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Exact Level And Power Of Permutation, Bootstrap, And 
Asymptotic Tests Of Trend

Christopher D. Corcoran Cyrus R. Mehta
Department of Mathematics and Statistics Cytel Software Corporation

Utah State University

We develop computational tools that can evaluate the exact size and power of three tests of trend (e.g., permuta
tion, bootstrap and asymptotic) without resorting to large-sample theory or simulations. We then use these tools 
to compare the operating characteristics of the three tests. It is seen that the bootstrap test is ultra-conservative 
relative to the other two tests and as a result suffers from a severe deterioration in power. The power of the 
asymptotic test is uniformly larger than that of the other two tests, but it fails to preserve the Type I error for most 
of the range of the baseline response probability. The permutation test, being exact, is guaranteed to preserve the 
Type I error throughout the range of the baseline response probability. The price paid for this guarantee is a loss 
of power relative to the asymptotic test. The power loss is, however, small in most situations.
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Introduction

Forty mice were divided into four equal groups. Each group 
was treated with a different dose of an animal carcinogen 
as a result of which some mice developed a tumor. The 
data are displayed in Table 1. The goal is to test for a dose-
response relationship. Specifically, let πj be the Bernoulli

probability that an animal treated at dose dj develops a 
tumor. We wish to test the null hypothesis

H0 : π1  =  π2 = π3 = π4 =  π  (1.1)
against the one-sided alternative hypothesis

H] : 71] <  n 2 ^ n 3 < n 4 (1 .2)

Table 1: Dose-Response Data for Animal Carcinogenicity Study

with at least one inequality n equation (1.2) being strict. 
The value of 71 ,the common response probability under

H0, is typically unknown.
An efficient test of the null hypothesis is the 

C ochran-Arm itage test o f trend (Cochran, 1954; 
Armitage, 1955), in which the test statistic is

Christopher D. Corcoran is Assistant Professor, Depart
ment of Mathematics and Statistics, 202 LUND, Utah State 
U niversity, Logan, UT, 84322-3900. Email: 
corcoran@math.usu.edu. Cyrus R. Mehta is President, 
Cytel Software Corporation, and Adjunct Professor of Bio
statistics, Harvard School of Public Health.

42

where x. is the entry in row land column j of a generic 
2 x4 contingency table, x , with column sums of 10 in each 
of the four columns. Substituting the Table 1 data into equa
tion (1.3), the observed value of the test statistic is 155. It 
is usual to test the null hypothesis by computing a p-value,

defined as the probability under H0 of observing a table
whose test statistic equals or exceeds 155. A major diffi
culty with performing this computation is that even under

H0 the probability of observing any table depends on the 
unknown nuisance parameter 71. We will evaluate three 
different methods for computing the p-value in the pres
ence of this nuisance parameter. The three methods are 
bootstrap resampling, permutation resampling and normal 
approximation. We have two objectives in writing this pa
per. Our first objective is expository. We wish to clarify 
the distinction between the bootstrap and permutation 
resampling methods because these two terms are frequently 
confused. Our second objective is to compare the perfor
mance of all three methods with respect to Type I error 
and power.

The Bootstrap P-Value
The bootstrap p-value is obtained by resampling 

from the reference set, T , of all 2 x4 tables with column 

sums equal to 10. Under H0 the probability of observing 

anv x g  T is

a product of four binomial probabilities. It is not possible 
to resample tables from T with probabilities given by (1.4)

mailto:corcoran@math.usu.edu
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because π , the Bernoulli probability under H0, is unknown. 
We can, however, replace π with

π̂= 
5 / 4 0

the maximum likelihood estimate (MLE) under the null 
hypothesis. The bootstrap p-value is then evaluated by
resampling tables from Γ  with probabilities given by

