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Department of Epidemiology and Biostatistics 
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University Of South Florida

A distribution-free test is proposed whose power is similar to that of the Wilcoxon Rank-Sum or Terry-Hoeffding 
Normal Scores tests depending on which of these two tests is more powerful in a given data analysis situation, regard
less of the population. This new statistic is distribution-free, and adds no new assumptions to those associated with the 
constituent tests. A table of critical values for the new statistic is given and some of its Type I error and power properties 
are examined.
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Introduction

Researchers are sometimes presented with situations in 
which two (or more) statistical tests appear to be equally 
appropriate for a given data analysis problem. In choosing 
between these tests the researcher may consider such fac
tors as ease of computation, acceptability by peers, and 
availability of tables of critical values. Among the more 
important factors to influence such a choice would be the 
relative power of the statistics under consideration. Ceteris 
Paribus, one would desire to use the most powerful test 
available.

Unfortunately, it does not usually occur in such 
cases that one test is more powerful than its competitor 
among all plausible population models that may be appro
priate for the data in the sample. Instead, one test or an
other may be more powerful than its primary competitor 
under a given set of circumstances. Thus, for example, one 
test might be preferred when the population has a light
tailed distribution, but may give way to its rival statistic 
when the distribution is heavy-tailed.

Factors that influence a test’s power may be diffi
cult to assess from available data. Moreover, these factors 
may interact in such complex patterns as to preclude any 
clear indication as to which test might be more powerful in 
a given situation. For certain inferential tests, the dilemma 
of test choice can be avoided through use of a “maximum” 
statistic (Cox, 1977). In essence, a maximum statistic is 
obtained by computing two or more statistics on a given 
data set, and choosing as the test statistic the one with the 
smallest associated p-value.

R. Clifford Blair is Professor and Interim Chair, Depart
ment of Epidemiology and Biostatistics, College of Public 
Health, University of South Florida, Tampa, Florida. His 
areas of expertise are in computer-intensive statistical 
methods, multiple end point analysis, and control of fam
ily-wise error.

Consider that two independent samples layout. 
Two robust and powerful competitors are the Wilcoxon 
Rank-Sum test (W) and its normal scores counterpart, the 
Terry-Hoeffding (NS) (Terry, 1952) counterpart. Both pro
cedures are used to test the null hypothesis that samples 
are from a common population. Asymptotic results sug
gest that these two tests may manifest substantial power 
differences, with the magnitudes and advantages of such 
differences depending on the shape of the population. The 
Asymptotic Relative Efficiencies (AREs) indicate that, in 
general, when alternatives are expressed as simple shifts 
in location, the normal scores test is more efficient than 
the rank test when sampling is from a light-tailed distribu
tion. However, the normal scores test is at a disadvantage 
when the populations are heavy-tailed. (For details, see 
Chemoff and Savage, 1958; Hodges & Lehmann, 1961; 
Lehmann, 1959; Mikulski, 1963; and Terry, 1952.)

Thus, the purpose of this paper is to present a 
simple maximum statistic that can be used in lieu of a choice 
between the Wilcoxon Rank-Sum and Terry-Hoeffding 
tests.

Methodology

The proposed statistic is obtained by computing both the 
rank-sum and the normal scores statistics, and choosing as 
the test statistic the one with the smaller p-value. In order 
to facilitate development of the sampling distribution of 
this maximum statistic, it is helpful to express W and NS 
in a common metric. In this case, both W and NS may be 
easily expressed in the form of a t statistic. (There are other 
possibilities, but existing software makes this choice 
computationally simpler.)

In the case of W, this accomplished by replacing 
original observations with their respective ranks (with rank
ing being carried out without regard to group) and com
puting the usual independent samples t statistic on those
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ranks. The resulting rank transformation statistic (tw is a 
monotone function of W (Conover & Iman, 1981). Its sam
pling distribution is well approximated by a t distribution 
with n1 + n2 -2 degrees of freedom (Iman, 1974).

Similarly, an expression for NS may be obtained 
by replacing observations with their respective normal 
scores, which are defined as the expected values of the 
order statistics under normality (Owen, 1962). The t sta
tistic is then computed on these normal scores. The result
ing statistic (tNS) is a monotone function of NS, and it too 
may be referred to the t distribution (Bradley, 1968).

Thus, the new test statistics (tmax) is defined as

the case of n1 ≠ n2 entries for tmax(b) were obtained by refer
ring tmax to the critical value in Table 1 using n = .5(n1 + 
n2). (Recall that the critical values in Table 1 were obtained 
under the condition of n1 = n2 = n.) Twenty thousand rep
etitions of the experiment were carried out for each condi
tion studied.

Several points should be made regarding the re
sults of these simulations. (1) The t distribution provides a 
good approximation for the distribution of tw and tws is 
reaffirmed. (2) Critical values from Table 1 produce Type 
I error rates for t near nominal levels both in the case of

max

n1 = n2 and in the case of n1 ≠ n2. (3) Referencing tmax to a 
t distribution with n1 + n2 - 2 degrees of freedom results in 
only modest Type I error inflations. This result implies that 
the researcher who is willing to tolerate minor Type I in
flations need not rely on the special table of critical values 
provided when conducting a test based on tmax.

