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CHAPTER 1: INTRODUCTION 

The intestinal epithelium is a natural barrier of the gastrointestinal tract (GIT), providing 

defense against extrinsic invasions. There has been increasing evidence that disruption of the 

epithelial barrier integrity is one of the major aetiological factors involved in several 

gastrointestinal disorders (GID), including pathogenic infections, obesity and diabetes, 

enterocolitis, inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) (Everard, 

2013). 

At birth, the human intestine is rather sterile, and with time, it develops and becomes 

influenced by factors including gut flora, use of antibiotics, diet, genetics and other 

environmental aspects. The normal human intestinal tract is colonized by a variety of gram 

positive and gram negative bacteria belonging - but not limited to - the genera Lactobacillus, 

Streptococcus, Bifidobacterium, Peptostreptococcus, Clostridium, Eubacterium, Bacteroides, 

Veillonella, Fusobacter and E. coli – largely in the colon (Greene and Klaenhammer, 1994).  

Intestinal microbiota play a crucial role in nutritional, physiological, immunological and 

protective functions of the host (Kareem et al, 2016). Resident microflora has shown 

involvement in preserving the balance of intestinal microbiota, reducing the colonization and 

invasion of pathogens, retaining the epithelial integrity (Belkaid et al, 2014), and the 

production of essential nutrients - namely vitamin K menaquinone and biotin. Recent 

evidence suggests that gut microbiota is involved in the control of body weight, energy 

homeostasis, and inflammatory responses; thus, playing a role in the pathophysiology of 

obesity (Kobyliak and Virchenko, 2016). In addition, there has been evidence indicating 

associations between diseases and a host’s microbial composition, including - but not limited 

to - metabolic syndrome, diabetes (Carlson et al, 2016), non-alcoholic steatohepatitis 

(Everard, 2013), and inflammatory bowel diseases; among many other gastrointestinal 
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diseases. Various studies have suggested that gut microbiota play a crucial role in the 

development of fat mass and altered energy homeostasis. Supporting evidence has been 

demonstrated in studies conducted on germ-free mice (mice raised in absence of 

microorganisms), in which the former were leaner compared to mice harboring microbiota 

since birth. One proposed mechanism is that gut microbiota have the ability to increase 

energy gathered from the diet and modify host signaling pathways associated with energy 

balance and metabolism. Other studies have hypothesized that gut microbiota play an 

important role in the onset of insulin resistance; thus, type II diabetes (TIID) (Everard, 2013).  

Probiotics 

One major contributor to the balance of gut microbiota is probiotics. The World Health 

Organization (WHO) regards probiotics as living microorganisms which have beneficial 

health effects when administered in appropriate amounts (Morelli and Capurso, 2012). Many 

of the probiotic bacteria are lactic acid bacteria, and are useful in the treatment of 

dysfunctions which disturb intestinal microflora and abnormal gut permeability (Lee and 

Salminen, 1995).  

The Western Civilization has seen an increase in gut-related health problems, such as 

autoimmune and inflammatory diseases, antibiotic-induced diarrhea, C. difficile-induced 

colitis, urinary tract infections, etc.… Randomized double-blind studies have shown the 

effectiveness in the treatment, management, and/or prevention of the former, by providing 

protective barriers, enhancing immune responses, and clearing pathogens in the 

gastrointestinal - as well as urinary - tract.  

In diarrhea-related diseases, probiotics may induce a general immune response, in 

addition to increasing IgA. In inflammatory-related diseases, probiotics are thought to 

decrease disease activity and promote remission. Decreasing inflammation is thought to occur 



3 

 

 

 

by decreasing pathogenic bacterial growth through the enhancement of barrier functions 

which prevents the invasion of tight junctions, by reducing gut pH and stimulating 

non-specific and specific immune responses. A study showed that the administration of 

Lactobacillus salivarius, E. coli Nissle, and S. boulardii resulted in fewer relapses and steroid 

use among IBD patients who received these probiotics. Other studies revealed that patients 

with IBS showed lower amounts of Lactobacillus and Bifidobacterium colonies, and an 

increase in anaerobic Clostridium spp which has taken place of Bifidobacterium spp and 

Bacteroides spp. A study conducted in Italy (Palumbo et al, 2016) with the aim to investigate 

the potential benefits of probiotics administration with drug therapy on ulcerative colitis (UC) 

patients found that over a course of 2 years, patients treated with the combination of drug 

therapy and probiotics showed overall better results and better improvements of general 

clinical conditions than patients who were administered the drug therapy alone. 