Suppose we resample M tables in this manner, 
denoted by x 1, x2,..., xM. The bootstrap p-value is evalu
ated as

where I {. } is the indicator function. In other words we 
resample tables from A by treating the empirically observed 
value of π as though it were the true value and estimate 
the bootstrap p-value as the fraction of resampled tables 
that are at least as extreme as the observed table with re
spect to the Cochran-Armitage test statistic. For the data 
in Table 1 the bootstrap p-value based on M  =100,000
samples was found to be p ~b(M )=0.0941. In repeated 
samples this value would vary due to the sampling error 

associated with p~b(M). The sampling error decreases in 

proportion to the square root of M . In the limit as M → ∞  
the bootstrap p-value converges to the constant

which the sum of entries in the first row is 5. Then the 

conditional probability under H0 of observing any table x 

ϵ  Γ (5) is given by

which simplifies to

Observe that equation (1.9) does not depend on 
π . The unknown nuisance parameter has been eliminated 
by conditioning on its sufficient statistic -the sum of en
tries in row 1 of Table 1.

The perm utation p-value is obtained by

resampling tables x ϵ Γ(5) each with probability h0(x/5 ).
Suppose we resample M tables in this manner, denoted by 
x1, x2,...,xM.. Then the permutation p-value is evaluated as

For the data in Table 1, p b = 0 .0954, which is almost the

same as p ~b (M)  at M  =  100,000. Although increasing M

eliminates the sampling error associated with p~(M), it

cannot eliminate the error associated with using π̂ as an 
estimate for the unknown nuisance parameter π in equa
tion (1.7). Thus, the accuracy of bootstrap p-value depends 
on how well π̂ approximates π rather than on M, the num
ber of times resampled from T .

The Permutation P-Value
The permutation p-value is obtained by condi

tioning on the sum of observed responses. Define the con
ditional reference set T (5) to be all contingency tables for

In other words, we resample tables from T (5)with prob
ability (1.9) and estimate the permutation p-value as the 
fraction of resampled tables that are at least as extreme as 
the observed table with respect to the Cochran-Armitage 
test statistic. For the data in Table 1 the permutation p-value 
based onM=100,000 samples was found to be 0.0553. In 
repeated samples this value would vary due to the sam

pling error associated with p e (M ). As before, the sam
pling error decreases in proportion to the square root of M.

For finite values of M  the permutation p-value 
specified in equation (1.10) is also referred to as the Monte 
Carlo p-value. We can eliminate the sampling error of the 
permutation or Monte Carlo p-value by letting M —» oo in

which case (StatXact-4, p. 599) p e (M ) converges to the 
constant quantity

Equation (1.11) does not contain any unknown 
nuisance parameters, nor is it subject to sampling error. 
Thus, this probability calculation is exact andp e is referred 
to as the exact p-value. For the data in Table 1 ,/?e= 0.0546

which is almost the same as p e (M ) at M =100 ,000.
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Table 2: Data from K Ordered Binomial Populations

The Asymptotic P-Value
Because evaluation of equation (1.11) can be very 

computationally intensive, one frequently approximates this 
p-value by appealing to the asymptotic normality of the 
distribution of T(x). The asymptotic p-value is easily ob
tained as

where E (T |5) and Var(T |5) are the conditional mean and 
conditional variance, respectively, of T(x) given x ϵ  Γ (5). 
Closed form expressions for these two conditional moments 
in terms of the margins of the observed contingency table 
are given by equations (2.30) and (2.31). Upon substitut
ing into these equations we obtain E (T |5)=70 and var(T 
|5)=1954 .52, where upon pa =0 .0273.

Methodology

We have seen in above that the three p-values, pb, pe and 
pa, are very different, ranging between 0.02 and 0.09, and 
thereby leading to different conclusions about the null hy
pothesis. It is thus important to decide a priori which of 
the three methods, bootstrap, permutation or asymptotic, 
we intend to use for testing the null hypothesis. An objec
tive way to compare the three methods is to determine, for 
a given nominal significance level, the actual significance 
level and power of each method. In this section we define 
these quantities and show how they may be computed. 
Below, we present the results of our comparisons.

