activity compared with the wild-type PPARγ2, and this reduction is 

not the same on all PPREs. As with the γ1 isoform, the effect of the E157D mutation 

is greater on the FATP and MEp PPREs than it is on the ACO and ARE6 PPREs. There 

appears to be no isoform-specific effect of this mutation. This is not surprising given 

our knowledge that the two PPARγ isoforms behave similarly in in vitro studies of 

transcriptional activity, and we have not explored any differences between the 

isoforms further in this project. 
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Figure 8. E157D PPARγ Transcriptional Activity in Luciferase Reporter Assays.  

A, PPARγ1 wild-type, E157D or empty vector was transiently transfected into 

NIH3T3 cells with indicated reporter plasmids, and cells were treated for 24 with 

rosiglitazone (Rosi) or DMSO vehicle (veh). B, Western blot of PPARγ1 expression 

in transfected cells. C, PPARγ2 transcriptional activity was measured the same 

way as in A. Data are means and standard errors of at least two independent 

experiments. 
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A 

 

B 

 

Figure 9. Normalized Transcriptional Activity of PPARγ in Luciferase Reporter 

Assays.  

A, E157D PPARγ1 or B, E157D PPARγ2 transcriptional activity relative to wild-

type. Data are means and standard errors of at least three independent 

experiments. *, p<0.05 compared to WT on the same PPRE. #, no difference 

compared with vector. 
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4.3 E157D PPARγ Responds to Ligand Activation and Lacks 

Dominant Negative Activity.  

We examined two commonly-occurring mechanisms through which the 

E157D mutation could potentially decreased the transcriptional activity of PPARγ: 

decreased ligand responsiveness and dominant negative activity. We considered it 

unlikely that this DNA-binding domain mutation could reduce the ligand 

responsiveness of PPARγ, as no such cases have been reported and it is generally 

believed that the ligand-binding domains of nuclear receptors act independently of 

their DNA-binding domains. Furthermore, it was evident from our data that the 

mutant receptor is at least partially activated by saturating concentrations of the 

synthetic ligand rosiglitazone. However, a mild decrease in endogenous and 

synthetic ligand affinity could account for the overall reduction of transcriptional 

activity by the mutant PPARγ. To assess the effect of the E157D mutation on PPARγ 

ligand affinity quantitatively, we constructed a rosiglitazone dose response curve of 

luciferase transcription by the wild-type and E157D PPARγ1. When the maximum 

transcription level is set to 100% for each receptor, the ligand response curves are 

sigmoid-shaped as expected and are identical for the wild-type and the mutant on 

the FATP PPRE (Figure 10), indicating that the ligand affinity of PPARγ is not 

affected by the E157D mutation. 
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Figure 10. Rosiglitazone Dose Response Curve.  

Wild-type (WT) or E157D (MUT) PPARγ1 was transfected into NIH3T3 cells with 

the FATP PPRE-luciferase reporter plasmid and treated for 24 hours with 

increasing concentrations of rosiglitazone (Rosi). Data are means of three 

experiments, normalized to the maximum transcriptional activity for each 

receptor. Best-fit dose response curves were constructed in GraphPad using the 

single binding site Michaelis-Menten model. 

 

The potential for any dominant negative activity of the E157D PPARγ was 

important to assess. The nuclear receptor transcription activation cycle includes 

DNA binding, interaction with coregulators, chromatin remodeling, initiation of 

transcription, and release from the promoter with subsequent degradation by the 

ubiquitin-proteasome system [10, 115-117]. Such cycling of the receptor on and off 

the target gene promoters is needed for fine-tuned regulation of gene transcription 

in responses to changes in ligand stimulation. In the condition of continuous 

presence of ligand, the release of ubiquitinated PPARγ from the PPRE and binding 

by the next PPARγ molecule is required for continued gene transcription [118-120]. 
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Dominant-negative DNA-binding domain PPARγ mutants have been described [56], 

and the direct interaction between glutamate 157 and the DNA binding site raises 

the possibility that this mutation may disrupt the release of PPARγ from the PPRE. 

In this case, the mutant receptor would bind the PPRE and activate one round of 

transcription, but fail to free the binding site for further transcriptional activation, 

making the PPRE inactive for prolonged periods of time. Our observations in the 

NIH3T3 cell model with ectopic D157D PPARγ overexpression had thus far 

supported this possibility. In the heterozygous condition, which is the naturally 

occurring state of this mutation, the dominant-negative E157D PPARγ would 

prevent the transcriptional activity of the wild-type, leading to the severe metabolic 

phenotype. On the other hand, previous in vitro studies involving p-box PPARγ 

mutations have not found a significant effect on DNA binding, and the subtlety of 

this glutamate-aspartate substitution suggests that a severe disruption in DNA 

binding and release may be less likely.  

To assess the E157D PPARγ for dominant negative activity, we conducted a 

competition experiment in which both the wild-type PPARγ and increasing amount 

of the mutant receptor were co-transfected into the same cell in the context of our 

established transcription reporter assay. As shown in Figure 11, increasing the 

amount of wild-type receptor produced the expected rise in transcription, indicating 

that the amounts of transfected plasmid are within the linear portion of the PPARγ 

transcription curve. Adding increasing amounts of a known dominant-negative 

PPARγ mutant, P467L, produced the expected inhibition of transcription. This 

mutant binds DNA, but fails to bind ligands, initiate transcription, and release from 

PPRE, effectively blocking the wild-type PPARγ from transcribing on that PPRE. 
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When we added increasing amounts of the E157D PPARγ plasmid, however, no such 

inhibition of transcription was observed. On the contrary, there was a rise in 

transcription that did not reach the levels of the wild-type, consistent with 

decreased transcriptional activity of the mutant receptor. So, even though the 

mutation is inherited in an autosomal dominant pattern, there is clearly no 

dominant negative activity in the biochemical sense.  

 

 

Figure 11. Competition Assay of PPARγ Transcrpitional Activity.  

Wild-type and increasing amounts of indicated competing PPARγ1 receptor were 

co-transfected into NIH3T3 cells with no exogenous ligand. Data are means and 

standard errors of three independent experiments. *, p<0.05 determined by two-

way ANOVA. 

 

Our transcription reporter assays on heterologous promoters containing 

various PPREs have revealed that the E157D mutation generally reduces the 
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transcriptional activity of PPARγ through a mechanism that does not involve 

decreased ligand affinity or dominant negative activity. Furthermore, this reduction 

in transcriptional activity is dependent on the PPRE sequence and varies widely in 

its effect size compared with the wild-type receptor. These observations were 

consistent with our hypothesis that the mutation alters the DNA binding site 

selectivity of PPARγ and prompted us to examine the PPRE sequences tested here 

for patterns that may predict the behavior of the mutant. The receptor directly 

contacts the third nucleotide of the 5’ half-site of the PPRE, one of the most highly 

conserved bases in the PPRE, and not surprisingly, all of the PPREs tested here 

contained a guanine in that position. We next examined the neighboring bases at 

positions two and four. The second base of the PPRE is a very highly conserved 

guanine; the fourth is variable and all four bases are represented in our set of 

assays, but we found no obvious correlation with the severity of the transcriptional 

defect. Clearly, the sequence of the PPRE is important in regulating the 

transcriptional activity of the mutant receptor, but we were unable to predict the 

identity of the base-pairs within the PPRE that would most strongly influence the 

receptor. The three-dimensional shape of the DNA molecule is a complex structure 

that is determined by more than just the immediate base-pair sequence [121-123], 

so a more rigorous analysis of how the mutant PPARγ interacts with various PPRE 

sequences was necessary. 
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5 E157D PPARγ BINDS DNA In Vitro 

We examined the ability of E157D PPARγ to bind PPREs in vitro using the 

electrophoretic mobility shift assay (EMSA). In this assay, synthetic double-

stranded biotinylated PPRE molecules (probes) are mixed with nuclear extracts from 

cells transfected with PPARγ in a binding reaction, then separated on a native 

polyacrylamide gel and blotted onto a positively-charged nylon membrane. The 

biotin-labeled probe is then detected using streptavidin, and a slow-traveling 

(shifted) band represents a protein-DNA complex, compared with the free probe 

which travels faster. Analysis of the relative intensity of the shifted bands also 

provides a semi-quantitative assessment of protein affinity for various binding sites. 

The EMSA has been used successfully to characterize novel PPREs ([99, 100, 124-

127] and many more) and to determine the relative PPRE affinity of site-directed p-

box PPARγ mutants [22]. 

We first established the validity of the EMSA using the consensus PPRE as 

probe. The binding reaction with nuclear extract containing either wild-type or 

E157D PPARγ produced a shifted band compared to the control nuclear extract, 

which was transfected with the empty vector (Figure 12). The shifted bands were of 

similar intensity, and the specificity of PPARγ binding to the probe was confirmed 

with a 200-fold molar excess of unlabeled PPRE, which eliminated the shifted band, 

and with a super-shifted band produced by adding the M2 Flag antibody, but not 

the IgG control. The ADN PPRE also bound the mutant receptor as strongly as the 

wild-type, a surprising finding considering that the mutant PPARγ was much weaker 

than the wild-type at transcribing from this same PPRE in our luciferase reporter 

assay (Figures 8 and 9).  
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Figure 12. Validation of the Gel-Shift Assay.  

Nuclear lysates from CHO cells transfected with the indicated plasmids were 

incubated in a binding reaction with the consensus (top panel) or ADN (bottom 

panel) PPRE, plus competitor or antibody, as indicated. Shifted and supershifted 

bands represent the PPARγ1-RXRα-PPRE complex. 

 

It was possible that permissive EMSA binding conditions or saturating 

amounts of PPARγ in the binding reaction prevented us from detecting a difference 

in the binding affinity induced by the E157D mutation. We characterized the DNA 

binding activity of the mutant in more detail by testing increasing amounts on the 

nuclear extract and generated a binding curve using the relative intensities of the 

shifted bands (Figures 13 and 14). To our surprise, the E157D PPARγ bound all of 
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the PPREs that we tested with equal or slightly stronger affinity as the wild-type 

receptor. 

 

 

Figure 13. Gel-Shift Assay Blots.  

A, Western blot of PPARγ expression in NIH3T3 nuclear extracts used for gel-shift 

assays. B, Representative gel-shift blot with the ADN PPRE probe and increasing 

amounts of indicated nuclear extracts. C, Shifted bands from gel-shift blots with 

the indicated PPRE as probe. 
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Figure 14. Gel-Shift Binding Curves.  

Shifted band densitometry was performed with ImageJ, and best-fit lines 

constructed in GraphPad using either linear or exponential models. 
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These results contradict our original hypothesis that the E157D mutation 

disrupts the binding site selectivity of PPARγ: at least in the in-vitro binding 

conditions, the PPRE selectivity of PPARγ is unaffected by the mutation. However, 

our transcriptional activity assays showed that the mutant receptor is 

transcriptionally defective on most of these same PPREs. The E157D mutation 

appears to act by a more complex mechanism than a change in the DNA binding 

affinity of the receptor.  A post-DNA binding event in the transcriptional activation 

cascade is disrupted, leading to decreased transcriptional activity with no dominant-

negative of loss-of-function effect on its ability to bind DNA. Furthermore, the 

sequence of the PPRE is important in determining the extent of transcriptional 

defect of the mutant receptor, as discussed above. Considering the position of 

glutamate 157 in the major groove on the PPRE, it becomes clear that the PPRE-

PPARγ interaction plays an important role in regulating PPARγ transcriptional 

activity, beyond just anchoring the receptor on the DNA.   
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6 E157D PPARγ HAS REDUCED TRANSCRIPTIONAL 

ACTIVITY ON ENDOGENOUS PROMOTERS 

6.1 Generation of Stable PPARγ-Expressing Fibroblasts. 

Our experiments thus far have shown that E157D PPARγ binds PPREs in 

vitro, but fails to induce transcription from most PPREs in the context of a 

heterologous promoter. Transcriptional activity on native chromatin may be 

regulated by additional factors including chromatin folding, methylation marks, and 

cis-acting regulatory proteins bound to nearby sites. In addition, overexpressed 

protein activity in our transient transfection system may be altered compared to 

normal levels of expression. To investigate the transcriptional activity of E157D 

PPARγ in a more natural setting, we used the lentiviral gene delivery system to 

generate NIH3T3 fibroblasts expressing equal, physiologically-relevant levels of the 

wild-type or E157D PPARγ.  

The lentiviral expression plasmid recombines with endogenous DNA at 

random locations within the chromatin, with on average two insertions of the gene 

in each infected cell [128]. NIH3T3 cells are readily transduced with lentivirus 

[128], and have been used to establish PPARγ-expressing cell lines to study the 

transcriptional activity differences between the different PPAR isoforms [90]. The 

PPARγ protein expressed from a lentiviral insert in this system induces the 

expression of many known PPARγ target genes. The pLenti6.3 vector used in our 

experiments contains the CMV promoter driving the expression of the transgene 

and, in the same transcript, the blasticidin resistance selection marker, translated 

from in internal ribosome binding site. In a kill-curve experiment, 2 μg/mL - 10 

μg/mL blasticidin concentrations were sufficient to kill non-infected NIH3T3 cells, so 
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we used the lowest effective 2 μg/mL concentration of blasticidin for all subsequent 

selection and maintenance of virus-infected cells. Cell death was not significantly 

induced in the lentivirus-infected wells, while all non-infected control cells were 

dead after seven days of selection, indicating that infection efficiency was high in 

our experiments. The infected cells were maintained for an additional week for a 

total of two weeks selection period before we started the gene expression 

experiments. We termed the established transgenic cell lines NPγ1WT (NIH3T3-

derived PPARγ1 Wild-Type expressing cells), NPγ1E157D (expressing the γ1 isoform 

of the mutant receptor), NPγ2WT, NPγ2E157D (expressing the corresponding γ2 

forms of PPARγ, and NLacZ (infected with the control Lac-Z coding vector). 

Lentivirus-delivered PPARγ was expressed at the mRNA and protein level 

(Figure 15). Compared with the mouse differentiated 3T3-L1 adipocyte cell line, 

which expresses high levels of PPARγ, our lentivirus-infected cells expressed similar 

levels of PPARγ mRNA, but slightly reduced levels of the protein.  Any regulatory 

elements of the native PPARγ transcript are absent from the lentiviral PPARγ 

expression vector, which contains only the cDNA and the Kozak sequence, so 

translation from this minimal transcript is likely less efficient than the native mRNA 

species, resulting in reduced protein levels. Nevertheless, PPARγ protein expression 

in our stable cell lines is likely comparable to the levels of its expression in non-

adipose tissues. The control cell line was infected with the lentiviral vector for LacZ, 

and showed no detectable expression of the endogenous PPARγ gene in these cells. 

Lastly, we discovered that PPARγ protein expression decreased slowly over time 

with passaging the transduced cells. Loss of transgene expression in virus-infected 

“stable” cell lines is not uncommon after several passages, due to either expression 
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from non-integrated viral particles, silencing of the transgene, or selection for low-

expressing cells if the transgene causes slower growth [129]. Therefore, all 

experiments were carried out using cell lines of equal age and passage number.  