Several studies have shown that both diet-induced and genetic obesity and TIID mice 

displayed change in gut microbiota; mostly reductions in Bifidobacteria, which has been 

associated with improvement in mucosal barrier in mice. One study aimed to determine if 

there is an association between Bifibacterium spp and metabolic endotoxemia – defined as 

increased plasma concentrations of the bacterial endotoxin lipopolysaccharide (LPS) – in 

high-fat-diet-induced diabetic mice. Metabolic endotoxemia has been linked with the onset of 

high-fat-diet-induced obesity and TIID. In the study, they demonstrated that a high-fat diet 

significantly decreased Bifidobacteria, and significantly increased endotoxemia. When 

supplemented with a dietary fiber, Bifidobacteria levels were significantly restored and 

positively correlated with improved glucose tolerance, glucose-induced insulin secretion, 

reduced endotoxemia, as well as inflammation (Cani et al, 2007); another phenomenon that 

has been associated with obesity and metabolic disorders (TIID and insulin resistance) 

(Wellen and Hotamisligil, 2005). 
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One suggested mechanism is that a high-fat diet may alter the balance in our gut flora, 

subsequently increasing gut permeability. This results in increased absorption of LPS; giving 

rise to inflammation. Consequently, a host of dysfunctions arises, falling within metabolic 

disorders (Cani et al, 2008). 

Prebiotics 

Gibson and Roberfroid define prebiotics as “nondigestible food ingredients that 

beneficially affect the host by selectively stimulating the growth and/or activity of one or a 

limited number of bacteria in the colon” (Kleniewska et al, 2016). In simpler terms, 

prebiotics are considered the nutrients that fertilize probiotics. The most commonly thought 

of or consumed prebiotics are dietary fibers. Dietary fibers are known to be involved in 

maintaining healthy body weight, improving cardiovascular health, supporting overall 

digestive health and overall growth of intestinal microbiota. Several other commonly known 

and used prebiotics include inulin, guar gum, galacto-oligosaccharide (GOS), and β-glucan 

etc.…  

Although all prebiotics are fiber, not all fibers are considered prebiotic. The major 

difference between prebiotics and dietary fibers is that the former are selectively beneficial to 

specific probiotics whereas the latter generally benefit a variety of gut microbiota. To be 

classified as a prebiotic, the ingredient must be resistant to gastric acidity and hydrolysis by 

human enzymes and resistant to absorption in the upper GIT. In addition, classification is 

based on whether the ingredient is fermented by gut microflora, and whether it has proven to 

stimulate intestinal bacterial growth associated with health and well-being. To date, all 

known and studied prebiotics are carbohydrates, primarily oligosaccharides. An 

oligosaccharide is a molecule containing a small number, usually 2 to 10, monosaccharides 

connected by glycosidic bonds. GOS is an oligosaccharide comprised of mainly galactose, 
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and some lactose and glucose. It is produced commercially from lactose by β-galactosidase. 

FOS is an oligosaccharide fructan naturally occurring in plants or commercially synthesized 

from sucrose. Acacia gum – also known as gum Arabic – is a naturally occurring gum 

consisting of the hardened sap of various species of the acacia tree. Compared with the 

negative controls, the number of Bifidobacteria and Lactobacilli after 4 weeks of 

consumption of AG were significantly enhanced (Camale et al, 2008). 

Human breast milk contains lactose and relatively large quantities of diverse 

oligosaccharides - including nondigestible oligosaccharides - both of which influence gut 

microbiota profile, as lactose is a carbohydrate bacteria feed on for energy source. In addition, 

the oligosaccharide composition of human milk protects against pathogens by stimulating 

bifidus bacterial growth, inhibiting pathogenic binding to host epithelial cells, and creating an 

acidic environment that inhibits pathogenic growth. These properties may be attributed to the 

reduced infection rates in breast-fed infants. Supplementation of low levels of GOS in infant 

formula seemed to enhanced stool frequency, reduce fecal pH and stimulate intestinal 

Bifidobacteria and Lactobacilli compared with formula free of GOS (Cai et al, 2008). 

