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CHAPTER 1: INTRODUCTION 

1.1. Motivation 

In any industry, deciding which product variants to offer is a difficult problem, 

especially for sales and marketing departments as this decision can impact every 

other function within the company. The product variety problem is a double-edged 

sword. On the one hand, economies of scale and manufacturing costs dictate offering 

a small number of configurations as the cost of manufacturing flexibility to produce a 

large variety of products is significant and product complexity can have negative 

effects on lead times and quality. On the other hand, customer dissatisfaction costs 

suggest offering a suitable number of options to avoid customers from “walking away” 

(e.g., customer will switch to a competitor’s product).  

Even though the cost of lost consumers is a big problem in every industry, the 

manufacturers of durable goods pay attention to it more than others due to high profit 

margins in their markets. Conlon and Mortimer (2010) state that consumers consider 

product availability very important, and Batchelor (2001) reports that a significant 

amounf of U.S. car buyers switch to another brand when they are not offered the 

product variants they are looking for. Thus, the firms try hard to satisfy consumer 

needs by offering a large number of product variants.  

External variety comes at the cost of greater internal complexity. More 

recently, manufacturers have introduced some coping strategies such as decreasing 

the number of alternatives to offer (e.g., through options “bundling” and limiting the 

number of options), or depending on supply chain strategies such as “delayed 

product differentiation (postponement)” (see Pil and Holweg, 2004), by outsourcing 
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larger modules and components to direct suppliers (Kohlberger & Gerschberger, 

2012) to reduce internal complexity. For instance, after Ford announced that 

orderable vehicle configurations for 2009 model vehicles would be cut, on average, 

by half, the 2009 Ford F-150 was offered theoretically – only – in nine million 

combinations, a 90% reduction compared to the previous year (Wilson, 2008). 

However, almost twenty years before this dramatic change, Ford Fiesta had been 

offered theoretically in 27 million variants in Europe (Batchelor, 2001).  

From an operations point of view, the abundance of product variants affect the 

cost of manufacturing and supply chain complexity; from a retailing point of view, it 

might increase inventory costs; from a marketing point of view, it might lead to choice 

overload (also known as cognitive complexity). However, as the degree of variety 

decreases, customer dissatisdaction costs increase; therefore, the profit margins and 

the percentage of lost sales might increase. As seen in Figure 1, the manufacturers 

are interested in finding the optimum variety level that maximizes the benefit of 

variety and minimizes the cost of variety. To the best of our knowledge, there is not 

an analytical way that has been followed by the industry or proposed in the literature 

to determine the level of variety that maximizes the net benefit. On the other hand, 

we should note that an ideal level is specific to the products, the markets, and the 

industries. 
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Figure 1: Conceptual description of costs and benefits 
associated with product variety (Rathnow, 1993; Blecker, 2003) 

1.2. Background 

1.2.1. Challenges in Managing Product Variety 

Variety is often valued by consumers, at least to some degree, so it is possible 

to see many variants of a product in almost every industry. Aussiebum, which was 

founded as a men's swimwear manufacturer in 2001, today offers six different 

products (swimwear, loungewear, underwear, leisurewear, sportswear, surfwear) 

totaling more than 400 stock keeping units (SKUs), and the total number of 

underwear styles in their product line is increasing every day. It is even possible to 

see lots of varieties in small businesses such as local coffee shops (Caribou, 

Starbucks, etc.) and restaurants.  

Many durable goods such as computers and automobiles are also 

customizable to an extent, which leads to heterogeneity in consumer preferences (i.e. 

consumers start choosing different variants because they can, not necessarily 
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because they need them). Over the decades, manufacturers and retailers have tried 

very hard to satisfy consumers’ preferences as much as possible since they thought 

more variety would lead to competitive advantage and higher market share, and in 

return they could dictate price easily (Wu, 2007). In 2006, for instance, Pontiac 

advertised that it could offer more combinations of options and accessories for its G6 

series than the number of drivers in the U.S. (Ferguson & Donndelinger, 2010). 

There were, then, approximately 203 million drivers in the U.S., but only 300 

thousand Pontiac sales were expected. Likewise, in 2008, it was claimed by Volvo 

that its new car C30 could be customized in five million ways (DriveChicago.com), 

which, in turn, sold only 39,966 units worldwide (Media Volvo, 2011). 

 The US auto industry is changing every day, trying to improve technology 

and product offerings based on customer preferences. An automaker can offer, 

theoretically, millions of different product configurations to gain a larger share in the 

market; however, offering more options is a burden for assemblers due to managerial 

problems and manufacturing complexity (Fisher et al., 1996; Wu, 2007). It is also 

problematic on the consumer side. It has been long debated that having the ability to 

choose among many alternatives increases the quality of life (Markus and Schwartz, 

2010); however, beyond a certain point, consumers are likely to get overwhelmed 

with too much choice instead of feeling more freedom. This choice overload often 

leads to a decrease in satisfaction (Iyengar and Lepper, 2000). 

The problem of product variety should be approached differently when durable 

products are in consideration. Consumers may feel confronted when choosing 

between different types of beverages at a coffee shop, but any dissatisfaction in this 
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situation would not be devastating. When cars, laptops, and refrigerators are in 

consideration however, it could be more difficult for consumers to make a decision 

among too many alternatives. Thus, it is significant for OEMs to find a set of variants 

that are most profitable. 

