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CHAPTER 1: INTRODUCTION 

A cell is a basic structural and functional unit of all living organisms. The human body is 

composed of millions of cells; all these cells require an energy source for their normal 

functioning. Glucose, a monosaccharide is the primary source of energy for cells in the body. 

Glucose metabolism plays an important role in the human body and is regulated by an interplay 

between the pancreatic hormones glucagon and insulin to maintain glucose homeostasis [1, 2]. 

Glycogenolysis, gluconeogenesis and glycolysis also play a key role in glucose metabolism. It is 

well established that chronic exposure of pancreatic β-cells to hyperglycemic conditions leads to 

the onset of  cell dysfunction and diabetes. 

The pancreas, the key regulator of glucose metabolism, functions as an exocrine gland 

[secreting digestive enzymes] as well as an endocrine gland [secreting hormones such as insulin 

and glucagon]. The endocrine cells of the pancreas are grouped together to form the islets of 

Langerhans [3]. The different endocrine cells include α-cells, β-cells, δ-cells, γ-cells and ε-cells. 

The α-cells produce the hormone glucagon which increases the blood sugar levels and make 

about 15-20% of the total islet count whereas the β-cells produce the blood glucose level 

reducing hormone insulin and constitute about 65-80% of the total cells [3]. The δ-cells 

constitute 3-10% of the islets and produce somatostatin which inhibits the secretion of both 

glucagon and insulin [3]. The γ-cells (3-5%) produce pancreatic polypeptide (PP) [4] and ε-cells 

(<1%) produce ghrelin [5]. 
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Figure 1-1: Image of a pancreatic islet: insulin (green) and glucagon (red). 

[diabetesresearch.org] 

Glucotoxicity: 

Prolonged exposure of the β-cells to high glucose [glucotoxic ] conditions results in 

permanent damage to the β-cells, including defects in insulin gene transcription and expression 

[6]. Glucotoxic conditions promote generation of reactive oxygen species [ROS] mediated by 

Rac1-Nox2 signaling axis. This, in turn, leads to activation of stress kinases resulting in  

mitochondrial dysfunction and increased Caspase activity leading to β-cell death [7]. High 

glucose concentrations also cause an impaired Glucose Stimulated Insulin Secretion (GSIS). 
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Figure 1-2: Glucotoxic conditions lead to β-cell death: Prolonged exposure to HG conditions 

activate Rac1-Nox2 mediated ROS generation pathway leading to stress kinase activation 

eventually culminating in β-cell death. [Image taken from Syed et al. ref (7)]   

Glucose Stimulated Insulin Secretion (GSIS): 

GSIS is initiated when glucose enters the pancreatic β-cell via GLUT2 transporters and 

then undergoes cationic and metabolic events that lead to increased intracellular ATP 

concentration causing the closure of KATP channel. The KATP channel closure causes membrane 

depolarization followed by opening of the Voltage dependent calcium channels (VDCC) causing 

an increased influx of Ca
2+

 ions into the β-cell and the Ca
2+ 

influx mediates the mobilization of 

insulin granules to the plasma membrane for insulin exocytosis [8, 9]. High glucose 

concentrations/glucotoxic conditions induce impaired GSIS by partially inhibiting the KATP 

channel, thereby decreasing the K
+ 

efflux and Ca
2+ 

influx [6]. 
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Figure 1-3: Glucose Stimulated Insulin Secretion (GSIS): a simplified model. [Wang et al. 

ref (8)]. 

Diabetes: 

According to the International Diabetes Federation (IDF), diabetes is a chronic disease 

characterized by body's inability to produce insulin or use insulin effectively, thereby leading to 

increased glucose levels that impact the pancreatic β-cell negatively resulting in β-cell death 

and/or insulin resistance. There are 3 types of diabetes- Type 1, Type 2 and gestational diabetes. 

Diabetes can cause different complications leading to cardiovascular diseases, kidney failure, 

diabetic retinopathy, nerve diseases, limb amputations and pregnancy complications.  
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Type 1 Diabetes:  

Type 1 diabetes, also referred to as insulin dependent diabetes mellitus (IDDM) is due to 

autoimmune reactions in which the pancreatic β-cells are destroyed by the immune system and 

insulin is no longer produced in the human body. Viral infections and family history of type 1 

diabetes are the associated risk factors for type 1 diabetes. B lymphocytes have been viewed as 

key players in development of type 1 diabetes by producing autoantibodies and by presenting 

antigens to T lymphocytes [10]. Animal studies by Hu et al. and Guleria et al. have shown that 

anti B cell therapy restores normal glucose levels and reverses diabetes [11, 12]. However, "In 

human disease, the function of B lymphocytes is less obvious and the desire to directly link 

murine pathogenesis of type 1 diabetes to that of humans (despite the profound differences in the 

immune systems between the two species) has led to various misconceptions and false 

expectations" [13-16].   

Type 2 Diabetes:   

In type 2 diabetes, formerly known as non-insulin dependent diabetes mellitus (NIDDM), 

the pancreatic β-cells become resistant to insulin and are unable to utilize the insulin effectively 

in lowering blood glucose levels, thus, leading to hyperglycemia. T2DM alters the glucose 

homeostasis by inducing impaired nutrient storage and mobilization and triggers the pancreatic 

β-cells to enhance insulin secretion in response to insulin resistance [17].  Obesity, unhealthy 

diet, high blood pressure are some of the known factors that can lead to type 2 diabetes. Other 

studies have shown that very low energy diet (VLED)/ very low calorie diet (VLCD) can prove 

beneficial to patients with type 2 diabetes [18-20]. 
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Gestational Diabetes:  

When the slightly elevated blood glucose levels in females during pregnancy cause an 

imbalance between elevated insulin secretion and pregnancy induced insulin resistance resulting 

in the onset of gestational diabetes [21]. Furthermore, in addition to insulin resistance, 

gestational diabetes is known to alter glucose metabolism and tolerance [22].  

The number of people being diagnosed with diabetes is on the increase and according to 

an estimate by IDF, there will be 642 million individuals with diabetes in 2040 as opposed to 415 

million in 2015. The number of deaths due to diabetes in 2015 were 5 million, which was higher 

than the deaths due to HIV/AIDS, tuberculosis and malaria combined [23]. 

 

Figure 1-4: Prevalence of Diabetes around the world [International Diabetes Federation Atlas 

2015] 
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Metformin: 

Metformin is an oral antidiabetic drug which is used as a first-line therapy for patients 

diagnosed with T2DM [24-26]. Metformin lowers elevated blood glucose levels by suppressing 

hepatic glucose production, increasing peripheral glucose uptake and ameliorating insulin 

sensitivity [25, 27-29]. It has been shown to improve vascular endothelial functions and reduce 

cardiovascular events in patients with type 2 diabetes [30]. The oral bioavailability of Metformin 

is 50-60% with majority of the absorption being completed within ~ 6 hours in the small 

intestine and the drug gets minimally metabolized in the liver before being excreted by the 

kidneys [31].  

 

Figure 1-5: Structure of Metformin [https://pubchem.ncbi.nlm.nih.gov] 

Hypothesis: 

Glucotoxicity, as discussed earlier, induces the Rac1-Nox2 mediated stress kinase 

activation, thereby producing mitochondrial defects and eventually leading to β-cell death [7]. 

