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An Unconditional Exact Test For Small 
Samples Matched Binary Pairs

Robert A. Malkin
The Joint Department of Biomedical Engineering,

The University of Tennessee-Memphis and 
The University of Memphis

When investigators have N pairs of binary data, a common test for an increased rate of response is McNemar 's test. 
However, McNemar 's is an approximate, conditional test. An exact, unconditional test exists, but requires restrictive 
assumptions. Critical values and power tables are presented for an exact, unconditional test free of these assumptions.
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Introduction

For a 2x2 table of matched binary trials, a common large 
sample test is the McNemar’s test [1]. For example, if 
blood is drawn from N patients and split into two tubes in 
which one is treated with a test drug and another with a 
control substance, then the results of each treatment would 
result in 1, a response, or 0 , a non-response, for each tube. 
Each pair of tubes from a single patient would result in 
either a 1 0  (response to the test substance and a non-re
sponse to the control), 01, 00, or 11. The results from all N 
patients, or matched-pairs, could be summarized by the

number of pairs with each type of response, m10, m01, m00

and m11, respectively, where N  = m10 + m01 + m00 + m11 . 
McNemar proposed to use the test statistic
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to test the null hypothesis that Pr(10) = Pr(01), or equiva

lently Pr(l•) = Pr(•1) (the probability of a response in 
the test tube is equal to that in the control tube), against an 
appropriate alternative, such as a greater response to the
test substance Pr(l•) > Pr(•1). Z is a non-exact, condi
tional statistic. That is, Z is only approximately a normal 

deviate, and then only when n = m10 + m01 is fixed before 

the experiment. However, the cost of a study typically 
depends on N , the total number o f pairs, not n.

Planning for small clinical trials where budgets are lim
ited, is difficult, if not impossible, when N  is unknown. 
Thus, the application of McNemar’s test to small clinical 
trials is challenging.

Although there have been many proposed improve
ments to the McNemar 's test, the first to propose an exact, 
unconditional test was Suissa and Shuster [2]. Their work 
was based on the exact formula for the power of the test, 
given by

where s = Pr(10), q = Pr(01), and the sum is taken over 

all {m10,m01,m00,m11} such that Z > z , where z  is the 
critical value. Under the null hypothesis s = q = , 
say,p i 2 , and therefore the p-value (a  or significance) is

more easily expressed as z) . However, p  is un
known. To ensure that the actual p-value is less than the 
stated p-value, it is necessary to find the maximum of n  as 
a function of the unknown p  . This maximum has not been 
found analytically to date. Therefore, Suissa and Shuster 
suggested numerically finding a supremum of 7r(p, z) over 

0 < p  < 0.995 for N  > 10. A supremum exists since the

derivative is bounded [3]. The range 0.995 < p  < 1.0 was 
ignored by Suissa and Shuster because it required unusu
ally long computing times and was said to represent an 
unlikely scenario [2]. Although unlikely, ignoring this re
gion is somewhat arbitrary (why not 0.990 ?) and inevita
bly increases the possibility of a Type I error. There exists 
a more conservative test of the same type.

In this paper, I present new critical values for N  > 5 . 
A simplified approach is presented to finding a supremum, 
appropriate for small values of N , which allows a 
supremum to be found over the entire interval 0  < p  <1.0.
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Using the new critical values and calculation approach, 
new sample size (power) tables are presented. In short, I 
present the most conservative possible test for this prob
lem.

Methodology

Under the null hypothesis, equation (1) can be simplified 
to [2]

where F n is the cumulative binomial distribution func

tion. A supremum for this function with respect to the un
known p  exists, because the derivative is bounded. Spe
cifically, the derivative is

π ( p,z)  + 0 . 0 0 1  for every value of p  from (0 .0 0 1 /2 1 2 .2 0 ) 
up to ( 1 - 0.001/212.20) in steps of (0.001/212.20). The 
supremum is the maximum of the calculated values rounded 
up, in this case, to the nearest 0.001.

Critical Values and Sample Sizes
The exact, unconditional critical values, z,  for 

N  < 30 are given in Table 1 for one-sided tests with 
p <0.05, 0.025, and 0.01. Suprema were calculated to be 
within 0.001 of the maxima. Symmetrically, this table can 
also be used for the two-sided tests with p <0.10, 0.05 and 
0.02. Based on the critical values shown in Table 1, the 
minimum number of matched pairs for the one-sided test 
was calculated to attain a power of at least 80% (Table 2) 
or 90% (Table 3) for a test of Pr(l•) > Pr(•1). The para
metric notation of Suissa and Shuster [2] has been retained: 
Ψ = Pr(l0) + Pr(01) and Δ = Pr(l 0) -  Pr(01). Thus, a larger 
value of Ψ  for the same Δ indicates a smaller value of 
Pr(10), and therefore, requires a larger N .

A supremum for the magnitude of Formula (3) 

can be obtained by assuming that Fn = 1 (since Fn < 1), 
and all the negative terms are zero. An equivalent magni
tude is found by assuming that all the positive terms are 
zero. The maximum range for the sum is 0 ≤ n ≤ N .  Thus, 
equation (3) is bounded by

From equation (2), when p  = 0 or p  = 1, π  = 0. 
So, a supremum need only be found over the open interval 

0 < p  < 1. The maximum of p r (1 -  p )*~r , over the open

interval 0  < p  < 1 , is

Table 1 can be directly compared to Table 2 in 
[2]. Some values appear for the first time as Suissa and 
Shuster did not present the critical values for N  < 10 . In 
addition, seven critical values which appear in both tables 
are different. Five of these differences, indicated by * in 
Table 1, are attributable to the maximum lying outside the 
range 0 < p  < 0.995. Two additional differences are found 
as indicated by the ** in Table 1. In these two cases, the 
suprema for the significance value were approximately 
0.000039 below the desired p-value, and, as with all 
suprema in their software, (kindly provided by Dr. Suissa) 
were rounded up at the fourth decimal place. For example, 
a suprema o f0.024961 was not considered to be sufficient 
to satisfy p  < 0.025 . Such rounding is required for nu
merical calculations, but the software presented here 
rounded up at the 8 th decimal place. The differences in 
critical values, both due to rounding and ranging, are re
flected in differences in the sample sizes shown in Tables 
3 and 4.