 

 

Figure 15. Transgene Expression in Stable Lentivirus-Infected Cell Lines.  

A, mRNA and B, protein expression of PPARγ in the indicated lentivirus-infected 

cell lines or in differentiated 3T3-L1 adipocytes were measured in by rtPCR and 

western blot. 

 

6.2 E157D PPARγ is Activated by Rosiglitazone on 

Endogenous Promoters.  

To assess the transcriptional activity of E157D PPARγ on native gene 

promoters, we first confirmed that endogenous PPARγ target genes are induced by 

PPARγ in the lentivirus-infected expression system. We measured the expression of 

several genes reported to be induced by PPARγ in similar experimental conditions 

[90] using end-point reverse transcriptase-PCR after treating the cells for 24 hours 
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with 20 μM rosiglitazone. Four of the transcripts (fatty acid binding protein aP2, 

adiponectin, perilipin 4 and fatty acid transporter CD36) were upregulated in wild-

type PPARγ2-expressing cells (Figure 16 A) and further induced by rosiglitazone. 

The adiponectin mRNA was upregulated after 3 hours of rosiglitazone treatment 

and reached maximal induction at 24 hours (Figure 16 B), indicating that the 

transcriptional dynamics of the lentivirus-expressed PPARγ are normal. Gene 

transcription induced by the E157D PPARγ2 failed to reach the levels of wild-type 

PPARγ2-induced transcription (Figure 16 A), suggesting that the mutant receptor is 

transcriptionally defective on endogenous promoters, as is the case on heterologous 

promoters. 

 

Figure 16. Rosiglitazone Induces Transcription of Endogenous PPARγ Target 

Genes In Wild-Type and E157D NPγ2 Cells.  

A, Expression of endogenous genes was measured by rtPCR in the indicated cells 

treated for 24 hours with 20 µM rosiglitazone (+ Rosi) or vehicle (- Rosi). B, 

Gene expression in NPγ2WT cells after exposure to 20 µM rosiglitazone for the 

indicated durations. 
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Importantly, no adipogenic changes or evidence of lipid storage were 

observed in the transgenic cell lines after 24 hours of rosiglitazone treatment. 

NIH3T3 cells are relatively resistant to adipogenic differentiation, requiring 

additional stimulation with hormones, and longer than 24 hrs of rosiglitazone. 

Endogenous ligands alone did not induce adipogenesis in either wild-type or E157D 

PPARγ-expressing cells. 

 

6.3 E157D PPARγ Activates Transcription of Native PPARγ 

Target Genes but Fails to Reach Maximal Induction. 

End-point PCR can lack the sensitivity needed to detect differences in mRNA 

abundance, so to better characterize the effect of the E157D mutation on PPARγ 

transcriptional activity on various endogenous PPREs, we measured the mRNA 

levels of PPARγ target genes using quantitative PCR. We found that on five PPARγ-

responsive promoters, rosiglitazone-activated E157D PPARγ induced transcription 

but failed to reach the level induced by the wild-type PPARγ. This was true of both 

the PPARγ1 and PPARγ2 isoforms of the receptor (Figure 17). Furthermore, 

similarly as on the heterologous promoter constructs, the extent of transcriptional 

defect conferred by the mutation was not uniform on all endogenous promoters. For 

instance, induction of the CD36 gene transcription was severely reduced by the 

E157D mutation (hundreds of fold), while activity on the perilipin and aP2 genes 

was only mildly reduced (less than ten-fold), and the adiponectin gene was induced 

about thirty-fold weaker by the mutant than the wild-type PPARγ. These data 

support our working model in which the DNA binding site sequence regulates the 
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transcriptional activity of PPARγ, and plays a role in determining how strongly the 

transcriptional activity of the receptor is affected by this PPRE-interacting mutation. 

 

 

Figure 17. E157D PPARγ Transcriptional Activity on Endogenous PPARγ Target 

Promoters.  

Expression of indicated genes was measured by qPCR and normalized to PPIA. 

Means and standard errors of three or four independent experiments are shown. 

*, p<0.05 determined by ANOVA with post-hoc Bonferroni tests. 
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6.4 E157D PPARγ binds endogenous PPREs. 

We have shown that cells with stable E157D PPARγ expression have reduced 

levels of several known PPARγ target transcripts after rosiglitazone induction 

compared with cells expressing the wild-type receptor, and that this general pattern 

is not the same for each transcript. These findings very closely mimic our data from 

the transiently transfected transcription reporter system. To confirm that altered 

DNA binding affinity does not mediate the changes in induction of endogenous 

PPARγ genes by the mutant receptor, we measured the E157D PPARγ occupancy on 

the promoters of two of the genes for which the location of the PPREs in known.  

In fibroblasts transfected with either wild-type or E157D biotinylated PPARγ1, 

streptavidin precipitation resulted in similar enrichment of the PPRE-containing 

regions compared with the empty vector-transfected contol, indicating that the 

mutation does not affect the binding affinity of PPARγ on native promoters. This 

was true on both aP2 and adiponectin gene promoters (Figure 18 B), while a control 

genomic region containing no known PPREs was not enriched with either protein, 

confirming specific pull-down. By contrast, the expression profiles of these two 

genes were dramatically different upon treatment of NPγ1 cells with rosiglitazone 

(Figure 18 A, same data as in Figure 17). While the E157D mutation did not change 

the aP2 gene induction by PPARγ, it reduced adiponectin gene induction by almost 

thirty-fold compared with the wild-type receptor. 
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Figure 18. E157D PPARγ occupancy on endogenous PPARγ target promoters. 

A, Gene expression in NPγ1 cells was measured by qPCR, data from Figure 17. B, 

Chromatin immunoprecipitation (IP) assays of transfected biotinylated PPARγ 

(empty vector control, wild-type or E157D) on the promoter regions of genes 

shown in panel A. 

 

These findings are fully consistent with our initial in-vitro studies and confirm 

an unusual mechanistic aspect of the E157D PPARγ mutation, which disrupts the 

transcriptional activity of the receptor in a PPRE sequence-specific manner, but has 

no effect on DNA binding affinity. This intrinsic mechanism is evident both on 

endogenous promoters and in a transiently-transfected system. 
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7 GLOBAL CHANGES IN E157D PPARγ TRANSCRIPTIONAL 

ACTIVITY 

Our data thus far have demonstrated that E157D PPARγ binds PPREs in vitro 

equally well as the wild-type, despite the DNA-binding surface mutation, and 

activates transcription from PPREs in the context of heterologous plasmid and 

native-chromatin promoters. Transcription induction from most of the classic, well-

defined PPREs that we studied was reduced by the E157D mutation, with some 

PPREs more strongly defective than others in directing E157D PPARγ transcriptional 

activity. This apparent spectrum of defectiveness, from no effect of the mutation to 

mildly defective, to strongly defective and transcriptionally dead, led us to 

investigate whether there are genes that are induced by E157D PPARγ above the 

levels of the wild-type PPARγ-mediated transcription. In the context of the severe 

diabetic phenotype of E157D PPARγ carriers, we were interested in any such genes 

as potential candidate genes in the pathogenesis of insulin resistance - something 

that is not currently well understood. From the molecular viewpoint, we were 

interested in the mechanistic aspects of transcriptional activation by E157D PPARγ 

as directed by the PPRE sequence. 

 

7.1 E157D PPARγ Regulates a Smaller Set of Genes than the 

Wild-Type Receptor. 

To characterize the global extent of E157D PPARγ transcriptional activity, we 

determined the total set of genes regulated by E157D PPARγ in the stable PPARγ 

expressing fibroblasts using mRNA profiling. Total RNA was isolated from NPγ2 

wild-type or E157D cells expressing equal amounts of PPARγ (Figure 18) in three 



61 
 

 

independent experiments after 24 hours of activation with rosiglitazone or DMSO 

vehicle. Amplified cRNA representing the total transcriptome of the cells was 

hybridized to mouse cDNA arrays for detection of differentially expressed genes 

from DMSO- versus rosiglitazone-treated cells. We defined the set of genes that 

were significantly upregulated by rosiglitazone treatment as PPARγ target genes for 

each of the two cell lines. Wild-type PPARγ induced the expression of 1631 genes, 

597 of them by 1.5-fold or greater (Table 3), consistent with previously described 

transgenic cell culture models [90]; by contrast, the E157D mutant induced 287 

genes, only 95 of them over 1.5-fold.  

In addition to induction of gene transcription, activation of PPARγ leads to 

inhibition of certain genes through incompletely understood mechanisms involving 

either direct activity of PPARγ on the gene promoters or upregulation of genes 

encoding transcriptional inhibitors. In the currently accepted model of direct 

inhibition of transcription, ligand binding induces sumoylation of the ligand-binding 

domain of PPARγ, which targets it to corepressors on the promoters of 

inflammatory genes and prevent the disassembly of the repression complex upon 

inflammatory stimulation [130-135]. In our transgenic cell model, activation of 

PPARγ with rosiglitazone resulted in decreased transcription of 1053 probes (66 of 

those by more than 50%). The E157D mutant downregulated a significantly smaller 

set of genes (297; only 8 of those by more than 50%). Whether these genes are 

regulated through direct or indirect mechanisms, the mutant receptor has 

decreased inhibitory activity as well as decreased stimulation of gene transcription. 

These data confirm that, similarly as we observed on a small set of well-known 

PPARγ target genes, the E157D PPARγ is largely transcriptionally defective on a 
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global scale: it regulates the transcription of a much smaller set of genes than the 

wild-type receptor.  

 

 

Figure 19. Lentiviral PPARγ Expression in Hybridized Samples.  

Protein expression was measured by western blot in NPγ2 WT and E157D cells. 

 

Table 3. Summary of Microarray Analysis of Gene Expression.   

The numbers of genes with positive signal from one or more array probe are 

listed 

 
NPγ2 WT NPγ2 E157D 

Rosi-induced genes 1631 287 

Rosi-induced genes, FC>1.5 597 95 

Rosi-downregulated genes 1053 297 

Rosi-donregulated genes, FC<0.5 66 8 

 

 

7.2 E157D PPARγ Exhibits Novel Transcriptional Properties. 

In order to better understand the global effect of the E157D mutation on the 

transcriptional activity of PPARγ, we analyzed the target genes of wild-type and 

E157D PPARγ as defined by rosiglitazone induction in our NPγ2 cells. The mutant 

receptor failed to activate transcription of 90% of the wild-type PPARγ target genes 

(Figure 19). The majority of the E157D PPARγ target genes are also wild-type 
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targets, and the mutant receptor has reduced transcriptional activity on most 

(73%) of these genes. We refer to these as the “loss-of-function” genes, indicating 

the effect of the E157D mutation. The remainder (27%, or 15 genes) of shared 

wild-type and E157D PPARγ target genes are induced similarly by both receptors. 

In addition, a significant portion (38%), of E157D PPARγ target genes are not wild-

type PPARγ targets, although this is a small number relative to the total number of 

wild-type PPARγ target genes (34 versus 528 genes). We refer to these 34 genes as 

the “gain-of-function” genes. Genes repressed by PPARγ followed a very similar 

pattern, but amounted to roughly a tenth of the total number of genes induced by 

PPARγ. Here also the mutant receptor was inactive on the vast majority of the 

genes down-regulated by the wild-type PPARγ, while one gene was repressed by 

mutant receptor only. 
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Figure 20. Summary of Wild-Type and E157D PPARγ Target Genes.  

Each segment of the Venn diagram represents the number of genes in that 

category after the fold-change cut-off. Representative enriched biological 

processes for each segment of the diagram are listed. Note, the numbers of 

genes in each section is slightly lower than the numbers listed in Table 3 because 

only the annotated genes were entered into the analysis of biological processes. 

 

To investigate the functional implications of the changes in transcriptional 

activity of the E157D PPARγ, we used the Genomatix software to identify biological 

processes that are enriched in the various gene categories with respect to the effect 

of the mutation. Surprisingly, the gain-of-function genes comprise an entirely 

functionally distinct set of genes than the wild-type PPARγ targets. Consistent with 

previous reports and known PPARγ physiology [19, 136-139], the wild-type PPARγ 

target genes fell into the expected categories of adipogenesis, lipid storage, 
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mitochondrial function and other categories (Table 4). On the other hand, the loss-

of-function genes were enriched for embryonic development, and specifically 

neurogenic and angiogenic developmental factors (Table 5). Importantly, the 

enrichment terms of the gain-of-function and the loss-of-function gene sets were 

completely non-overlapping. Such a striking segregation of gene ontology 

categories with respect to E157D PPARγ transcriptional activity implies that there is 

a significant functional meaning in the gain of function conferred by the mutation. 

 

Table 4. Enriched Biological Processes in the E157D PPARγ Loss-of-Function Gene 

Set.  

Metabolic categories are highlighted in blue. 

GO-Term GO-Term id P-value 
# Genes 

(observed) 
# Genes 

(expected) 
# Genes 

(total) List of observed genes 
cellular process GO:0009987 5.15E-13 76 40.098 11371 Hspd1, Rreb1, Cat, Ddit3, Egln3, Itgad, Col18a1, Adipoq, 

Nus1, Trib3, Gpcpd1, Aco2, Mfsd7a, Taldo1, S100a13, 

Atpaf2, Cebpg, etc. 
metabolic process GO:0008152 3.92E-14 61 25.055 7105 Hspd1, Rreb1, Pnpla8, Cat, Ddit3, Egln3, Cyb5r1, Adipoq, 

Trib3, Gpcpd1, Aco2, Taldo1, Cebpg, Dgat2, Tpsab1, Pdhb, 

Cycs, Tob1, etc. 
cellular metabolic 

process 
GO:0044237 1.23E-12 54 21.437 6079 Hspd1, Rreb1, Cat, Ddit3, Adipoq, Trib3, Gpcpd1, Aco2, 

Taldo1, Cebpg, Dgat2, Pdhb, Cycs, Tob1, Aldh1a7, Esrra, 

Agpat2, Cs, Ahcyl2, etc. 
primary metabolic 

process 
GO:0044238 2.08E-10 51 21.966 6229 Hspd1, Rreb1, Pnpla8, Cat, Ddit3, Cyb5r1, Adipoq, Trib3, 

Gpcpd1, Taldo1, Cebpg, Dgat2, Tpsab1, Pdhb, Tob1, 

Aldh1a7, Esrra, etc. 
small molecule 

metabolic process 
GO:0044281 1.54E-18 34 5.455 1547 Cat, Cyb5r1, Adipoq, Trib3, Gpcpd1, Aco2, Taldo1, Dgat2, 

Pdhb, Aldh1a7, Cs, Ahcyl2, Aldoa, Fads3, Pcx, Prkar2b, 

Fitm2, Acadvl, etc. 
biosynthetic process GO:0009058 1.35E-04 26 12.236 3470 Rreb1, Cat, Ddit3, Cyb5r1, Adipoq, Trib3, Cebpg, Dgat2, 