Based on these observations, we asked if metformin, an oral antidiabetic drug for T2DM can 

potentially provide protection to the pancreatic β-cells from HG-induced mitochondrial 

dysfunction. Specifically, we hypothesized that metformin triggers its cyto-protective roles by 

inhibiting the HG-induced Rac1 mediated stress kinase activation signaling pathway. We 

validated this hypothesis in insulin-secreting INS-1 832/13 cells incubated cultured under 
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glucotoxic conditions in the absence or presence of clinically-relevant concentrations of 

metformin. Our findings indicate that metformin affords significant protection in pancreatic β-

cell against HG-induced metabolic events leading to its dysfunction. 
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CHAPTER 2: MATERIALS AND METHODS 

Chemicals and antibodies: 

 Rabbit polyclonal antibody for phospho-p38MAPK (Thr 180/Tyr 182), total-p38MAPK, 

Lamin B and mouse monoclonal antibody for CD36 were obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA). Antisera directed against phospho-p53, total-p53, phospho-

JNK1/2, total-JNK1/2 and cleaved caspase-3 antibodies were purchased from Cell Signaling 

(Danvers, MA). Antibodies against Bcl2 and actin were from Sigma–Aldrich (St. Louis, MO). 

Phospho-VAV2 and total-VAV2 antisera were purchased from Abcam (Cambridge, MA). NE-

PER Nuclear and Cytoplasmic Extraction Kit was from Thermo Scientific (Waltham, MA). 

IRDye
®
 800CW anti-rabbit and anti-mouse secondary antibodies were obtained from LICOR 

(Lincoln, NE). Metformin hydrochloride, MTT, DMSO were purchased from Sigma-Aldrich (St. 

Louis, MO). Rac1 Antibody was from BD Transduction lab (San Jose, CA). Rac1 activation 

assay Biochem kit was purchased from Cytoskeleton, Inc (Denver, CO). EHT 1864 [Rac1 

inhibitor], was purchased from R&D systems (Minneapolis, MN). All other reagents used in the 

studies were obtained from Sigma–Aldrich (St. Louis, MO). 

Insulin-secreting INS-1 832/13 cells and culture conditions: 

 INS-1 832/13 cells were provided by Dr. Chris Newgard, Duke University Medical 

Center (Durham, NC). INS-1 832/13 cells were cultured in RPMI 1640 medium containing 10% 

heat-inactivated FBS supplemented with antibacterial antifungal (100IU penicillin and 100IU/ml 

streptomycin), 1mM sodium pyruvate, 50 µM 2-mercaptoethanol and 10mM HEPES (pH 7.4) at 

37°C and 5% CO2 in a humidified incubator. INS-1 832/13 cells were sub cloned twice weekly 

following trypsinization and passages 53-61 were used for the studies. Following overnight 

incubation in 2.5 mM glucose and 2.5% serum RPMI media, the cells were treated with low 



10 

 

glucose (2.5 mM; LG) or high glucose (20mM; HG) in the absence or presence of MF (15 µM 

and 30 µM) and EHT 1864 (10 µM) for 24 hours. 

Western Blotting: 

After 24-hour incubation with glucose (2.5mM, LG and 20mM, HG) in the absence and 

presence of metformin (15 µM and 30 µM) and EHT 1864 (10 µM), cells were lysed using RIPA 

buffer containing protease inhibitor cocktail, 1mM NaF, 1mM PMSF and 1mM Na3VO4. Cell 

lysates (~45 µg for INS-1 832/13 cells) were then resolved by SDS-PAGE, and then transferred 

onto nitrocellulose membranes. Membranes were blocked in 5% non-fat dry milk in PBS-T 

buffer or 0.1% Casein in PBS-T and then incubated with appropriate primary antibody diluted 

with 5% non-fat dry milk in PBS-T buffer or 0.1% Casein in PBS-T, overnight at 4°C. The 

membranes were then washed 5 x 5 minutes with PBS-T, and then probed with the appropriate 

secondary antibody IRDye 
® 

800CW anti-rabbit or anti-mouse. The immune complexes were 

then detected using Odyssey 
®
 Imaging Systems. The band intensities were quantifies using 

Carestream 
®
 Molecular Imaging Software.

 
  

Rac1 activation assay: 

Rac1 activation assay was performed using Rac1 pull-down activation assay kit (bead 

pull-down format; Cytoskeleton Inc.) using manufacturers’ protocol. Briefly, INS-1 832/13 cells 

were grown to ~70% confluence in complete growth media (RPMI). Cells were then grown in 

low glucose (2.5mM) low serum (2.5%) starvation media overnight followed by culture in LG 

and HG media in the presence and absence of metformin (0-30 µM). After 24 hours, growth 

media was aspirated and cells were washed with ice cold PBS. After complete removal of PBS, 

ice cold lysis buffer containing 1X protease inhibitor cocktail were added to culture covering 

entire surface. Cell lysates were collected and snap frozen in liquid nitrogen and stored at -70 
0 

C 
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until further processing. Pull-down assay was performed the same day using the snap frozen 

protein lysates.  

Isolation of nuclear and non-nuclear fractions: 

INS-1 832/13 cells were treated with low glucose or LG (2.5mM) and high glucose or 

HG (20mM) in the presence and absence of metformin (30µM) for 24hrs as described above. 

Adherent cells were harvested with trypsin-EDTA and the cell pellet was washed once with ice 

cold 1X PBS. The cytoplasmic and nuclear protein fractions were collected using NE-PER 

nuclear and cytoplasmic extraction Kit (Thermo Scientific) following manufacturer’s protocol. 

Cytoplasmic protein extract and nuclear protein extract were further analyzed by western 

blotting. The purity of the nuclear fractions was assessed by probing for nuclear Lamin B. 

Cell Viability Assay: 

MTT assay was performed using INS-1 832/13 cells to quantify cell viability under LG 

(2.5mM) and HG (20mM) conditions in the presence and absence of MF (30 µM). INS-1 832/13 

cells were starved in low glucose (2.5mM) low serum (2.5%) starvation medium for 12-18 hrs in 

a 96 well plate. Following starvation, the INS-1 832/13 cells were treated with LG or HG  in the 

absence or presence of MF (30 µM) for 24 hrs. After the 24-hour incubation, the cells were 

incubated with MTT for a period of 2-4 hrs. At the end of the incubation, DMSO was added to 

the wells to solubilize the MTT crystals. The absorbance was measured at 540nm using GEN 5.0 

software. 
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CHAPTER 3: GLUCOTOXICITY INDUCES Rac1 ACTIVATION AND NUCLEAR 

TRANSLOCATION AND CD36 EXPRESSION IN INS-1 832/13 CELLS 

The studies conducted in this Chapter are based on the recent findings from our 

laboratory suggesting that glucotoxic conditions induce impaired GSIS, β-cell dysfunction and 

apoptosis by triggering a Rac1-Nox2 mediated stress kinase activation signaling pathway [7, 9].  

Three classes of G-proteins that have been identified in the pancreatic β-cells are: 1) The 

heterotrimeric proteins involved in signal transduction via G-protein coupled receptors (GPCRs) 

to the intracellular effectors [32, 33]. 2) small G-proteins, which are involved in membrane 

trafficking of secretory vesicles and cytoskeletal remodeling [34]. 3) The third class of G-

proteins includes the elongation factors and Tau proteins [33, 34].  

