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The aim of this Monte Carlo study is to examine alternatives to estimated variability in building bracketed intervals 
about the trimmed mean.
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Introduction

The prevalence of nonnormally distributed data in applied 
studies has been documented (e.g., Micceri, 1989; Pearson 
& Please, 1975, Tan, 1982). Summary statistics, such as 
measures of central tendency, and parametric hypothesis 
tests, such as Student’s t, are affected by nonnormal data, 
as many studies have also documented (e.g., Bradley, 1968, 
1978; Blair, 1981; Blair & Higgins, 1980a, 1980b, 1985).

Nonnormality arises for a variety of reasons. In 
some cases, the underlying distribution of the variable is 
exponential (e.g., growth or decay), multimodal lumpy 
(e.g., Micceri, 1989), mass at zero with gap (e.g., 
Sawilowsky & Hillman, 1992), or some other non-Gaussian 
shape. In other cases, an essentially normal model can be 
adopted if perturbations, commonly called outliers, can be 
assumed to have contaminated the model. The latter case 
motivated the development of robust statistics.

Consider, for example, measures of central ten­
dency for a single sample. The arithmetic mean, x, is the 
most commonly used measure of the average. It is a sample 
statistic that is used as a point estimate of the population 
parameter |i. However, it has a finite sample breakdown 
point of only 1/n. This implies that even a single observa­
tion can vastly distort the obtained value of x, and hence, 
it is not a robust measure.

In contradistinction, the median is much more 
robust. Its finite sample breakdown point is approximately
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/4. Thus, almost half of the values could be untoward per­
turbations, and yet the value of the median remains unaf­
fected. Despite this robustness property, the median never 
emerged as a popular measure of central tendency. Three 
possible reasons can be offered as an explanation for this 
unpopularity: (1) the sampling distribution of the median 
is intractable (requiring reliance on asymptotic variances 
or some other approach), making the construction of hy­
pothesis tests difficult, (2) the sample median is usually 
not a very good estimate of the population median, and (3) 
the value of the median is actually determined based on 
only one number for N = odd (e.g., the point on the scale 
below which half of the observations fall), or within the 
upper and lower real limits of a single value for N = even, 
essentially ignoring the information contained in all of the 
other scores.

A well known alternative to dealing with 
nonnormally distributed data, where an essentially Gaussian 
structure can be assumed to exist underlying the data, is 
the trimmed mean (xt). The trimmed mean is a compro­
mise between the mean (i.e., trim = zero) and the median 
(i.e., trim approximately equal to but less than 50%).

The 2x10% trimmed mean means that 10% of 
the observations are deleted from both sides of the data 
set. As an illustration, the 2x10% trim is calculated on the 
data below by (1) ordering the data from low to high, (2) 
deleting the . 1 x 10 = 1 observation on the left and the . 1 x 
10 = 1 observation on the right, and (3) computing the 
mean on the remaining 8 scores. This is illustrated in Table 
1.

A question that naturally arises in working with 
xt is how to form a bracketed interval around it. In other 
words, how well does x estimate the population mean |i? 
For example, consider a 95% bracketed interval. From a 
frequentist’s perspective, the purpose is to determine if one 
can be 95% sure that |i is contained within the interval 
built around the sample trimmed mean. A Bayesian’s per­
spective would view this differently, and determine if many 
such intervals were formed, would 95% of those intervals 
contain the population mean.
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Table 1. Computing Trimmed Means.

Original 85 92 87 93 99 86 88 90 73 91
Ordered 73 85 86 87 88 90 91 92 93 99
Trimmed 85 86 87 88 90 91 92 93

tt 85 + 86 + 87 + 88 + 90 + 91 + 92 + 93 OQ 
X ,=---------------------g--------------------- = 89

Many modem textbooks (e.g, Wilcox, 1996) address this 
question and give a formula similar to the following:

C.I,_a (pt) = X ,± 1
1-a ‘ 1 — 2y Vn 1.

where y is the amount of trimming and sw is the sample 
winsorized standard deviation.