The mechanism by which prebiotics work and benefit the gut flora can be simplified as 

follows. The intestinal microflora salvage energy by fermenting carbohydrates that bypass 

digestion in the upper GIT. This fermentation process produces carbon dioxide, methane, 

hydrogen, lactate and short-chain fatty acids (SCFA) - mainly acetate, propionate and 

butyrate. The epithelial colonic cells utilize the produced SCFA - preferentially butyrate - as 

an energy source for differentiation and proliferation. In addition, generally, the production of 

SCFA and subsequently their metabolism has been proven to contribute to the reduction of 

luminal pH, which in turn inhibits the growth of pathogenic bacteria and reduces peptide 

degradation, resulting in reduction in ammonia formation (Slavin, 2013). 
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Prebiotics have also shown to be associated with enhanced lipid profiles. Rats fed a diet 

supplemented with oligosaccharides showed lower levels of serum triacylglycerol and 

phospholipid concentrations (Fiordaliso, 1995). In addition, inulin supplementation may 

reduce serum cholesterol as it has been associated with enhanced secretion of bile salts and 

inhibition of HMG CoA reductase activity – a key enzyme in the pathway of cholesterol 

synthesis (Kim & Shin, 1998; Trautwein et al, 1998). 

Antibiotics 

Antibiotics - also called antibacterials - are a class of medication used to inhibit or slow 

down bacterial growth. Not all antibiotics work in the same manner; bactericidal antibiotics 

interfere with either the formation of the bacterium’s cell wall or its contents while 

bacteriostatic antibiotics target bacterial multiplication (Finberg et al, 2004). Furthermore, 

some antibiotics target aerobic bacteria and others work against anaerobic bacteria.  

The main classifications of antibiotics include - but are not limited to - β-lactams, 

fluoroquinolones, macrolides, tetracyclines and aminoglycosides. β-lactams act by hindering 

the bacterium’s ability to form its cell wall. Fluoroquinolones target and inhibit the 

bacterium’s ability to produce DNA, making it difficult to reproduce. Macrolides, 

tetracyclines and aminoglycosides generally inhibit bacterial protein synthesis (Hooper, 

2001). Table 1 illustrates the specific targets involved in bacterial growth, of the different 

classes of antibiotics. 

Christensenella minuta 

C. minuta is a novel gram negative, non-motile, strictly anaerobic, non-spore-forming 

bacterium. C. minuta is shaped like a straight rod with tapered ends. The bacterium was given 

its name Christensenella after the late professor Henrick Christensen, for his contributions to 

bacteriology, and minuta refers to its small cell and colony size. It was designated as strain 
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YIT 12065 and identified based on 16S rRNA gene sequence. The bacterium belongs to the 

family Christensenellaceae fam. nov. within the order Clostridiales of the phylum Firmicutes 

(Morotomi et al, 2012).  

There has been belief that C. minuta gut-profile is highly heritable and promotes a lean 

host phenotype of which the biological mechanism is yet to be determined. C. minuta was 

isolated in human feces, and found to be abundant in lean individuals versus obese 

individuals. A study was conducted with the aim to demonstrate the role of the human 

genome in shaping the gut microbiome, in which they found that the Christensenellaceae 

family was the most heritable taxon, and was co-related in a hub of heritability with another 

family of bacteria belonging to the phylum Firmicutes; Dehalobacteriaceae. They found a 

negative relation between the families Bacteroidaceae and Bifidobacteriaceae. When they 

studied BMI profiles, Christensenellaceae family was significantly associated with lean BMI; 

as well as Dehalobacteriaceae. Within the study, twin participants were selected as gut 

microbiome donors; one twin was lean and the other obese. They transplanted the gut 

microbiome from the lean twin into a group of germ-free mice and found that after 21 days, 

the mice became lean. In contrast, when the gut microbiome of the obese twin was 

transplanted into a group of germ-free mice, the mice showed obese characteristic features. 

Interestingly, when they also transplanted the gut microbiome from the obese twin into 

germ-free mice and amended with Christensenella, the mice showed lean characteristic 

features. They found that after 21 days, the group of mice transplanted with the obese twin’s 

microbiome had higher percent body weight change and percent total adiposity compared to 

the reduced percent weight change and total adiposity demonstrated in the group of mice that 

received the obese twin’s microbiome amended with Christensenella (Goodrich et al, 2014). 