HG conditions promote nuclear accumulation of Rac-1 in INS-1 832/13 cells, normal rat 

islets and human islets 

Previous observations from our laboratory have demonstrated sustained activation of Rac1 in 

INS-1 832/13 cells, normal rat islets and human islets exposed to HG conditions [7, 35, 36]. We 

provided evidence to indicate a significant reduction in geranylgeranyltransferase [GGTase] 

activity, which regulates post-translational prenylation of small G-proteins, including Rac1.  As 

an index for decreased prenylation, we observed significant accumulation of unprenylated 

proteins in pancreatic β-cells exposed to HG conditions. Therein, we speculated that 

unprenylated, but paradoxically active G-proteins might translocate into “inappropriate” 

compartments [e.g., nucleus] to induce metabolic defects in the effete β-cell [37]. Therefore, we 

undertook the current investigation to determine potential targeting of Rac1 into the nuclear 

compartment in pancreatic β-cells exposed to HG conditions.  Data depicted in Figure 1 [Panels 

A and B] demonstrate a marked increase in the nuclear localization of Rac1 in INS-1 832/13 
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cells exposed to glucotoxic conditions. These findings were confirmed in normal rodent islets 

[Figure 1; Panels C and D] and human islets [Figure 1; Panel E]. Together, these observations 

validate our hypothesis that exposure of insulin-secreting cells to HG conditions leads to 

sustained activation of unprenylated Rac1 leading to its translocation to the nuclear 

compartment. 

 

Figure 3-1: HG conditions promote nuclear accumulation of Rac-1 in INS-1 832/13 cells, 

normal rat islets and human islets: Panel A: Relative abundance of Rac1 in the nuclear 

fractions isolated from INS-1 832/13 cells exposed to LG or HG conditions was determined by 

Western blotting. Panel B: Pooled data from three independent experiments is shown. 

Accumulation of Rac1 was calculated as a ratio of Rac1 to Lamin B in the nuclear fraction 

[loading control as well as marker] and represented as fold change over basal. ** p<0.005 vs 

INS-1 832/13 cells
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2.5mM glucose. Panel C: Relative abundance of Rac1 in the nuclear fractions isolated from 

normal rat islets exposed to LG or HG conditions was determined by Western blotting. Panel D: 

Pooled data from three independent experiments is represented herein. Accumulation of Rac1 

was calculated as above. ** p<0.005 vs 2.5mM glucose. Panel E: Human pancreatic islets were 

incubated with LG or HG for 24 hours and relative abundance of Rac1 in the nuclear fraction 

was determined by Western blotting. Western blot of one batch of human islet lysates is provided 

here. 

Metformin attenuates HG-Induced Rac1 activation and Rac1 nuclear translocation  

Small G-proteins play an important role in regulating glucose stimulated insulin secretion 

(GSIS). There are 3 major classes of small g-proteins. The first group includes Cdc42, Rac1, Rho 

and ADP-ribosylation factor-6 (ARF-6). The second group consists of Rap1, Rab3A and Rab27. 

The third group of small G-proteins consist of Rab2, Rhes and Rem2 [34].  

Our experimental model was focused on investigating whether clinically relevant 

concentrations of metformin, a biguanide antidiabetic compound,  protects INS-1 832/13 cells 

from HG-induced sustained activation and translocation of Rac1, thereby halting the apoptotic 

signaling events leading to β-cell death. To address this, INS-1 832/13 cells were exposed to HG 

conditions in the presence and absence of metformin [30μM] and Rac1 activation was assessed 

using pull down assay. Data shown in figure 3-2 indicate significant increase in Rac1 activation 

and nuclear translocation in INS-1 832/13 cells exposed to HG conditions and co-provision of 

metformin significantly abated the HG-induced Rac1 activation and nuclear translocation. An 

interesting observation was that in addition to reducing HG-induced Rac1 activation, metformin 

induced slight Rac1 activation in cells exposed to basal [normal] glucose conditions [Figure 3-2, 

Panel A]. Pooled data from multiple experiments is depicted in Figure 3-2 [Panel B]. Metformin 

treatment also reduced HG-induced Rac1 nuclear translocation in INS-1 832/13 cells [Figure3-2, 

Panel C]. Quantified data from multiple experiments is represented in Figure 3-2 [Panel D]. 
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Together, findings from these experiments demonstrate metformin's beneficial effect in 

inhibiting the HG-induced Rac1 activation and nuclear translocation in INS-1 832/13 cells.    
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Figure 3-2: Metformin suppresses HG-induced Rac1 activation and Rac1 nuclear 

translocation in INS-1 832/13 cells: Panel A: INS-1 832/13 cells were cultured in LG (2.5mM) 

or HG (20mM) for 24 hours in the absence and presence of Metformin (30 µM). Rac1 activation 

assay was performed using pull-down activation assay biochem kit [see Methods for additional 

details]. Cell lysates were separated and analyzed using western blotting. Panel B: Band 

intensities of Rac1 were quantified by densitometric analysis. Abundance of active Rac1 in pull-

down samples was normalized by total Rac1. Pooled data from three experiments was 

represented in this panel.  *p < 0.05 vs. 2.5mM glucose alone, **p < 0.05 vs. 20mM glucose 

alone. Panel C: INS-1 832/13 cells (a) were incubated with LG (2.5mM) and HG (20mM) in the 

absence and presence of metformin (0-30 µM) for 24 h. Cell lysates were analyzed for Rac1 

using western blotting. Purity of the nuclear fractions was verified by probing with Lamin B. 

Panel D: Band intensities for Rac1 were measured using densitometry and the ratios were 

calculated over Lamin B in the presence and absence of metformin (n=3 in INS-1 832/13 cells). 

*p < 0.05 vs. 2.5 mM glucose alone, **p < 0.05 vs. 20mM glucose alone.  

 

F
o

ld
 C

h
a

n
g

e
 [

R
a

c
1

: 
L

a
m

in
 B

]

0

1

2

*

**
*

Glucose, mM         2.5      2.5    20      20   

Metformin, μM       - 30      - 30 

LG            LG HG             HG

Rac1

Lamin B

Metformin, μM     - 30           - 30      

C

D



17 

 

Guanine nucleotide exchange factors (GEFs) 

There are various regulatory proteins/factors that enable the G-proteins to switch between 

the active (GTP-bound) and inactive (GDP-bound) conformations, and these factors are 

classified into 3 major categories. The first group consists of the guanine nucleotide exchange 

factors (GEFs), which facilitate GDP-GTP exchange [switch from inactive to active states]. The 

second group includes the GDP- dissociation inhibitors (GDIs) that retain putative G-proteins in 

their GDP-bound [inactive] conformation by complexing with GDP-bound G-proteins. The third 

group consists of GTPase-activating proteins (GAPs) which mediate inactivation of G-proteins 

by hydrolyzing the GTP-bound to G-proteins to their inactive GDP-bound forms [33]. As 

depicted in Figure 3-2, T-lymphocyte invasive and metastasis protein 1  (Tiam1) and Vav2 

represent the two GEFs for Rac1 [33]. Our experimental design was focused on investigating 

whether co-provision of a clinically relevant concentration of metformin would inhibit Vav2 and 

thus, prevent conversion of inactive Rac1 to its active confirmation.   
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Figure 3-3: Guanine nucleotide exchange factors: [A schematic depicting the conversion of 

inactive Rac1 to its active GTP-bound confirmation by guanine nucleotide exchange factors 

(Tiam1 and Vav2) and conversion of active to inactive confirmation by GTPase-activation 

proteins. ref. (33)] 

Guanine nucleotide exchange factor Vav2 (Vav2) and regulatory effects of metformin 

Guanine nucleotide exchange factor Vav2 (Vav2) is one of the regulator proteins that 

induces the GDP/GTP exchange for Rac1 and belongs to the diffuse B-cell lymphoma (Dbl) 

family of proteins and is ubiquitously distributed [38, 39]. Vav2 is activated by tyrosine 

phosphorylation on epidermal growth factor receptor (EGFR) and interacts with 

phosphatidylinositol (3,4,5)-triphosphate (PIP3) generated by phosphatidylinositol-4,5-

biphosphate 3-kinase (PI3K) [40-42].  