Assume a  = 0.05 and the amount to trim g = . 1. 
The right side of (1) contains four expressions. The first 
term, xt, is the sample trimmed mean. With regard to the 
second expression, tx a , Student’s t is two tailed, and de­
grees of freedom after trimming is v = n - 2g -1, where g is 
the percent to trim on one side. In the example above, n = 
10, g = .1 x 10 = 1, and thus, v = 10 - (2 x l) - l = 7. 
Therefore, tj a = t 975 = 2.365.

The third expression is a multiplier that is used to 
adjust the standard error (which is the fourth term) based 
on the amount of trimming. If there has been no trimming, 
this term reduces to 1, leaving the full expression of the 
standard error. As the amount of trimming increases, the 
denominator decreases, and this multiplier increases.

The final expression, the standard error, is in fact 
the focus of the current paper. The sw term is a robust 
estimate of the population variance, which is unbiased af­
ter being divided by the square root of the sample size. 
The sample winsorzed standard deviation is obtained by 
“winsorizing the data”, which is accomplished by recoding 
extreme values closer to the median.

For the current data, a 2 x 10% winsorization is 
accomplished by recoding the two most extreme values 
back (i.e, the 73 is recoded to an 85, and the 99 is recoded 
to a 93). Winsorization is a method of treating outliers 
without taking the harsh measure of deleting extreme val­
ues, but rather, recoding outliers to values that are toward 
the ends of the distribution but are more likely to be valid

than perturbations. The value of Sw for the example data 
is calculated as follows in Table 2. (See bottom of page.)

The standard deviation of the winsorized values 
is 3.2. For comparison, the standard deviation of the origi­
nal scores is 6.8.

An examination of the three right-most expres­
sions that constitute the bracketed interval of the trimmed 
mean indicates that Formula (1), although widely circu­
lated, certainly has no rigorous mathematical basis of sup­
port. There does not appear to be any justification for us­
ing the cdf of the t distribution, unless an underlying 
Gaussian data structure is strictly assumed. Moreover, 
modifications to v (e.g., Satterithwaite) are just as likely 
to ensure the sampling distribution of xt is Student’s t as is 
the use of the multiplier in the third term. However, for the 
purposes of this paper, attention is turned to the use of sw.

Wilcox (1996) and other textbooks that rely on 
some form of Formula (1) cite Tukey and McLaughlin 
(1963), which is the primary source for support of sw. This 
paper is highly recommended to graduate students because 
it reads more like a fireside chat than a technical statistical 
paper. In this paper, Tukey and McLaughlin search for a 
robust measure of dispersion for the numerator of the fourth 
expression in Formula (1), recognizing that use of the 
sample standard deviation, which has the nonrobust arith­
metic mean as its statistical engine, would be self-defeat­
ing in the presence of outliers.

The primary condition they sought to satisfy is 
that the average value of the denominator squared and the 
variance of the numerator are matched, or “in constant pro­
portion over as broad a spectrum” (p. 337) of distributions 
as possible. Examination of the sample standard deviation 
of the trimmed mean based on this primary condition was 
shown to be unsatisfactory. Inspection of the results indi­
cated that more consideration needed to be given to outli­
ers than simply deleting them; hence, the winsorization 
approach was adopted.

However, there was no theoretical dependency 
requiring Tukey and McLaughlin’s selection of the 
winsorized procedure as a robust measure of dispersion.

Table 2. Computing Winsorized Means.

Original 85 92 87 93 99 86 88 90 73 91
Ordered 73 85 86 87 88 90 91 92 93 99
Winsorized 85 85 86 87 88 90 91 92 93 93
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Indeed, Lax (1985) identified over 150 different robust 
measures of dispersion, and the list is certainly longer than 
that. How might some other robust measure of variability 
perform in creating a bracketed interval for the trimmed 
mean?