Pdhb, Tob1, Esrra, Agpat2, Fads3, Pcx, Fitm2, S100a1, 

Acadvl, Mrpl12, etc. 
cellular biosynthetic 

process 
GO:0044249 2.22E-04 25 11.891 3372 Rreb1, Cat, Ddit3, Adipoq, Trib3, Cebpg, Dgat2, Pdhb, 

Tob1, Esrra, Agpat2, Fads3, Pcx, Fitm2, S100a1, Acadvl, 
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Mrpl12, Agpat9, etc. 

lipid metabolic process GO:0006629 1.25E-16 24 2.648 751 Pnpla8, Cat, Cyb5r1, Adipoq, Trib3, Gpcpd1, Dgat2, 

Aldh1a7, Agpat2, Fads3, Pcx, Prkar2b, Fitm2, Acadvl, 

Acot2, Crat, Pnpla2, etc. 
response to stimulus GO:0050896 3.40E-05 23 9.250 2623 Hspd1, Cat, Ddit3, Egln3, Adipoq, Trib3, Cebpg, Cycs, 

Chac1, Mpp1, Cfd, Prkar2b, Acot2, Gadd45g, Aplp2, Itpr1, 

Acsl1, Vegfa, Acadm, etc. 
localization GO:0051179 5.53E-04 22 10.431 2958 Col18a1, Adipoq, Trib3, Mfsd7a, S100a13, Slc5a6, Tob1, 

Mpp1, Slc25a10, Fads3, Tfrc, Fitm2, Slc25a1, Crat, Pnpla2, 

Itpr1, Dgat1, etc. 
catabolic process GO:0009056 2.13E-11 21 3.417 969 Pnpla8, Cat, Adipoq, Trib3, Aco2, Taldo1, Pdhb, Cs, Aldoa, 

Rnf11, Acadvl, Acot2, Arl4a, Pnpla2, Por, Acsl1, Bckdhb, 

Cbr3, Lpl, Acadm, etc. 
cellular lipid metabolic 

process 
GO:0044255 2.19E-14 19 1.820 516 Cat, Adipoq, Trib3, Dgat2, Aldh1a7, Agpat2, Fads3, 

Prkar2b, Fitm2, Acadvl, Acot2, Crat, Pnpla2, Agpat9, Dgat1, 

Acsl1, Lpl, Acadm, etc. 
regulation of 

metabolic process 
GO:0019222 6.18E-03 19 10.290 2918 Rreb1, Cat, Ddit3, Adipoq, Trib3, Cebpg, Tob1, Esrra, 

Prkar2b, Fitm2, S100a1, Acadvl, Gadd45g, Aplp2, Pnpla2, 

Por, Vegfa, Acadm, etc. 
developmental 

process 
GO:0032502 7.90E-03 19 10.533 2987 Col18a1, Adipoq, Nus1, Trib3, S100a13, Cebpg, Tob1, 

Esrra, Fgfrl1, Prkar2b, Gadd45g, Aplp2, Arl4a, Itpr1, Dmkn, 

Pex11a, Vegfa, Lpl, etc. 
regulation of cellular 

metabolic process 
GO:0031323 7.19E-03 18 9.676 2744 Rreb1, Cat, Ddit3, Adipoq, Trib3, Cebpg, Tob1, Esrra, 

Prkar2b, Fitm2, S100a1, Acadvl, Gadd45g, Aplp2, Pnpla2, 

Vegfa, Acadm, Mknk2 
transport GO:0006810 7.87E-03 17 9.010 2555 Adipoq, Trib3, Mfsd7a, S100a13, Slc5a6, Tob1, Slc25a10, 

Fads3, Tfrc, Slc25a1, Crat, Itpr1, Dgat1, Acsl1, Pex16, Cyc1, 

Etfdh 
establishment of 

localization 
GO:0051234 8.45E-03 17 9.077 2574 Adipoq, Trib3, Mfsd7a, S100a13, Slc5a6, Tob1, Slc25a10, 

Fads3, Tfrc, Slc25a1, Crat, Itpr1, Dgat1, Acsl1, Pex16, Cyc1, 

Etfdh 
regulation of primary 

metabolic process 
GO:0080090 9.82E-03 17 9.221 2615 Rreb1, Cat, Ddit3, Adipoq, Trib3, Cebpg, Tob1, Esrra, 

Prkar2b, Fitm2, S100a1, Acadvl, Pnpla2, Por, Vegfa, 

Acadm, Mknk2 
cellular ketone 

metabolic process 
GO:0042180 1.32E-10 16 1.978 561 Adipoq, Trib3, Aco2, Pdhb, Aldh1a7, Cs, Fads3, Pcx, 

Prkar2b, Acadvl, Acot2, Crat, Acsl1, Bckdhb, Cbr3, Acadm 
cellular catabolic 

process 
GO:0044248 9.50E-09 16 2.666 756 Cat, Adipoq, Trib3, Aco2, Cs, Rnf11, Acadvl, Acot2, Arl4a, 

Pnpla2, Por, Acsl1, Bckdhb, Cbr3, Lpl, Acadm 
response to chemical 

stimulus 
GO:0042221 1.60E-06 16 3.897 1105 Hspd1, Cat, Ddit3, Egln3, Adipoq, Trib3, Cycs, Chac1, 

Mpp1, Acot2, Itpr1, Acsl1, Vegfa, Cyc1, Etfdh, Mgst1 
oxoacid metabolic GO:0043436 9.00E-10 15 1.929 547 Adipoq, Trib3, Aco2, Pdhb, Aldh1a7, Cs, Fads3, Pcx, 
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process Prkar2b, Acadvl, Acot2, Crat, Acsl1, Bckdhb, Acadm 
carboxylic acid 

metabolic process 
GO:0019752 9.00E-10 15 1.929 547 Adipoq, Trib3, Aco2, Pdhb, Aldh1a7, Cs, Fads3, Pcx, 

Prkar2b, Acadvl, Acot2, Crat, Acsl1, Bckdhb, Acadm 
organic acid metabolic 

process 
GO:0006082 9.23E-10 15 1.932 548 Adipoq, Trib3, Aco2, Pdhb, Aldh1a7, Cs, Fads3, Pcx, 

Prkar2b, Acadvl, Acot2, Crat, Acsl1, Bckdhb, Acadm 
positive regulation of 

biological process 
GO:0048518 2.06E-03 15 6.517 1848 Hspd1, Cat, Ddit3, Col18a1, Adipoq, Trib3, S100a13, 

Cebpg, Cycs, Esrra, Cfd, Fitm2, Pnpla2, Vegfa, Lpl 
cellular developmental 

process 
GO:0048869 2.50E-03 15 6.651 1886 Col18a1, Adipoq, Nus1, Trib3, S100a13, Cebpg, Tob1, 

Esrra, Gadd45g, Arl4a, Dmkn, Pex11a, Vegfa, Lpl, Acadm 
cellular component 

organization 
GO:0016043 8.67E-03 15 7.617 2160 Col18a1, Adipoq, S100a13, Atpaf2, Cebpg, Aldh1a7, Tfrc, 

Fitm2, Pex19, Aplp2, Hist1h2bh, Pex11a, Hist1h2bk, Pex16, 

Acadm 
alcohol metabolic 

process 
GO:0006066 2.10E-10 14 1.449 411 Cat, Cyb5r1, Adipoq, Gpcpd1, Taldo1, Dgat2, Pdhb, Aldoa, 

Pcx, Acadvl, Pgm2, Por, Pmm1, Acadm 
oxidation reduction GO:0055114 4.88E-08 14 2.225 631 Cat, Egln3, Cyb5r1, Pdhb, Cycs, Aldh1a7, Fads3, Acadvl, 

Por, Bckdhb, Cbr3, Acadm, Cyc1, Etfdh 
response to stress GO:0006950 2.63E-04 14 4.736 1343 Hspd1, Cat, Ddit3, Egln3, Cebpg, Cycs, Chac1, Cfd, Acot2, 

Itpr1, Vegfa, Acadm, Etfdh, Mknk2 
cell differentiation GO:0030154 4.38E-03 14 6.365 1805 Col18a1, Adipoq, Nus1, Trib3, Cebpg, Tob1, Esrra, 

Gadd45g, Arl4a, Dmkn, Pex11a, Vegfa, Lpl, Acadm 
regulation of biological 

quality 
GO:0065008 1.91E-03 13 5.163 1464 Ddit3, Adipoq, S100a13, Cebpg, Aldh1a7, Tfrc, Fitm2, 

Acadvl, Aplp2, Pnpla2, Itpr1, Dgat1, Vegfa 
positive regulation of 

cellular process 
GO:0048522 5.25E-03 13 5.811 1648 Hspd1, Cat, Ddit3, Col18a1, Adipoq, Trib3, S100a13, 

Cebpg, Cycs, Esrra, Pnpla2, Vegfa, Lpl 
monocarboxylic acid 

metabolic process 
GO:0032787 1.81E-09 12 1.146 325 Adipoq, Trib3, Pdhb, Aldh1a7, Fads3, Pcx, Prkar2b, Acadvl, 

Acot2, Crat, Acsl1, Acadm 
lipid biosynthetic 

process 
GO:0008610 2.18E-08 11 1.146 325 Cyb5r1, Trib3, Dgat2, Agpat2, Fads3, Pcx, Fitm2, Acadvl, 

Agpat9, Dgat1, Lpl 
cellular carbohydrate 

metabolic process 
GO:0044262 4.52E-08 11 1.231 349 Adipoq, Gpcpd1, Taldo1, Dgat2, Pdhb, Cs, Aldoa, Pcx, 

Pgm2, Pmm1, Acadm 
carbohydrate 

metabolic process 
GO:0005975 6.80E-07 11 1.615 458 Adipoq, Gpcpd1, Taldo1, Dgat2, Pdhb, Cs, Aldoa, Pcx, 

Pgm2, Pmm1, Acadm 
generation of 

precursor metabolites 

and energy 

GO:0006091 4.11E-08 10 0.949 269 Cat, Aco2, Pdhb, Cycs, Cs, Aldoa, Fads3, Acadm, Cyc1, 

Etfdh 

small molecule 

catabolic process 
GO:0044282 5.22E-06 10 1.615 458 Adipoq, Taldo1, Pdhb, Aldoa, Acadvl, Acot2, Arl4a, Bckdhb, 

Cbr3, Acadm 
apoptosis GO:0006915 1.91E-03 10 3.343 948 Hspd1, Ddit3, Egln3, Col18a1, Trib3, Cebpg, Cycs, Chac1, 

Gadd45g, Vegfa 
programmed cell 

death 
GO:0012501 2.10E-03 10 3.385 960 Hspd1, Ddit3, Egln3, Col18a1, Trib3, Cebpg, Cycs, Chac1, 

Gadd45g, Vegfa 
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cell death GO:0008219 2.92E-03 10 3.544 1005 Hspd1, Ddit3, Egln3, Col18a1, Trib3, Cebpg, Cycs, Chac1, 

Gadd45g, Vegfa 
death GO:0016265 3.09E-03 10 3.572 1013 Hspd1, Ddit3, Egln3, Col18a1, Trib3, Cebpg, Cycs, Chac1, 

Gadd45g, Vegfa 
 

 

Table 5. Enriched Biological Processes in the E157D PPARγ Gain-of-Function Gene 

Set.  

Developmental categories are highlighted in green; vasculogenesis in red. 

GO-Term GO-Term ID P-value 
# Genes 

(observed) 
# Genes 

(expected) 
# Genes 

(total) List of observed genes 
cellular process GO:0009987 1.01E-04 14 6.3 11371 Cck, Irx5, Kank3, Vav3, Acsbg1, Hvcn1, 

Sema5a, Mtap2, Sncg, Klf5, Ramp2, 

Sepp1, Dpt, Net1 
regulation of cellular process GO:0050794 9.10E-06 12 3.5 6345 Cck, Irx5, Kank3, Vav3, Hvcn1, Sema5a, 

Mtap2, Sncg, Klf5, Ramp2, Dpt, Net1 
regulation of biological process GO:0050789 1.53E-05 12 3.7 6654 Cck, Irx5, Kank3, Vav3, Hvcn1, Sema5a, 

Mtap2, Sncg, Klf5, Ramp2, Dpt, Net1 
biological regulation GO:0065007 3.05E-05 12 3.9 7087 Cck, Irx5, Kank3, Vav3, Hvcn1, Sema5a, 

Mtap2, Sncg, Klf5, Ramp2, Dpt, Net1 
multicellular organismal process GO:0032501 2.01E-03 8 2.6 4775 Cck, Irx5, Vav3, Sema5a, Mtap2, Sncg, 

Klf5, Sepp1 
cellular component organization GO:0016043 8.03E-05 7 1.2 2160 Cck, Kank3, Vav3, Sema5a, Mtap2, Klf5, 

Dpt 
system development GO:0048731 1.09E-04 7 1.3 2267 Cck, Irx5, Vav3, Sema5a, Mtap2, Klf5, 

Sepp1 
anatomical structure development GO:0048856 1.68E-04 7 1.3 2426 Cck, Irx5, Vav3, Sema5a, Mtap2, Klf5, 

Sepp1 
multicellular organismal 

development 
GO:0007275 3.66E-04 7 1.5 2749 Cck, Irx5, Vav3, Sema5a, Mtap2, Klf5, 

Sepp1 
developmental process GO:0032502 6.11E-04 7 1.7 2987 Cck, Irx5, Vav3, Sema5a, Mtap2, Klf5, 

Sepp1 
response to stimulus GO:0050896 1.99E-03 6 1.5 2623 Cck, Irx5, Acsbg1, Hvcn1, Sncg, Sepp1 
cell projection organization GO:0030030 4.87E-06 5 0.3 485 Cck, Vav3, Sema5a, Mtap2, Klf5 
nervous system development GO:0007399 1.65E-04 5 0.6 1013 Cck, Irx5, Sema5a, Mtap2, Sepp1 
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anatomical structure morphogenesis GO:0009653 4.99E-04 5 0.7 1286 Cck, Irx5, Vav3, Sema5a, Klf5 
organ development GO:0048513 2.19E-03 5 1.0 1786 Irx5, Vav3, Sema5a, Klf5, Sepp1 
neuron development GO:0048666 8.54E-05 4 0.2 443 Cck, Irx5, Sema5a, Mtap2 
neuron differentiation GO:0030182 2.34E-04 4 0.3 576 Cck, Irx5, Sema5a, Mtap2 
generation of neurons GO:0048699 3.41E-04 4 0.4 636 Cck, Irx5, Sema5a, Mtap2 
cellular component assembly GO:0022607 3.56E-04 4 0.4 643 Cck, Kank3, Vav3, Klf5 
neurogenesis GO:0022008 4.33E-04 4 0.4 677 Cck, Irx5, Sema5a, Mtap2 
cellular component biogenesis GO:0044085 6.11E-04 4 0.4 742 Cck, Kank3, Vav3, Klf5 
cell development GO:0048468 1.10E-03 4 0.5 868 Cck, Irx5, Sema5a, Mtap2 
organelle organization GO:0006996 2.73E-03 4 0.6 1112 Cck, Kank3, Vav3, Mtap2 
negative regulation of biological 

process 
GO:0048519 9.91E-03 4 0.9 1599 Cck, Kank3, Mtap2, Dpt 

angiogenesis GO:0001525 1.58E-04 3 0.1 195 Vav3, Sema5a, Klf5 
blood vessel morphogenesis GO:0048514 3.77E-04 3 0.1 262 Vav3, Sema5a, Klf5 
blood vessel development GO:0001568 5.98E-04 3 0.2 307 Vav3, Sema5a, Klf5 
vasculature development GO:0001944 6.39E-04 3 0.2 314 Vav3, Sema5a, Klf5 
regulation of system process GO:0044057 7.00E-04 3 0.2 324 Cck, Irx5, Sncg 
neuron projection development GO:0031175 1.00E-03 3 0.2 367 Cck, Sema5a, Mtap2 
regulation of cellular component 

organization 
GO:0051128 1.61E-03 3 0.2 433 Cck, Kank3, Mtap2 

anatomical structure formation 

involved in morphogenesis 
GO:0048646 1.81E-03 3 0.2 451 Vav3, Sema5a, Klf5 

behavior GO:0007610 2.22E-03 3 0.3 484 Cck, Sncg, Sepp1 
cellular component movement GO:0006928 2.69E-03 3 0.3 518 Cck, Vav3, Sema5a 
 

Our gene expression profiling experiments revealed that PPARγ is highly 

transcriptionally active in the lentiviral expression system in NIH3T3 fibroblasts, 

and that it regulates genes that have previously been identified as its 

transcriptional targets. These genes are functionally involved in known PPARγ-

regulated pathways including adipogenesis, lipid and carbohydrate metabolism, 

mitochondrial function and cell proliferation/cell death. The number of genes 

induced by rosiglitazone was also consistent with previous studies done in the 
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NIH3T3 and the adipocyte 3T3-L1 cell lines. In addition, no unexpected biological 

processes were enriched among the genes upregulated by PPARγ in these cells, 

confirming that the lentivirus-transduced NIH3T3 cell line is a robust cell culture 

model for studying PPARγ transcriptional activity.  