We begin by generalizing the dose-response prob
lem discussed in Section 1 to the comparison of K bino
mial populations with response probabilities π1,π2,...,πK, 
respectively. We wish to test the null hypothesis

H0: π1 = π2 = ... = πK = π (2.13)
against the one-sided alternative hypothesis

H1: π1 ≤ π2 ≤ ... ≤ πK (2.14)
with at least one inequality n equation (2.14) being strict. 
The value of π ,  the common response probability under

H0 , is unknown. Suppose we observe x j responses and nj-
xj non-responses from population j .  Table 2 displays the 
observed data in the form of a generic 2*K contingency 
table, x .

Let T denote the set of all 2 *K contingency tables

with column sums of n ., j =1 ,2 ,...K . For any x e T the 
Cochran-Armitage test statistic is defined as

where the d js are pre-specified constants that correspond 
to doses in a dose-response setting. Our objective is to de
termine, for the bootstrap, permutation and asymptotic pro
cedures, the true significance level and power of a one
sided Cochran-Armitage test conducted at a nominal sig
nificance level of T . For the bootstrap and permutation 
procedures we will eliminate sampling error from the com
parisons by assuming that the we sample an infinite num
ber of times from the appropriate reference set. That is, we
will let M —» oo and evaluate the performance of p b rather

than p b (M ), andp c rather than p e (M).  In order to make 
the size and power comparisons accurately, all the compu
tations are based on exact distribution theory rather than 
relying on asymptotic approximations. Thus, the formulas 
presented above, for size and power are very difficult to 
compute. We use adaptations of the network algorithms 
described in Mehta, Patel and Senchaudhuri (1998) and 
Corcoran, Mehta, and Senchaudhuri (2000) to perform 
these computations.

Size and Power of the Bootstrap Procedure
Suppose we have observed the data displayed in 

Table 2, where the sum of entries in row 1 is m and the 
total sample size is N . After eliminating sampling error by 
letting the number of bootstrap samples M be infinite, the 
bootstrap distribution of the Cochran-Armitage statistic is

Suppose we wish to test the null hypothesis (2.13) at a 
nominal significance level a  . Let t b(m ) be the level- a  
cut-off of the bootstrap distribution (2.16). That is,

and for any t <t h(m)



Due to the discreteness of the distribution (2.16) 
the left hand side of (2.17) will usually be less than α .  For 
notational convenience we have suppressed the dependence 
o f  tb(m )  on α .

Conditional on m the true size or Type I error of 
the bootstrap procedure is

A priori, the unconditional Type I error of the bootstrap 
procedure is

Let π  = ( π1,π2,...,πK), where {π1 < π2 < ... < πK}, de
notes a specific alternative hypothesis. Conditional on m, 
the power of the bootstrap procedure to reject this alterna
tive is

A priori, the unconditional power of the bootstrap proce
dure is

Size and Power of the Permutation Procedure
The permutation procedure differs from bootstrap 

procedure in the following way. In the bootstrap approach, 
the nuisance parameter π  under the null hypothesis was
eliminated by substituting its MLE, π̂ = m/N. In contrast, 
the permutation approach eliminates π  by conditioning 
on m , its sufficient statistic. Let Γ (m) denote all tables x
ϵ  Γ for which the sum of entries in row 1 equals m. Then, 
after eliminating sampling error by letting the number of 
Monte Carlo samples M be infinite, the permutation distri
bution of the Cochran-Armitage statistic is

Let te (m ) be the level- a  cut-off of the permutation distri
bution (2.23).That is,

and for any t <te (m )

Conditional on m the true size or Type I error of 
the permutation procedure is

A priori, the unconditional Type I error of the permutation 
procedure is

The conditional power of the permutation procedure to 
rejectthe alternative hypothesis { 7̂  < 7i2 < ... < rcK} given 
m is

A priori, the unconditional power of the permu
tation procedure is

Size and Power of the Asymptotic Procedure
The asymptotic procedure is very similar to the 

permutation procedure except that the numerically inten
sive computation of the level- a cut-off value is no longer 
required because the exact null permutation distribution 
(2.23) is replaced by its normal approximation. We have 
shown in Corcoran, et al. (2000), that the first two mo
ments of this conditional distribution are

and
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Assuming that the conditional distribution (2.23) 
is asymptotically normal with the above two moments, the 
level- a cut-off is evaluated as

t a (m ) =  E ( T |m ) +  zαVar(T|m) (2.32)

where Zα is the upper a percentile of the standard normal 
distribution.