Power
Let Ptw( a ) and PtNS( a ) denote the power of the 

ty and ̂  tests, respectively, when carried out individually 
at the a  level of significance. Let a  * > a  denote the 
effective level of significance of the maximum test when 
the critical value is chosen in this way. Because the maxi
mum test rejects the null hypothesis when either tw or t^  is 
significant, it follows that the power of the maximum test a 
level of significance a  * has a lower bound max(Ptw( α ) ,  
PtNS(α ) ) .  As indicated by the simulation above, a  * can 
be expected to be only slightly larger than a  . Therefore, 
the power of the maximum test when conducted at level of 
significance a  should never be much less than the power 
of the better of the two individual tests when each is con
ducted at level of significance a .

Figures 1-3 depict the results of a Monte Carlo 
study designed to compare the power of tw, t^ , and tmax. 
These figures indicate, respectively, the results for the nor
mal, uniform, and Cauchy distributions. In this study, tw 
and tNS were referred to the appropriate t distribution, while 
t was referred to the values found in Table 1. Tests weremax

conducted at the a  = .05 (two-tailed) level of significance. 
In the cases of the normal and uniform distributions, the 
alternative condition was constructed by adding a constant 
equal to .5 σ  to the scores in one group. In the case of the 
Cauchy distribution, which has infinite standard deviation, 
an arbitrary constant of 1.00 was used. Ten thousand rep
etitions of the experiment were carried out for each condi
tion studied.

Figure 1 shows that there was generally little dif
ference in the power of the three tests when sampling was 
from a normal population. Differences that did occur fa
vored tNS and tmax. In the case of the uniform distribution, 
Figure 2 shows that tNS was the most powerful test, with 
tmax showing power similar to, but slightly less than, that of

In the event |tw| =  |tN S |,then either statistic may be used.

Sampling Distribution
The exact sampling distribution of tmax may be 

obtained by forming all possible permutations of the inte
gers 1 to n1 + n2 (where n1 and n2 represent the number of 
observations in each of two samples), computing tmax on 
each set of integers, and forming the cumulative distribu
tion of the values obtained. In this study, the cumulative 
distribution of tmax was estimated by randomly permuting 
the integers n to 2n 500,000 times with tmax being com
puted on each permutation.

Table 1 provides values for n1 = n2 = n = 5(1)40, 
40(5)60, 60(10)120. It should be noted that the sampling 
distribution of tmax is discrete, and therefore, it was not al-

  
ways possible to find critical values (c) such that p(tmax ≤ 
c) = α .  As a result, values of c were chosen so that c was 
as large as possible, while maintaining the inequality.

It can also be seen that in some instances, the 
magnitude of c increases when n is increased, contrary to 
what is usually expected. This occurs because tw (tNS) may 
be the test statistic for one particular value of n, and tNS 
(tw) for the situation where n is increased. This does not 
lead to a violation of the above stated inequality, however, 
so that the test level is maintained.

Results

TypeI  Errors
The results of a Monte Carlo study are compiled 

in Table 2. The entries reflect the Type I error rates for tw, 
tNS, and tmax when samples are of various sizes. Data were 
generated by randomly permuting the integers from 1 to n1 
+ n2, with the three statistics being computed on each per
mutation. Entries in the table for tw, tNS, and tmax(a) were 
obtained by referring the three statistics to the appropriate 
critical values in a t table, using n1 + n2 - 2 degrees of 
freedom. Entries for tmax(b)  were obtained, in the case of n1

  

= n2, by referencing tmax to the critical values in Table 1. In
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Table 1. Two-tailed Critical Values For t .
max

