
Journal of Modern Applied Statistical
Methods

Volume 1 | Issue 1 Article 16

5-1-2002

An Error In Statistical Logic In The Application Of
Genetic Paternity Testing
Ernest P. Chiodo
Wayne State University

Joseph L. Musial
Henry Ford Health System, Detroit, MI

J. Sia Robinson
East Side Academy, Detroit, MI

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for
inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
Chiodo, Ernest P.; Musial, Joseph L.; and Robinson, J. Sia (2002) "An Error In Statistical Logic In The Application Of Genetic
Paternity Testing," Journal of Modern Applied Statistical Methods: Vol. 1 : Iss. 1 , Article 16.
DOI: 10.22237/jmasm/1020255420
Available at: http://digitalcommons.wayne.edu/jmasm/vol1/iss1/16

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss1/16?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss1/16?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal Of Modem Applied Statistical Methods 
Winter 2002, Vol. 1, No. 1, 126-130

Copyright © 2002 JMASM, Inc. 
1538 - 9472/02/$30.00

An Error In Statistical Logic In The Application Of Genetic Paternity Testing

Ernest P. Chiodo Joseph L. Musial
Internal Medicine, School of Medicine Department of Internal Medicine

Wayne State University Henry Ford Health System

J. Sia Robinson 
East Side Academy, Detroit, Michigan

A Bayes probability computer program was written in Fortran to examine issues related to genetic paternity testing. 
An application was given to demonstrate the effects improper assumptions of prior probability of culpability. The 
seriousness of such errors include the potential of assigning paternity to wrongly accused men, or wrongly refuting 
paternity.
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Introduction

Genetic testing has been widely used in criminal cases as 
well as in cases involving establishment of paternity. In 
the United States, the incidence of paternity cases appears 
to be very large especially when compared to live birth 
rates. For example, the Centers for Disease Control re­
ports that there were 3,959,417 live births nationally dur­
ing calendar year 1999 (Ventura, Martin, Curtin, Menacker, 
& Hamilton, 2001). Among these births, a total of
I,308,560 (33%) were delivered by unmarried women. 
Unpublished data from The Wayne County Circuit Court, 
located in Southeastern Michigan, notes that there were
II,104 case filings during the year 2000 (Wayne County 
Circuit Court, 2001). Case filings are generated when le­
gal paternity has not been established.

Every legal practitioner dealing with genetic test­
ing in either a criminal or paternity context should know 
how this testing can lead to incorrect conclusions. The sta­
tistical assumptions made during paternity testing can cause 
the results of testing to be misleading and unreliable. Al­
though the focus of this article is on a serious error in sta­
tistical methodology frequently occurring in paternity test­
ing, the same error may also occur in criminal DNA
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testing with dire consequences. An attorney practicing 
criminal or family law needs to understand the statistical 
assumptions that may cause the results of genetic testing 
to be misleading and unreliable. This understanding allows 
the knowledgeable advocate an opportunity to dispute test­
ing results that are commonly and wrongly assumed to be 
infallible.

The mathematics in this article is limited in scope 
to the application of a simple formula. In addition, there is 
incentive to engage in the minimal mental effort needed to 
understand this article, because it provides the thoughtful 
attorney with a powerful advocacy tool. The central issue 
is the common error of assuming equal prior (pre-test) prob­
abilities for an event in the face of ignorance concerning 
the actual probabilities. This common error called the “prin­
ciple of indifference” may cause genetic testing using Bayes 
formula to be misleading (Issac, 1995).

The probability of the event A is written as P (A) 
and operates under the condition: 0 < P (A) < 1.0. An 
impossible event has a probability of zero and a certain 
event has a probability of 1.0. Probabilities are mutually 
exclusive, which means there is no overlap. Tossing a coin 
illustrates this concept. There can be only one possible 
outcome: heads or tails. However, rarely are events di- 
chotomous, straightforward probabilities. Instead, there 
are frequently a significant number of previous research 
findings with different probability levels.

This provides the entry point of Bayesian statis­
tics. Thomas Bayes was an 18th century English clergyman 
who devised a formula to generate a conditional probabil­
ity (Borowski & Borwein, 1991; Freund, 1973). The basic 
tenet of Bayesian statistics is the inclusion of conditional 
or prior probabilities. Often, the prior probabilities are 
not mechanically or deterministically generated, but rather, 
are based on expert judgment. Motulsky (1995) noted “usu­
ally the prior probability is not a real probability but is 
rather a subjective feeling. Some statisticians (Bayesians) 
think it is okay to convert feelings to numbers (“99% sure”
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or “70% sure”), which they define as the prior probability. 
Other statisticians (frequentists) think that you should never 
equate subjective feelings with probabilities” (p. 145).