According to the data published by Veluthakal et al.[39], Vav2 phosphorylation increases 

under glucotoxic conditions and it is the increased Vav2 phosphorylation that mediates the Rac1 

activation and glucose stimulated insulin secretion. Based on these findings, we asked if 

metformin treatment of the INS-1 832/13 cells could result in Vav2 inhibition and thereby, 

inhibit the conversion of inactive Rac1 to active Rac1. The data accrued from the studies, 

showed that Vav2 phosphorylation increased in INS-1 832/13 cells exposed to HG-conditions. It 

is noteworthy, however, that metformin treatment did not restore the Vav2 phosphorylation to 

normal levels, but instead induced an increased Vav2 phosphorylation in cells exposed to LG 

conditions. Together, these findings suggest that metformin does not inhibit Vav2 

phosphorylation even though it inhibited HG-induced Rac1 activation in INS-1 832/13 cells. 

These data indicate alternate mechanisms might exist for metformin-induced effects.  
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Figure 3-4: Metformin fails to inhibit HG-induced Vav2 phosphorylation in INS-1 832/13 

cells: Panel A: INS-1 832/13 cells were treated with LG (2.5mM) and HG (20mM) in the 

absence or presence of Metformin (30 µM) for 24 h. Cell lysates were separated and analyzed 

using western blotting for phosphorylated and total Vav2. Panel B: Band intensities for 

phospho-Vav2 were measured using densitometry and the ratios were calculated over total-Vav2 

in the presence of metformin (n=3 in INS-1 832/13 cells). *p < 0.05 vs. 2.5mM glucose alone. 

Gluco or glucolipotoxic conditions induce CD36 expression 

Cho et al. have demonstrated that CD36, a class B scavenger receptor, plays critical 

regulatory roles in numerous physiological and pathological functions by inducing distinct 
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cellular responses in multiple cell types such as cardiac muscle, skeletal muscle and adipocytes 

[43]. Cluster of Differentiation 36 or Cluster Determinant 36(CD36) is a fatty acid transporter, 

membrane protein that mediates glucotoxicity induced β-cell dysfunction by increasing the 

transport of fatty acids into the pancreatic beta cell and undergoes HG-induced increased 

expression in the intestinal epithelial cells [26, 44-46]. According to the data published by Wallin 

and associates, overexpression of CD36 inhibits the glucose mediated fatty acid oxidation and 

also resulted in impaired glucose stimulated insulin secretion mediated by fatty acids [47].  

Several recent studies have established novel roles for CD36 in the onset of HG-induced 

β-cell dysfunction and death. Based on these observations, we asked if HG-conditions increase 

expression of CD36 in INS-1 832/13 cells, and if so, if Rac1 activation represents an upstream 

signaling mechanism for HG-induced CD36 expression. We further questioned if metformin 

exerts any protective effects on HG-induced CD36 expression. 

HG-induced CD36 expression in INS-1 832/13 cells: Protection by metformin 

In the next of studies we asked if metformin prevents HG-induced CD36 expression in 

INS-1 832/13 cells. Data in Figure 3-5 demonstrate a significant increase in the expression of 

CD36 in INS-1 832/13 cells following exposure to HG conditions. In addition, co-provision of 

metformin markedly suppressed HG-induced expression of CD36. It is noteworthy, however, 

like Rac1 activation [Figure 3-1], metformin treatment slightly increased CD36 expression under 

basal glucose conditions [Figure 3-5; Panel A; lane 1 vs. 2]. Pooled data from multiple 

experiments are included in Figure 3-5 [Panel B]. Compatible with data described above [Figure 

3-2], findings from this experiment suggest that HG-induced rac1 activation and nuclear 

translocation and downstream CD36 expression are sensitive to metformin.  
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Figure 3-5: Metformin inhibits HG-induced CD36 expression: Panel A: INS-1 832/13 cells 

were treated with LG (2.5mM) and HG (20mM) with and without Metformin [30μM] for 24 hrs. 

Cell lysates for CD36 were separated using western blotting and actins were used as loading 

control. Data are representative of three experiments. Panel B: Quantification of the CD36 and 

actin bands was done using densitometric analysis and ratios were calculated over actins in the 

presence and absence of metformin. (n=3 in INS-1 832/13 cells). *p < 0.05 vs. 2.5mM glucose 

alone. 

Reversal of glucotoxicity and lipotoxicity induced CD36 expression by EHT 1864  

It has been established that glucotoxic and glucolipotoxic conditions mediate β-cell 

dysfunction by inducing CD36 overexpression [26, 44-47]. EHT 1864 is a small molecule Rac1 

inhibitor that prevents Rac1 activation by inhibiting the switch from inactive to active 

confirmation, thereby, keeping the G-protein in the inactive state [48]. To address the question of 

whether Rac1 activation represents an upstream signaling mechanism for HG-induced CD36 

expression, we quantified HG-induced expression of CD36 in INS-1 832/13 cells exposed to 
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EHT 1864. Data in Figure 3-4 indicate a significant increase in the CD36 expression in INS-1 

832/13 cells exposed to glucotoxic and lipotoxic conditions. Moreover, HG-induced expression 

of CD36 was markedly reduced following inhibition of Rac1, thus suggesting that Rac1 

activation may be upstream to CD36 expression in β-cells exposed to HG and lipotoxic 

conditions. 

 

Figure 3-6: Glucolipotoxic conditions induce CD36 expression: regulation by Rac1: Panel 

A: INS-1 832/13 cells were treated with low glucose (2.5mM), high glucose (20mM) and 

palmitate (0.5mM) for 24 hrs in the presence and absence of EHT 1864 (10 μM ). Cell lysates for 

CD36 were separated using western blotting and actins were used as loading control. Data are 

representative of three experiments. *p < 0.05 vs. 2.5 mM glucose alone, **p < 0.05 vs. 20mM 

glucose alone. 
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Summary of findings: 

 High glucose conditions induce increased Rac1 nuclear accumulation in INS-1 832/13 

cells, primary rodent islets and human islets 

 Glucotoxicity-induced Rac1 activation and nuclear translocation was attenuated by 

metformin 

 HG-induced Vav2 phosphorylation was unaffected by metformin treatment 

 Increased CD36 expression in response to HG conditions was reduced by metformin 

 EHT 1864 inhibited CD36 expression 

 CD36 may be downstream of Rac1  
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CHAPTER 4: GLUCOTOXIC CONDITIONS PROMOTE STRESS KINASE 

ACTIVATION AND PANCREATIC ISLET β-CELL DYSFUNCTION AND DEMISE 

Based on the findings of  Syed et al. and Sidarala et al., we now have an understanding 

that glucotoxic conditions lead to β-cell dysfunction and apoptosis induced via stress kinase 

(p38MAPK and JNK1/2) and p53 activation [7, 9, 49]. Inflammation and several other stress 

stimuli lead to the activation stress kinases (mainly serine/threonine kinases) and hence cause 

impaired insulin signaling [50]. There are 3 types of Mitogen-activated protein kinases (MAPK) 

and these includes extracellular signal-regulated kinases (ERK), p38MAPK and the cJun N-

terminal kinases (JNK). Differentiation signals and mitogens activate the ERKs whereas 

p38MAPK and JNK are activated by stress stimuli and are referred to as stress-activated kinases 

(SAPK) and these MAPK lead to the increased expression of certain inflammatory cytokines [51, 

52]. The tumor suppressor p53 plays a critical role in mediating apoptosis and tumor suppression 

via transcriptional regulation of downstream targets after the cells have been exposed to 

genotoxic stress [53, 54]. Under normal conditions, the proteasome degradation pathway keeps a 

control on the levels of p53 [54]. There are several enzymes such as kinases, phosphatases, 

acetyltransferases, deacetylases, ubiquitin ligases, deubiquitinases, methylases, and sumoylases 

that play a crucial role in stabilizing p53 [54-56]. Based on the findings mentioned above, we 

asked if HG-induced stress kinase (p38MAPK and JNK 1/2) and p53 activation could be 

inhibited by co-provision with clinically relevant concentrations of metformin in INS-1 832/13 

cells. 