By contrast, the E157D PPARγ regulated a much smaller number of genes 

than the wild-type, even though the protein was equally abundant in the nucleus. 

This loss of transcriptional function on PPARγ target genes that are required for 

adipogenesis and metabolic homeostasis is the most likely cause of lipodystrophy 

and diabetes in the E157D cohort. These findings contradict our original hypothesis 

that the E157D mutation disrupts PPARγ transcriptional activity on a small subset of 

its target genes, on which we would then focus as potential new candidate genes of 

interest in diabetes pathogenesis. Instead, the mutation has a broad deleterious 

effect on the vast majority of PPARγ target genes, presumably resulting in reduced 

expression of genes regulating energy homeostasis and leading to metabolic 

disease.  

From the clinical perspective of diabetes, this result is not new or surprising - 

the metabolic endpoints in the case of lipodystrophy caused by the E157D PPARγ 

mutant are pathophysiologically similar to previously reported cases. The major 

value of our findings is the discovery that a DNA-binding domain mutation can 

severely reduce the transcriptional function of a nuclear receptor independently of 

its ability to bind DNA. A similar mechanism of action of a nuclear receptor mutant 

has never been described before, and these findings challenge the currently 

accepted model of nuclear receptor domains as structurally and functionally 

independent entities. In addition, the induction of non-PPARγ target genes by the 
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E157D mutant raises the intriguing possibility that this gain-of-function activity is 

causing the atypical clinical presentation in this mutant PPARγ cohort compared 

with previously reported type III lipodystrophy cases. 
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8 CHARACTERIZATION OF NOVEL PPRES NEAR E157D 

PPARγ GAIN-OF-FUNCTION GENES 

8.1 Loss-Of-Function And Gain-Of-Function Promoters Contain 

Similar Numbers And Types Of PPREs. 

In order to better understand the mechanisms underlying target gene 

misregulation by E157D PPARγ, we sought to determine whether the mutant 

receptor activates the “gain-of-function” genes from typical PPREs. We have already 

established that the mutation does not affect the affinity of PPARγ for typical PPREs 

in our gel shift assays. But it is possible that this DNA-binding domain mutation 

could allow PPARγ to regulate the “gain-of-function” genes from non-DR1 DNA 

sites. If so, the “gain-of-function” set of genes would be expected to contain fewer 

DR1 PPREs than the “loss-of-function” set.  

To answer this question, we identified putative PPREs in the promoter of 

genes from the gain-of-function and the loss-of-function sets using MatInspector. 

74% of the gain-of-function promoters and 68% of the loss-of-function promoters 

contained DNA sequences matching the PPRE matrices defined by previous ChIP-

on-chip and ChIP-seq studies (Figure 20 A, [19, 20]). Fisher’s exact test generated 

a p value of 0.2 for the comparison, indicating that the two sets of promoters are 

not different with regard to putative PPRE content. 

To compare the PPREs from the gain-of-function promoters to the PPREs 

from the loss-of-function promoters, we loaded the putative PPRE sequences 

identified by MatInspector into the MatDefine function of Genomatix. Position-

weight matrices for the two sets of PPREs were similar, indicating that there is no 

readily apparent inherent difference between the sequences of the PPREs in these 
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two sets of genes (Figure 20 B). These findings are consistent with our previous 

observations that the E157D PPARγ mutation does not alter the binding site 

sequence selectivity of the receptor. Rather, it binds the same types of PPREs as 

the wild-type, but has vastly different transcriptional activity, possibly through a 

disruption in the way the protein interacts with the DNA once it is bound to the 

promoter. 

 

 

Figure 21. Putative PPREs Identified in the Promoters of Gain-of-Function and 

Loss-of-Function Genes.  

A, MatInspector position-weight matrices identified in 3T3-L1 adipocytes by ChIP-

on-chip and ChIP-seq studies were used to identify PPREs in the promoters of 

genes. B, MatDefine position-weight matrices of the PPREs identified in the gain-

of-function (GF) and loss-of-function (LF) gene promoters. 
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8.2 E157D PPARγ Has Increased Affinity for Weak PPREs in 

Gain-Of-Function Gene Regulatory Regions. 

In order to characterize the dynamics of the wild-type and E157D PPARγ on 

gain-of-function gene promoters, we selected two of the putative PPREs identified in 

this set of promoter for in-vitro studies of DNA binding and transcription induction. 

Recent ChIP-seq studies have shown that PPARγ binding sites occur at many points 

along its target genes, as well as at extended distances from their promoters and 3’ 

UTRs [21]. We therefore scanned genomic sequences from -10000 of the 

transcription start site to 10000 downstream of the transcription termination of 

each gene for putative PPREs using RVista 2.0. This highly permissive scan 

identifies any sequence that resembles the V$PPARG.02 and V$PPARG.03 matrices, 

defined above, and resulted in as many as a hundred putative PPREs per gene 

entry. Reasoning that functionally important PPREs are likely to be conserved 

across species, we eliminated the majority of the putative PPRE sequences from the 

mouse genome because they were not conserved and aligned in the human. Finally, 

we selected the PPREs from two genes whose products are involved in neuron 

development, one of the gene ontology categories that were enriched in the gain-

of-function set of genes: synuclein gamma (Sncg) and microtubule associated 

protein 2 (Mtap2). 

As shown in Figure 21 A, the SNCG PPRE is located approximately five 

thousand base pairs upstream of the transcription start site of the gene, in the 

intron of a neighboring gene, and is highly conserved between the human and 

mouse. Notably, previous ChIP-seq studies have demonstrated PPARγ binding to 

the chromatin region containing the SNCG PPRE in mouse adipocytes [20, 140]. 
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The MTAP2 PPRE is located within the first translated exon of the gene. This PPRE 

was identified by MatInspector and matched both the V$PPARG.02 and V$PPARG.03 

matrices (core sequences indicated in Figure 21 B), and also is highly conserved. 

Upregulation of Sncg and Mtap2 by rosiglitazone in NPγ2 E157D cells was confirmed 

by qPCR (Figure 21 A and B). Basal expression of Sncg was increased nearly three-

fold in NPγ2 E157D cells compared with WT, and further induced approximately six-

fold by rosiglitazone treatment. Mtap2 was expressed at similar levels in the wild-

type and E157D NPγ2 cells, but was upregulated to almost three times higher level 

by rosiglitazone in the mutant cell line. Both genes were not regulated by 

rosiglitazone in the wild-type cell line, confirming their status as gain-of-function 

genes for the E157D PPARγ.  
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Figure 22. Putative PPREs in Gain-of-Function Promoters.  

Genomic locations of putative PPREs near (A) Sncg and (B) Mtap2 genes are 

shown. Gene expression in NPγ2WT and E157D (MUT) cell lines was confirmed by 

qPCR. The core DR1 PPRE sequence is shown in bold-face in the mouse-human 

alignments. 
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To assess the novel putative PPREs for PPARγ binding, we used biotinylated 

oligonucleotides containing each PPRE and flanking nucleotides (SNCG: 

TGGAGGAAACC AAAGCAAAGGTTA GGAATTTT; MTAP2: TTGGGGAGCAC 

AGGTCACAGGGCA CCTATTCA) in a gel shift assay with nuclear extracts from 

NIH3T3 cells transfected with either wild-type or E157D PPARγ2. Equal expression 

of the wild-type and mutant PPARγ used in these assays was confirmed on a 

Western blot (Figure 22 C). Shown in Figure 22 A, both the wild-type and mutant 

proteins shifted the SNCG probe band, indicating PPRE binding, but the E157D 

PPARγ bound more probe than the wild-type PPARγ. The specificity of binding was 

confirmed by competition with a 200-fold excess of unfolded probe, which 

abrogated the shifted band, and with a flag antibody, which resulted in a super-

shifted band. The MTAP2 PPRE was also shifted by both wild-type and E157D 

PPARγ, with a higher intensity shifted band produced by the mutant than the wild-

type, and with a high specificity demonstrated by cold probe competitor and 

supershift (Figure 22 B). These data suggest that both the SNCG and the MTAP2 

PPREs discovered by our bioinformatic approach are bona-fide PPARγ binding 

elements that may have a higher affinity for the E157D PPARγ than the wild-type. 

To rule out the possibility that stronger PPRE binding by the mutant receptor 

is due to an artifact of nuclear extract collection, we compared the shifted bands 

produced by the SNCG and MTAP2 PPREs to the consensus PPRE (AATGGTGGGC 

AAAACT AGGTCA A AGGTCA TGAGGTGGA) and the ADN PPRE (CAGCAACA 

GAAGAT GGGGCA A AAGTCA AAACCACAGCAGGA) as controls. Shows in Figure 

22 d, E157D PPARγ bound the consensus and ADN probes equally well as the wild-

type receptor, consistent with our previous experiments. By contrast, the mutant 
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produced a much stronger intensity shifted band with the SNCG and MTAP2 probes 

than the wild-type, confirming that these may be naturally weak PPREs and that the 

E157D mutation allows PPARγ to binds them with increased affinity. 

 

 

Figure 23. Gel-Shift Assays of PPARγ Binding to Novel PPREs.  

Nuclear extracts from CHO cells transfected with the indicated plasmids were 

incubated in binding reactions with (A) SNCG or (B) MTAP2 PPREs. C, Equal 

expression of wild-type and E157D PPARγ was confirmed on a western blot. D, 

Gel-shift was done as in A and B with the indicated PPREs as probes. 

 

We assessed the ability of the SNCG and MTAP2 PPREs to drive transcription 

of a luciferase reporter gene in a reporter plasmid construct similar to the ones we 
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used previously to study well characterized PPREs. Shown in Figure 23, the ARE6 

PPRE was transcriptionally active in the presence of the wild-type and less so with 

the mutant PPARγ, confirming the validity of the assay. However, neither of the 

newly identified PPREs alone was able to induce transcription in the context of the 

heterologous promoter, either through the wild-type or E157D PPARγ. There was a 

slight suppression of reporter transcription by both the wild-type and mutant 

receptors from the SNCG PPRE, and the mutant, but not the wild-type PPARγ 

suppressed transcription from the MTAP2 PPRE. These minor reductions in 

transcription could be due to a nonspecific effect of PPARγ presence in the nucleus, 

such as driving coregulators of transcription away from the reporter gene, rather 

than a PPRE-dependent suppression of transcription. The results of these 

transcription reporter studies indicate that the SNCG and MTAP2 PPREs are 

transcriptionally inactive in the context of a heterologous promoter. However, this 

does not rule out the possibility that E157D PPARγ is transcriptionally active on 

these PPREs in vivo, as endogenous promoters may contain additional transcription 

factor binding sites and other regulatory elements that enhance PPARγ 

transcriptional activity.  
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Figure 24. SNCG and MTAP2 PPREs Are Not Transcriptionally Active in 

Heterologous Promoters.  

NIH3T3 cells were transfected with luciferase reporter plasmids containing the 

indicated PPRE, and the wild-type or E157D PPARγ expression plasmid, or the 

empty vector. Means and standard errors of three independent experiments are 

shown. *, p<0.05 determined by two-way ANOVA with post-hoc Bonferroni tests. 
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9 E157D ENHANCES PPARγ INTERACTION WITH 

TRANSCRIPTION COREPRESSORS 

9.1 Existing Evidence of DNA as an Allosteric Regulator of 

Nuclear Receptors. 

Our findings so far have outlined a novel mechanism by which the E157D 

PPARγ mutation causes lipodystrophy and metabolic syndrome. We have shown 

that this conservative DNA-binding domain mutation, which directly contacts the 

PPRE, does not affect the affinity of PPARγ for typical PPRE sites, but reduces its 

ability to activate transcription of the majority of its target genes in a non-dominant 

negative manner. The disruption must involve a step in the transcriptional 

activation process that occurs after DNA binding. The major role of PPARγ in this 

process, once it is bound to the PPRE, is to recruit transcription coregulators to the 

DNA, which results in chromatin remodeling and regulation of transcription initiation 

complex assembly. We therefore proposed a new working hypothesis that the 

E157D mutation alters the interaction of PPARγ with transcription coactivators 

and/or corepressors, leading to reduced transcription of its target genes.  

The novelty of such a mechanism lies in its implication of a functional 

interaction between the DNA binding and ligand binding/activation domains of the 

nuclear receptor. These two domains, located on opposite ends of the receptor 

molecule, have previously been thought to be completely independent of each other 

by way of the flexible hinge domain separating them. However, recent x-ray 

crystallography and nuclear magnetic resonance studies of nuclear receptor 

structure have challenged this view, showing that the glucocorticoid receptor and 

the retinoid X receptor assume a slightly different conformation when bound to 
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their respective DNA site than when free in solution [141, 142]. This new structural 

evidence suggests that the DNA molecule can be considered an allosteric regulator 

of nuclear receptor structure, affecting not just the DNA binding domain but 

inducing structural shifts in the entire protein. Moreover, the x-ray studies of the 

glucocorticoid receptor demonstrate that the DNA-bound receptor structural shifts 

are specific to the DNA sequence to which the receptor is bound, indicating that the 

interaction between the DNA and the receptor is informed by the specific sequence 

of the binding site. In turn, we have shown that different PPRE sequences influence 

the behavior of E157D PPARγ in different ways, ranging from extremely to mildly 

defective, to overactive. Given the position of glutamate 157, we predict that this 

variability can be explained by the specificity of its spatial position within each PPRE 

sequence and the effect of that interaction on the structure of the entire receptor. 