1.2.2. Definitions of Product Variety 

Product variety is defined by Wu (2007) as “the number of different products or 

stock keeping units in a product line.” In the literature, various disciplines have 

introduced their own views on product variety. For example, in marketing, 

researchers are mostly interested in the distinction between “perceived” and “actual” 

variety (Kahn and Wansink, 2004), while in manufacturing, researchers classify 

product variety in three groups: fundamental variety, parts variety, and peripheral 

variety (Abdelkafi, 2008). Throughout this study, we will follow the terminology used 

by Anderson & Pine (1997), in which variety is broadly defined as “external” and 

“internal” variety. External variety, which is the focus of this dissertation, is the variety 

seen by the consumer, while internal variety is the variety experienced when 

manufacturing the product.  

External variety can be defined as “a form of complexity arising from either a 

large number of product families or a large number of alternative configurations within 

single families” (Batchelor, 2001). It may increase manufacturing costs (Lancaster, 

1990), inventory costs (Pil and Holweg, 2004), and the amount of time consumers 

spend to make a purchase. External variety has two types: useful (positive) and 

useless (negative). Offering differrent body style alternatives is an example of the 

former case as a typical auto buyer would be interested in that, while offering over 
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abundance of interior trim choices (Elgard & Miller, 1998), different styles of steering 

wheels, or an excessive range of exterior paint are examples of the useless variety 

as they would not appeal to a typical auto buyer. Table 1 summarizes the discipline-

specific definitions of product variety. 

 

Table 1: Different definitions of product variety with examples from the automotive 

industry (Batchelor, 2001; Kahn and Wansink, 2004). 

Type of Variety Definition 

Useful Variety 
The level of variety demanded by customers 

e.g., a range of trims and functions on a car seat 

Useless Variety 

Variations in the product design not associated with meeting 

customer requirements (do not directly impact upon the 

functionality) 

e.g., a range of different fixtures and fitting procedures 

in each seat derivative 

Fundamental Variety 
The level of variety associated with the range of different 

platforms, models, and body styles 

Peripheral Variety 

The level of variety associated with the number of 

combinations of options provided (deals with all the different 

options available per model). 

Parts Variety 
The number and type of parts required to produce different 

models. 

Perceived Variety 
The form of variety that is a result of the 

evaluation/assessment of the actual variety by consumers 

Actual Variety The number of distinct items in the assortment. 
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1.3. Scope and Research Objectives 

We are aiming to design and develop decision support models that can help 

managers make micromarketing strategic decisions regarding configurable products 

by answering questions about configuration selection, variety determination, and 

feature bundling. In a sense, we are preparing the appropriate environment for 

operational models to be estimated/computed quickly and constructed under realistic 

assumptions. We are not presenting an operational model in this study; however, our 

approach falls under marketing engineering, which is defined by Lillien & 

Rangaswamy (2007) as “the systematic translation of data and knowledge into tools 

used for decision support.” Our research is targeted at configurations in a single 

product category that can incrementally change over time; however, the proposed 

framework can also be extended to the case of multiple product categories. 

In today’s automotive industry, manufacturers have been introducing more 

product variety due to the increasing variety seeking customers, changes in energy 

prices and environmental regulations (Staeblein et al., 2011). When shifting from 

mass production to mass customization, auto manufacturers should set the degree of 

variety at a level that would provide both a competitive edge and create acceptable 

costs. However, this level can be determined only theoretically (Abdelkafi, 2008); 

there is no analytical model suggested in the literature to solve this problem 

effectively.  

The number of product configurations increases exponentially as the choice 

sets become extensive and the number of components gets large; a problem which 

leads to complex and expensive configuration design processes and operationally 
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suffered sales configurators (Salvador & Forza, 2007). The addition of a new 

configuration may satisfy the needs of a lost customer, but it may not necessarily 

increase sales. As Salvador and Forza state, consumers may start selecting a 

configuration because they can, not because they specifically need it. If the number 

of alternatives is increased freely without considering this fact, the design process 

suffers and no significant incline in sales is experienced. As illustrated in Figure X, 

Salvador and Forza (2007) suggest taking four steps when reducing the cognitive 

complexity of the customers of configurable products. Our framework intends to 

support the last two steps in this scheme. 

 

Figure 2: Key Principles for Sales Configurations Design (Salvador & Forza, 2007) 

 
Pil and Holweg (2004) show that there is no real correlation between the level 

of variety offered and the units of cars sold in the European auto market in 2002. 

Peugeot, which was the market leader in sales with 596,531 units of its 206 model, 

offered only 1,739 configurations. In contrast, Mercedes offered more than three 

septillion (3x1024) configurations of its E-Class model, but it sold only 157,584 units. 
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Thus, finding the best way of building configurations and setting the price accordingly 

can help the design process. 

Perception of product variety differs across auto markets worldwide, even 

across regions within the same country. For instance, American and European 

automakers are not similar in offering and managing variety as relatively higher 

variety is almost a must in Europe. In Germany, Ford S-max, a minivan produced by 

the Ford Motor Company for the European market, was offered in 64 standalone 

options, whereas its closest competitor Volkswagen Touran was offered in 80 

standalone options.  

This study focuses on the U.S. auto market, but it can also be adapted for 

other markets that mostly operate in a build-to-stock environment. In addition, it is not 

an industry-specific study, and it is possible to generate similar models in every 

industry where configurable products exist and the market (segment) is well-defined. 