 



25 

 

p38MAPK and JNK 1/2 activation mediated by glucotoxic conditions is prevented by 

metformin 

There are 4 different isoforms of p38MAPK and these include alpha, beta, gamma and 

delta [52]. Different tissues express these isoforms differently. The brain tissue expresses less 

p38α isoform whereas the δ isoform is abundant in tissues such as endocrine glands and 

neutrophils, p38γ is found in almost all the tissues with abundance in muscle tissue and p38β 

isoform is the main isoform [51, 57-61]. "All p38 isoforms are activated, in response to 

appropriate stimuli, by dual phosphorylation in the activation loop sequence Thr-Gly-Tyr" [51]. 

 It has been well established that glucotoxic conditions induce an increased p38MAPK 

activation which mediates pancreatic β-cell dysfunction and demise by mediating p53 expression 

and metabolic dysfunction [49]. Based on the findings of Sidarala et al., we designed an 

experiment to assess whether co provision with metformin (15 & 30 µM) attenuated p38MAPK 

phosphorylation in INS-1 832/13 cells exposed to HG conditions. Quantification of HG-induced 

activation of p38MAPK demonstrated a significant stimulation in INS-1 832/13 cells [Figure 4-

1]. Metformin treatment significantly alleviated such effects. Interestingly, however, as in the 

case of Rac1 activation [Figure 3-1], Vav2 phosphorylation [Figure 3-3] and CD36 expression 

[Figure 3-5], metformin treatment increased p38MAPK activation under basal glucose 

conditions despite its protective effects against high glucose-induced Rac1 activation, CD36 

expression and p38MAPK activation. 
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Figure 4-1: Metformin inhibits HG-induced p38MAPK activation: Panel A: INS-1 832/13 

cells were incubated with LG [2.5mM] and HG [20mM] in the presence and absence of 

metformin [0-30 µM] for 24 h. Western blotting was used to separate and analyze the cell lysates 

for phopho-p38MAPK and total-p38MAPK. Panel B: Quantification of the phopho-p38 bands 

was done by densitometry and the ratios were calculated over total-p38 in the presence of 

metformin [n=5]. *p < 0.05 vs. 2.5mM glucose alone, **p < 0.05 vs. 20mM glucose alone; NS: 

not significant.  
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HG-induces JNK1/2 activation: Regulation by metformin 

cJun N-terminal kinase (JNK) is activated by stress stimuli and is also referred to as 

stress -activated kinase (SAPK). JNK1, JNK2 and JNK 3 are the three genes that encode for JNK 

[51]. JNK1 and JNK 2 are expressed ubiquitously whereas JNK 3 is expressed in brain, heart and 

testis [62, 63]. Apoptosis, cell proliferation and cell migration play an important role in 

mediating JNK to induce a specific response to a specific stimulus [51]. In case of dietary and 

genetically mediated obesity, tissues such as adipose tissue, muscle tissue and liver have highly 

activated JNK pathway [64-67]. In pancreatic β-cells, JNK pathway activation leads to the 

inhibition of fatty acid induced GSIS via phosphorylation and inhibition of IRS1 and IRS2 [68]. 

According to the data published by Syed et al. and Kaneto et al. increased oxidative stress 

induces JNK activation, thereby leading to pancreatic β-cell death [7, 69, 70].  

Based on these findings, we questioned whether HG induces JNK 1/2 activation in INS-1 

832/13 cells and if so, does metformin provide any protection to the cells by inhibiting the JNK 

1/2 activation?. To address this question, we assessed the HG-induced JNK 1/2 activation in 

INS-1 832/13 cells and the data depicted in Figure 4-2 depicted a significant increase in HG-

induced JNK 1/2 activation. It is noteworthy, however, that co-provision with clinically relevant 

concentrations of metformin only resulted in attenuating JNK 1 but not JNK 2 phosphorylation. 

This specific inhibition of JNK 1 by metformin could be attributed to the fact that it is JNK 1 

which is the key player in the development of obesity and insulin resistance [71] and the 

substrate specificity due to splicing of one of the two alternate exons encoding for the kinase 

domain might influence the JNK interaction with the docking sites on the substrate [72]. 
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Figure 4-2: HG-induced JNK 1/2 phosphorylation: reversal by metformin: Panel A: INS-1 

832/13 cells were treated with LG (2.5mM) and HG (20mM) in the absence and presence of 

metformin (30µM). Cell lysates for p-JNK 1/2 and total JNK 1/2 were analyzed and separated 

using western blotting. Panel B: Densitometric analysis of the bands for p-JNK 1 was done and 

the ratios were calculated over total JNK 1 in the presence and absence of metformin. Panel C: 

Bands for p-JNK 2 were analyzed by densitometry and the ratios were calculated over total-JNK 

2 in the presence and absence of metformin. [n=3]. *p < 0.05 vs. 2.5mM glucose alone, **p < 

0.05 vs. 20mM glucose alone. 

Metformin inhibits HG-mediated activation of p53 activation 

In response to cell stress, p53 plays a pivotal role in activating/deactivating genes 

involved in cell cycle arrest, DNA repair, senescence or apoptosis via post-translational events 

such as ubiquitylation, phosphorylation, acetylation, sumoylation, methylation, and 

neddylation.[73-76]. "p53 functions primarily as a transcription factor and is biologically active 
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as a homotetramer comprising 4 × 393 amino acid residues" [77]. As mentioned earlier, there are 

several enzymes such as kinases, phosphatases, acetyltransferases, deacetylases, ubiquitin 

ligases, deubiquitinases, methylases, and sumoylases that play a crucial role in stabilizing p53 

[54-56].  In pancreatic β-cells, streptozotocin and palmitic acid increase the p53 activity and this 

increased p53 activity leads to reduced β-cell proliferation, thereby, inducing glucose intolerance 

and hypoinsulinaemia [78]. Data published by Sidarala et al. has shown HG induces p53 

activation in INS-1 832/13 cells, rat islets, ZDF islets and human islets and treatment with 

several pharmacological inhibitors (EHT 1864, Simvastatin, GGTI-2147, SB203580) inhibited 

HG-induced p53 activation. Based on these findings, we questioned could metformin treatment 

impart protection to INS-1 832/13 cells from HG-induced p53 activation. Data from Figure 4-3 

represents a significant stimulation of p53 activation induced by glucotoxic conditions and co-

provision with clinically relevant concentrations (15 and 30 µM) attenuated HG-induced p53 

activation in INS-1 832/13 cells. It is noteworthy that, unlike in the case of Rac1 activation, 

CD36 expression, p38MAPK and JNK1/2 activation, metformin did not exert any effects on p53 

activation under basal glucose conditions. 
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Figure 4-3: Metformin attenuates HG-induced p53 activation: Panel A: INS-1 832/13 cells 

were treated with LG [2.5mM] and HG [20mM] in the absence or presence of metformin [0-30 

µM] for 24 h. Cell lysates were separated and analyzed using western blotting for 

phosphorylated and total p53. Panel B: Band intensities for phospho-p53 were measured using 

densitometry and the ratios were calculated over total-p53 in the presence of metformin.  *p < 

0.05 vs. 2.5mM glucose alone, **p < 0.05 vs. 20mM glucose alone [n=3]. 