Level of Significance

n .400 .200 .100 .050 .020 .010

5 .9727 1.4572 1.8312 2.4958 3.7812 5.0000
6 .9571 1.3978 1.8503 2.2804 3.3211 3.8468
7 .9525 1.3919 1.8688 2.2926 2.7464 3.6623
8 .9431 1.4124 1.8066 2.2630 2.7940 3.4503
9 .9238 1.4076 1.8122 2.2005 2.6706 3.0822
10 .9027 1.3942 1.8023 2.1603 2.6616 2.9771
11 .9232 1.3744 1.7861 2.1732 2.6429 2.9582
12 .9207 1.3830 1.7872 2.1517 2.5778 2.9292
13 .9180 1.3836 1.7925 2.1339 2.5852 2.8869
14 .9162 1.3744 1.7655 2.1349 2.5764 2.8852
15 .9210 1.3682 1.7688 2.1310 2.5580 2.8463
16 .9161 1.3762 1.7613 2.1052 2.5327 2.8400
17 .9104 1.3790 1.7582 2.1188 2.5340 2.8243
18 .9154 1.3778 1.7589 2.1025 2.5128 2.8039
19 .9177 1.3737 1.7533 2.0954 2.5135 2.8152
20 .9178 1.3675 1.7486 2.0909 2.5080 2.8043
21 .9164 1.3628 1.7426 2.0826 2.4981 2.7824
22 .9137 1.3755 1.7544 2.0942 2.4956 2.7761
23 .9168 1.3640 1.7497 2.0835 2.4950 2.7876
24 .9205 1.3729 1.7485 2.0911 2.5003 2.7775
25 .9202 1.3654 1.7506 2.0763 2.4780 2.7598
26 .9142 1.3657 1.7402 2.0776 2.4769 2.7582
27 .9219 1.3692 1.7479 2.0776 2.4821 2.7618
28 .9163 1.3709 1.7476 2.0790 2.4823 2.7575
29 .9220 1.3712 1.7492 2.0817 2.4730 2.7401
30 .9200 1.3702 1.7440 2.0709 2.4652 2.7421
31 .9210 1.3683 1.7387 2.0743 2.4694 2.7491
32 .9237 1.3654 1.7441 2.0742 2.4606 2.7357
33 .9189 1.3621 1.7385 2.0703 2.4573 2.7361
34 .9189 1.3633 1.7399 2.0710 2.4545 2.7302
35 .9211 1.3665 1.7419 2.0707 2.4645 2.7340
36 .9225 1.3628 1.7364 2.0697 2.4594 2.7300
37 .9183 1.3648 1.7370 2.0693 2.4532 2.7288
38 .9237 1.3688 1.3730 2.0691 2.4561 2.7286
39 .9203 1.3623 1.7361 2.0654 2.4495 2.7129
40 .9229 1.3642 1.7345 2.0619 2.4419 2.7104
45 .9221 1.3656 1.7341 2.0664 2.4419 2.7073
50 .9221 1.3640 1.7339 2.0588 2.4444 2.7018
55 .9170 1.3595 1.7309 2.0532 2.4338 2.7012
60 .9216 1.3643 1.7320 2.0587 2.4378 2.7061
70 .9205 1.3653 1.7293 2.0487 2.4245 2.6837
80 .9210 1.3619 1.7289 2.0473 2.4205 2.6747
90 .9237 1.3635 1.7280 2.0494 2.4269 2.6840
100 .9212 1.3627 1.7288 2.0492 2.4212 2.6847
110 .9195 1.3605 1.7257 2.0419 2.4136 2.6653
120 .9205 1.3602 1.7247 2.0421 2.4150 2.6691
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Table 2. Type I Error Rates Of tw, tNS, And tmax For Various Sample Sizes.

nl,n2 Statistics
Level Of Significance 
.100 .050 .010

6,6 tw .095 .067 .015

tNS .107 .058 .015

tmax(a) .111 .067 .015

tmax(b)
.097 .049 .008

3,9 tw tw .099 .064 .010

tNS .099 .054 .010

tmax(a)
.109 .064 .010

tmax(b)
.109 .064 .010

10,10 tw tw .105 .052 .012
tNS .099 .050 .012

tmax(a)
.114 .057 .013

tmax(b)
.099 .049 .011

5,15 tw tw .097 .051 .011

tNS .100 .050 .011

tmax(a)
.112 .058 .013

tmax(b)
.106 .050 .010

20,20 tw .104 .050 .010

tNS .102 .052 .011

tmax(a)
.117 .060 .013

tmax(b)
.102 .052 .010

10,30 tw .101 .047 .010

tNS .098 .047 .009

tmax(a) .116 .055 .011

tmax(b)
.101 .049 .010

40,40 tw .100 .049 .010

tNS .101 .049 .010

tmax(a)
.117 .058 .012

^niax(b)
.100 .050 .010

20,60 tw .101 .052 .009

tNS .101 .051 .010

tmax(a)
.116 .061 .012

t|nax(b)
.101 .052 .009

60,60 tw .101 .049 .010

tNS .101 .048 .010

tmax(a)
.117 .058 .012

maxfb)
.102 .048 .010

30,90 tw .100 .049 .011

tNS .100 .050 .011

tmax(a)
.116 .058 .011

maxfb) .100 .049 .011
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Figure 1. Power of tW, tMS and tMAX When Sampling Is From a Normal Distriubtuon Figure 2. Power of tW, tMS and tMAX When Sampling Is From a Uniform Distriubtuon
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Figure 3. Power of tW, tMS and tMAX When Sampling Is From a Cauchy Distriubtuon

0.7

0.3

0.2

0.1
60

Sample Size (n)

Under the heavy-tailed Cauchy distribution, tw was the 
most powerful statistic, with tmax once again demonstrating 
power similar to, but slightly less than, that of the most 
powerful test.

Conclusion

It is usually difficult for researchers to obtain sufficient 
information from a given data set so as to make reasonable 
choices between suitable statistical tests. It is important, 
therefore, that tests have power to detect broad classes of 
alternatives with high probability. The technique demon
strated here is a simple method for constructing such tests.

A major advantage of the test presented here lies 
in the fact that this test is automatically adaptive to the 
weight in the tail of the population from which the data 
were sampled. This is contrasted with various adaptive 
estimation procedures which require a preliminary estimate

of tail weight.
It should also be noted that the maximum method 

may be extended to a wide variety of testing situations. 
For example, more than two statistics my be formed into a 
maximum test, with component tests being both 
parametric and non-parametric. A large number of other 
possibilities exist.
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