Decision makers in the auto, aircraft, and computer industries, where multi-

dimensional product differentiation is common (Feenstra, and Levinsohn, 1989), can 

benefit from our approach. Since our proposed model can also be used to determine 

the effects of marketing actions such as cannibalization, it is convenient to use when 

making micro-marketing strategies; however, it should not be used as an operational 

model. On the other hand, even though we are not explicitly modeling the assortment 

problem, our models consider assortment structure implicitly and can address issues 

about the construction of assortments well.  
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Our research questions are summarized as follows: 

• What is the most effective way of reducing too many decisions on product 

configurations (that can run into thousands if not hundreds of thousands or 

even millions) to a smaller number of specifications without compromising 

much of the important information captured before building operational 

models (e.g., inventory and demand models)? 

• How do we effectively identify attributes that add value to consumers’ 

perceptions about configurations? 

• How do we identify the most suitable assortment structure in terms of 

variety that can increase sales and profitability? 

The remainder of this dissertation is organized as follows: Chapter 2 reviews 

the product variety literature, Chapter 3 develops an experimental framework and 

discusses the proposed methodology, Chapter 4 discusses the experimental results, 

and Chapter 5 concludes with summary remarks and directions for future research. 
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CHAPTER 2: LITERATURE REVIEW 

One of the most critical decisions manufacturers and retailers need to make in 

today’s world is to determine the appropriate degree of variety. Researchers from 

various disciplines have tackled this problem, and each of them has employed the 

approach that would fit their needs best and developed the models that could serve 

their needs best. Even though there are studies that isolated the product variety 

problem and looked at it from a small angle, the views of manufacturers, consumers, 

and relatilers have been blended well in wholesome studies on product variety.  

In this section, we provide a general review of the most relevant literature that 

helped us structure our study by focusing on three main streams of research: 

consumer choice modeling, demand planning, and assortment planning. These 

streams are not somewhat intertwined, however, since studies from different streams 

have been used as benchmarks for each other and have influenced one another. 

2.1. Introduction 

It is essential to manage variety in terms of revenue, manufacturing costs, 

more accurate demand forecasts, and long-term effects of consumer loyalty, in 

today’s globalized economies. Different categorizations of product variety can be 

found in the literature. From a marketing point of view, there is actual variety and 

perceived variety (Kahn and Wansink, 2004), or attribute-based variety and temporal 

variation (Chintagunta, 1999), whereas from a manufacturing point of view, there are 

model-mix variety, options variety, and parts variety (MacDuffie et al., 1996), or from 

a general point of view, there are internal and external variety (Pil and Holweg, 2004). 
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Market-oriented variety is concerned with satisfaction of consumer preferences so 

that market share can be increased, whereas manufacturing-oriented variety is 

mostly concerned with economies of scale (Corrocher and Guerzoni, 2009). In this 

work, our focus, external variety, can be seen as a form of actual variety. 

Product variety has been studied by various researchers from distinct areas of 

research such as marketing science, operations management, assortment planning, 

category management, and inventory management. Table 2 provides a general 

summary of the related literature from different perspectives. Based on the primary 

foci of researchers, it is also possible to categorize the related literature as 

consumer-oriented research and cost-oriented research. The former is mostly 

interested in satisfying diverse consumers as much as possible (for an extensive 

review of this literature, see Ramdas, 2002), whereas the latter mostly focuses on 

reducing the manufacturer’s burden (Fisher et al., 1999). One can add psychosocial 

research to the above classification as a third category; however, in this review, we 

will consider it as a branch of consumer-oriented research. Interested readers should 

refer to Markus and Schwartz (2010), Ha et al. (2009), Schwartz (2004), and Iyengar 

and Lepper (2000), works that discuss the behavioral aspects of choice behavior and 

the concept of choice in detail. 
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Table 2: A General Look at the Literature 

Focus Description Approach 

Manufacturer’s 
side 

Developing strategies to manage external 
variety of Rover 75 (Batchelor, 2001); 
manufacturing complexity (Fisher et al., 1996; 
Wu, 2007); an analytical approach to manage 
the complexity and risk associated with external 
product variety in the auto industry (Kamrani & 
Adat, 2008) 

Conceptual, 
Simulation 

Marketer’ side As variety increases, market share increases 
(Wu, 2007), demand increases (Kahn, 1998), 
supply chain costs increase (Fisher and Ittner, 
1999) 

Conceptual, 
Statistics, 
Econometrics 

Consumer’s 
side 

Having ability to choose among many 
alternatives increases the quality of life (Markus 
and Schwartz, 2010); beyond a certain point, it 
leads to choice overload (Iyengar and Lepper, 
2000) 

Behavioral, 
Statistics 

Retailer’s side Assortment planning: Finding an optimal 
assortment (Kök et al., 2008) 

Optimization, 
Data mining 

 

Consumers value variety as they are willing to find the exact product in their 

mind when they are in the market; this variety seeking behavior makes companies 

satisfy consumers’ needs by offering more customizable products. However, offering 

too much variety often leads to an increase in demand variability, complexity of 

manufacturing operations, forecast errors, inventory, and shortages, which can 

partially, or together, result in “market mismatch costs” (Fisher et al., 1996; Fisher, 

1997; Ramdas, 2002). Ramdas (2002), for example, shows that the extent to which a 

company is willing to customize depends on both its target market and the internal 

and supply chain capabilities of the company. 
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Ramdas (2003) identifies the variety related decisions within the company as 

shown in Figure 3. Pricing, packaging, and options offered are the internal decisions 

that mix with external parameters to determine sales volume. 

