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An Adaptive Inference Strategy: The Case of Auditory Data

Bruno D. Zumbo
Department o f Statistics 

University of British Columbia

By way o f an example some of the basic features in the derivation and use o f adaptive inferential methods are demon
strated. The focus o f this paper is dyadic (coupled) data in auditory and perceptual research. We present: (a) why one 
should not use the conventional methods, (b) a derivation of an adaptive method, and (c) how the new adaptive method 
works with the example data. In the concluding remarks we draw attention to the work o f Professor George Barnard 
who provided the adaptive inference strategy in the context of the Behrens-Fisher problem —  testing the equality of 
means when one doesn’t want to assume that the variances are equal.
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Introduction

There are many uses o f the expression “adaptive meth
ods” in statistics and data analysis but, to my knowledge, 
all o f them seek statistical procedures:

(i) good for a broad class o f possible un
derlying models, but which are not nec
essarily best for any one o f them,

(ii) where important parameters in the sta
tistical procedure are specified after the 
sample is drawn, rather than fixed by 
prior considerations before the sample 
is observed, and

(iii) that let the sample data lead us toward 
plausible solutions to statistical prob
lems.

Such adaptive methods are frequently characterized as 
being robust, that is, exhibiting strength in the face of real 
data situations where we know that most statistical models 
will seldom fit exactly the real situations; hence it does not 
seem productive to try to get the last ounce o f mathemati
cal efficiency out of some assumed situation. In my opin
ion, although he focused on estimation, the paper by Hogg 
(1974) is one o f the clearest expositions o f the basic ten
ants o f adaptive methods.

The purpose o f this article is to describe adaptive 
methods, in the context o f an example, demonstrating both
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the derivation and application o f adaptive methods. Un
like Hogg (1974), the focus o f the present paper is adap
tive inference. The example discussed herein is o f the com
monly found scenario o f testing the equality o f means for 
two independent groups. In the example, we concern our
selves with within-group correlation, wherein the conven
tional methods of inference fix this within-group correla
tion, by prior considerations, to zero —  i.e., independent 
observations within groups. This example treats the prob
lem of pairwise within-groups correlations; that is, coupled 
data.

Coupled Data
Coupled data arise in the various fields o f the so

cial, behavioral, and health sciences. For example, rela
tionship researchers regularly gather data from both mem
bers of the dyad (Kenny, 1995). The pairs can be hetero
sexual or homosexual couples, co-workers, family mem
bers or friendship pairs, to name a few examples. In per
ceptual research it is not unusual for researchers to report 
the number o f organs (e.g., ears, eyes) tested, rather than 
the number o f subjects. This latter situation, perceptual 
research, will be the focus o f the present example.

In all o f these cases, subjects or dyads are con
tributing two scores to the data pool. It can be reasonably 
argued that these two scores are not independent (i.e., 
uncorrelated) o f one another. Data arising from such re
search should be referred to as coupled since each subject 
contributes a couplet o f scores, and the correlation between 
these scores should be referred to as the intracouple corre
lation (Zumbo, 1996). This issue o f coupled scores ap
plies to audition, vision, and hemispheric laterality research, 
and any situation in which two lateral measures are made 
on one subject. Therefore, a defining characteristic of 
coupled data is that there are twice as many scores as there 
are subjects or dyads (i.e., there are n scores and n il sub
jects or dyads). Because the commonly used statistical 
inferential methods (not descriptive methods) assume that
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ADAPTIVE INFERENCE STRATEGY 62
the n scores are independent, a potential problem may arise 
when a researcher bases their statistical analyses on the n 
scores ignoring that they arise from n/2 subjects or dyads. 
How, then, is one to perform inferential tests on data that 
are, potentially, highly interdependent— i.e., coupled data?

Before continuing with these new methods of 
analysis, I should perhaps take a closer look at the data 
structure for coupled data and discuss why we even need 
these new methods.