Conditional on m the true size or Type I error of the as
ymptotic procedure is

Results

Having formulated the unconditional power for the boot
strap, exact permutation, and asymptotic tests, we revisit 
the data of Table 1. Recall that the exact bootstrap p-value 
for these data is 0.0954, the exact permutation p-value is 
0.0546, and the asymptotic p-value is 0.0273. At a 0.05 
significance level, the three tests yield different substan
tive results. Observing the operating characteristics of each 
of the three tests may allow us to understand the apparent 
contradiction.

Computing the unconditional size and power of 
these three tests under any specific setting, however, is 
computationally challenging. Mehta, et al. (1998) first 
solved the problem of obtaining the quantities (2.27) and 
(2.29) by using a network algorithm to evaluate the

distribution shown in (2.23), and hence to obtain te(m). 
Corcoran, et al. (2000) extended this algorithm to enable 
computation of (2.34) and (2.36). These methods are cur
rently available in the software package StatXact-5 (2001). 
Without an efficient tool such as a network algorithm, ob
taining the critical value tb(m ) as defined by equations 
(2.17) and (2.18), can likewise pose a difficult problem. 
In the Appendix we describe how one can use the network 
approach to find the exact conditional power of the boot
strap test. This algorithm provides a tool that -combined 
with the algorithms previously developed for the permuta
tion and asymptotic tests -  allows a researcher to assess 
the relative characteristics of these tests, under any set of 
conditions, without resorting to simulation or approxima
tion.

We apply this approach to the design shown in 
Table 1. Figure 1 shows the actual Type I error as a func
tion of the quantity π  under the null hypothesis (2.13). 
As the design is perfectly balanced, we need only plot size 
for 0 <  π = 0 .50. Plot (a) of Figure 1 shows the actual 
Type i error of the three tests when the doses of (1.3) are 
(d1, d2, d3, d4) = (0, 1, 2, 3), plot (b) uses doses of (d1, d2, 
d3, d4) = (0 ,1 ,2 ,4), and plot (c) uses dose scores of (d1, d2, 
d3, d4) = (0,1 , 5, 50). In all three plots, the asymptotic test 
violates the nominal significance level for most values of 
π .  Under the dose scores used for plots (a) and (b), the 
asymptotic test violates the nominal significance level for 
π  greater than approximately 0.08. For dose scores of (0, 
1, 5, 50), the asymptotic test violates the nominal signifi
cance level for π  greater than approximately 0.05. As 
expected, the exact test preserves the nominal significance 
level -  never attaining the 0.05-level exactly due to the 
discreteness of the tail distribution. The bootstrap method, 
however, is comparatively very conservative.

Having examined the true significance levels of 
each test, we now compare the procedures with respect to 
power. Figures 2, 3, and 4 contain power plots for dose 
scores of (d1, d2, d3, d4) = (0, 1, 2, 3), (d1, d2, d3, d4) = (0, 
1, 2 ,4), and (d1, d2, d3, d4) = (0, 1, 5, 50), respectively. 
Each of these three figures consists of four plots, corre
sponding to four values of π 1 :  0.01, 0.05,0.10, and 0.25. 
For the sake of simplicity, each curve is plotted as a func
tion of the parameter p from the logistic dose-response 

modelgivenbylogit(7rj) = y +  pdj ,for*= l,2 , 3 ,4 ,where

y = logit (7̂ ) and logit(x )=log [x/(l - x )].
From Figure 1 we observe -  under any of the three 

sets of dose scores examined here -  that the asymptotic 
test violates the nominal Type I error rate for 7^ = 0.10 
and 7rT = 0 .25, making this procedure viable only for 7 l1 = 
0 .01 and 7^ = 0 .05. For these smaller choices of 71, the 
asymptotic test indeed demonstrates a power advantage 
over the other two tests. However, with respect to the