 

Figure 3: Variety related decisions (Ramdas, 2003) 

2.2. Choice Modeling 

For most of us, everything in life begins with a choice. Even though it seems 

simple at first, making a choice can be burdensome. Behavioral researchers of 

choice argue that when the number of alternatives is increased substantially, decision 

makers become overwhelmed as a result of cognitive complexity, and then they 

become dissatisfied in the end. Cognitive complexity (choice overload) is the difficulty 

in understanding the difference between the product variants offered (Scheibenne et 

al., 2010). 
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In his remarkable book, The Paradox of Choice (2004), psychologist Barry 

Schwartz also argues why people may not be better off when the number of 

alternatives is extensive. Consumers like the idea of finding the product that matches 

exactly what they have in mind. However, their decision making process may suffer 

when they are confronted by a great deal of choices. To an extent, having many 

alternatives to choose from is lucrative; however, as the number of choices grows 

further, consumers will become overwhelmed. Hence, it is important to converge to a 

break-even point in many instances where consumers think that the number of 

choices improves the quality of their life and that they are better-off, but are not 

overwhelmed. 

As it is problematic for consumers to choose from a huge set of alternatives, it 

is often difficult for retailers and manufacturers to decide on how many configurations 

or which options to offer. Even though Berger et al. (2007) show that a high level of 

variety can provide companies a competitive advantage in the market, some 

researchers oppose to this argument (Ramdas, 2002).  

Researchers have long debated the most of the drivers of choice. The most 

popular way of modeling it is to construct a utility function based on preference 

orderings. As discussed in detail in Anderson et al. (1992), a seminal reference on 

foundations of choice theory, the two well-known models of utility-based consumer 

choice are locational choice (see Lancaster, 1990) and discrete choice (see 

McFadden, 1986). In the former, consumers are assumed to perceive products as 

bundles of attributes, each product is defined by its location in attribute space, and 

consumers derive utility for each product from these attributes, where products are 
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assumed to be equal in quality and price. The latter assumes that consumers try to 

maximize their surplus rationally, and estimate demand as a function of attributes, 

which drive consumer preferences. 

A serious drawback of the locational choice (LC) models is that they consider 

only metric (continuous) attributes (Gaur and Honhon, 2006), which is a seldom 

found case as attribute-based product descriptions are commonly used in today’s 

practice. However, they are more flexible in modeling substitution compared to 

discrete choice models. The most popular discrete choice model in the literature is 

the multinomial logit (MNL) model. However, it suffers from the well-known 

independence of irrelevant attributes (IIA) property, which, in simple words, assumes 

that introduction of an outside alternative does not change the odds of choosing two 

inside alternatives. This bans researchers from differentiating between initial choice 

and substitution (Kök and Fisher, 2006). To overcome this problem, McFadden 

(1986) introduced nested logit (NL) and mixed logit (ML) models to the literature, 

which make more realistic substitution assumptions and relax the IIA property [For 

more information on discrete choice models, see Anderson et al. (1992); for a recent 

review on extensions to MNL, see Train (2009)]. 

Both models (i.e., location choice and discrete choice) have been accepted in 

the literature based on their specific strengths. In a LC model, the total demand for an 

assortment covering the entire attribute space does not depend on the number of 

products in the assortment. Conversely, as variety increases, MNL demand 

increases. A detailed comparison of MNL and LC is provided by Kök and Fisher 

(2006). Another discrete choice model, multinomial probit (MNP), was used and 
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modified by Hruschka (2007) to combine heterogeneity across households with a 

highly flexible deterministic utility term. 

Another stream of research that is embedded in discrete choice models is 

present on choice set formation and screening rules, where consumers are assumed 

to first generate a reduced set of alternatives and then make a choice among these 

alternatives. Most of the studies in this stream have used scanner panel data 

functioning at the product level. Manrai and Andrews (1998) discuss alternative 

models and their extensions in assessing consumer choice processes. More recently, 

Levav et al. (2012) report the results of an extensive experimental study on the 

relationship between consumer search and the size of choice sets. Using different 

experimental settings, the authors explore how adaptive consumers are in making 

decisions when the choice sets are altered. They conclude that consumers search 

deeper when the choice set gets extensive. Gillbride and Allenby (2004) also provide 

deep insights on the estimation of consideration set models. 

More recently, a new research stream has been started by Farias et al. (2011), 

which proposes a new data-driven approach when modeling consumer choice with 

limited information in which a non-parametric approach to both Amazon.com DVD 

sales data and a synthetic transaction dataset is applied. 

2.3. Demand Estimation Under Product Unavailability 

The majority of the demand planning literature has focused on estimating 

demand when consumers are offered the full choice sets. However, as Stefanescu 

(2009) noted, since unrealized demand is usually not known to the analysts, only 

observed sales can be used when estimating demand. Product availability 
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information is a serious issue that should be addressed in cases on which we focus, 

thus we will cover only those studies that took product unavailibility and substitution 

behavior into account. 