Purpose of the Study
Given that the choice of Sw was based on trial 

and error, and no theoretical underpinning, the purpose of 
this study is to examine the properties of bracketed inter­
vals formed by using some alternative measures of disper­
sion.

Smd = 5 .11.

Smdd
This statistic is similar to the mean deviation, 

except it is based on the absolute value of the average of 
the median subtracted from each score, instead of the mean. 
The formula is

Note that coincidentally, this value is the same 
for Smd. Also, because the final value is obtained via the
arithmetic mean for both Smd and Smdd, the resulting statis­
tics suffer from the lack of robustness ascribed to the arith­
metic mean.

Smad
Smad is similar to Smdd but with the important dif-

ference that instead of taking the mean of the absolute value 
of the deviations from the median, the median of the abso­
lute value of the deviations from the median is taken, and 
thus, Smad is a robust statistic. The median of the values in
the 3rd column in Table 1 is 3. Thus, Smad =3.

The mean is subtracted from each score, the ab­
solute value is taken, the results are summed, and then di­
vided by N. For example, consider the original scores 
above, where the mean is 88.4 and median is 89. The 
results are taken from Table 3. £ |X  - |i| = 46, and thus,

Sbs
The idea behind the Bunner-Sawilowsky approach 

is to take into consideration the resulting histogram due to 
winsorizing, and attempt to smooth the end points. For 
example, if in a larger data set the winsorization method 
requires the recoding of the highest and lowest 10 values, 
then the endpoints of the distribution will have a mass at 
both recoding points, as noted in the Figure 1.

Table 3. Computing Recorded Scores.

Original Scores |X-|i| |X-Median| 2x20% Bunner-Sawilowsky Recoded Scores 
73 15.4 16 86
85 3.4 4 87
86 2.4 3 86
87 1.4 2 87
88 .4 1 88
90 1.6 1 90
91 2.6 2 91
92 3.6 3 92
93 4.6 4 91
99 10.6 10 92

Methodology

Measures of Dispersion
Three common measures of variability are con­

sidered: Mean Deviation (Smd); Median Deviation (Smdd); 
and MAD, the median absolute deviation (Smad). (Note that 
only the Smad is considered a robust measure, as the other 
two procedures eventually incorporate an arithmetic mean.) 
We also present results for a new measure of dispersion 
described below that is noted as Sbs.All four measures are
compared with Sw.

Smd
The mean deviation is defined as

Because - Median| = 46, Smdd = 5.11.
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Figure 1. Mass At Endpoints Due To Winsorization

Suppose the winsorization was 2x10%, meaning for the 
original data set both the lowest and highest score would 
be recoded back one score when N = 10. In this case, the 
Sbs procedure is identical to the winsorization. However, 
suppose that a 2 x 2 0 %  recoding was desired, where two 
scores were to be recoded on each end of the distribution. 
In the original data set, the winsorized procedure would 
recode the 73 and the 85 to 86s, yielding a mass of three 
86s; and the 99 and 93 would be recoded to 92s, yielding a 
mass of three 92s.

The Bunner-Sawilowsky approach smooths this 
mass by recoding the 73 to 86, and the 85 to the next value 
score, which is an 87. Similarly, the 99 is recoded to a 92, 
but the 93 is recoded to a 91. The standard deviation of the 
recoded scores is 2.45.

To summarize, the values for the example in de­
scending order are S = 6.8, Smd = 5.1, Smdd = 5.1, Sw = 3.2, 
S = 3, and Sh = 2.45.mad 7 bs

Bracketed Intervals
Two criteria were evaluated with regard to the 

performance of the various measures of dispersion being 
substituted into Formula (1) above. The first was the Type 
I error, where a = 0.05. The second was the width of the 
resulting interval, which is simply the range (upper - lower).