Coupled Data Structure
Coupled data arise in situations in which the ob

servations in a study are not independent random variables, 
but rather are pairwise related. The researcher, however, 
is not interested in the differential effects o f the elements 
of the pair. Coren and Hakstian (1990) initially brought 
this statistical problem to our attention in the area o f audi
tory research. The statistical problem discussed by Coren 
and his associates has also been noted in vision research 
(Ederer, 1973; Rosner, 1982) and could conceivably oc
cur in laterality studies, twin studies, or any experimental 
or quasi-experimental settings in which the assumption of 
independence within groups is violated by paired or, as I 
will refer to them, coupled data. Please note that what is 
being discussed here is obviously related to the units o f 
analysis problem in survey or educational research wherein 
one deals with structured populations of respondents (e.g., 
clusters in sampling or classrooms in educational research). 
The methods presented herein could be extended to the 
classroom situation wherein one has more than two ele
ments that are linked.

An Example
To illustrate the issues consider the data from a 

two-group completely randomized design given in Table 
1. The data are from a hypothetical experiment reported 
in Zumbo and Zimmerman (1991) depicting auditory re
search. That is, assume an auditory researcher is interested 
in investigating whether there is a difference in hearing 
loss between two groups. The data is displayed in Table 1.

It is important to note that the researchers are not 
interested in differences between the left and right ears but 
rather they gather data from both ears and they are inter
ested in group differences. Therefore, the researcher has a 
total of 12 observations (i.e., 6 couplets or dyads) in group 
1 and 12 observations (i.e., 6 couplets) in group 2. In Table 
1 ,1 have placed a box around a couplet, furthermore the 
top score within the box is the left ear. Traditionally, this 
design has been envisioned as a two-group completely ran
domized design and analyzed with a parametric statistical 
test (for example, in this case, the independent samples t- 
test with 22 degrees o f freedom) treating the data arising 
from the two members o f the dyad as if they were indepen
dent (see Coren and Hakstian, 1990, for examples).

Table 1. Coupled data example.

Group 1 Group 2

Dyad# X Dyad# X
1 15.6 7 12.6
1 15.9 7 12.4
2 13.7 8 13.7
2 13.9 8 14.2
3 15.1 9 15.3
3 15.5 9 14.5
4 14.7 10 13.4
4 15.2 10 12.3
5 16.2 11 14.3
5 15.7 11 14.7
6 13.7 12 14.2
6 14.0 12 13.8

n =  12 n =  12
mean = 14.93 mean = 13.78
std. dev. = 0.91 std. dev. = 0.95

What is wrong with treating this data with methods that fix 
the correlation to zero a priori?

The problem in dealing with these coupled data 
in this way is that for parametric tests a violation o f within 
group independence can invalidate the statistical test 
(Zumbo, 1996; Zumbo & Zimmerman, 1991). More pre
cisely, it can be shown mathematically that for t-tests and 
ANOVA, a positive correlation within couples results in 
an inflation in Type I error rate while a negative correla
tion results in a reduction in Type I error rate. Therefore, 
if  the data from the two ears are positively correlated the 
Type I error rate is inflated; however, if  the data from the 
two ears are negatively correlated the Type I error rate is 
deflated.

More formally, a function can be derived show
ing how the Type I error rate is altered by coupled data. 
The appendix provides further technical detail. Denote a  
as the nominal Type I error rate o f the t-test (usually .05), 
and s as the actual Type I error rate if  we were to conduct 
the t-test incorrectly ignoring the coupled data, n = ni = ni 
denotes the common sample size, and p the intracouple 
correlation. The function is then written

I n -  (1 + p)
8 i (n - l ) ( l  + p) ( )
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Three points are noteworthy from the above equa
tion. First, the amount that the Type I error rate is altered 
is a function o f both the magnitude o f the intracouple cor
relation and the sample size. Second, for a fixed sample 
size when p=0 tε = tα , while as p approaches negative one 
in the limit tε becomes larger than tα, and as p approaches 
positive one in the limit tε becomes smaller than tα- For 
example, for a nondirectional hypothesis test with 18 de
grees o f freedom ta =2.10, if  p=0 then as expected tg=2.10; 
while for p=-0.99999 tg=683.3, and for p=0.99999 tg=l .44. 
Generally, then, if  p=0 then e=a, a negative p would result 
in 8<a, while a positive p would result in e>cc. Finally, 
given that the distribution of t scores and the distribution 
of F  scores are related by fi=F, these results generalize to 
the fully randomized design ANOVA where,