The previous literature on product substitution focuses extensively on fast 

moving consumer goods, such as food and beverages sold in super markets or in 

vending machines rather than durable goods such as automobiles, home appliances, 

etc. For instance, Bruno and Vilcassim (2008) extend the model proposed in Berry, 

Levinsohn, and Pakes (1995), which is often referred to as BLP, accounting for 

varying levels of product availability (without observing the set of available products 

in the store) at the aggregate level so that the demand estimates are not biased. 

They apply their framework in the British chocolate confectionery industry. Soft goods 

typically have such high service rates that substitution probabilities can be estimated 

easily by studying systems where only one product is missing from a full assortment. 

This is one of the advantages of studying consumer products. On the other hand, it is 

never easy to study a market where the full assortment of hard goods is offered in the 

store at any time. Albuquerque and Bronnenberg (2009) modeled demand for 

automobiles at the dealer level taking heterogeneity in consumer preferences into 

account and by assuming that the probability of purchase depends on dealer 

characteristics and geographic distance between consumer and dealer locations. 

Unfortunately, the authors are not able to model product unavailability explicitly in 

their remarkable study. However, as Stefanescu (2009) notes, if the stock-out effect 

is not considered when modeling demand, the forecasts for unavailable products are 

negatively biased. 
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2.4. Assortment Planning 

As mentioned before, manufacturers and retailers have been searching for an 

answer to one of the most critical questions when making strategic decisions: What 

level of product variety should be offered? Inferring customer preferences and 

responding accordingly with updated product offerings plays a central role in a 

growing number of industries, especially for companies that manufacture 

configurable products. Of course it is not always possible for customers to find a 

variant of a configurable product due to retailers’ capacity constraints. Thus, the 

retailers also want to know which products to include in the assortment in order to 

minimize the percentage of lost customers. 

The assortment problem is defined for retail settings as “allocating space to 

items in a category” by Anupindi et al. (2009). It requires finding a set of products that 

should be discarded from the assortment in order to maximize revenue or profit. The 

nature of the problem is suitable to adopt an optimization framework, and as explicit 

advancement in software technologies has been achieved, the assortment planning 

literature has a rich stream called “assortment optimization” today. In this review, we 

primarily cover those studies in the literature that incorporate consumer choice 

models into an operational model in which the main objective is to build effective 

assortments (choice sets); however, we also cover some of the marketing-oriented 

research that aims to find the optimal choice set (assortment). Interested readers 

should refer to Kök and Fisher (2006) for a recent and more comprehensive review 

on this topic. 



20 
 

 
 

Yucel et al. (2008) consider assortment optimization in the case of consumer-

driven substitution. The authors employ an exogenous demand model where level of 

substitution is limited to three. This assumption is in line with previous research 

where the ability to substitute has been allowed up to a certain level (Anupindi et al., 

2009; Kusiak, 2007; Kök and Fisher, 2007; Gaur and Honhon, 2006). Their model is 

designed for the retail industry, recognizing supplier selection, shelf space 

constraints, and poor quality procurement. They stress on the consequences of 

neglecting substitution behavior of consumers by providing computational 

experiments, and suggest that retailers understand this behavior before making 

operational decisions. The authors also conclude that customer-driven substitution, 

supplier selection, and shelf space limitations should be considered when the aim is 

to generate efficient assortments.  

Similar to Yücel et al. (2009), Kök and Fisher (2007) also assume an 

exogenous demand model in which either assortment-based (substitution that occurs 

when a product is not in the assortment) or stock-out-based substitution (substitution 

that occurs from a product being in the assortment but is temporarily out of stock) is 

valid. The authors emphasize the importance of capturing the willingness of 

consumers to substitute in an assortment planning framework. The formulation they 

propose for effective demand consists of three components: original demand, 

substitution demand, and unmet demand. They use a heuristic approach to 

determine the best assortment, and suggest that products with higher demand or 

higher margin should be included in the assortment first. This finding is in line with 

efficient assortment strategy, which has been recognized by many retailers and 
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dictates retailers to abandon low-selling products (Cachon and Kök, 2007). However, 

the conclusion Kök and Fisher (2007) reach is somewhat different than the one in 

Gaur and Honhon (2006) as the latter claim that the optimal assortment does not 

have to include the best-selling product in every instance.  

Even though the article by Kök and Fisher (2007) is a cornerstone in the 

assortment planning literature, the assumption of exogenous demand may be less 

restrictive in case of perishable goods compared to the case of durable goods. Gaur 

and Honhon (2006) is an innovative, yet limited study, which assumes that consumer 

preferences are not affected by the assortment structure. The authors assume that 

customer preferences are dependent on price exogenously, which can be restrictive 

in many real-life situations.  

In a recent study, Anupindi et al. (2009) adopt a constrained integer 

programming model to find the optimal assortment a retailer carries considering 

disutility of consumers when their favorite product is not available. They find no 

significant change in consumers’ variety perception when low selling items are 

eliminated, but favorite items of consumers are present. 

In an attempt to estimate the demand for SKUs using historical sales and to 

find the optimal assortment, Fisher and Vaidyanathan (2009) adopt a locational 

choice approach. Fader and Hardie (1996) do not study the assortment problem, but 

also prefer SKUs in modeling consumer choice with MNL. They emphasized that it is 

challenging to define a set of attributes that can completely capture the variability 

among SKUs while using as few attributes as possible. Gaur and Honhon (2006) 
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provide a generalization of locational choice models in case of stochastic demand, 

non-uniform consumer preferences, and inventory costs when building assortments. 