Finally, the glucocorticoid receptor studies also showed that the subtle structural 

changes in the receptor on different DNA binding sequences were functionally 

significant, manifested in recruitment of unique transcription coregulator 

complexes. This supports our working hypothesis of distinct transcription 

coregulator complexes recruited by the E157D PPARγ, influenced both by the 

receptor mutation and by the PPRE sequence to which it is bound, and resulting in 

changes in its transcriptional activity. 

 

9.2 Nuclear Receptor Corepressors Suppress E157D PPARγ 

Activity More Than Wild-Type. 

In order to assess the interaction of E157D PPARγ with transcription 

coregulators, we measured the transcriptional activity of the wild-type and mutant 
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receptors using the luciferase reporter assay in the presence of increasing amounts 

of various coregulators. Shown in Figure 24 (left panel), the transcriptional activity 

of the wild-type PPARγ on the aP2 promoter was suppressed in the presence of 

increasing amounts of SMRT until it reached a plateau of approximately 70% of its 

basal activity level. E157D PPARγ was also suppressed by SMRT, and its plateau 

level was significantly lower than that of the wild-type, at approximately 40% of 

maximal transcription. As expected, SMRT did not suppress the activity of wild-type 

or mutant PPARγ in the presence of saturating levels of rosiglitazone (data not 

shown). Similarly, increased amounts of NCoR1 reduced the basal but not the 

rosiglitazone-stimulated transcriptional activity of PPARγ (Figure 24, right panel). 

As with SMRT, there was a significant difference between the maximal suppression 

level of the wild-type and E157D PPARγ transcriptional activity on the aP2 

promoter, with the mutant receptor activity being suppressed more effectively by 

the corepressor. Increased variability in this experiment resulted in loss of 

statistical significance at the maximal suppression level, but the difference between 

the suppression curves for the wild-type and mutant PPARγ is significant.  
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Figure 25. Suppression of Wild-Type and E157D PPARγ Transcriptional Activity by 

nuclear receptor corepressors.   

NIH3T3 cells were transfected with the wild-type (circles) or E157D (squares) 

PPARγ, increasing amounts of the indicated corepressor protein, and the aP2 

luciferase reporter plasmid. Insets show suppression curves for, and bar graphs 

represent maximal suppression by each corepressor. Data are means and 

standard errors of three independent experiments. *, p<0.05 determined by two-

way ANOVA. 

 

These data suggest that the E157D mutation generally renders PPARγ more 

vulnerable to suppression by transcription corepressors. In the context of our 

alternative model of nuclear receptor activity, the mutant receptor interaction with 

certain PPRE sequences may result in structural rearrangements which make the 

corepressor binding surfaces of the mutant more exposed than the wild-type 

receptor. Interestingly, in the presence of saturating concentration of rosiglitazone 

and large amounts of NCoR1, E157D PPARγ failed to increase transcription to the 

same extent as the wild-type (data not shown). The increase in PPARγ 

transcriptional activity in this environment is most likely due to increased 

availability of transcription coactivators as a result of wide-spread suppression of 

gene transcription in the cell. Reduced activity of the mutant in these experiments 

indirectly implies that the mutant PPARγ interacts less effectively with the 

transcription coactivators that become increasingly available when transcription in 

the cell is non-specifically suppressed by NCoR1. Thus, even though we have not 

identified a coactivator that directly enhances PPARγ transcriptional activity in our 

transfected system, there is indirect evidence that the E157D mutation reduces the 
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ability of PPARγ to effectively interact with transcription coactivators when bound to 

certain PPRE sequences. Overall, these results support our proposed model in which 

the DNA binding site allosterically and specifically regulates PPARγ transcriptional 

activity by altering its coregulator interaction surface structure, and this effect is 

disrupted by the E157D mutation.  
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10  DISCUSSION 

10.1 Molecular Characterization of E157D PPARγ. 

We have characterized the molecular mechanisms of action of a novel PPARγ 

mutant, E157D, which causes lipodystrophy and severe insulin-resistant diabetes in 

a human cohort. This mutation, located at the interface of PPARγ and the DNA 

molecule, works through a previously unreported mechanism in which DNA binding 

is mostly unaffected, yet activation of target gene transcription is severely impeded 

on the majority of PPARγ-regulated promoters.  

The mutant PPARγ demonstrated a small, but consistent increase in DNA 

binding affinity in our gel-shift dose-response assays (Figure 14). Because the 

mutated residue is shorter than the wild-type, and protrudes directly into the major 

groove, it is possible that helix 1 of the mutant receptor inserts itself deeper into 

the major groove of the PPRE. Such a change may be proposed to result in a more 

favorable binding state due to replacement of more water molecules, a major 

driving force in protein-DNA interactions [143]. But we have clearly shown a lack of 

any dominant negative effect in transcription assays (Figure 11), so it is unlikely 

that this slightly increased DNA binding affinity results in blocking the PPRE through 

reduced promoter recycling. This difference is more likely to be negligible or very 

small. 

Not all PPARγ target transcripts are equally affected by this mutation, and 

the changes in transcriptional activity include a gain of function on some genes that 

are not regulated by the wild-type PPARγ, while a small number of PPARγ-regulated 

transcripts remain unaffected by the E157D mutation. There are multiple factors 

besides the PPRE sequence that determine PPARγ transcriptional activity on a given 
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DNA site. Cell type, endogenous versus overexpressed promoters, native versus 

heterologous constructs are all important variables that affect transcriptional 

readouts. By reducing the varied DNA binding site to just the PPRE sequence, we 

demonstrated that the E157D mutation affects PPARγ transcriptional activity by 

disrupting a regulatory function that is intrinsic to the sequence of the PPRE. 

Expanding the region to include whole promoters and endogenous chromatin, we 

showed that other DNA-associated factors play a role in the effect the mutation has 

on the receptor function. Finally, taking the whole-genome approach allowed us to 

identify networks of genes that are misregulated by the mutant. 

The results of our transcription reporter assays should not be generalized to 

other tissues and molecular contexts: the exact set of genes that is misregulated by 

E157D PPARγ in NIH3T3 cells is not expected be also similarly affected in human 

tissues. In fact, even in our transiently-transfected model system, the effect of the 

mutation was completely reversed on a full-promoter aP2 reporter construct 

compared with the isolated PPRE from the aP2 gene (Figure 9). Rather than directly 

translating our findings into the clinical scenario, they should be considered a 

general proof of concept that the E157D PPARγ mutation alters the way it interacts 

with DNA binding sites and results in various transcriptional changes. The “gain of 

function” genes in our transgenic cells likely share a common feature that allows 

the mutant receptor to bind and induce transcription more effectively than the wild-

type, and the same is likely to be true in the human tissues, but the precise set of 

these transcripts may be different. Overall, our findings underscore the importance 

of glutamate 157, and likely the p-box in general, in the interaction with the DNA 

binding site, beyond simply acting as an anchor for PPARγ. 
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10.2 Comparisons with Other Known P-Box Mutants. 

Overall, it is clear that not all amino acids in the p-box of nuclear receptors 

play an equal role in the receptor function. The two cysteines participate in 

coordinating the zinc atom and required for the correct folding of the zinc finger 

structure, and are therefore necessary for DNA binding. This is evidenced by 

numerous reports of naturally-occurring or site-directed cysteine mutations which 

abolish DNA binding, resulting in complete loss of function of the receptor [62, 144-

147]. However, the other four amino acids in the p-box have a more subtle role and 

are known to be important for DNA binding site discrimination. For instance, 

replacing just two amino acids in the p-box of the thyroid hormone receptor to 

make it identical to the glucocorticoid receptor p-box sequence completely redirects 

the DNA binding site preference of the receptor, abolishing thyroid hormone 

response element binding and rendering the mutant receptor able to bind and 

activate glucocorticoid response elements [148].  

E157D is the first reported naturally-occurring p-box mutation in PPARγ, but 

other nuclear receptors in which similar mutations have been reported include 

steroidogenic factor 1 (SF-1) and photoreceptor-specific orphan nuclear receptor 

NR2E3 (Table 6). The latter involves an in-frame deletion of three p-box amino 

acids including a zinc coordinating cysteine, resulting in disruption of the zinc finger 

structure. DNA binding is abolished by this p.N65_C67del NR2E3 mutation, causing 

a rare retinal disorder in humans called autosomal-recessive enhanced S-cone 

syndrome. Two SF-1 p-box mutants have been reported in the human population: 

C33S and G35E. The former one disrupts the zinc coordination lattice, similarly to 

p.N65_C67del in NR2E3 and C190S in PPARγ [62, 149], resulting in complete loss 
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of DNA binding and transcriptional activity. This mutation causes 46, XY partial 

gonadal dysgenesis and underandrogenization [150].  

The G35E mutation, however, preserves the zinc-finger folding of the DNA 

binding domain, and disrupts its binding to most SF-1 response elements, while still 

maintaining the ability to bind a certain subset of the DNA sequences [151, 152]. 

Glycine 35 of SF-1 is equivalent to glycine 161 of PPARγ, located on the same 

aspect of the a-helix as glutamate 157, and facing the major groove of the DNA 

molecule. The variability in SF-1 binding to target DNA sites when this glycine is 

mutated to a glutamate reflects the importance of various DNA sequences in the 

way the receptors interacts with the DNA. Binding to non-SF-1 response elements 

was not investigated, but is an intriguing possibility given that this mutant is 

transcriptionally active on a subset of its target sites. Furthermore, 46XY humans 

heterozygous for G35E SF-1 have the added clinical feature of adrenal failure, in 

addition to the sex-reversal caused by the complete loss-of-function SF-1 C33S 

mutant. If the G35E mutation causes SF-1 to recognize and non-SF-1 target sites 

and regulate transcription of a different gene network, the adrenal failure could be 

a result of this added activity. This hypothesis parallels our own model in which 

E157D, a non-cysteine p-box mutation interfacing with the DNA major groove, 

gains transcriptional activity on weak PPREs and leads to non-classical 

lipodystrophy features in the human cohort.  

A chance discovery lead to the identification of the D69A mutation in the 

HNF4 gene in multiple sources of the human hepatoma HepG2 cell line [153]. 

Although not found in a human population, this mutant is of particular interest to us 

as it involves the amino acid that is the equivalent of glutamate 157 in PPARγ. Even 
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though aspartate 69 is a highly conserved residue in the HNF4 gene, replacing it 

with an alanine has only a mild effect on its transcriptional activity on known HNF4-

regulated promoters. Specifically, the D69A HNF4 mutant retains full transcriptional 

activity in reporter assays from a classic HNF4 target promoter, and showed an 

increased activity on several other promoters. DNA binding site discrimination by 

this mutant was not investigated in more detail.  

 

Table 6. Naturally-Occurring Nuclear Receptor P-Box Mutations Reported to Date. 

 

 

These studies, together with the ones discussed in the background section, 

have shaped our understanding of the way nuclear receptors discriminate between 

DNA sequences and the specific roles of p-box amino acids in this process. Although 

limited in number and mechanistic scope, studies of nuclear receptor p-box mutants 

are testaments to the complexity and subtlety of receptor-DNA interaction. Our 

Nuclear 

receptor 

mutation P-box change Clinical presentation 

Molecular 

mechanism Ref. 

SF-1 G35E wt:   CESCKG 

mut: CESCKE 

Adrenal failure and complete 

46XY sex-reversal 

Impaired DNA 

binding 

[151, 

152] 

SF-1 C33S wt:   CESCKG 

mut: CESSKG 

46XY partial gonadal 

dysgenesis and 

underandrogenization 

No DNA binding [150] 

NR2E3 

p.N65_C67del 

wt:   CNGCSG 

mut: C___SG 

Autosomal-recessive 

enhanced S-cone syndrome 

No DNA binding [149] 

HNF4 D69A wt:   CDGCKG 

mut: CAGCKG 

HepG2 cell line mutant Increased activity on 

select promoters 

[153] 
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studies of the E157D PPARγ mutant reveal a deeper importance of the p-box in 

mediating fine-tuned transcriptional activity changes on various PPRE sequences.  

 

10.3 DNA Binding Site as an Allosteric Regulator of Nuclear 

Receptor Activity. 

Since the domain structure of nuclear receptors has been described, the DNA 

binding domain has been traditionally understood as an independent moiety from 

the ligand-binding and transactivation functions that are separated from it by a 

flexible hinge. This classic model treats the DNA binding domain as little more than 

an anchor, able to recognize and specifically bind various versions of a consensus 

DNA sequence, while the transcriptional regulation activity was carried out by the 

ligand-binding domain. While the major functional roles of each domain are 

accurately explained by this model, it fails to address the significance of subtle 

variations in DNA binding site sequences that have evolved to regulate gene 

expression. Tissue-specific nuclear receptor activity has been attributed largely to 

coregulator make-up, and with the regard to PPARγ, much work has been done to 

characterize the activity of various natural and synthetic ligands. Crystallizing whole 

nuclear receptor molecules for x-ray imaging has proved to be technically 

challenging, leading to a shift in the research of nuclear receptor structure and 

function to the isolated ligand-binding domains. As a result, relatively little 

advancement has been made in the past several decades in our understanding of 

the nuclear receptor-DNA interactions on a structural level.  

Contrary to the conventional nuclear receptor domain model described here, 

our understanding of the general interactions between proteins and DNA implies 
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that there are reciprocal changes in structure imposed by binding. DNA bending by 

proteins that specifically bind to major grooves has been characterized in detail and 

shown to be categorically different and more severe than the slight changes caused 

by non-specific binding of proteins to minor grooves [154]. The major groove DNA 

distortion occurs in a sequence-specific manner and implies that the structure of 

the DNA-bound protein may also be altered to adjust to the binding state. In the 

case of nuclear receptors, this may result in DNA sequence-dependent regulation of 

coregulator complex recruitment mediated by structural changes in the DNA-

binding domain and propagated to the ligand-binding and activation domains.  

Several recent studies have revealed that the DNA binding domain and the 

DNA binding site may play a more important role in regulating the transcriptional 

activity of nuclear receptors than previously recognized. The x-ray crystal structure 

of the full-length PPARγ-RXRα heterodimer bound to the consensus PPRE molecule 

has shown that the DNA-binding domain of PPARγ makes extensive energy-

favorable contacts with various regions of RXRα, suggesting that it contributes to 

heterodimer formation and transactivation of the complex [84]. Discrete structural 

rearrangements in the holoprotein RAR when free in solution versus bound to its 

DNA response element have been shown by NMR spectroscopy [142]. Crystallizing 

the glucocorticoid receptor homodimer on several known glucocorticoid response 

elements, Dr. Yamamoto and colleagues have shown that the receptor holoprotein 

assumes slightly different conformations on different DNA sequences [141]. These 

structural changes result in variations in the coregulator interaction surfaces that 

are exposed when the receptor is bound to different DNA sequence, and lead to 

recruitment of different compositions of coregulator complexes onto the DNA.  
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All of these recent observations suggest that the significance of the DNA 

binding site to nuclear receptor function is beyond merely that of an anchoring site. 