The field of inferential statistics maintains a cer­
tain element of inaccuracy. Specifically, there are two types 
of errors associated with hypothesis testing: (1) a Type I 
error, or “false-positive”, which occurs when a researcher 
asserts that there was a significant finding when in fact 
none existed; and, (2) a Type II error, or “false negative”, 
which occurs when a researcher fails to observe a signifi­
cant difference.

The following medical example illustrates the 
inherent problems associated with conditional probabili­
ties. Assume that a 40 year-old female, who resides in an 
upper middle class suburb, presents with a newly diag­
nosed case of lung cancer to her primary care physician. 
The physician may use conditional probabilities generated 
by the Centers for Disease Control in order to determine 
the national incidence of this type of lung cancer among 
40 year-old females. This approach appears reasonable, 
but caution is in order. During the history and physical, 
the patient may have failed to report that her former resi­
dence of many years was located near a toxic waste dump. 
This means that the history of environmental exposure may 
have contributed to the presenting cancer growth. By not 
including this in the construction of the prior probability, 
the physician may fail to consider other comorbid diseases 
associated with environmental exposure.

The problems associated with Bayesian statistics 
are also relevant to paternity cases. Suppose a man is ac­
cused of being the father of a child. He is found to have a 
genetic marker that only occurs in 1% of the male popula­
tion. The child is tested and is also found to have the same 
genetic marker. The mother does not have the genetic 
marker. It is known that whenever a father has the marker 
it is always passed to the child. In this case the man 
contests paternity. Let:

P(A’) = The assumed prior probability before testing 
that the man is not the father.

Bayes formula is as follows:

P(A/B) =  rP(B/A)P(A)l__________
[P(B/A)P(A) + P(B/A’)P(A’)]

In this case P(B/A) is 1 because there is a 100 % 
probability that the child will get the genetic marker if the 
man is the father*. P(B/A’) is 0.01 because the child has 
the same probability of having the genetic marker as the 
general population (one percent) if the man is not the fa­
ther.

Recognize that only P(A) and P(A’) need to be 
identified before plugging the values into Bayes formula. 
P(A’) is simply 1 -  P(A)**. Therefore, all that remains is 
to identify P(A). P(A) is the assumed probability prior to 
testing that the man is the father of the child. In paternity 
testing this is often assumed to be 50% (.50). This assump­
tion is made because there is a controversy concerning pa­
ternity. The mother of the child claims that the man is the 
father. The man claims that he is not the father. A prior 
(pre-test) probability of 50% is assumed as a default value 
for P(A).

If the above values are entered into Bayes for­
mula the following result occurs:

P(A/B) = [(1)(0.5)] / [(1)(0.5) + (0.01)(0.5)] = 0.9901

Therefore, there is a greater than 99% probabil­
ity of paternity when using a prior (pre-test) probability of 
50% (P(A) = 0.5).

The JointAMA-ABA Guidelines (Hummel, 1976; 
Kilmer, 1993) for likelihood of paternity are in Table 1.

A = The man is the father of the child
B = The child has the same genetic marker as the 

man
A’ = The man is not the father of the child 

P(A/B) = The probability that the man is the father of 
the child given that the child has the same 
genetic marker as the man.

P(B/A) = The probability that the child will have the 
same genetic marker as the man given that 
the man is the father.

P(B/A’) = The probability that the child will have the 
genetic marker given that the man is not the 
father.

P(A) = The assumed prior probability before test 
ing that the man is the father.

Table 1. Paternity Guidelines.

Test Probability Interpretation

< 80%

80% - 90%

90% - 95%

95% - 99% 

99.1%-99.75% 

99.8% - 99.9%

not useful 

undecided 

likely 

very likely 

extremely likely 

practically proven
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In Michigan, paternity is presumed when the 
DNA profile determination determines a probability of pa­
ternity of 99% or higher (Hummel, 1976; Kilmer, 1993). 
In Michigan, blood tests for paternity are generally admis­
sible in evidence at trial (Kilmer, 1993). Consequently, the 
man in the above example would be presumed under Michi­
gan law to be the father of the child.

However, the results will change drastically if a 
lower prior (pre-test) probability of paternity is used. In­
stead of a 50% prior (pre-test) probability of paternity as­
sume that P(A) is 0.001. This change to a low prior prob­
ability changes the results of Bayes formula.

P(A/B) = [(1)(0.001)] / [(1)(0.001) + (0.01)(0.999)] = 0.091

The change in the prior probability results in only 
a slightly greater than 9% probability of paternity. This 
would not result in a presumption of paternity and would 
in most cases be viewed as strong evidence against pater­
nity.

The drastic change in probabilities that occur with 
a change in prior (pre-test) probability highlights a serious 
error in statistical methodology known as the “principle of 
indifference” (Isaac, 1995). The principle of indifference 
is the error of assuming equality when the actual prob­
abilities are unknown. In paternity testing the prior (pre­
test) probability is often assumed to be 50%. This assump­
tion is made because the true probability of paternity is not 
known. The mother claims that the man is the father. The 
man denies paternity. Because it is not known who is tell­
ing the truth a fifty-fifty split on the prior (pre-test) prob­
ability is made. However, this assumption about the prior 
(pre-test) probability P(A) may cause a highly misleading 
result as the above example illustrates.