Following a semi-parametric approach, Anupindi et al. (1998) develop a model 

for customer arrivals and purchase behavior in the context of retail vending that 

explicitly allows for product substitution and considers consumers’ probability of 

walking away when there is a stock-out. The authors utilize information of stock-out 

occurrence and cumulative sales of all goods up to stock-out from inventory tracking 

systems and derive Maximum Likelihood Estimates of the demand parameters. 

Nagarajan and Rajagopalan (2008) study optimal inventory policies for 

substitutable products. Two products with negatively correlated demands are 

considered for a numerical study where the level of substitution between items in a 

category and demand variation at the aggregate level is not high, but service levels 

are. 

Chen and Plambeck (2008) analyze Bayesian optimal inventory level and 

myopic inventory levels to learn about substitution probabilities as well as customers’ 

willingness to wait. This study is important in the context of systems with multiple, 

interacting products where customers generally substitute among multiple 

alternatives when their first choice is not available, and estimates on probability of 

substitution among multiple products is beneficial for inventory management. 

Similar to the proposed methodology here, Kusiak (2007) proposes a k-means 

weighted clustering approach to determine key product configurations integrated with 

a sorting algorithm and an integer programming model based on sales data, and 

obtains a migration model in which consumer preferences are reflected in the 



23 
 

 
 

configurations. The goal is to maximize customer coverage with the minimum number 

of prime configurations. The author tries to select prime configurations so as to make 

them as distant from each other as possible, the distance measure being calculated 

by the number of options to migrate and the difference in the amount of money to 

migrate. 

Cachon and Kök (2007) explore multiple merchandise categories and basket 

shopping consumers in a duopolistic setting where retailers choose prices and variety 

levels in each category and consumers make store choices between retail stores and 

a no-purchase alternative based on their corresponding utilities. They demonstrate 

that category management never finds the optimal solution in terms of assortment 

and provides less variety and higher prices than optimal. The proposed model 

evaluates basket profits using point-of-sale data and is supported with a numerical 

study in which the loss in profits arising from category management is significant. 

Kök with Fisher (2007) analyze demand estimation and assortment 

optimization under substitution. The authors propose a two stage algorithmic process 

to compute the best assortment for each store in which first the parameters of 

substitution behavior and demand are estimated, and then, an iterative optimization 

heuristic for solving the assortment problem is used. Their methodology is applied at 

a supermarket chain in the Netherlands; they claim that their model provides more 

than a 50% increase in profits. 

Marketing-oriented research suggests that shrinkage of assortments does not 

necessarily decrease sales (Boatwright & Nunes, 2001; Iyengar and Lepper, 2000; 

Broniarczyk, Hoyer & McAlister, 1998). In a study examining how consumers 
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perceive variety of an assortment, Hoch et al. (1999) use a measure of dissimilarity 

between product pairs and find that assortments with greater dissimilarity (perceived 

variety) satisfies consumers better. Similarly, van Herpen and Pieters (2002) queried 

the significance of two measures (entropy between products and disassociation of 

attributes) on the perception of variety. Sampaio et al. (2009) provide a 

comprehensive review on consumers’ stock-out behavior, and identify fundamental 

variables that affect consumer responses using an experimental design. They try to 

answer if consumers substitute when their first preference is not available, or 

postpone their purchase, or simply walk away. 

Brijs et al. (1999) present a case study where they suggest making assortment 

decisions based on association rules. In another data mining study, Wong and Fu 

(2005) improve the modeling approach in Brijs et al. (1999) by introducing the cross-

selling effect; however, the authors cannot control for stock-outs and promotional 

effects. Chen and Lin (2007) employ a data mining approach to solve the product 

assortment problem using frequent item sets. They obtain association rules to find 

out which products are purchased by consumers at the same time using 6,568 

transactions. 

In summary, this literature review on product variety and consumer choice 

behavior shows that even though so much research has been done on the product 

variety problem, this area has still too much potential for new approaches. Especially 

data-driven approaches and real life applications are still necessary. 
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CHAPTER 3: RESEARCH DESIGN 

Even though all manufacturing firms face competing objectives in determining 

which product configurations they will build, this problem is especially troublesome for 

manufacturers of configurable products, which sell a complex product with many 

options, resulting in a very large buildable configuration space. 

The related literature is full of studies that analyze the product variety problem 

in different settings (Iyengar and Lepper, 2000; Batchelor, 2001; Kamrani & Adat, 

2008; Kök et al., 2008). However, most of these models become impossible to apply 

in the real world, especially when the focus is on the product rather than on the 

brand, the market, or the industry. Table 3 summarizes some studies critical to our 

research. 