The interaction between a nuclear receptor and the DNA molecule is a complex 

process involving reciprocal structural changes in both partners and is ultimately 

reflected in the transcription coregulator recruitment process. In this emerging new 

model of nuclear receptors, the DNA molecule is thought of as an allosteric 

regulator of nuclear receptor transcriptional activity via the DNA binding domain, 

much like the specific ligands that regulate its activity at the ligand binding domain. 

In this way, fine-tuned transcriptional regulation of gene networks in achieved by a 

combination of many factors including the specific ligand, the DNA binding site 

sequence, and the transcriptional co-regulator abundance in the cell [155]. Our 

detailed analysis of the E157D PPARγ mutant supports the role of DNA as an 

allosteric regulator of PPARγ function. The PPRE sequence-dependent transcriptional 

activity of the mutant, compared with the wild-type, suggests that the p-box 

substitution plays a greater role on some PPREs than others. These findings indicate 

that not all PPRE sequences behave the same when bound to PPARγ, and the 

differences in transcriptional activity of the mutant on various PPREs are most likely 

explained by structural changes induced by these binding sites. 

 

10.4 Implications for Nuclear Receptor Gene Evolution. 

The discovery of differential nuclear receptor structure and behavior on 

different DNA binding sequences indicates that the diversity in nuclear receptor 

binding sites is non-trivial and may have regulatory significance for nuclear receptor 

transcriptional activity. The nuclear receptor superfamily has evolved from an 
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ancient common nuclear hormone receptor ancestor that is present in all bilateria 

[156]. One of the earliest indications that p-box and PPREs co-evolved came from 

the mutational analysis study which identified the p-box amino acids as 

determinants of nuclear receptor binding site selectivity [14]. By showing that 

replacing the p-box of the glucocorticoid receptor with that of the thyroid hormone 

receptor causes the chimeric receptor to bind and activate transcription from 

thyroid hormone DNA response elements, the authors provided a simple 

explanation for the co-evolution of nuclear receptors and hormone-responsive gene 

networks. Conversely, mutating the p-box of thyroid hormone receptor to mimic 

that of the glucocorticoid receptor (the GS125 mutation) enables the thyroid 

hormone receptor to recognize, bind and regulate transcription from GREs while 

abolishing TRE binding [148]. 

Recent advances in gene sequencing have enabled sequence conservation 

analyses across a wide array of species. The Mutual Information method was 

recently used to analyse co-evolving pairs of amino acids in PPARγ and RXRα with 

the goal of highlighting amino acid residues most important for specific DNA binding 

[157]. This study revealed that the PPARγ:RXRα heterodimerization interface, as 

well as the C-terminal extension of the DNA binding domain which binds the minor 

groove of the DNA in the 5’ PPRE flanking region, are both highly co-evolved and 

may be important for binding site recognition. The minor groove contact had 

previously been shown to play a role in DNA binding, both by PPRE sequence 

analysis [49] and crystal structure [84]. One proposed mechanism driving the co-

evolution of DNA response elements and DNA binding interfaces of nuclear 

receptors involved conservation of the response element sequence and the cDNA 
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sequence of the nuclear receptor region that binds there [158]. Although this has 

only been demonstrated for the glucocorticoid receptor, one possibility is that 

nuclear receptor DNA recognition surfaces may preferentially bind DNA sequences 

that are identical to their cognate codons. 

Our genome-wide study of E157D PPARγ transcriptional activity has identified 

a set of genes, some of which are functionally related, that are activated by the 

mutant receptor but not by the wild-type. Previous studies of PPARγ binding sites 

suggest that the wild-type PPARγ binds to PPREs in the vicinity of some of those 

genes. In the context of PPARγ and PPRE evolution, our findings indicate that these 

“gain-of-function” genes represent a gene network that co-evolved to have PPREs 

that weakly bind PPARγ. The E157D substitution disrupts this evolutionary process 

and makes PPARγ more active on these weak PPREs, and conversely makes it less 

active on stronger PPREs, changing the gene network regulated by this receptor 

and leading to atypical type III lipodystrophy. 
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11  FUTURE DIRECTIONS 

11.1 Elucidate the Structural Features of PPARγ Interaction 

With Various PPREs. 

At the heart of the allosteric DNA regulation model is the concept of subtle 

structural changes in the nuclear receptor upon binding to various DNA sequences. 

X-ray crystallography and, more recently, nuclear magnetic resonance have been 

used to study nuclear receptors bound to their respective DNA recognition sites, 

and specifically to demonstrate structural changes in the glucocorticoid receptor 

and RXR [141, 142] when bound to various DNA sequences. Both of these methods 

have the necessary sensitivity to detect slightly different positioning of the 

coregulator interacting surfaces, the functionally important outcome of allosteric 

regulation by DNA. But positional changes in the PPARγ protein when bound to 

PPREs have not been investigated to date.  

The E157D mutation provides an opportunity to determine the role of the p-

box in structural interactions between the protein and DNA. Our plans for the near 

future include resolving the structures of the wild-type and E157D PPARγ bound to 

several known PPREs. We predict that PPARγ, similarly to other nuclear receptors, 

will assume a slightly different conformation when bound to DNA than when free in 

solution. Furthermore, the positioning of coactivator interaction surfaces is 

predicted to be specific for each PPRE sequence, as has been shown for the 

glucocorticoid receptor [141]. The E157D mutation is predicted to have a variable 

effect on these structural relationships, resulting in variable disruptions in 

coregulator surface arrangement.   
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11.2 Characterize the Composition of Transcription Coregulator 

Complexes on Various PPREs. 

To confirm that the PPRE sequence guides the recruitment of transcription 

coregulators to the promoter, we plan to carry out co-precipitation experiments to 

compare the amounts of known nuclear receptor corepressors and coactivators that 

bind PPARγ on different PPREs. This interaction will be tested in vitro using biotin-

labeled PPREs and nuclear extracts containing transfected PPARγ, NCoR1 and SMRT 

proteins. The binding reaction will be carried out similarly as in the gel-shift 

experiment, with the addition of nuclear receptor corepressors after the PPARγ-

PPRE complex has formed. The entire bound complex will then be precipitated by 

streptavidin-linked magnetic beads, washed and eluted. The amounts of coregulator 

molecules co-precipitated with the wild-type and E157D PPARγ on different PPREs 

will be compared on a Western blot. The results from this in vitro study will reveal 

whether there is indeed an intrinsic regulatory interaction between the PPRE and 

PPARγ that instructs the recruitment of coregulator molecules to the DNA binding 

site in a sequence-specific manner.  

To test the validity of this model in the context of native chromatin, and any 

effect of DNA structure and chromatin-associated proteins, the promoter occupancy 

of various endogenous nuclear receptor coregulators at known PPARγ binding sites 

will be determined using chromatin immunoprecipitation. In addition, this method 

will be used to measure histone modifications at these sites as the functional 

outcome of differential coregulator recruitment. Commonly measured histone 

marks, such as H3K4 and H3K27, may emerge as the mechanistic step mediating 

the transcriptional effects of PPRE-directed recruitment of transcription 
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coregulators. Finally, by comparing these measurements in cells expressing wild-

type and E157D PPARγ, the role of the p-box in the PPRE-PPARγ interaction 

proposed here will be confirmed in both the in-vitro and in-vivo models.  

 

11.3 Analyze the Regulatory Regions of PPARγ-Inhibited Genes 

For Putative Negative PPREs. 

Our genome-wide transcriptional activity studies revealed a set of genes 

involved in inflammation and the immune response that were downregulated by 

PPARγ in a ligand-dependent manner (Figure 19). Inhibition of inflammatory genes 

by PPARγ has been widely recognized, but this activity is poorly understood on the 

molecular level, and it is possible that downregulation of these genes is mediated 

by indirect factors upon PPARγ activation. However, direct ligand-dependent gene 

inhibition by the glucocorticoid receptor has been demonstrated on “negative GREs” 

[159]. These response elements have unique sequence features that differentiate 

them from previously defined GREs with positive transcription regulation activity. 

Negative PPREs have not been reported to date. Our results provide an opportunity 

for bioinformatic identification of putative negative PPREs which may mediate the 

downregulation of inflammatory genes by PPARγ.  

 

 

  



99 
 

 

REFERENCES 

 

1. OBESITY: Halting the epidemic by making health easier, in AT A 

GLANCE2011, National Center for Chronic Disease Prevention and Health 

Promotion: Atlanta, GA: U.S. 

2. Shah, N.R. and E.R. Braverman, Measuring adiposity in patients: the utility of 

body mass index (BMI), percent body fat, and leptin. PLoS One, 2012. 7(4): 

p. e33308. 

3. Pasco, J.A., et al., Prevalence of obesity and the relationship between the 

body mass index and body fat: cross-sectional, population-based data. PLoS 

One, 2012. 7(1): p. e29580. 

4. National diabetes fact sheet: national estimates and general information on 

diabetes and prediabetes in the United States, 2011., 2011, Centers for 

Disease Control and Prevention: Atlanta, GA: U.S. 

5. Linja, M.J., et al., Expression of androgen receptor coregulators in prostate 

cancer. Clin Cancer Res, 2004. 10(3): p. 1032-40. 

6. Klinge, C.M., et al., Binding of type II nuclear receptors and estrogen 

receptor to full and half-site estrogen response elements in vitro. Nucleic 

Acids Res, 1997. 25(10): p. 1903-12. 

7. Chen, J., H.K. Kinyamu, and T.K. Archer, Changes in attitude, changes in 

latitude: nuclear receptors remodeling chromatin to regulate transcription. 

Mol Endocrinol, 2006. 20(1): p. 1-13. 

8. Hebbar, P.B. and T.K. Archer, Chromatin remodeling by nuclear receptors. 

Chromosoma, 2003. 111(8): p. 495-504. 



100 
 

 

9. Collingwood, T.N., F.D. Urnov, and A.P. Wolffe, Nuclear receptors: 

coactivators, corepressors and chromatin remodeling in the control of 

transcription. J Mol Endocrinol, 1999. 23(3): p. 255-75. 

10. Perissi, V., et al., A corepressor/coactivator exchange complex required for 

transcriptional activation by nuclear receptors and other regulated 

transcription factors. Cell, 2004. 116(4): p. 511-26. 

11. Rosenfeld, M.G., V.V. Lunyak, and C.K. Glass, Sensors and signals: a 

coactivator/corepressor/epigenetic code for integrating signal-dependent 

programs of transcriptional response. Genes Dev, 2006. 20(11): p. 1405-28. 

12. Jacobs, M.N., M. Dickins, and D.F. Lewis, Homology modelling of the nuclear 

receptors: human oestrogen receptorbeta (hERbeta), the human pregnane-

X-receptor (PXR), the Ah receptor (AhR) and the constitutive androstane 

receptor (CAR) ligand binding domains from the human oestrogen receptor 

alpha (hERalpha) crystal structure, and the human peroxisome proliferator 

activated receptor alpha (PPARalpha) ligand binding domain from the human 

PPARgamma crystal structure. J Steroid Biochem Mol Biol, 2003. 84(2-3): p. 

117-32. 

13. Robinson-Rechavi, M., H. Escriva Garcia, and V. Laudet, The nuclear receptor 

superfamily. J Cell Sci, 2003. 116(Pt 4): p. 585-6. 

14. Umesono, K. and R.M. Evans, Determinants of target gene specificity for 

steroid/thyroid hormone receptors. Cell, 1989. 57(7): p. 1139-46. 

15. Mader, S., et al., Three amino acids of the oestrogen receptor are essential 

to its ability to distinguish an oestrogen from a glucocorticoid-responsive 

element. Nature, 1989. 338(6212): p. 271-4. 



101 
 

 

16. Glass, C.K., Differential recognition of target genes by nuclear receptor 

monomers, dimers, and heterodimers. Endocr Rev, 1994. 15(3): p. 391-407. 

17. Danielsen, M., L. Hinck, and G.M. Ringold, Two amino acids within the 

knuckle of the first zinc finger specify DNA response element activation by 

the glucocorticoid receptor. Cell, 1989. 57(7): p. 1131-8. 

18. Desvergne, B. and W. Wahli, Peroxisome proliferator-activated receptors: 

nuclear control of metabolism. Endocr Rev, 1999. 20(5): p. 649-88. 

19. Lefterova, M.I., et al., PPARgamma and C/EBP factors orchestrate adipocyte 

biology via adjacent binding on a genome-wide scale. Genes Dev, 2008. 

22(21): p. 2941-52. 

20. Nielsen, R., et al., Genome-wide profiling of PPARgamma:RXR and RNA 

polymerase II occupancy reveals temporal activation of distinct metabolic 

pathways and changes in RXR dimer composition during adipogenesis. Genes 

Dev, 2008. 22(21): p. 2953-67. 

21. Heinaniemi, M., et al., Meta-analysis of primary target genes of peroxisome 

proliferator-activated receptors. Genome Biol, 2007. 8(7): p. R147. 

22. Temple, K.A., et al., An intact DNA-binding domain is not required for 

peroxisome proliferator-activated receptor gamma (PPARgamma) binding 

and activation on some PPAR response elements. J Biol Chem, 2005. 280(5): 

p. 3529-40. 

23. Oliver, W.R., Jr., et al., A selective peroxisome proliferator-activated receptor 

delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S 

A, 2001. 98(9): p. 5306-11. 



102 
 

 

24. Lehmann, J.M., et al., An antidiabetic thiazolidinedione is a high affinity 

ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). 

J Biol Chem, 1995. 270(22): p. 12953-6. 

25. Tontonoz, P. and B.M. Spiegelman, Fat and beyond: the diverse biology of 

PPARgamma. Annu Rev Biochem, 2008. 77: p. 289-312. 

26. Forman, B.M., et al., 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for 

the adipocyte determination factor PPAR gamma. Cell, 1995. 83(5): p. 803-

12. 

27. Forman, B.M., et al., Identification of a nuclear receptor that is activated by 

farnesol metabolites. Cell, 1995. 81(5): p. 687-93. 

28. Kliewer, S.A., et al., A prostaglandin J2 metabolite binds peroxisome 

proliferator-activated receptor gamma and promotes adipocyte 

differentiation. Cell, 1995. 83(5): p. 813-9. 

29. Diaz-Delfin, J., M. Morales, and C. Caelles, Hypoglycemic action of 

thiazolidinediones/peroxisome proliferator-activated receptor gamma by 

inhibition of the c-Jun NH2-terminal kinase pathway. Diabetes, 2007. 56(7): 

p. 1865-71. 

30. Steppan, C.M., et al., The hormone resistin links obesity to diabetes. Nature, 

2001. 409(6818): p. 307-12. 

31. Hevener, A.L., et al., Macrophage PPAR gamma is required for normal 

skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of 

thiazolidinediones. J Clin Invest, 2007. 117(6): p. 1658-69. 