However, this study was carried out on germ-free mice, a phenomenon that does not 

represent reality; especially in the human host. Nonetheless, it is intriguing as to whether C. 
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minuta may play a role in the pathophysiology of obesity; thus, suggesting it as a potential 

probiotic for the treatment and management of chronic diseases associated; specifically, those 

associated with obesity. 

 Knowledge and evidence concerning whether C. minuta gut profile is truly associated 

with obesity is lacking. In addition, the mechanism behind this possible association is 

intriguing, and yet to be discovered. The factors that characterize and contribute to C. minuta 

and its activity are crucial to better understand how the profile of this bacterium may be 

linked to the onset of obesity and diabetes, as well as balance in the gut microbiome.  
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CHAPTER 2: OBJECTIVE OF THE STUDY 

The aim of the current study was to identify specific prebiotics that can stimulate growth 

of C. minuta and to determine their optimal conditions for growth stimulation. This study also 

sought to determine the sensitivity to various antibiotics including sulfamethoxazole, 

azithromycin, trimethoprim, ciprofloxacin, erythromycin, and oxytetracycline. 
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CHAPTER 3: METHODOLOGY 

Culture medium 

 Reinforced Clostridial Medium (RCM) was the medium of choice for C. minuta culture. 

To make 1L of medium, 38g of the already-packaged powder is added to distilled water; thus, 

measurements for all experiments conducted were based on the former. The mixture was then 

brought to boil – normally around 1 hour or until mixture is well homogenized – and 

autoclaved for 45-60 minutes to sterilize from any possible contamination. RCM free of 

dextrose was prepared by mixing all other ingredients; according to their original amounts in 

the package. Medium was then prepared in the same manner as original RCM.  

Prebiotics  

Six different prebiotics were used to test their effects on C. minuta growth; GG, IMO, 

GOS, inulin, AG, and FOS. The prebiotics solutions were prepared by weighing and adding 

0.45g prebiotics into 45 mL RCM. Concentrations of the saccharides were based on the 

concentration of dextrose in RCM, as to have comparable results between all the prebiotics 

and dextrose. The prebiotics’ effects were tested in the co-presence and absence of dextrose 

in the media, under different concentrations of prebiotic: dextrose, illustrated as follows: 

A. 0.5% prebiotic  

B. 1:1 – 0.25% prebiotic: 0.25% dextrose  

C. 1:1 – 0.5% prebiotic: 0.5% dextrose  

D. 1:2 – 0.25% prebiotic: 0.5% dextrose  

E. 2:1 – 0.5% prebiotic:0.25% dextrose 

Control I: RCM (free of saccharide) 
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Control II: 0.5% dextrose 

In total, 62 test tubes were prepared: 6 prebiotics x 5 conditions - carried out in duplicate 

- and 2 different controls. All conditions were prepared under the presence of N2/CO2 to 

prevent the exposure to O2. 108 cfu C. minuta was added into each tube using a syringe, in the 

presence of a Bunsen Burner. Tubes were then incubated at 37⁰c, and absorbance was 

recorded hourly using a plate reader in spectrophotometer.  

Antibiotics  

Six different antibiotics were used when testing resistance vs sensitivity of C. minuta; 

ciprofloxacin, erythromycin, trimethoprim, oxytetracycline, sulfamethoxazole and 

azithromycin. The following illustrates how the antibiotics’ efficacy were tested: 

A. 1ɥg/mL antibiotic  

B. 5ɥg/mL antibiotic  

C. 10ɥg/mL antibiotic  

D. 50ɥg/mL antibiotic  

Control: RCM (antibiotic-free) 

  In total, 49 tubes were prepared: 6 antibiotics x 4 conditions – each carried out in 

duplicate – and a control. All conditions were prepared under the presence of N2/CO2 to 

prevent the exposure to O2. 108 cfu C. minuta was added into each tube using a syringe, in the 

presence of a Bunsen Burner. Tubes were incubated at 37⁰c, and absorbance was recorded 

hourly using a plate reader in spectrophotometer. 
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CHAPTER 4: RESULTS AND DISCUSSION 

Prebiotics  

 Figure 1 illustrates the growth of C. minuta in controls I and II; the former being a 

condition free of saccharide, and the latter containing the monosaccharide dextrose. There is 

notable enhancement of C. minuta growth seen by the effects of dextrose compared to lack of 

any saccharide. This shows the significance of the presence of saccharide for optimal C. 

minuta growth. 