Table 3: A Second Look at the Literature 

Studies Objectives 
Some 
Conceptual 
Ideas 

Markus and Schwartz (2010), 
Ha et al. (2009), Schwartz (2004),  
Iyengar and Lepper (2000) 

Choice concept, behavioral 
aspects of consumer choice 
behavior, cognitive complexity 

Gillbride and Allenby (2004), 
Levav et al. (2012),  
Manrai and Andrews (1998) 

Choice set formation, consumer 
search, screening rules 

Some Data-
Driven 
Approaches 

Yunes et al. (2007) Reduce the number of 
configurations without upsetting 
customers or sacrificing profits 

Kusiak et al. (2007) Capture prime configurations 
Farias et al. (2011) Model consumer choice with 

limited information 
 

In this study, we offer a framework, benefiting from both quantitative and 

qualitative mehtods, that will help reduce the number of alternatives for a 

configurable product in a proper way when building statistical or operational models 

to develop and guide micromarketing strategies.  
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While the methods might be relevant to several industries and markets, our 

primary focus will be on the automotive original-equipment-manufacturers (OEMs). 

Given the significant differences between major automotive markets (e.g., generally 

speaking, North American dealers mostly sell from stock carried at the dealerships 

whereas in Europe and Japan there is often little inventory at the dealerships and the 

customers are more used to build-to-order strategies) and our relationship with U.S. 

Automotive OEMs, we will be focusing on the U.S. market, and in particular, the 

cross-over utility vehicle (CUV) market segment. The market share of CUVs has 

increased substantially since the early 2000s, and no significant decline in sales is 

expected in the near future. CUVs are especially popular nowadays (in comparison to 

sports utility vehicles (SUVs)) (Sema, 2009) as gas prices passed the psychological 

limit of $4 per gallon of gas. Due to relatively healthy profit margins, such decision 

support models in this market segment are crucial for any OEM targeting the 

segment. 

3.1. Basic Terminology and Assumptions 

We define a configuration as a combination of options (Mittal and Frayman, 

1989), a product variant as a combination of features at the product or subsystem 

level, and similarity sets as clusters of configurations with similar attributes and 

demand patterns. Note that throughout this study, an option is referred to a product 

attribute (characteristic) that has only two levels (e.g., absence or presence of moon 

roof in a vehicle). Finally, we define an assortment as the configuration breadth in the 

store. 



27 
 

 
 

We make a couple of assumptions in order to have flexibility when designing 

our framework. Some of these assumptions are necessary for the demand estimation 

module; the others are made for general purposes. First of all, adopting Lancaster’s 

product definition, we assume that a configurable product is a combination of 

attributes (options), and the utility of each customer is derived by the observed 

characteristics of the product (Lancaster, 1971). Each consumer ranks the 

configurations based on his/her taste and preferences, and each configuration is 

attracted by consumers at some level. We also assume that each consumer chooses 

the configuration from the available assortment that maximizes his/her utility, and 

purchases only one unit (We are proposing a decision support tool for configurable 

products, so it is unlikely to observe a customer purchasing more than one unit of 

such goods at a time). 

Durable goods, especially the high-priced ones such as automobiles, are 

almost always sold through customer substitutions (also called “diversions” in 

practice). The number of possible configurations a manufacturer can build increases 

exponentially as a function of number of options and features. For instance, when 

there are 16 binary options offered by an automobile manufacturer, a customer can 

customize that product, in theory, in 65,536 (i.e., 216) distinct ways. However, due to 

limited channel inventory capacity (at individual dealers and within local markets), 

only a small proportion of the possible configurations are available at any time. Thus, 

we assume that consumers have flexible preferences. However, heterogeneity of 

consumers is confined since the focus of research is a specific product rather than a 

product line or a market segment. One can easily extend this framework for the case 
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of multiple product categories by simply employing a utility approach that takes 

heterogeneity of consumer preferences into account explicitly. 

Our framework breaks a regional (national) market down into more 

manageable parts, so we assume that each of these sub-regions have distinct 

demand characteristics and substitution between sub-regions is negligible. This is 

also common practice by many OEMs, and hence, is a very reasonable assumption. 

A practitioner, who wants to build aggregate models at the national level, should 

definitely consider this assumption – and if necessary, revise it – and select the 

demand estimation method accordingly. We should note that substitution is assumed 

to be consumer-driven, meaning it is either assortment-based or stock-out based; we 

cannot distinguish between the two. 

We also assume that the product “variants” – or as we will call them “similarity 

sets” – are horizontally differentiated. Our framework focuses on a single product, so 

this assumption is not strong since consumers cannot easily distinguish product 

configurations in terms of quality. However, when multiple product categories (or 

even more than one brand) are considered, this assumption is not valid due to 

increasing external variety caused by consumers’ subjective preferences (i.e., 

perceived variety). 

We also assume that a product’s design evolves gradually over time, but its 

features (e.g., options) maintain their relevance (context) over extended product 

generations/iterations (e.g., while it is typical to see new vehicle designs being 

introduced in the U.S. once every 4 to 6 years for most segments, many of the 

features such as the availability of a “moon roof” or “leather seats” holds true for 
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decades if not longer). Hence, the proposed methodology, which aims to help 

decision makers understand and “mine” consumer preferences for product 

configurations and features from historical datasets (e.g., product availability/sales 

patterns for current/similar models in different markets), is expected to provide 

meaningful and actionable insights in planning future products and their configuration 

assortments.   

3.2. Methods and Procedures 

Different from other domains, marketing research is mostly focused on 

determining the variables that drive choice. Thus, when the number of attributes 

defining an alternative is relatively large, incorporating product attributes into demand 

models is a challenge most practitioners face. One possible way is to follow a 

Lancasterian approach (Anderson et al., 1992) and keep the attribute space finite so 

that the number of alternatives is somewhat limited. Then, demand is characterized 

in terms of a finite number of “dimensions” as utility for a product is a function of 

attributes. Another possible approach is to assume that the number of characteristics 

is larger than the alternatives offered. We will stick to the former; however, more 

about the latter approach can be found in Sandeep et al. (2008). Sandeep et al. 