103 
 

 

32. Odegaard, J.I., et al., Macrophage-specific PPARgamma controls alternative 

activation and improves insulin resistance. Nature, 2007. 447(7148): p. 

1116-20. 

33. Straus, D.S. and C.K. Glass, Anti-inflammatory actions of PPAR ligands: new 

insights on cellular and molecular mechanisms. Trends Immunol, 2007. 

28(12): p. 551-8. 

34. Han, S. and J. Roman, Peroxisome proliferator-activated receptor gamma: a 

novel target for cancer therapeutics? Anticancer Drugs, 2007. 18(3): p. 237-

44. 

35. Takada, I., et al., Suppression of PPAR transactivation switches cell fate of 

bone marrow stem cells from adipocytes into osteoblasts. Ann N Y Acad Sci, 

2007. 1116: p. 182-95. 

36. Grey, A., et al., The peroxisome proliferator-activated receptor-gamma 

agonist rosiglitazone decreases bone formation and bone mineral density in 

healthy postmenopausal women: a randomized, controlled trial. J Clin 

Endocrinol Metab, 2007. 92(4): p. 1305-10. 

37. Wan, Y., L.W. Chong, and R.M. Evans, PPAR-gamma regulates 

osteoclastogenesis in mice. Nat Med, 2007. 13(12): p. 1496-503. 

38. Leisewitz, A.V., et al., A PPARs cross-talk concertedly commits C6 glioma 

cells to oligodendrocytes and induces enzymes involved in myelin synthesis. J 

Cell Physiol, 2008. 217(2): p. 367-76. 

39. Kim, J., et al., Peroxisome proliferator-activated receptor gamma is a target 

of progesterone regulation in the preovulatory follicles and controls ovulation 

in mice. Mol Cell Biol, 2008. 28(5): p. 1770-82. 



104 
 

 

40. Minge, C.E., et al., Peroxisome proliferator-activated receptor-gamma 

agonist rosiglitazone reverses the adverse effects of diet-induced obesity on 

oocyte quality. Endocrinology, 2008. 149(5): p. 2646-56. 

41. Zhu, Y., et al., Structural organization of mouse peroxisome proliferator-

activated receptor gamma (mPPAR gamma) gene: alternative promoter use 

and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U 

S A, 1995. 92(17): p. 7921-5. 

42. Fajas, L., et al., The organization, promoter analysis, and expression of the 

human PPARgamma gene. J Biol Chem, 1997. 272(30): p. 18779-89. 

43. Tontonoz, P., et al., mPPAR gamma 2: tissue-specific regulator of an 

adipocyte enhancer. Genes Dev, 1994. 8(10): p. 1224-34. 

44. Ren, D., et al., PPARgamma knockdown by engineered transcription factors: 

exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. 

Genes Dev, 2002. 16(1): p. 27-32. 

45. Werman, A., et al., Ligand-independent activation domain in the N terminus 

of peroxisome proliferator-activated receptor gamma (PPARgamma). 

Differential activity of PPARgamma1 and -2 isoforms and influence of insulin. 

J Biol Chem, 1997. 272(32): p. 20230-5. 

46. Kliewer, S.A., et al., Retinoid X receptor interacts with nuclear receptors in 

retinoic acid, thyroid hormone and vitamin D3 signalling. Nature, 1992. 

355(6359): p. 446-9. 

47. Kliewer, S.A., et al., Convergence of 9-cis retinoic acid and peroxisome 

proliferator signalling pathways through heterodimer formation of their 

receptors. Nature, 1992. 358(6389): p. 771-4. 



105 
 

 

48. Hsu, M.H., et al., A carboxyl-terminal extension of the zinc finger domain 

contributes to the specificity and polarity of peroxisome proliferator-activated 

receptor DNA binding. J Biol Chem, 1998. 273(43): p. 27988-97. 

49. A, I.J., et al., Polarity and specific sequence requirements of peroxisome 

proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer 

binding to DNA. A functional analysis of the malic enzyme gene PPAR 

response element. J Biol Chem, 1997. 272(32): p. 20108-17. 

50. Nakachi, Y., et al., Identification of novel PPARgamma target genes by 

integrated analysis of ChIP-on-chip and microarray expression data during 

adipocyte differentiation. Biochem Biophys Res Commun, 2008. 372(2): p. 

362-6. 

51. Sears, D.D., et al., Selective modulation of promoter recruitment and 

transcriptional activity of PPARgamma. Biochem Biophys Res Commun, 2007. 

364(3): p. 515-21. 

52. Wakabayashi, K., et al., The peroxisome proliferator-activated receptor 

gamma/retinoid X receptor alpha heterodimer targets the histone 

modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis 

through a positive feedback loop. Mol Cell Biol, 2009. 29(13): p. 3544-55. 

53. Juge-Aubry, C., et al., DNA binding properties of peroxisome proliferator-

activated receptor subtypes on various natural peroxisome proliferator 

response elements. Importance of the 5'-flanking region. J Biol Chem, 1997. 

272(40): p. 25252-9. 



106 
 

 

54. Garg, A., R.M. Peshock, and J.L. Fleckenstein, Adipose tissue distribution 

pattern in patients with familial partial lipodystrophy (Dunnigan variety). J 

Clin Endocrinol Metab, 1999. 84(1): p. 170-4. 

55. Herbst, K.L., et al., Kobberling type of familial partial lipodystrophy: an 

underrecognized syndrome. Diabetes Care, 2003. 26(6): p. 1819-24. 

56. Agostini, M., et al., Non-DNA binding, dominant-negative, human 

PPARgamma mutations cause lipodystrophic insulin resistance. Cell Metab, 

2006. 4(4): p. 303-11. 

57. Francis, G.A., et al., Peroxisomal proliferator activated receptor-gamma 

deficiency in a Canadian kindred with familial partial lipodystrophy type 3 

(FPLD3). BMC Med Genet, 2006. 7: p. 3. 

58. Hegele, R.A., et al., PPARG F388L, a transactivation-deficient mutant, in 

familial partial lipodystrophy. Diabetes, 2002. 51(12): p. 3586-90. 

59. Jeninga, E.H., et al., Impaired peroxisome proliferator-activated receptor 

gamma function through mutation of a conserved salt bridge (R425C) in 

familial partial lipodystrophy. Mol Endocrinol, 2007. 21(5): p. 1049-65. 

60. Li, G. and T. Leff, Altered promoter recycling rates contribute to dominant-

negative activity of human peroxisome proliferator-activated receptor-

gamma mutations associated with diabetes. Mol Endocrinol, 2007. 21(4): p. 

857-64. 

61. Ludtke, A., et al., New PPARG mutation leads to lipodystrophy and loss of 

protein function that is partially restored by a synthetic ligand. J Med Genet, 

2007. 44(9): p. e88. 



107 
 

 

62. Ludtke, A., et al., Peroxisome proliferator-activated receptor-gamma C190S 

mutation causes partial lipodystrophy. J Clin Endocrinol Metab, 2007. 92(6): 

p. 2248-55. 

63. Young, J., et al., Type A insulin resistance syndrome revealing a novel lamin 

A mutation. Diabetes, 2005. 54(6): p. 1873-8. 

64. Hegele, R.A. and R.L. Pollex, Genetic and physiological insights into the 

metabolic syndrome. Am J Physiol Regul Integr Comp Physiol, 2005. 289(3): 

p. R663-9. 

65. Mori, Y., et al., Effect of troglitazone on body fat distribution in type 2 

diabetic patients. Diabetes Care, 1999. 22(6): p. 908-12. 

66. Kelly, I.E., et al., Effects of a thiazolidinedione compound on body fat and fat 

distribution of patients with type 2 diabetes. Diabetes Care, 1999. 22(2): p. 

288-93. 

67. Joy, T. and R.A. Hegele, Genetics of metabolic syndrome: is there a role for 

phenomics? Curr Atheroscler Rep, 2008. 10(3): p. 201-8. 

68. Guettier, J.M., et al., Leptin therapy for partial lipodystrophy linked to a 

PPAR-gamma mutation. Clin Endocrinol (Oxf), 2008. 68(4): p. 547-54. 

69. Jeninga, E.H., M. Gurnell, and E. Kalkhoven, Functional implications of 

genetic variation in human PPARgamma. Trends Endocrinol Metab, 2009. 

20(8): p. 380-7. 

70. Agarwal, A.K. and A. Garg, A novel heterozygous mutation in peroxisome 

proliferator-activated receptor-gamma gene in a patient with familial partial 

lipodystrophy. J Clin Endocrinol Metab, 2002. 87(1): p. 408-11. 



108 
 

 

71. Barroso, I., et al., Dominant negative mutations in human PPARgamma 

associated with severe insulin resistance, diabetes mellitus and hypertension. 

Nature, 1999. 402(6764): p. 880-3. 

72. Hegele, R.A., et al., A frameshift mutation in peroxisome-proliferator-

activated receptor-gamma in familial partial lipodystrophy subtype 3 (FPLD3; 

MIM 604367). Clin Genet, 2006. 70(4): p. 360-2. 

73. Monajemi, H., et al., Familial partial lipodystrophy phenotype resulting from 

a single-base mutation in deoxyribonucleic acid-binding domain of 

peroxisome proliferator-activated receptor-gamma. J Clin Endocrinol Metab, 

2007. 92(5): p. 1606-12. 

74. Florez, J.C., et al., Effects of the type 2 diabetes-associated PPARG P12A 

polymorphism on progression to diabetes and response to troglitazone. J Clin 

Endocrinol Metab, 2007. 92(4): p. 1502-9. 

75. Yong, E.L., J. Li, and M.H. Liu, Single gene contributions: genetic variants of 

peroxisome proliferator-activated receptor (isoforms alpha, beta/delta and 

gamma) and mechanisms of dyslipidemias. Curr Opin Lipidol, 2008. 19(2): 

p. 106-12. 

76. Deeb, S.S., et al., A Pro12Ala substitution in PPARgamma2 associated with 

decreased receptor activity, lower body mass index and improved insulin 

sensitivity. Nat Genet, 1998. 20(3): p. 284-7. 

77. Ristow, M., et al., Obesity associated with a mutation in a genetic regulator 

of adipocyte differentiation. N Engl J Med, 1998. 339(14): p. 953-9. 

78. Yen, C.J., et al., Molecular scanning of the human peroxisome proliferator 

activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: 



109 
 

 

identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem 

Biophys Res Commun, 1997. 241(2): p. 270-4. 

79. Nelson, C.C., S.C. Hendy, and P.J. Romaniuk, Relationship between P-box 

amino acid sequence and DNA binding specificity of the thyroid hormone 

receptor. The effects of half-site sequence in everted repeats. J Biol Chem, 

1995. 270(28): p. 16981-7. 

80. Zilliacus, J., et al., Evolution of distinct DNA-binding specificities within the 

nuclear receptor family of transcription factors. Proc Natl Acad Sci U S A, 

1994. 91(10): p. 4175-9. 

81. Ng, P.C. and S. Henikoff, Predicting deleterious amino acid substitutions. 

Genome Res, 2001. 11(5): p. 863-74. 

82. Kumar, P., S. Henikoff, and P.C. Ng, Predicting the effects of coding non-

synonymous variants on protein function using the SIFT algorithm. Nat 

Protoc, 2009. 4(7): p. 1073-81. 

83. Guex, N., M.C. Peitsch, and T. Schwede, Automated comparative protein 

structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical 

perspective. Electrophoresis, 2009. 30 Suppl 1: p. S162-73. 

84. Chandra, V., et al., Structure of the intact PPAR-gamma-RXR- nuclear 

receptor complex on DNA. Nature, 2008. 456(7220): p. 350-6. 

85. Kaplan, W. and T.G. Littlejohn, Swiss-PDB Viewer (Deep View). Brief 

Bioinform, 2001. 2(2): p. 195-7. 

86. Gunsteren, W.F.v., Biomolecular simulation: the GROMOS96 manual and 

user guide.1996: Vdf Hochschulverlag ETHZ. 



110 
 

 

87. Bordner, A.J. and R.A. Abagyan, Large-scale prediction of protein geometry 

and stability changes for arbitrary single point mutations. Proteins, 2004. 

57(2): p. 400-13. 

88. Abagyan, R. and M. Totrov, Biased probability Monte Carlo conformational 

searches and electrostatic calculations for peptides and proteins. J Mol Biol, 

1994. 235(3): p. 983-1002. 

89. Tengholm, A., M.N. Teruel, and T. Meyer, Single cell imaging of PI3K activity 

and glucose transporter insertion into the plasma membrane by dual color 

evanescent wave microscopy. Sci STKE, 2003. 2003(169): p. PL4. 

90. Hummasti, S. and P. Tontonoz, The peroxisome proliferator-activated 

receptor N-terminal domain controls isotype-selective gene expression and 

adipogenesis. Mol Endocrinol, 2006. 20(6): p. 1261-75. 

91. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data 

using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. 

Methods, 2001. 25(4): p. 402-8. 

92. Kulyyassov, A., M. Shoaib, and V. Ogryzko, Use of in vivo biotinylation for 

chromatin immunoprecipitation. Curr Protoc Cell Biol, 2011. Chapter 17: p. 

Unit17 12. 

93. Loots, G.G. and I. Ovcharenko, rVISTA 2.0: evolutionary analysis of 

transcription factor binding sites. Nucleic Acids Res, 2004. 32(Web Server 

issue): p. W217-21. 

94. Fan, F. and K.V. Wood, Bioluminescent assays for high-throughput screening. 

Assay Drug Dev Technol, 2007. 5(1): p. 127-36. 



111 
 

 

95. Miraglia, L.J., F.J. King, and R. Damoiseaux, Seeing the light: luminescent 

reporter gene assays. Comb Chem High Throughput Screen, 2011. 14(8): p. 

648-57. 

96. Rosenthal, N., Identification of regulatory elements of cloned genes with 

functional assays. Methods Enzymol, 1987. 152: p. 704-20. 

97. Soichot, M., et al., Identification of a variable number of tandem repeats 

polymorphism and characterization of LEF-1 response elements in the 

promoter of the IDO1 gene. PLoS One, 2011. 6(9): p. e25470. 

98. Pontiller, J., et al., Identification of CHO endogenous gene regulatory 

elements. Mol Biotechnol, 2010. 45(3): p. 235-40. 

99. Okuno, Y., et al., Human catalase gene is regulated by peroxisome 

proliferator activated receptor-gamma through a response element distinct 

from that of mouse. Endocr J, 2010. 57(4): p. 303-9. 

100. Takazawa, T., et al., Peroxisome proliferator-activated receptor gamma 

agonist rosiglitazone increases expression of very low density lipoprotein 

receptor gene in adipocytes. J Biol Chem, 2009. 284(44): p. 30049-57. 

101. Nagai, S., et al., Identification of a functional peroxisome proliferator-

activated receptor responsive element within the murine perilipin gene. 

Endocrinology, 2004. 145(5): p. 2346-56. 