A priori, the unconditional Type I error of the permutation 
procedure is

x r

The conditional power of the asymptotic procedure to re
ject the alternative hypothesis { 7̂  < 7i2 < ... < 7iK} given 
m is

A priori, the unconditional power of the asymptotic proce
dure is

X T
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Figure 1: A ctual type-1 error ra te  for asym ptotic, perm utation, and bootstrap  trend  tests when K  =  4, 
ni =  10 for i = 1 ,2 ,3 ,4 , and dose scores (d1,d2,d3,d4) are (a ) (0,1,2,3), (b ) (0,1,2,4), and (c) (0,1,5,50).

experiment shown in Table 1, under the null hypothesis 
our best guess at the common response probability 71 is 5 
/40 =0 .125. As the asymptotic test exceeds the nominal 
significance level for probabilities in this range, one might 
have less faith in the accuracy of its associated /?-value.

The exact power of the bootstrap procedure is 
clearly dominated by the permutation test under all

conditions considered here, particularly when dose scores 
are equally-spaced (Figure 2) or almost equally-spaced 
(Figure 3).The conservatism and comparatively low power 
of the bootstrap procedure explain the relatively high p- 
value obtained for the data of Table 1.
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Conclusion

The primary purpose of a sample size calculation is to en
sure that a study has sufficient power to detect a specific 
effect size. For example, when investigating a dose-re
sponse relationship of the form logit(πi) = y + βdi, one 
would typically have in mind a biologically or clinically 
meaningful slope, βa say, above which one could claim
the existence of a trend in the data. The power of any test 
is the probability that the test will reject the null hypoth
esis that β = 0 when in fact β = βa. We have developed 
computational tools that, without resorting to approxima
tions or simulations, can provide the exact power of three 
different tests of trend; permutation, bootstrap and asymp
totic. It is seen that the test with the highest power is the 
asymptotic test, followed closely by the permutation test. 
The bootstrap test has considerably lower power than the 
others.

We have also developed computational tools for

evaluating the exact Type I error of the three tests of trend. 
This is necessary because the power comparisons amongst 
the three tests are only meaningful if their Type I errors, or 
probabilities of falsely rejecting the null hypothesis, are 
bounded by the same value. We typically fix the Type I 
error bound at a = 0.05. The permutation test, being ex
act, is guaranteed to not exceed this error bound. To see 
this observe from equation (2.27) that the exact Type I er
ror, Se(π ) ,  for the permutation test is a weighted sum of 
terms of the form Se(m, π ) , where, by equation (2.24) each 
such term cannot exceed α ,  and the weights, Pr(m | π )are 
probabilities that sum to 1. Therefore Se cannot exceed a 
either, and the Type I error is guaranteed to be preserved. 
We cannot make the same argument for the bootstrap type- 
1 error, Sb(π ) ,  or for the asymptotic Type I error, Sa(π).

Figure 1 demonstrates that, for the entire range 
of the baseline response probability π ,  the Type I error of 
the permutation test is preserved. Figure 1 also reveals that 
the Type I error of bootstrap test remains below the stipu
lated 0.05 level throughout the range of the baseline re
sponse probability. This is an interesting finding because