Methodology

The study proceeded as follows: A Minitab Version 13.1 
macro was written to randomly select variates from a stan­
dard unit Gaussian (i.e., de Moivreian) distribution N(0,1), 
with samples of sizes n=30. Next, four models of outliers 
were used. They were:

• one wild score on the left of the distribution (1WL) 
two wild scores on the left of the distribution 
(2WL)

• three wild scores on the left of the distribution

(3WL)
three wild scores on the left and one wild score
on the right of the distribution (3WL-1WR)

The wild scores were created by taking the low­
est score and subtracting 3.5; and where there were two 
wild scores to the left, also taking the second lowest score 
and subtracting 3.0; and where there were three wild scores 
to the left, also taking the third lowest score and subtract­
ing 2.5; and where there were three wild scores to the left 
and one wild score to the right, also taking the highest score 
and adding 1.5. Because the [i and o of the population are
0 and 1, respectively, this procedure takes the lowest score 
out an additional 3.5 standard deviations further from the 
mean, the second score is moved 3 standard deviations 
further from the mean, and so forth. The various measures 
of dispersion were computed, the resulting bracketed in­
terval of the trimmed mean was calculated, the interval 
was checked to see if the population parameter was found 
within it, and the width of the interval was determined. 
Each experiment was repeated 1,000 times.

Results

The results are compiled in Table 4 below. Note that the 
common alternatives for measures of dispersion, the Mean 
Deviation, Median Deviation, and MAD resulted in Type
1 errors that were greatly inflated, typically from 0.05 to 
about 0.248, almost five times nominal alpha. Even the 
use of the robust MAD statistic performed poorly. Although 
the width of the resulting intervals are typically about 45% 
narrower than bracketed intervals formed with the 
winsorized standard deviation, these procedures will no 
longer be considered due to their lack of ability in preserv­
ing Type I errors to nominal alpha.

The dispersion measure based on the Bunner- 
Sawilowsky approach resulted in robust Type I errors ac­
cording to Bradley’s (1968) liberal criteria, where .5a < 
Type I error < 1.5a, or 0.025 - .075. These results were not 
within Bradley’s conservative criteria, however, which is 
.9a < Type I error < 1.la, or 0.045 - 0.055. The advantage 
of the Bunner-Sawilowsky approach, however, is that the 
resulting bracketed intervals are approximately 5.13% more 
narrow than the intervals formed by using the winsorized 
standard deviation.

Conclusion

The initial motivation for trying to improve on the brack­
eted interval of the trimmed mean was the consideration 
of no theoretical connection of the winsorized standard 
deviation to the trimmed mean. Furthermore, winsorization 
is a process that by definition creates a mass at the recoding 
points, which is at the extreme points of the distribution.
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Table 4. Width and Type I Error For Bracketed Interval of The Trimmed Mean For Various Alternatives of SW, Gaussian 
Distribution With Perturbations; 1,000 repetitions, α = 0.05.

The new recoding scheme (Sbs) examined in this 
paper ameliorated the mass at the recoded end points by 
smoothing out the tails of the distribution. The scheme in­
vestigated is equivalent to the usual winsorization when 
the number of values to be recoded is one. However, when 
additional points are identified as outliers, they are recoded 
to the next values closer to the median. If the four lowest 
values are noted as x1, x2, x3, and x4, and two values are to 
be recoded, then the usual winsorization procedure would 
recode both x1 and x2 to x3. However, the Sbs procedure 
would recode the value of x1 to x3 and x2 to x4. This, in 
effect, helps to reduce the mass at the recoding points.

Morever, the example data yielded the smallest 
estimate of variance for the Sbs as compared with all other 
competitors investigated. This indicates its resistence to 
the presence of outliers. This property directly translated 
into producing bracketed intervals with widths smaller than 
that achieved by using the winsorized standard deviation 
in the bracketed interval of the trimmed mean formula.

An inspection of the results indicated that the Sbs 
produced intervals that were more than 5% narrower than 
the usual winsorization. However, further study of this 
recoding scheme, and similar alternatives, is necessary 
because the Type I error rates were slightly inflated (e.g., 
≈ .06).
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