Summary of findings: 

 HG-induced p38MAPK activation was reduced by metformin treatment 

 Metformin inhibited HG-mediated phosphorylation of JNK 1 only 

 p53 activation by glucotoxic conditions was prevented by metformin 
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CHAPTER 5: GLUCOTOXIC CONDITIONS INDUCE MITOCHONDRIAL 

DYSFUNCTION LEADING TO CASPASE ACTIVATION AND APOPTOSIS 

β-cell failure because of chronic exposure to PA or palmitic acid and high glucose is 

induced by mitochondrial damage mediated by increased mitochondrial superoxide production 

resulting in increased expression of uncoupling proteins [79, 80]. According to Fu et al. 

increased mitochondrial uncoupling and subsequent decreased glucose stimulated ROS 

production might lead to glucose or lipid induced β-cell death [80]. In case of diabetes there is a 

change in the mitochondrial morphology as reported by Kabra et al. and Anello et al. [81, 82]. 

According M. Anello et al. islets from diabetic patients show a decrease in glucose-induced 

mitochondrial membrane hyper polarization and decreased ATP levels, thereby resulting in an 

uneven ATP'ADP ratio [81]. Mitochondrial dysfunction/damage results in release of cytochrome 

c, Bax (pro-apoptotic) and Bcl2 (pro survival).  

Based on the findings, the next set of studies were focused on investigating whether 

exposure of INS-1 832/13 cells to glucose induce any changes in the levels of Bax and Bcl2 and 

how do these changes affect the Caspase activation. We further asked if the deleterious effects of 

HG-induced Bax, Bcl2 and Caspase activation could be reversed by co provision with 

metformin. 

HG-mediated Bax and Bcl2 expression: regulation by metformin 

Bax is a pro apoptotic factor whereas Bcl2 is a pro-survival factor. For a cell to avoid 

apoptosis, it is essential that the balance between Bax and Bcl2 activation remains unchanged 

[83].  Bax and Bcl2 are involved in the intrinsic or the mitochondrial pathway of apoptosis 

inducing alterations in the mitochondria leading to cytochrome c release and activation of 
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caspases [84]. According to Schellenberg et al. Bax translocation from outer mitochondrial 

membrane to cytosol via retrotranslocation and in response to apoptosis, retrotranslocation is 

attenuated causing the mitochondrial Bax accumulation [85]. Bcl2 plays an important role in 

regulating the decrease in mitochondrial membrane potential and inhibits the pro-apoptotic 

proteins, thereby maintaining a balance to avoid apoptosis [85]. 

According to the data reported by Thurmond et al. INS-1 832/13 cells exposed to 

glucolipotoxic conditions showed a decrease in HG-induced Bcl2 phosphorylation, suggesting 

that glucolipotoxic conditions induce apoptosis [86]. In the next set of studies, we asked if HG 

induced Bax activation and a Bcl2 deactivation. We also assessed whether metformin inhibited 

Bax activation or restored Bcl2 activation in INS-1 832/13 cells. Data depicted in Figure 5-1 

[Panels A-C] shows an increase in HG-induced activation of 2 isoforms of Bax (Bax α and Bax 

β). It is noteworthy, however, that metformin treatment induced slight inhibition of only Bax α 

isoform and had no effect on Bax β isoform. Further data from Figure 5-1 [Panel D] shows a 

decrease in the activation of Bcl2 and co-provision with metformin was ineffective in restoring 

the Bcl2 levels in INS-1 832/13 cells. 
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Figure 5-1: Metformin suppresses HG-induced Bax phosphorylation and ineffective in 

restoring Bcl2 levels: Panel A: INS-1 832/13 cells were treated with LG (2.5mM) and HG 

(20mM) in the absence and presence of metformin (0-30 µM) for 24 h. Cell lysates were 

analyzed for Bax using western blotting. Equal loading of proteins was confirmed using actin as 

a loading control. Band intensities of Baxα were quantified using densitometry and the ratios 

were calculated over actin in the presence of metformin. Panel B: Densitometric analysis was 

used to quantify the Baxβ isoform intensities and ratios were calculated over actin with and 

without metformin. *p < 0.05 vs. 2.5mM glucose alone, **p < 0.05 vs. 20mM glucose alone. 

Panel C: INS-1 832/13 cells were treated with LG (2.5mM) and HG (20mM) in the absence and 

presence of metformin (0-30 µM) for 24 h. Cell lysates were analyzed for Bcl2 using western 

blotting. Actin was used as a loading control. Panel D: Band intensities of Bcl2 were quantified 

using densitometry and the ratios were calculated over actin in the presence and absence of 

metformin (n=3 in INS-1 832/13 cells). *p < 0.05 vs. 2.5mM glucose alone, **p < 0.05 vs. 

20mM glucose alone. 

Metformin reverses HG-induced activation of Caspase-3 

“Caspases are evolutionarily conserved cysteine-aspartyl specific proteases that play a 

key role in apoptosis” [87]. There are 14 caspases reported in mammals and some of them play a 
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key role in apoptosis while the other caspases participate in cytokine activation [88, 89]. The “c” 

in caspase represents the cysteine protease and the “aspase” refers to the caspase’s activity to 

cleave after the aspartic acid residue [90]. Caspases are inactive initially and it is only the 

cleavage of a specific aspartate cleavage site which makes a caspase functional in executing 

apoptosis [90]. According to Fraser and Evan, some caspases activate the other caspases in a 

subsequent manner, for instance, caspase 8 or initiator protease activates caspase 1 or the 

amplifier protease which in turn induces the activation of machinery proteases or caspase 

3/caspase 7 [91]. According to the experiments performed by Liadis et al. caspase 3 plays an 

important role in β-cell apoptosis [87]. 

In the last series of experiments, we determined the degree of caspase-3 activation, a 

marker for mitochondrial dysregulation, in INS-1 832/13 cells exposed to HG conditions in the 

absence or presence of metformin. Our findings demonstrated a high degree of caspase-3 

activation in cells exposed to HG conditions. This is evidenced by emergence of the cleaved 

[biologically- active] caspase-3 band under these conditions [Figure 5-2; Panel A]. We also 

observed a significant reduction in high glucose-induced caspase-3 activation in cells exposed to 

metformin. A modest increase in caspase-3 activation was also seen in cells under normal culture 

[basal] conditions. Pooled data from multiple experiments are provided in Figure 5-2 [Panel B].   
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Figure 5-2: HG-mediated caspase-3 activation is reduced by metformin: Panel A: INS-1 

832/13 cells were incubated with LG [2.5mM] and HG [20mM] in the absence and presence of 

metformin [0-30 µM] for 24 h. Cell lysates were analyzed for caspase-3 using Western blotting. 

Panel B: Densitometry was used to quantify the bands and the ratios were calculated over actin 

in the presence of metformin. *p < 0.05 vs. 2.5mM glucose alone, **p < 0.05 vs. 20mM glucose 

alone [n=3]. 

Metformin protects loss in cell viability induced by glucotoxic conditions in INS-1 832/13 

cells 

Compatible with above findings [Figure 5-2], we noticed significant protection by 

metformin of HG-induced loss in metabolic cell viability in these cells [Figure 5-3]. Our findings 
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demonstrated a significant reduction in metabolic cell viability in INS-1 832/13 cells incubated 

under HG conditions. Co-provision of metformin significantly protected these cells from 

metabolic alterations. Compatible with data described in the above sections, metformin treatment 

alone markedly suppressed cell viability under basal glucose concentrations. These data clearly 

imply dual regulatory roles of metformin. 

 

 

Figure 5-3: Cell viability assay: INS-1 832/13 cells were incubated with low [2.5 mM] or high 

[20mM] glucose for 24 hrs in the absence or presence of metformin [30 µM]. After 24 hrs of 

glucose treatment, the cells were incubated with 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide [MTT] reagent for 4 hrs and absorbance was measured at 540 nm. 