Figure 2: Exact power for asymptotic, perm utation, and bootstrap trend  tests when K  =  4, ni =  10 
for i = 1 ,2 ,3 ,4 , and dose scores (d1,d2,d3,d4) =  (0,1,2,3,), for (clockwise from upper left) π1 =  0.01, 
π1 =  0.05, π1 =  0.10, and π1 =  0.25. Power is computed as a function of /3, based upon the logistic 
dose-response model logit (71-*) =  7  +  /?d*, w ith 7  =  logit (717).
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Figure 3: Exact power for asym ptotic, perm utation, and boo tstrap  trend  tests when K  =  4, ni =  1 0  

for i =  1 ,2 ,3 ,4 , and dose scores (d1, d2, d3, d4) =  (1 ,2 ,3 ,4 ), for (clockwise from upper left) π1 =  0.01, 
π1 =  0.05, π 1  =  0.10, and π1  =  0.25. Power is com puted as a  function of β , based upon the logistic 
dose-response m odel logit(π i) =  7  +  βdi, with 7  =  logit(π1).

the bootstrap test is not exact and therefore not guaranteed 
to preserve the Type I error. Unfortunately, as shown in 
Figure 1, the exact Type I error of the bootstrap test is very 
much below 0.05 for the cases considered here. This ex
treme conservatism results in a substantial deterioration of 
power for the bootstrap test relative to the permutation test, 
as is evident from Figures 2 to 4. Thus, one would never 
choose the bootstrap test in preference to the permutation 
test in a dose-response setting. This was not known previ
ously and it was generally held that the two procedures 
have more or less the same operating characteristics.

The power comparisons between the permutation 
and asymptotic test are not as unambiguous. Although the 
asymptotic test is uniformly more powerful than the per
mutation test, Figure 1 shows that it does not preserve Type 
I errors. However, for very small values 71 , the Type I 
error is preserved and, if one could determine a priori that 
this nuisance parameter is suitably small, one might be jus
tified in adopting the asymptotic test. This is an important 
finding that could only be discovered because of the avail
ability of a computational tool for evaluating the exact

power of an asymptotic test. The computational tool that 
we have developed can therefore be very helpful, not merely 
for evaluating the power of various exact and asymptotic 
tests, but also for determining conditions under which one 
might actually prefer to use an asymptotic test -  because 
of its superior operating characteristics -  rather than its 
exact permutational counterpart.
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Appendix
Obtaining the Exact Power of the Bootstrap Test using 
the Network Algorithm

For a given m , it is sufficient to obtain the upper critical 
value tb (m ) of the exact bootstrap tail distribution. We 
will follow the notation in the Appendix of Corcoran, et. al 
(2000), in toto:

1 .  For any 2 × K table with fixed m, build a network as 
described with the following exceptions 
and additions:

(a) Augment the table with one column -  a (K +  1)st 
column -  such that the marginal total of the new 
column is N,  the total sample size of the new ta
ble is 2 N, and the marginal total of the first row

of the new table is m + N, where N = ΣKi=1ni.

(b)For the augmented table, d K+1 = 0.

(c)For arcs connecting a node of the network to a 
successor node, define a new probability length 
where

2. Carry out the Backward induction pass as prescribed, 
with the following changes:

(a)In step 2 of the backward induction pass, define

TPo(j, mj)  as the sum of the probability lengths 

(computed using the arc lengths Po,j+ l) of all 
paths in r m(j,nij).

(b)In step 3 of the backward induction pass, let 

T P 0(K  +  l , m  +  N )  =  1.
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Use C^i(u) for steps 5, 6, and 7.)
(c) In step 8 of the forward pass, choose tb (m) to be 

the smallest u*, given the nominal significance 
level α ,  such that

4. Using the original 2 × K table, follow the prescribed back
ward and forward induction passes exactly, this time re
placing t (m)  in step 1 of the forward pass with the critical 
value tb(m).

(c) In lieu of steps 4(b) and 4(c) of the back 
ward induction pass, let

3 .  Carry out the Forward pass as prescribed, with the fol
lowing alterations:

(a)In step 3 of the forward pass, define

p̂0(τ ) =  Πjl=1 p̂0,l ( there is no need to compute 
p0(τ ) or p 1 (τ ) .

(b)In step 4 of the forward pass, define

(There is no need to keep track of c0(u ) or c^u ).
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