Figure 1 is a graphical depiction o f the relation
ship between Type I error rate and the correlation between 
the two observations that comprise the coupled data, p, for 
sample sizes o f 4, 6, 8, and 10 and values o f p ranging 
from -.90 to .90. It should be noted that the Type I error 
rates reported in Figure 1 are the complement of the cu
mulative density function for the central t with v degrees 
of freedom for the resulting tv:a  from equation (A10) —  
see the Appendix for details. The upper half of Figure 1

deals with a nondirectional model while the lower half deals 
with a directional model. First, it should be noted that the 
horizontal line traces the nominal Type I error rate and the 
vertical line traces p equal to zero. The intersection of the 
horizontal and vertical lines is the Type I error rate for the 
i.i.d. case. Second, the general relationship is the same for 
directional and nondirectional hypotheses. That is, a posi
tive correlation results in inflation in Type I error rate, 
whereas a negative correlation results in a decrease in Type 
I error rate. Finally, sample size appears to have very little 
impact except in the case o f a correlation o f 0.60 or larger 
wherein the smaller sample sizes result in a slightly more 
inflated Type I error rate (a difference o f approximately 
.02 to .06). The minimal effect o f sample size is demon
strated in Figure 2.

Thus, if  one ignores the fact that one has dyadic 
or coupled data then there can be a serious inflation (or 
possible deflation if  the correlation is negative) in the Type 
I error rate o f the test. This implies that an alternative 
method of analysis is needed.

An Adaptive inferential method

An adaptive method for analyzing the example 
data can be found by re-deriving the independent samples 
t-test allowing for a parameter in the t-test formula that 
measures the magnitude o f the intracouple correlation, 
rather than apriori fix the correlation to zero. The

Figure 1. Type I error rates of the Student’s t-test as a function o f the correlation among the elements o f the couple.

A. Nondirectional Hypothesis
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Figure 1 (Continued).

B. Directional Hypothesis

Figure 2. Type I error rates o f the Student’s t-test as a function o f the correlation among the elements o f the couple, n 
= 4 and 10,000 (Directional Hypothesis).
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Table 2. The resulting t-test statistics at various values for p in Equation (2).

m t-vahie degrees of freedom p-value magnitude of effect (point biserial correlation')

m 3.03 22 .006 .295
t(.686) 2.26 22 .034 .189
<.883) 2.12 22 .045 .170
<959) 2.07 22 .050 .163

65
Appendix sketches such a derivation and leads to the re
placement o f the independent samples t-test by

wherein all o f the symbols are described in the appendix 
and (2) applies for equal sample sizes and equal correla
tions for each group. Extending the strategy presented in 
the Appendix, one can derive the more general form al
lowing for unequal sample sizes and unequal correlations. 
The resulting more general t-test is

As an algebraic check, if  the correlations for each 
group equal a common value, p x= p 2 = p,  and the sample 

sizes for each group equal a common value, nj = n 2 = n , 
then after some algebraic rearranging (2) equals (3). Fur
thermore, if  p x= p 2 = 0, then (3) simplifies to the standard 
unpooled version o f Student’s t-statistic for two indepen
dent samples.

For the purposes o f our example we will use the 
t-test in equation (2). First we compute the common cor
relation between the left and right ears, r=.883, and then 
we compute a 90% interval for the correlation (.686, .959) 
using the so-called Fisher’s r-to-z transformation and ap

plying the formula zr ± 1 .645 /7^ -3  where, in our case, 
N=12. Equation (2) can now be applied for the point and 
interval estimates o f the correlation. Table 2 contains these 
three t-test results and the (incorrect) result when the

correlation is equal to zero, t(0).
Clearly, it can be seen from Table 2 that there is 

no reason to suppose that the intracouple correlation is zero. 
Furthermore, it can be seen that the value of the test statis
tic is, as described earlier in this paper, sensitive to non
zero correlation. However, in presenting the results in the 
manner of Table 2, it can be assessed how sensitive the 
inference is to the assumption o f zero correlation. If a 
nominal error rate o f .05 is used, then the statistical deci
sion is not effected by even a substantial non-zero correla
tion, whereas this would not be true for an error rate o f 
0.01. Finally, it is important to note that this sort o f sensi
tivity analysis needs to be conducted for each data set you 
have because in some cases the statistical decision may be 
affected by even a slight non-zero correlation.