Condition A: Condition A was carried with the purpose of determining which oligosaccharide 

showed promise as a potential dietary supplement for possible in vivo stimulation of C. 

minuta. At a concentration of 0.5% prebiotics, and the absence of dextrose, all prebiotics 

seem to have the same growth stimulation on C. minuta up until 6 hours, as noted by the 

recordings illustrated in Figure 2. After 6 hours, absorbance in the presence of GOS and FOS 

increases, reflecting better enhanced C. minuta growth compared to the other prebiotics; yet 

slightly less stimulating than dextrose. An explanation could be as simple as the fact that 

dextrose is a monosaccharide that is easily broken down to provide energy. The sample 

containing AG records the lowest absorbance rates, reflecting least stimulating effects on C. 

minuta growth; only slightly better than growth in the absence of any saccharide (control I).  

Condition B: As seen in Figure 3, when equal amounts of prebiotic and dextrose are present, 

ratio of 1:1, 0.25%: 0.25%, all samples have close absorbance up to 10 hours. Interestingly, 

after 11 hours, absorbance in the presence of AG increases to reach 1.1 at 14 hours, and 

remains constant throughout. Control II follows suit in stimulating C. minuta growth. The 

prebiotics GOS, FOS, GG, IMO and inulin all appear to record similar absorbance, reflecting 

similar enhancing effects the growth of C. minuta; in contrast to condition A where GOS is 

the leading prebiotic in stimulating growth, followed by FOS.  
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Condition C: When equal amounts of prebiotic and dextrose are added at 0.5% each, ratio 1:1, 

all samples have close absorbance recordings throughout the first 10 hours. After 10 hours, 

the sample containing GOS notably has increased absorbance recordings in comparison to the 

GOS, GG, IMO and inulin, and in comparison to condition B in which a ratio of prebiotic: 

dextrose is also 1:1 but at half the concentration. The AG sample takes the lead in absorbance 

recording; reflecting optimal C. minuta growth stimulation compared to all other samples; 

reflected in Figure 4. Control II appears to enhance growth better than FOS, GG, IMO and 

inulin, yet at a slightly lesser extent than does GOS. IMO and FOS reach the lowest 

absorbance recordings between all prebiotics, with slightly better stimulating activities seen 

with GG and inulin. 

 It is interesting that when equal amounts of prebiotic and dextrose are added in condition 

B – 0.25% each – control II appears to record higher absorbance than GOS sample whereas 

equal concentrations – 0.5% each - of GOS and dextrose seem to record higher absorbance 

than dextrose alone (control II). The other 4 prebiotics do not seem to have a big difference in 

absorbance recorded than that seen in condition B, neither do they appear to optimize C. 

minuta growth as well as AG, or GOS-dextrose mixture. Nevertheless, all samples record 

absorbance markedly higher than control I, in which no saccharide is present. 

Condition D: Represented in Figure 5, in condition D, the amounts of dextrose added was 

double that of prebiotic: 1:2. The sample containing AG-dextrose shows stimulatory activities 

to be optimal for C. minuta growth; as noted by the absorbance recordings; followed by 

control II. Interestingly, the sample containing 1:2 GOS: dextrose seems to perform similarly 

to the samples containing GG, IMO, FOS and inulin.  

Condition E: When the amount of prebiotic added is double the amount of dextrose - ratio of 

2:1 - the GOS sample leads with an absorbance of 0.55 at 9 hours, and increases to reach 0.9 
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at 12 hours, after which the AG sample takes the lead with an absorbance of 0.99 at 13 hours, 

and increases to reach 1.2 after 15 hours and remains constant, during which GOS is second 

best in stimulating C. minuta growth. The other 4 prebiotic samples record absorbance 

between 0.65 and 0.78 after 14 hours and beyond, with inulin and GG taking the lead among 

the 4. 0.5 % dextrose (control II) does have an effect significantly higher than those by GG, 

IMO, FOS and inulin. The stimulatory effect of the AG-dextrose combination, however, does 

not appear to be significantly greater than the other samples, as seen in conditions B, C, and 

D; as illustrated by Figure 6.  