Illustration
Assume that a new defibrillation waveform must 

be clinically tested to determine whether it is more effi
cient than a standard waveform at terminating ventricular 
fibrillation (VF), which is an acute condition and is fatal if 
untreated. For example, Chapman et al. [4] described a 
laboratory study of this type. Chapman used upwards of 
twenty VF inductions and terminations per laboratory

Thus, for small

N , the largest possible range of the slope of n  can be 
found by substituting the maximum value of p n (I -  p) N~" 
for each occurrence in the sum in (4). Using this substitu
tion technique, it was discovered that the slope of n  is
bounded by ±212.20 for N  <29.

A supremum for n  of any desired accuracy can 
be obtained with the knowledge of bounds for the slope of 
n  and the values of n  at appropriately selected points. 
For example, to find a supremum for 7r(p, z) which is no 
more than 0 . 0 0 2  greater than the maximum, calculate
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N
Table 1____________

p<0.05 p<0.025 p<0.01

5 1.74
6 1.74 2 . 0 1

7 1.89 2 . 0 1 2.24
8 1.74 2.13 2.24
9 1.74 2 . 0 1 2.34
1 0 1.90 2 . 0 1 2.53*
1 1 1.74 2 . 1 2 2.34
1 2 1.74 2 . 0 1 2.34
13 1.74 2 . 0 1 2.50
14 1.74 2.14 2.31
15 1.81 2 . 0 1 2.33
16 1.74 2 . 0 1 2.51*
17 1.74 2 . 0 1 2.33
18 1.74 2 . 0 1 2.36
19 1.74 2.07 2.36
2 0 1.79 2 . 0 1 2.36
2 1 1.74 2 . 0 1 2.41
2 2 1.74 2.14* 2.33**
23 1.74 1.97 2.33
24 1.74 2.05 2.45
25 1.80* 1.97 2.33
26 1.74 j 9 7 ** 2.36
27 1.74 2 .1 2 * 2.36
28 1.74 1.97 2.36
29 1.74 2.05 2.42

* Different from [2] due to supremum calculation; ** Different from [2] due to rounding differences

Table 2

A ¥ p<0.05 p<0.025 p<0 . 0 1 A ¥ p<0.05 p<0.025 p<0 . 0 1

0.30 0.35 2 1 25- * 0.50 0.55 11 15 17
0.40 26 * * 0.60 13 16 2 1

0.65 15 18 23
0.40 0.45 15 18 2 2 - 0.70 17 2 0 25

0.50 17 23- 28 0.75 18 23- 28
0.55 2 0 24 * 0.80 19 23 *
0.60 23 26 * 0.85 2 1 25- *
0.65 25 * * 0.90 2 2 28- *
0.70 27 * * 0.95 24 * *
0.75 29 *

0.60 0.65 9+ 11 14
0.70 11 12 15
0.75 11 15 18
0.80 13 15 20
0.85 14 17 22
0.90 16 19 22-
0.95 16 20 25

* N>30, Calculate the sample size using approximation formula;' Different from [1] due to critical value difference;
+ Different from [2] due to limited sample size calculations
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A Y p<0.05 p<0.025 p<0 . 0 1

0.30 0.35 28 * *

0.40 0.45 19 23- 29
0.50 23 28- *
0.55 27 * *

0.50 0.55 14 17 2 2

0.60 17 2 0 25
0.65 2 0 23 *
0.70 2 2 25- *
0.75 24 28 *
0.80 26 * *
0.85 28 * *

0.60 0.65 11 15 17-
0.70 13 16 2 0

0.75 15 18 2 2 -
0.80 17 2 0 25
0.85 18 23- 26
0.90 2 0 23 *
0.95 2 1 25- *

*N > 30, Calculate the sample size using approximation formula 
' Different from [2] due to critical value difference

subject. Clinically, using more than one or two VF induc
tions for research purposes is uncommon because the dan
ger to the patient increases rapidly as the number of induc
tions increases. Using the paired approach described here, 
the study could be designed to include two inductions and 
termination attempts per patient, one with the test stimulus 
waveform and one with a control stimulus waveform. When 
the same stimulus strength is used for both waveforms, 
the results are correlated matched-pairs of the type treated 
here, since some patients are easier to defibrillate than oth
ers, independent of waveform. If the test stimulus strength 
is selected to average about 40% effective in the popula
tion with the intent of finding waveforms that are dramatic 
improvements, say more than 80% effective in the popula
tion, such as those in [4], then A «  0.4 and «  0.56 • 
For 80% power, Table 2 indicates that a minimum of 20 
patients should be planned for a one-sided test with 
p  < 0.05.

Conclusion

When the cost—in dollars or otherwise—of each sample pair 
is great, small samples are naturally preferred. Further
more, some studies may be inpossible when the total num
ber of sample pairs cannot be predicted a priori. Under 
such conditions, the exact, unconditional approach pre
sented here offers a conservative alternative to the 
McNemar’s test.
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