It should be noted that this data is hypothetical 
and was generated with a standardized difference between 
the population means o f 1.50 (Zumbo & Zimmerman, 
1991). That is, there is a substantial difference in the popu
lation means. (As a side note, a suggested method for ana
lyzing this sort of data is to average across the two ele
ments o f the dyad and hence halving your sample size. 
This results in a statistically non-significant result, 
t(10)=2.13,/?= 0.06.)

Conclusion

The purpose of this paper was to show how it might be 
more illuminating in day-to-day statistical applications to 
use an adaptive statistical strategy. For example, the adap
tive t-test was computed for a plausible range of intracouple 
correlation values ranging from .686 to .959. This, I be
lieve, sheds more light on the problem than simply averag
ing over the two elements of the couple, which is a com
monly recommended strategy (see Coren & Hakstian, 1990) 
and resulted in a statistically non-significant finding that 
conceals the effect of intracouple correlation. The full range 
of correlations, including the point estimate, gives the ana
lyst a sense o f  the dependence o f  the result on the
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intracouple correlation. A similar approach could be used 
to study the units o f analysis (wherein students are clus
tered within classrooms) in educational research. One could 
apply the same sort o f analytic strategy as used in the 
Appendix and derive a t-test parameterized by an intraclass 
correlation. In doing their data analysis one could then in
vestigate plausible values of the intraclass correlation and 
see how these values alter the statistical conclusion.

It should be noted that the coupled data problem 
is not the only problem that has been dealt with as adap
tive inference. In fact, the approach presented herein is a 
strategy developed by Barnard (1982, 1984). He gave a 
similar treatment to the Behrens-Fisher problem by pre
senting a t-test that has as a parameter the ratio of the sample 
variances (see, e.g., Sprott & Farewell, 1993).

Barnard showed that for the Behrens-Fisher case, 
the problem is to make inferences about the differences in 
means without fixing the ratio of the two variances, by prior 
considerations, to one. Barnard’s method allows one to ex
plore various values o f the variance ratio (in fact, plau
sible values computed from the sample data, much like the 
intracouple correlation discussed above) and then one can 
see how constraining the value to one may, in fact, conceal 
the sensitivity that the t-test has to plausible values of the 
variance ratio. Although Barnard presented a method in 
the context o f  fiducial distributions, pivotals, robust 
pivotals, and pivotal likelihoods, the methods presented 
herein are an application o f Barnard’s analytic strategy of 
data-adaptive inference. In this data-adaptive inference, the 
data lead to sensible solutions.

References

Barnard, G. (1982). A new approach to the 
Behrens-Fisher problem. Utilitas Mathematica, 27, 261- 
271.

Barnard, G. (1984). Comparing the means o f two 
independent samples. Applied Statistics, 33, 266-271.

Coren, S., & Hakstian, A. R. (1990). Method
ological implications of interaural correlation: Count heads 
not ears. Perception & Psychophysics, 48, 291-294.

Ederer, F. (1973). Shall we count number of eyes 
or number of subjects? Archives o f  Ophthalmology, 8 9 ,1- 
2 .

Hogg, R. V. (1974). Adaptive robust procedures: 
A partial review and some suggestions for future applica
tions and theory. Journal o f  the American Statistical Asso
ciation, 69, 909-923.

Kenny, D. A. (1 9 9 5 ). The effect o f  
nonindependence on significance testing in dyadic research. 
Personal Relationships, 2, 67-75.

Rosner, B. (1982). Statistical methods in oph
thalmology: An adjustment for the intraclass correlation 
between eyes. Biometrics, 38, 105-114.