There appears to be a possible interaction between AG and dextrose, resulting in an 

optimized stimulation of C. minuta growth. When AG is present alone (Condition A), there is 

little effect on C. minuta growth in comparison to control I. However, in all other conditions 

(B, C, D and E) in the presence of different ratios of AG: dextrose, C. minuta growth is 

optimized and significantly comparable to that of the other 5 prebiotics-dextrose mixtures. In 

contrast, the co-presence of GOS and dextrose does not enhance C. minuta gravely, compared 

to control II and the AG-dextrose mixture. However, when GOS is the only saccharide 

present, it is the second best in optimizing C. minuta growth following dextrose (control II). 

These results suggest C. minuta may not prefer consuming GOS when dextrose is present, but 

resorts to its consumption – and grows well – when GOS is the only saccharide available; 

hence, refuting any theory of an interaction between GOS and dextrose to optimize growth. 

In addition, results do not indicate any interactions between dextrose and FOS, GG, IMO or 

inulin.  

When ratios of AG: dextrose are 1:1, 1:2 or 2:1, it appears the mixture has similar 

stimulating effects on C. minuta growth. There is a slightly notable enhancing effect of GOS: 

dextrose at ratios of 1:1 and 2:1 where the concentration of GOS is 0.5%. In general, 
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increasing the concentrations or changing the ratios of prebiotic: dextrose does not have any 

significant differences in stimulatory effects on the growth of C. minuta. This suggests that 

ratio does not play a significant role in enhancing the interaction between AG and dextrose, 

nor does it result in an interaction between dextrose and GOS or the remaining 4 prebiotics. 

In addition, doubling the concentration from 0.25% to 0.5% of prebiotic or dextrose does not 

result in significant changes in the stimulatory effects of the prebiotics, nor does it optimize 

the interaction between AG and dextrose (Figure 7); suggesting that the interaction between 

AG is not induced or formed by changing the concentrations of either saccharide. 

 A combination of AG and dextrose demonstrates to be an optimal mixture in culturing C. 

minuta as a probiotic supplement. GOS may serve as a promising prebiotic supplement to 

optimize the growth and activity of C. minuta in vivo. Even though the presence of dextrose 

alone is enough to stimulate and enhance the growth and survival of C. minuta in vitro, it is 

not the preferable supplement. The fact that dextrose is a monosaccharide, in vivo, it will be 

easily digested and broken down by human enzymes and will not reach the colon.  

Antibiotics 

 At concentrations of 1μg/ml, 5μg/ml, and 10μg/ml, sulfamethoxazole does not appear to 

have any inhibitory activity on the growth and survival of C. minuta; represented in Figure 8. 

Even at a concentration as high as 50μg/ml, C. minuta growth is slowed down yet not 

hindered in the presence of sulfamethoxazole. 

 Ciprofloxacin at a concentration of 1μg/ml does not show inhibitory activity on C. 

minuta growth; however, growth is comparably lower in the presence of this antibiotic 

compared to sulfamethoxazole, azithromycin and trimethoprim at 1μg/ml. as concentration 

increases to 5μg/ml, 10μg/ml, and 50μg/ml – respectively – ciprofloxacin acts on inhibiting C. 

minuta growth; as noted by the near-constant absorbance in Figure 9 at these concentrations.  
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Similarly to sulfamethoxazole, the activities of azithromycin and trimethoprim (Figures 

10 and 11, respectively) have no effect on inhibiting C. minuta growth in concentrations of 

1μg/ml, 5μg/ml, and 10μg/ml; however, a concentration as high as 50μg/ml of both 

azithromycin and trimethoprim work in a similar manner as sulfamethoxazole but only 

slowing down the growth of C. minuta. 

Represented in Figure 12, when 1μg/ml of erythromycin were used in order to test C. 

minuta survival, growth was not hindered, but rather slowed down in comparison to 

sulfamethoxazole, azithromycin and trimethoprim. The use of 5μg/ml of erythromycin had 

similar effects as 1μg/ml, by which C. minuta growth was reduced compared to 5μg/ml of 

sulfamethoxazole, azithromycin and trimethoprim, yet not inhibited. As concentration was 

increased to 10μg/ml and 50μg/ml, respectively, the activity of erythromycin appeared to 

hinder growth.  

 Figure 13 illustrates the survival of C. minuta in the presence of oxytetracycline. At all 4 

concentrations, 1μg/ml, 5μg/ml, 10μg/ml, and 50μg/ml, oxytetracycline works on inhibiting 

C. minuta growth from the start; as seen in the near-constant absorbance; suggesting C. 

minuta has high susceptibility to the mode of action of oxytetracycline.  