It is well known by statisticians that the principle 
of indifference is a serious methodological error. If there 
is no knowledge concerning the prior (pre-test) probabil­
ity it is better to make no assumptions rather than to as­
sume a 50-50 chance based on ignorance. Such an error 
leads to an assumption of a high probability that is trans­
formed by the mathematics to an even higher probability 
(Isaac, 1995). A man who is able to present credible evi­
dence that he never previously met a woman should not be 
assigned a prior (pre-test) probability of 50% of being the 
father of her child. A 50% prior (pre-test) probability is an 
arbitrarily value set at an unreasonably high level. Con­
versely, if a woman is able to produce credible evidence 
that she was alone with a man in an isolated location dur­
ing the time period of conception, she is entitled to a prior 
(pre-test) probability of greater than 50%. This is needed 
because an inappropriately low prior (pre-test) probability 
can result in a misleadingly low test result. In both of the 
above cases the application of the principle of indiffer­
ence lead to misleading results with tragic consequences.

Methodology

A Bayes probability computer program was written using 
Fortran 90. A total of 27 prior probabilities ranging from
0.001 to 0.90 were loaded into the program. A prior prob­
ability curve was plotted using the resulting probabilities. 
The Fortran 90 computer program appears below:

program one 
implicit none 
real::p(27) 
real: :ba,bal ,pp,ppp 
integer: :i
open( 1 ,file=’probs’ ,status=’new’)
!p(27) is array of prior probabilities
!pp is prior probability
!ppp is resulting probability
!ba is P(B/A) value of 1
!bal is P(B/A’) value of .01
ba=1.0
bal=.01
p(l)=.001
p(2)=.002
p(3)=.003
p(4)=.004
p(5)=.005
p(6)=.006
p(7)=.007
p(8)=.008
p(9)=.009
p(10)=.01
p(ll)=.02
p(12)=.03
p(13)=.04
p(14)=.05
p(15)=.06
p(16)=.07
p(17)=.08
p(18)=.09
p(19)=.l
p(20)=.2
p(21)=3
p(22)=4
p(23)=5
P(24)=.6
p(25)=.7
p(26)=.8
p(27)=9
!Call prior probabilities from array, 
do i=l, 27
pp=p(i)
! Calculate resulting probability
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ppp=((ba)*(pp))/((ba)*(pp)+(bal)*(l-pp)) 
write(*,*) ‘For a prior probability of:’,pp 
write(*,*) ‘the resulting probability is:’,ppp 
write(*,*) 
write(*,*)
IWrite results to external file.
write(l,10) pp,ppp
10 format (2f8.4)
end do
stop
end program one

Results

The probabilities ranged from 0.091 to 0.9989 and were 
negatively skewed. (See Figure 1 on next page.) The dis­
tribution begins to rapidly grow when a 0.2 prior probabil­
ity was loaded. The probability of 0.091 suggests that the 
male defendant had a 9% chance that he was the father. 
Michigan’s prior probability of 0.5 resulted in a 99% prob­
ability of paternity. However, this simulation was not based 
upon real world prior probabilities. Instead, all prior prob­
abilities were arbitrarily loaded. The resulting probabili­
ties, or establishing paternity, ranged from 9 to 99%.

Conclusion

Genetic testing is seriously flawed when improper assump­
tions of prior probability of culpability are made. In the 
arena of paternity testing this has the great potential of as­
signing paternity to wrongly accused men. It also has the 
equally tragic potential of wrongly refuting paternity. In 
the arena of criminal law the same errors concerning as­
sumptions about prior probability present the great risk of 
loss of life and liberty. The skillful legal advocate must 
know the potential of abuse of genetic testing and be pre­
pared to expose the abuse when it occurs. The conditional 
probabilities employed by courts of law should be based 
upon objectivity rather than subjectivity.

The reader is invited to try various probabilities 
into the following Fortran 90 Bayes Probability program:

program two 
implicit none 
real::p 
real::pp
write(*.*) ‘Enter prior probability ( <3 decimals):’ 
read(*.*) p
pp=((l)*(p)/((l)*(p)+(.01)*(l-p)) 
write(*,*) ‘The resulting probability is:’,pp 
stop
end program two

Endnotes

* In probability mathematics a 100 percent probability is
1. A 50 percent probability is 0.5.

** P(A ) is the opposite o f P(A). P(A’) is equal to one 
minus P(A) since in probability mathematics the sum o f 
all the possibilities is one.
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BAYES PRIOR PROBABILITY CURVE

.0910 .3344 .4759 .8065 .8969 .9772 .9957
.2313 .4135 .6711 .8646 .9174 .9901 .9989

RESULTING PROBABILITIES

Figure 1.
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