Data are represented as mean ± SEM from 8-10 determinations in each condition. *p=0.033, ** 

p=0.0001; and *** p=0.78 [not significant] vs. basal conditions. 

Based on the findings described in these studies, we conclude that HG conditions 

promote sustained activation and nuclear translocation of Rac1 and metabolic dysfunction 

[CD36 expression, stress kinase activation, Bax activation, decreased Bcl2 activation, caspase-3 
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activation and loss in metabolic cell viability] in pancreatic islet β-cells. We also provide 

evidence in support of significant protection of these metabolic defects by metformin. Together, 

these data provide evidence for novel targets for metformin, specifically at the level of pancreatic 

β-cell. 

Summary of findings: 

 Metformin attenuated expression of one Bax isoform and showed no effect on Bcl2 

expression 

 Caspase-3 activation was inhibited by metformin in a dose dependent manner 

 Cell viability loss due to glucotoxic conditions was also abrogated by metformin 
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CHAPTER 6: DISCUSSION 

It is well established that chronic exposure of pancreatic β-cells to HG conditions results 

in significant metabolic alterations and dysfunction, including loss in cell proliferation and GSIS 

leading to apoptotic demise of the β-cell [92]. More recent findings from our laboratory have 

demonstrated novel regulatory roles for Rac1, a small G-protein, in the induction of islet β-cell 

dysfunction under the duress of glucotoxicity [7, 34, 49, 93]. Specifically, we demonstrated that, 

under glucotoxic conditions, sustained activation of Rac1 results in accelerated Nox2 signaling 

leading to increased oxidative stress [ROS production], stress kinase [p38MAPK and p53] 

activation, mitochondrial [caspase 3 activation] and nuclear [Lamin degradation] dysfunction 

and cell death [7, 34, 49, 93, 94]. During these investigations, we also identified two guanine 

nucleotide exchange factors [Tiam1 and Vav2] that mediate activation of Rac1 in eliciting 

damaging effects on β-cells [33].  My studies described in this dissertation examined potential 

alterations, if any, in the subcellular distribution [mislocalization] of Rac1 in pancreatic β-cells 

exposed to glucotoxic conditions. Furthermore, I assessed the efficacy of metformin, an 

antidiabetic drug, against HG-mediated effects on β-cell function. Salient findings from my 

studies are exposure of INS-1 832/13 cells to HG-conditions result in nuclear association of 

Rac1. I also demonstrated that clinically-relevant concentrations of metformin prevent HG-

induced; [i] Rac1 activation and nuclear translocation; [ii] CD36 expression; [iii] stress kinase, 

Bax and caspase-3 activation; and [iv] loss in cell viability. Implications of these findings in the 

context of regulatory roles of constitutively-active Rac1 in the pathology of islet dysfunction, 

and its prevention by metformin are discussed below. 

Several recent studies from our laboratory have reported sustained activation of Rac1 in 

clonal INS-1 832/13 β-cells, normal rodent islets, and human islets under the duress of metabolic 
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stress, including glucotoxicity, lipotoxicity, exposure to proinflammatory cytokines, and 

biologically-active sphingolipids, such as ceramide [7, 9, 33, 34, 49, 93, 95, 96]. These 

observations were also confirmed in islets derived from type 2 DM animal models and human 

donors with T2DM. Furthermore, pharmacological inhibition [NSC23766] of Tiam1, a GEF for 

Rac1, attenuated Rac1 activation in all the above experimental conditions, thus suggesting that 

Tiam1 represents one of the GEFs that mediate hyper-activation of Rac1. More importantly, 

inhibition of Tiam1-Rac1 signaling axis also prevented HG-induced, Nox2 activation and 

downstream stress kinase activation and mitochondrial dysfunction in pancreatic β-cells exposed 

to HG conditions [33]. Together, these findings implicate Rac1 as a key mediator of islet β-cell 

dysfunction in metabolic stress and diabetes. 

Several recent studies have investigated beneficial effects of metformin against islet β-

cell function. It is noteworthy that these in vitro investigations utilized a wide range of 

metformin concentrations [10 μM-1 mM]. For example, Simon-Szabo and associates [17] have 

reported significant attenuation of palmitate-induced [lipoapoptosis] ER stress [elF2α 

phosphorylation and CHOP expression] and stress kinase [JNK1/2] activation by metformin [10-

100 μM] in rat insulinoma cells. Using murine islets and human islets Lundquist et al. [97] have 

demonstrated a marked reduction by metformin [20 μM] in nitric oxide synthase-derived nitric 

oxide, insulin secretory dysfunction and loss in cell viability under conditions of long-term 

exposure to glibenclamide and HG.  Using rodent islets, Hashemitabar and associates have 

demonstrated beneficial effects of metformin [15 μM] on insulin gene expression, insulin 

secretion and islet cell viability [98]. Natalichhio and coworkers have shown significant 

restoration of GLP-1 receptor impairment by metformin [0.5-1.0 mM] in murine islets following 

exposure to palmitate [99]. Together, the above studies provide supporting evidence for 
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beneficial/protective effects of metformin against gluco-, or lipotoxicity and ER stress.  Our 

current findings demonstrate marked protection of INS-1 832/13 cells, by metformin, against 

HG-induced metabolic defects at concentrations as low as 30 µM.  

A growing body of evidence implicates CD36, a fatty acid transport protein, in cell 

apoptosis under glucolipotoxic conditions [26, 45]. Data from our current studies have provided 

evidence to suggest that Rac1 activation is upstream to CD36 expression since EHT1864, a 

known inhibitor of Rac1 [48, 100], attenuated HG-induced CD36 expression in INS-1 832/13 

cells.  Our findings are also compatible with recent observations of Elumalai and associates 

demonstrating regulatory roles for Rac1-Nox2 signaling axis promotes CD36 expression in INS-

1 cells under the duress of glucotoxic conditions [45]. Using specific inhibitors of Tiam1-Rac1 

[NSC23766] and Nox2 [VAS2870] these researchers were able to identify Tiam1-Rac1-Nox2 

signaling steps as upstream modulators of CD36 expression under HG glucose exposure 

conditions. It should be noted that the findings of Elumalai et al. [45] further validate our 

original proposal that Tiam1-Rac1-Nox2 signaling pathway contributes to islet β-cell 

dysfunction under metabolic stress conditions [33, 34, 93, 101]. Data from our current 

investigations involving a structurally distinct inhibitor of Rac1 [EHT1864] further support this 

working model.  Our current observations also demonstrated a significant reduction in HG-

induced CD36 expression by metformin at 30 μM concentration. Further, inhibition of Rac1-

CD36 pathway appears to regulate the downstream stress kinase [p38MAPK and p53] activation 

and mitochondrial dysregulation [Bax and caspase-3 activation] in INS-1 832/13 cells. In further 

support of our findings are the recent observations of Moon and associates demonstrating 

significant protective effects of metformin [0.5 mM] against oxidative- and endoplasmic 

reticulum stress-induced CD36 expression in clonal β-cells and rodent islets [26].  
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It is noteworthy that metformin appears to exert dual regulatory roles in pancreatic β-

cells. For example, in the current studies, we consistently noted that under basal glucose 

conditions, metformin increased Rac1-CD36-Stress kinase activation to a modest, but significant 

degree while affording protection against HG-induced effects on these signaling steps.  Along 

these lines, using insulin-secreting MIN6 cells, Jiang and associates have provided evidence to 

suggest dual regulatory roles for metformin in pancreatic β-cell function. First, under normal 

growth conditions metformin significantly suppressed MIN6 cell proliferation and triggered 

apoptosis via a mechanism involving AMPK-activation and autophagy-related signaling steps 

[102]. Interestingly, however, metformin significantly protected MIN6 cells against palmitate-

induced mitochondrial dysfunction [caspase activation] and cell death. While these data appear 

to support our findings of significant protective effects of metformin on HG-induced effects in 

INS-1 832/13 cells, it should be noted that studies of Jiang and associates [102] used relatively 

high concentrations of metformin [2 mM] compared to much less concentration of metformin we 

used in our current studies [15-30 μM].  