 The increasing absorbance rates noted in the higher concentrations of sulfamethoxazole, 

trimethoprim and azithromycin indicate possible resistance by C. minuta to these antibiotics. 

On the contrary, even at the lowest concentration of 1μg/mL, oxytetracycline shows 

inhibitory effects on the growth of C. minuta. As concentration increases, ciprofloxacin 

appears to target the growth of C. minuta. The results are in line with data concerning the 

activity of these antibiotics. Sulfamethoxazole and trimethoprim generally target aerobic 

bacteria. C. minuta - being an anaerobic gram negative bacterium - is not a preferential target 

for these antibiotics. Ciprofloxacin – belonging to the class of fluoroquinolones – targets a 
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broad-spectrum of gram positive and gram negative bacteria. Similarly, oxytetracycline’s 

activity is broad and acts on the inhibition of both gram positive and gram negative bacteria. 

Erythromycin and azithromycin belong to the same class of antibiotics, macrolides; 

azithromycin being a derivative of the former. It is intriguing as to why azithromycin had no 

inhibitory effects on growth of C. minuta whereas erythromycin succeeded in slowing down 

growth. A possible explanation may be that although erythromycin generally works against 

gram positive bacteria, higher dosages have proven to be effective against certain susceptible 

gram negative bacteria; however, the true mechanisms by which erythromycin and 

azithromycin are still under study. The unknown mechanisms may serve as an explanation to 

the differences in survival of C. minuta – as well as other bacteria – by the action of both 

antibiotics.   
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CHAPTER 5: CONCLUSION 

 Christensenella minuta is a novel bacterium with a heritable gut profile, that may be 

associated with a lean host and the pathophysiology of obesity. C. minuta grows well in the 

presence of the monosaccharide dextrose, as well as in a combination of AG and dextrose; a 

mixture for optimal C. minuta culturing. The oligosaccharide GOS appears to have great 

enhancing effects – similar to that of dextrose – when it is the only saccharide present for use; 

thus, suggesting it as a promising supplement to stimulate C. minuta growth and activity in 

vivo. The survival of C. minuta is hindered by the inhibitory activities of oxytetracycline, at 

concentrations as low as 1μg/mL. Growth is also hindered by activities of ciprofloxacin, and 

slowed down or reduced by erythromycin. C. minuta appears to be resistant to the inhibitory 

activities of sulfamethoxazole, azithromycin and trimethoprim, at concentrations as high as 

50μg/mL.  

Future implication: Further research is needed in order to better understand and determine 

the stimulating effects of different oligosaccharides on C. minuta growth in vivo. Future in 

vivo experimental trials on the efficacy of C. minuta against obesity are crucial, and may give 

insight as to the development of C. minuta as a probiotic supplement to prevent and/or 

manage chronic diseases associated with obesity; as the one study conducted on germ-free 

mice does not reflect reality. Furthermore, the true mechanism by which different antibiotics 

work or fail to work on hindering the growth of C. minuta is yet to be determined. In addition, 

information concerning the susceptibility of C. minuta to beta-lactams is needed; specifically, 

penicillin, as it is one of the most common and broad-spectrum antibiotics used. 
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TARGET MODE OF ACTION CLASS/SUBCLASS 

Cell wall synthesis Cell wall 
components/cell 
membrane components 

Β-lactams 
Cephalosporin 
Vancomycin 
Bacitracin  

Nucleic acid synthesis Folate synthesis Sulfamethoxazole 
Trimethoprim 

DNA synthesis Quinolones 
(ciprofloxacin) 

RNA synthesis Rifampin 

Protein synthesis 50S subunit Macrolides 
(azithromycin, 
erythromycin) 
Clindamycin  

30S subunit Tetracyclines 
(oxytetracycline) 
Aminoglycosides  

 

Table 1 Target of different classes and sub-classes of antibiotics on bacterial inhibition. 
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 Figure 14 Absorbance recorded by two sample controls; control I in the absence of 
saccharide, control II contains dextrose 
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 Figure 15 Absorbance recordings of C. minuta growth in condition A; 0.5% prebiotic 
compared to control I and control II; throughout 18 hours 
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Figure 16 Absorbance recordings of C. minuta growth in samples containing a 1:1 ratio of 
0.25% prebiotic and dextrose, compared to control I and II, throughout 18 hours (Condition 
B)  