Sprott, D. A., & Farewell, V. T. (1993). The dif
ference between two normal means. The American Statis
tician, 47, 126-128.

Stevens, J. (1992). Applied multivariate statis
tics fo r  the social sciences (2nd Ed.). Hillsdale, N.J.: 
Lawrence Erlbaum Associates.

Zumbo, B. D. (1996). Randomization test for 
coupled data. Perception & Psychophysics, 58, 471-478.

Zumbo, B. D., & Zimmerman, D. W. (1991). Fur
ther evidence for Coren and Hakstian’s “Methodological 
implications of interaural correlation: Count heads not ears” 
and an alternative correction formula. Perception and 
Psychophysics, 50, 297-301.

Appendix

In the commonly used model-based general linear model, a random sample o f size n is a sequence o f observations o f  

independent identically distributed (i.i.d.) random variables, X i, X2, . . . ,  Xn. Under this model
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where (A 1) is the variance of a sample mean, (A2) is the mean of a sample variance, and (A3) is an unbiased estimate 
of the population variance. Here, I use the notation

As in expressions (A1) to (A3), n in (A4) to (A6) denotes the number o f observations –– except in this case 
they are not i.i.d. but rather are coupled data. As an algebraic check, if  p = 0, (A4), (A5), and (A6) reduce to (A1), (A2), 
and (A3), respectively.

One can now use (A4), (A5), and (A6) in lieu o f their corresponding i.i.d. expressions to derive a Student’s t- 
test for the balanced two-group completely randomized design assuming a common p for both groups. That is, one can

place a two-sided confidence interval around (μ1 - μ 2) by using

σx2 denotes the population variance o f the sample observations.
The derivation o f equations (A1), (A2), and (A3) is simplified by the fact that the covariance terms in the 

general equation for the variance of a sum, Sn,

σ 2 (Sn) = σ2 (X1 + X2 + ... + Xn)

= σ2 (X1) + σ 2 (X2)+ . . .  + σ 2 (Xn) +Σi≠jC o v (X i ,X j )

are all zero; where Sn = X1 + X2 + ... + Xn .
This section derives expressions analogous to (A l), (A2), and (A3) that include nonzero covariance terms due 

to coupled data. If we let

and p is the same for all i and j, then for coupled data it turns out that

where v denotes the usual degrees of freedom, and n denotes the common sample size. Equation (A7) is re-expressed 
as equation (2) in the main body of the text, a t-test o f the two independent groups balanced design.

Interestingly, applying Cochran’s theorem (1934; Searle, 1971, Sections 2.5 and 2.6; 1982, p. 356) regarding 
the distribution o f quadratic forms to (A7), it can be shown that (A7) is not distributed as t and is therefore an approxi
mate test. However, Zumbo and Zimmerman (1991) showed via Monte Carlo simulation that (A7) is an adequate
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approximation, maintaining its empirical Type I error rate very close to its nominal value. One can gain insight into how 
the approximation works by noting that the expected value o f the variance, can be expressed as

and is clearly asymptotically unbiased.
Now, given (A7), I turn to the task of deriving a general expression indicating the severity o f the alteration to 

the Type I error rate. Given that (A7) is an approximate test, the following results are not exact, but rather good 
approximations and should be indicative o f the behavior o f the Type I error rate.

Without loss of generality, let us consider the one-sided confidence interval computed for the population mean
difference, (m̂i —1̂ 2) - Given the i.i.d. assumption, the one-sided confidence interval for small samples is denoted by

where tv:g equals the 100(e) percentile o f the t distribution with v = 2(n-l). Now, given coupled data (A8) can be 
rewritten as

(A9)

where tv:a denotes the t value exceeded by probability a. It should be noted that a  is the nominal level o f the test and 
s is the actual level achieved due to not accounting for the covariance due to coupled data.

Finally, setting equation (A8) equal to (A9) results in,

(A10)

If the n observations are i.i.d., then p  = 0 and a  = 8. Therefore, if  p  ^ 0, then a  can be quite different from c . As 
noted above, (A 10) can be used with directional or nondirectional hypotheses. Equation (A 10) is listed as equation (1) 
in the main text o f this paper.
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