Based on the available evidence, we propose a working model [Figure 6-1] that HG-

conditions stimulate Rac1 activation. It is also proposed that hyperactive Rac1 might regulate 

other apoptotic function including CD36 expression, other stress kinase [p38MAPK and JNK1/2] 

activation to initiate signaling events leading to mitochondrial dysregulation [Cleaved Caspase-3 

and Bax activation] and nuclear collapse [Lamin-B degradation] terminating in loss in GSIS, 

inhibition of proliferation and cellular apoptosis [7, 49, 94, 95]. We also propose that metformin 

affords protection against above mentioned glucotoxic effects at clinically relevant 

concentrations [15-30 μM]. Future studies will determine potential targets for metformin, 

specifically regulatory factors for Rac1 activation including GEFs, GTPase-activating proteins 
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and the Rho GDP dissociation inhibitor in the islet β-cell, the interplay of which is expected to 

retain Rac1 in its active, GTP-bound conformation to promote downstream signaling events that 

could contribute to metabolic dysregulation and onset of type 2DM [34, 103].   

 

Figure 6-1: A proposed model for metabolic stress induced dysfunction of pancreatic islet                    

β-cells: Reversal by metformin 

Glucotoxicity

Apoptosis

Rac1 activation

CD36expression

p38 &
JNK ½ activation

p53 activation

Mitochondrial
dysfunction

Caspase 3 activity

Vav2 activation

Cytochrome c
release

EHT 1864 & Metformin

Bax                 Bcl2



43 

 

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS 

Based on the findings accrued in my studies, I conclude that hyperactive Rac1 might 

regulate other apoptotic function including CD36 expression, other stress kinase [p38MAPK and 

JNK1/2] activation to initiate signaling events leading to mitochondrial dysregulation and 

nuclear collapse [Lamin-B degradation] terminating in loss in GSIS, inhibition of proliferation 

and cellular apoptosis. My findings further support the existing evidence in the literature [7, 49, 

94, 95]. My findings suggested that metformin affords protection against above mentioned 

glucotoxic effects at clinically relevant concentrations [15-30 μM]. Future studies will determine 

potential targets for metformin, specifically regulatory factors for Rac1 activation including 

GEFs, GAPs and GDI in the islet β-cell, the interplay of which is expected to retain Rac1 in its 

active, GTP-bound conformation to promote downstream signaling events that could contribute 

to metabolic dysregulation and onset of type 2DM [34, 103].  

Data from my studies are summarized below: 

1. Metformin reduced the HG-induced Rac1 activation and nuclear translocation 

2. HG-induced CD36 expression is downstream to Rac1 activation 

3. EHT 1864 and metformin attenuated HG-induced CD36 expression 

4. Metformin abrogated HG-induced p38MAPK and JNK 1 activation 

5. HG-induced p53 activation was suppressed by metformin 

6. Metformin inhibited one isoform of Bax and had no effect on Bcl2 

7. Caspase-3 activation was reduced in a dose dependent manner by metformin 

8. Metformin protected INS-1 832/13 cells against HG-induced loss in metabolic cell 

viability. 
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Future Directions: 

The results from my studies have enriched our current understanding of how HG-

induced small G-proteins (Rac1) activation and their mislocalization plays an important role 

in activating fatty acid transporters, stress kinases, p53 and metabolic dysfunction, ultimately 

leading to β-cell dysfunction and demise. My studies have also provided novel insights into 

the mechanism of action of metformin in suppressing the sustained activation and 

mistargetting [nuclear localization] of Rac1, thereby, eliciting protective effects on high 

glucose-induced metabolic dysregulation of pancreatic β-cells. In my opinion, my work laid 

foundation to future work in further validating my observations and hypothesis in in vivo 

models of obesity , impaired insulin secretion and T2DM. 

Following is the list of studies that need to be carried out to further assess the validity of my 

model: 

 Recent studies have reported that HG conditions promote the degradation of the 

common α-subunit of FTase/GGTase, thereby causing Rac1 activation and 

nuclear translocation, resulting in the activation of Rac1 mediated downstream 

signaling mechanism contributing to β-cell death. It would we worthwhile to 

assess protective effects of metformin against HG-induced defects in G-protein 

prenylation in pancreatic β-cells.  

 Furthermore, it is essential that we confirm our observations on potential 

cytoprotective effects of metformin on HG-induced metabolic defects in primary 

rodent and human islets. 
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Glucotoxicity is the leading cause for β-cell dysfunction [e.g., defective glucose-

stimulated insulin secretion] in Type 2 Diabetes [T2DM]. Recent studies from our lab have 

shown sustained Rac1 activation leading to the activation of downstream signaling steps 

including stress kinase [p53, p38MAPK] activation and mitochondrial dysregulation [caspase-3 

activation] in pancreatic islet beta-cells exposed to glucotoxic [HG] conditions [20 mM; 24 hrs]. 

Metformin [MF] is an oral anti-diabetic drug that is being widely prescribed to T2DM. MF 

works by suppressing hepatic glucose production and increasing glucose uptake by the target 

tissues. However, potential beneficial effects of MF on pancreatic beta-cell dysfunction under 

HG conditions have not been studied to date. Therefore, in the current studies, we asked if MF 

[0-30 μM; clinically relevant concentrations] affords protective effects against HG-induced 

metabolic dysfunction of the pancreatic beta [INS-1 832/13] cells. Since recent studies from our 

laboratory have demonstrated activation of Rac1, a small G-protein, as an upstream signaling 

event to stress kinase activation, we asked if protective effects of MF may, in part, be due to 

inhibition of HG-induced Rac1 activation in INS-1 832/13 cells. Data from these studies have 

suggested nearly 40% inhibition in HG-induced Rac1 activation [3.43±0.57 fold over basal; n=4; 
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p<0.05] by MF. Evidence is also presented to highlight novel roles for sustained activation of 

Rac1 in HG-induced expression of Cluster of Differentiation 36 [CD36], a fatty acid transporter 

protein, which is implicated in cell apoptosis. Western blot analysis indicated a significant 

increase in the phosphorylation of p38MAPK [2.31±0.21 fold over basal; n=5; p<0.05], JNK1/2 

and phosphorylation of p53 [4.42±1.20 fold over basal; n=3; p<0.05] in INS-1 832/13 cells. MF 

[15µM] markedly attenuated HG-induced p38MAPK [74.8%], JNK 1 and p53 [55.7%] 

activation under these experimental conditions. Our data from Bax phosphorylation [an indicator 

of cell dysregulation] studies demonstrated an increase in the phosphorylation of two Bax 

isoforms [Baxα by 1.63± 0.04 fold over basal; n=3; p<0.05; and Baxβ by 1.32±0.11 over basal; 

n=3; p<0.05]. MF [30µM] attenuated the phosphorylation of only Baxα isoform [by 77.3%]. 

Lastly, our data also suggested that co-provision of MF significantly reduced [72.4%] HG-

induced caspase-3 activation. Together, these findings suggest significant protection by MF 

against HG-induced metabolic defects [activation of Rac1-stress kinase-caspase-3 signaling 

module] in the islet beta-cell. Potential implications of these findings in the context of novel and 

direct regulation of islet β-cell function by metformin are discussed.   
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