102. Kim, H.I., et al., Identification and functional characterization of the 

peroxisomal proliferator response element in rat GLUT2 promoter. Diabetes, 

2000. 49(9): p. 1517-24. 

103. Goto, T., et al., Farnesyl pyrophosphate regulates adipocyte functions as an 

endogenous PPARgamma agonist. Biochem J, 2011. 438(1): p. 111-9. 



112 
 

 

104. Yokoi, H., et al., Hydroxy monounsaturated fatty acids as agonists for 

peroxisome proliferator-activated receptors. Biol Pharm Bull, 2010. 33(5): p. 

854-61. 

105. Landrier, J.F., et al., Adiponectin expression is induced by vitamin E via a 

peroxisome proliferator-activated receptor gamma-dependent mechanism. 

Endocrinology, 2009. 150(12): p. 5318-25. 

106. Schopfer, F.J., et al., Nitrolinoleic acid: an endogenous peroxisome 

proliferator-activated receptor gamma ligand. Proc Natl Acad Sci U S A, 

2005. 102(7): p. 2340-5. 

107. Frohnert, B.I., T.Y. Hui, and D.A. Bernlohr, Identification of a functional 

peroxisome proliferator-responsive element in the murine fatty acid transport 

protein gene. J Biol Chem, 1999. 274(7): p. 3970-7. 

108. Schoonjans, K., et al., PPARalpha and PPARgamma activators direct a distinct 

tissue-specific transcriptional response via a PPRE in the lipoprotein lipase 

gene. EMBO J, 1996. 15(19): p. 5336-48. 

109. Iwaki, M., et al., Induction of adiponectin, a fat-derived antidiabetic and 

antiatherogenic factor, by nuclear receptors. Diabetes, 2003. 52(7): p. 1655-

63. 

110. Baumann, C.A., et al., Cloning and characterization of a functional 

peroxisome proliferator activator receptor-gamma-responsive element in the 

promoter of the CAP gene. J Biol Chem, 2000. 275(13): p. 9131-5. 

111. Kishida, K., et al., Enhancement of the aquaporin adipose gene expression by 

a peroxisome proliferator-activated receptor gamma. J Biol Chem, 2001. 

276(51): p. 48572-9. 



113 
 

 

112. Tugwood, J.D., et al., The mouse peroxisome proliferator activated receptor 

recognizes a response element in the 5' flanking sequence of the rat acyl CoA 

oxidase gene. EMBO J, 1992. 11(2): p. 433-9. 

113. Tontonoz, P., et al., PPAR gamma 2 regulates adipose expression of the 

phosphoenolpyruvate carboxykinase gene. Mol Cell Biol, 1995. 15(1): p. 

351-7. 

114. Zeeberg, B., Shannon information theoretic computation of synonymous 

codon usage biases in coding regions of human and mouse genomes. 

Genome Res, 2002. 12(6): p. 944-55. 

115. Reid, G., et al., Cyclic, proteasome-mediated turnover of unliganded and 

liganded ERalpha on responsive promoters is an integral feature of estrogen 

signaling. Mol Cell, 2003. 11(3): p. 695-707. 

116. Fowler, A.M. and E.T. Alarid, Dynamic control of nuclear receptor 

transcription. Sci STKE, 2004. 2004(256): p. pe51. 

117. Kinyamu, H.K., J. Chen, and T.K. Archer, Linking the ubiquitin-proteasome 

pathway to chromatin remodeling/modification by nuclear receptors. J Mol 

Endocrinol, 2005. 34(2): p. 281-97. 

118. Floyd, Z.E. and J.M. Stephens, Interferon-gamma-mediated activation and 

ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. J 

Biol Chem, 2002. 277(6): p. 4062-8. 

119. Hauser, S., et al., Degradation of the peroxisome proliferator-activated 

receptor gamma is linked to ligand-dependent activation. J Biol Chem, 2000. 

275(24): p. 18527-33. 



114 
 

 

120. Molinari, E., M. Gilman, and S. Natesan, Proteasome-mediated degradation 

of transcriptional activators correlates with activation domain potency in vivo. 

EMBO J, 1999. 18(22): p. 6439-47. 

121. Rohs, R., et al., The role of DNA shape in protein-DNA recognition. Nature, 

2009. 461(7268): p. 1248-53. 

122. Wang, D., N.B. Ulyanov, and V.B. Zhurkin, Sequence-dependent Kink-and-

Slide deformations of nucleosomal DNA facilitated by histone arginines bound 

in the minor groove. J Biomol Struct Dyn, 2010. 27(6): p. 843-59. 

123. Cui, F. and V.B. Zhurkin, Structure-based analysis of DNA sequence patterns 

guiding nucleosome positioning in vitro. J Biomol Struct Dyn, 2010. 27(6): p. 

821-41. 

124. Tao, H. and T. Hajri, Very low density lipoprotein receptor promotes 

adipocyte differentiation and mediates the proadipogenic effect of 

peroxisome proliferator-activated receptor gamma agonists. Biochem 

Pharmacol, 2011. 82(12): p. 1950-62. 

125. Rigamonti, E., et al., Induction of CXCR2 receptor by peroxisome 

proliferator-activated receptor gamma in human macrophages. Arterioscler 

Thromb Vasc Biol, 2008. 28(5): p. 932-9. 

126. Shimada, T., et al., Peroxisome proliferator-activated receptor gamma 

(PPARgamma) regulates trefoil factor family 2 (TFF2) expression in gastric 

epithelial cells. Int J Biochem Cell Biol, 2007. 39(3): p. 626-37. 

127. Chen, J.G., et al., Identification of a peroxisome proliferator responsive 

element (PPRE)-like cis-element in mouse plasminogen activator inhibitor-1 

gene promoter. Biochem Biophys Res Commun, 2006. 347(3): p. 821-6. 



115 
 

 

128. Chilton, J.M. and J.M. Le Doux, Quantitative analysis of retroviral and 

lentiviral gene transfer to murine embryonic stem cells. J Biotechnol, 2008. 

138(1-2): p. 42-51. 

129. Kita-Matsuo, H., et al., Lentiviral vectors and protocols for creation of stable 

hESC lines for fluorescent tracking and drug resistance selection of 

cardiomyocytes. PLoS One, 2009. 4(4): p. e5046. 

130. Pascual, G., et al., A SUMOylation-dependent pathway mediates 

transrepression of inflammatory response genes by PPAR-gamma. Nature, 

2005. 437(7059): p. 759-63. 

131. Glass, C.K. and S. Ogawa, Combinatorial roles of nuclear receptors in 

inflammation and immunity. Nat Rev Immunol, 2006. 6(1): p. 44-55. 

132. Remels, A.H., et al., PPARgamma inhibits NF-kappaB-dependent 

transcriptional activation in skeletal muscle. Am J Physiol Endocrinol Metab, 

2009. 297(1): p. E174-83. 

133. Sharma, A.M. and B. Staels, Review: Peroxisome proliferator-activated 

receptor gamma and adipose tissue--understanding obesity-related changes 

in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab, 2007. 

92(2): p. 386-95. 

134. Glass, C.K. and K. Saijo, Nuclear receptor transrepression pathways that 

regulate inflammation in macrophages and T cells. Nat Rev Immunol, 2010. 

10(5): p. 365-76. 

135. Bloch, M., et al., High-mobility group A1 protein: a new coregulator of 

peroxisome proliferator-activated receptor-gamma-mediated transrepression 

in the vasculature. Circ Res, 2012. 110(3): p. 394-405. 



116 
 

 

136. Hamza, M.S., et al., De-novo identification of PPARgamma/RXR binding sites 

and direct targets during adipogenesis. PLoS One, 2009. 4(3): p. e4907. 

137. Kast-Woelbern, H.R., et al., Rosiglitazone induction of Insig-1 in white 

adipose tissue reveals a novel interplay of peroxisome proliferator-activated 

receptor gamma and sterol regulatory element-binding protein in the 

regulation of adipogenesis. J Biol Chem, 2004. 279(23): p. 23908-15. 

138. Lecka-Czernik, B., et al., Activation of peroxisome proliferator-activated 

receptor gamma (PPARgamma) by rosiglitazone suppresses components of 

the insulin-like growth factor regulatory system in vitro and in vivo. 

Endocrinology, 2007. 148(2): p. 903-11. 

139. Park, U.H., et al., Additional sex comb-like (ASXL) proteins 1 and 2 play 

opposite roles in adipogenesis via reciprocal regulation of peroxisome 

proliferator-activated receptor {gamma}. J Biol Chem, 2011. 286(2): p. 

1354-63. 

140. Lefterova, M.I., et al., Cell-specific determinants of peroxisome proliferator-

activated receptor gamma function in adipocytes and macrophages. Mol Cell 

Biol, 2010. 30(9): p. 2078-89. 

141. Meijsing, S.H., et al., DNA binding site sequence directs glucocorticoid 

receptor structure and activity. Science, 2009. 324(5925): p. 407-10. 

142. van Tilborg, P.J., et al., Millisecond to microsecond time scale dynamics of 

the retinoid X and retinoic acid receptor DNA-binding domains and dimeric 

complex formation. Biochemistry, 1999. 38(7): p. 1951-6. 

143. Jayaram, B. and T. Jain, The role of water in protein-DNA recognition. Annu 

Rev Biophys Biomol Struct, 2004. 33: p. 343-61. 



117 
 

 

144. Kawate, H., et al., Impaired nuclear translocation, nuclear matrix targeting, 

and intranuclear mobility of mutant androgen receptors carrying amino acid 

substitutions in the deoxyribonucleic acid-binding domain derived from 

androgen insensitivity syndrome patients. J Clin Endocrinol Metab, 2005. 

90(11): p. 6162-9. 

145. Ramos, R.A., et al., Dysfunctional glucocorticoid receptor with a single point 

mutation ablates the CCAAT/enhancer binding protein-dependent growth 

suppression response in a steroid-resistant rat hepatoma cell variant. FASEB 

J, 1999. 13(1): p. 169-80. 

146. Liu, W., A.G. Hillmann, and J.M. Harmon, Hormone-independent repression 

of AP-1-inducible collagenase promoter activity by glucocorticoid receptors. 

Mol Cell Biol, 1995. 15(2): p. 1005-13. 

147. Severne, Y., et al., Metal binding 'finger' structures in the glucocorticoid 

receptor defined by site-directed mutagenesis. EMBO J, 1988. 7(8): p. 2503-

8. 

148. Shibusawa, N., A.N. Hollenberg, and F.E. Wondisford, Thyroid hormone 

receptor DNA binding is required for both positive and negative gene 

regulation. J Biol Chem, 2003. 278(2): p. 732-8. 

149. Kanda, A. and A. Swaroop, A comprehensive analysis of sequence variants 

and putative disease-causing mutations in photoreceptor-specific nuclear 

receptor NR2E3. Mol Vis, 2009. 15: p. 2174-84. 

150. Kohler, B., et al., Five novel mutations in steroidogenic factor 1 (SF1, 

NR5A1) in 46,XY patients with severe underandrogenization but without 

adrenal insufficiency. Hum Mutat, 2008. 29(1): p. 59-64. 



118 
 

 

151. Achermann, J.C., et al., A mutation in the gene encoding steroidogenic 

factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet, 

1999. 22(2): p. 125-6. 

152. Ito, M., J.C. Achermann, and J.L. Jameson, A naturally occurring 

steroidogenic factor-1 mutation exhibits differential binding and activation of 

target genes. J Biol Chem, 2000. 275(41): p. 31708-14. 

153. Lausen, J., et al., Naturally occurring mutations in the human HNF4alpha 

gene impair the function of the transcription factor to a varying degree. 

Nucleic Acids Res, 2000. 28(2): p. 430-7. 

154. El Hassan, M.A. and C.R. Calladine, Two distinct modes of protein-induced 

bending in DNA. J Mol Biol, 1998. 282(2): p. 331-43. 

155. Taubert, S., J.D. Ward, and K.R. Yamamoto, Nuclear hormone receptors in 

nematodes: evolution and function. Mol Cell Endocrinol, 2011. 334(1-2): p. 

49-55. 

156. Bertrand, S., et al., Evolutionary genomics of nuclear receptors: from 

twenty-five ancestral genes to derived endocrine systems. Mol Biol Evol, 

2004. 21(10): p. 1923-37. 

157. Willis, S. and P.R. Griffin, Mutual information identifies sequence positions 

conserved within the nuclear receptor superfamily: approach reveals 

functionally important regions for DNA binding specificity. Nucl Recept Signal, 

2011. 9: p. e001. 

158. Harris, L.F., M.R. Sullivan, and D.F. Hickok, Conservation of genetic 

information: a code for site-specific DNA recognition. Proc Natl Acad Sci U S 

A, 1993. 90(12): p. 5534-8. 



119 
 

 

159. Sakai, D.D., et al., Hormone-mediated repression: a negative glucocorticoid 

response element from the bovine prolactin gene. Genes Dev, 1988. 2(9): p. 

1144-54. 

 

 

  



120 
 

 

ABSTRACT 

MECHANISTIC STUDIES OF A NOVEL PPARγ MUTANT THAT 
CAUSES LIPODYSTROPHY AND DIABETES 

 

by 

 

OLGA ASTAPOVA 

 

May 2014 

 

Advisor: Dr. Todd Leff 

 

Major: Pathology 

 

Degree: Doctor of Philosophy 

 

 

PPARγ is a nuclear receptor that plays a central role in metabolic regulation 

by regulating extensive gene expression networks in adipose, liver, skeletal muscle 

and many other tissues. Human PPARγ mutations are rare and cause a 

monogenetic form of severe type II diabetes with metabolic syndrome, known as 

familiar partial lypodystrophy. The E157D PPARγ mutant causes atypical 

lipodystrophy in a large Canadian kindred, presenting with multiple 

musculoskeletal, neurological and hematological abnormalities in addition to the 

classic lipodystrophy features of insulin-resistant diabetes, hypertension and 

dyslipidemia. This mutation is localized to the p-box of PPARγ, a small region that 

interacts directly with the DNA molecule and is required for DNA binding site 

specificity. Mechanistic analysis revealed that E157D PPARγ binds PPARγ response 

elements (PPREs), but is mildly, moderately or severely defective at inducing 

transcription from most promoters, without dominant negative activity. This 

suppression of transcriptional activity may be mediated by an increased effect of 
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nuclear receptor corepressors on E157D PPARγ. In addition, the mutant binds 

atypical PPREs in the regulatory regions of a small set of genes outside of the 

PPARγ-regulated network, and induces transcription of these genes. The loss of 

transcriptional activity on PPARγ-regulated promoters leads to the metabolic 

disease in the E157D PPARγ cohort, while the gain of activity on non- PPARγ target 

promoters may explain the atypical clinical presentation associated with this 

mutation. The misregulation of target genes by this DNA-contacting mutant 

highlights a previously under-appreciated importance of the DNA molecule as an 

allosteric regulator of the transcriptional activity of nuclear receptors. In summary, 

this dissertation describes a human PPARγ mutation that works through a novel 

mechanism to cause atypical lipodystrophy, and provides support for a more 

integrated view of the nuclear receptor-DNA interaction and transcription activation. 
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