 

 

  

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

A
B

S
O

R
B

A
N

C
E

TIME (HRS)

Control I Control II GOS AG FOS Inulin GG IMO



23 

 

 

 

Figure 17 Absorbance recordings of C. minuta growth in condition C: a 1:1 ratio of prebiotic: 
dextrose, at a concentration of 0.5%; compared to control I and II 
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Figure 18 Absorbance recordings of C. minuta growth in condition D: samples containing a 
1:2 ratio of prebiotic: dextrose (0.25%: 0.5%), compared to control I and II 
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Figure 19 Absorbance recordings of C. minuta growth in condition E: samples containing a 
prebiotic: dextrose ratio of 2:1 (concentrations of 0.5%:0.25%), compared to control I (no 
saccharide) and control II (0.5% dextrose) 
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Figure 20 Absorbance recordings of C. minuta growth in stimulated by AG throughout 18 
hours, in conditions A, B, C, D, and E; compared to control I (no saccharide) and control II 
(0.5% dextrose) 
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Figure 21 Absorbance recorded reflecting C. minuta growth at 4 different concentrations of 
sulfamethoxazole: 1μg/mL, 5μg/mL, 10μg/mL, and 50μg/mL; compared to control in which 
no antibiotic was present 
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Figure 22 Absorbance recorded reflecting C. minuta growth at 4 different concentrations of 
ciprofloxacin: 1μg/mL, 5μg/mL, 10μg/mL, and 50μg/mL; compared to control in which no 
antibiotic was present 
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Figure 23 Absorbance recorded reflecting C. minuta growth at 4 different concentrations of 
azithromycin: 1μg/mL, 5μg/mL, 10μg/mL, and 50μg/mL; compared to control in which no 
antibiotic was present 
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Figure 24 Absorbance recorded reflecting C. minuta growth at 4 different concentrations of 
trimethoprim: 1μg/mL, 5μg/mL, 10μg/mL, and 50μg/mL; compared to control in which no 
antibiotic was present 
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Figure 25 Absorbance recorded reflecting C. minuta growth at 4 different concentrations of 
erythromycin: 1μg/mL, 5μg/mL, 10μg/mL, and 50μg/mL; compared to control in which no 
antibiotic was present 
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Figure 26 Absorbance recorded reflecting C. minuta growth at 4 different concentrations of 
oxytetracycline: 1μg/mL, 5μg/mL, 10μg/mL, and 50μg/mL; compared to control in which no 
antibiotic was present 
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ABSTRACT 

THE POTENTIAL STIMULATION OF C. MINUTA GROWTH BY 
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Degree: Master of Science 

Gut microbiota play a crucial role in maintaining intestinal health and integrity; a 

feature that is both heritable, as well as affected by the environment and lifestyle. Probiotics 

are supplements containing live microorganisms that act in a similar manner to gut microflora, 

and maintain a balance in the latter. C. minuta is a novel bacterium in the gut that was found 

to be associated with reduction in body weight and adiposity. The aim of this study was to 

determine the possible effects of different prebiotics on C. minuta growth, and the survival of 

C. minuta in response to different antibiotics. Six different prebiotics, GOS, FOS, GG, AG, 

IMO and inulin were added to C. minuta culture, and growth was compared in the presence 

and absence of dextrose; at different ratios. Apart from optimal growth noted in the presence 

of solely dextrose, the sample containing GOS alone came in second in optimizing C. minuta 

growth. the mixture of AG and dextrose appeared to optimize C. minuta growth; in contrast 

to the slight enhancing activity seen by AG alone. When survival was tested in the presence 

of six antibiotics at 4 different concentrations, sulfamethoxazole, trimethoprim, azithromycin, 

erythromycin, oxytetracycline and ciprofloxacin, C. minuta showed to be susceptible to 
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oxytetracycline at a concentration as low as 1μg/mL; and higher concentrations of 

ciprofloxacin. Erythromycin appeared to slow down or reduce growth compared to 

sulfamethoxazole, trimethoprim, and azithromycin.  

Key words: Christensenella minuta - prebiotics - probiotics - antibiotics - gut microflora – 

obesity 
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