(2008) reveal the possibility that choice may not be explained within standard utility 

theory and suggest the use of alternative techniques such as hierarchical elimination 

by aspects (HEBA) in some cases. 

Since we are analyzing external variety, we define configurations based on 

attributes. Nevertheless, in case of 30 binary attributes, one needs to search for more 

than one billion scenarios, and even if this explosion had been overcome, it would 
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have been impossible to realize at least one transaction for each configuration 

considering the relatively small number of potential consumers. On the other hand, 

any statistical model using product attributes as indicator variables could suffer from 

multicollinearity (i.e., correlations between the indicator variables). 

Since the abundance of different configurations to consider has a negative 

effect on the efficiency of an operational model; interaction between product features 

restrict the use of statistical models; and binary product attributes restrict the use of 

statistical models, we need to preprocess data in order to avoid potential obstacles. 

For these reasons, in the first stage, we create new variables denoting the relative 

mix rates and use principal component analysis (PCA) as a dimension reduction 

technique due to its flexibility in the presence of high multicollinearity, and re-describe 

configurations based on dimensions retrieved from this analysis by dichotomization, 

clustering, or subjective grouping. Then, we benefit from text mining techniques to 

validate the quantitative results.  

We also propose the use of consumer reviews on auto blogs and other 

websites to check the validity of dimension reduction obtained by the PCA. In the 

second stage, we propose consumer preference / demand modeling using the most 

appropriate models over the space of these reduced PCA dimensions.  

In the framework we propose, we first run PCA using the relative mix rates of 

each vehicle option to describe the dimensions on which configurations should be 

defined. These dimensions are validated by employing text-mining techniques on a 

secondary dataset, which includes online consumer reviews. After completing the 

validation step, the dimensions are named as properly as possible, and they are 
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dichotomized. Reliance on core dimensions reduces the resolution of treatment of 

configurations to so-called “similarity sets” (marginal attributes/features will be out of 

consideration). For example, vehicle options and accessories such as floor mats and 

spare tire covers may no longer be in consideration. This preprocessing step is 

needed since the predictive power of almost every logit-like demand model suffers 

from the abundance of alternatives in the choice sets. Another reason is to avoid 

having too many instances where perfect substitutes are present.  

We know that in perishable goods markets consumers often substitute 

(Anupindi et al., 2009), but we do not have enough evidence to make a similar 

assumption in durable goods markets. In a case like ours, at the product 

configuration level, almost every alternative would be substitutable with one another if 

we employed an attribute-based approach. This leads to infinitesimal probabilities, 

which are pseudo since consumers may not perceive different configurations as 

different product variants. Following this procedure, we control the substitution that is 

not driven by consumers to an extent, and we deal with only consumer-driven 

substitution in the demand model.  
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Figure 4 illustrates our overall solution framework with pre- and post-

processing steps. In order to achieve long term profitability, firms can handle product 

variety with an integrated model that consists of five modules: 

a. Options development: Mostly handled by marketing and production 

departments,  

b. Configuration selection: Determining the buildable configurations, 

c. Variety determination: Determining the extent of different configurations 

that should be offered to the customers,  

d. Bundling: Determining whether creating coexisting options enhance the 

demand of the product, 

e. Pricing: Determining the most effective price for the product. 

 

Figure 4: Overall Framework for Managing External Variety  

of Configurable Products 
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The reduction of external variety is a strategic decision that should not be 

made unless production, marketing, and other departments within the company 

cannot have a consensus on it. Our main objective is to group product configurations 

within a framework that benefits from both qualitative and quantitative methods in 

order to prevent further operational models of inventory management or demand 

estimation suffer from the abundance of product variants offered. Note that one 

needs to understand the dynamics of the market or the market segment in order to 

input the optimization model with the right information. 

In this study, we are not exploring through which processes consumers went 

when estimating the relative attractiveness of similarity sets. Thus, we are not able to 

employ approaches such as consumer information processing (Thompson and 

Hamilton, 2006); we realize the sale of a product variant after the consumers have 

seen the ads, heard about the promotion, consulted with their family and friends, and 

checked their finances. 

3.2.1. Preprocessing  

Nowadays it is more common to see attribute-based product descriptions 

since it has become standard in product configurators (Salvador and Forza, 2007). 

However, consumers use well known attributes rather than the new and novel 

attributes when screening alternatives (Gillbride & Allenby, 2004), and they select 

groups of features together based on their needs and price points. This creates 

dependencies between features that should be leveraged to improve the product 

offering and forecasting. In order to avoid multicollinearity in such situations, one 

could employ Principal Component Regression (PCR) or Partial Least Squares 
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Regression (PLSR). If the main objective is data dimensionality reduction, as in our 

case, then Principal Component Analysis (PCA) or Factor Analysis (FA) can be 

employed. 

PCA and FA ask the same basic question: Is it possible to duplicate the 

correlation or covariance matrices by using fewer inputs than the number of original 

variables? They lead to similar results if the dataset is good enough and if the 

research is reasonable (if the factor structure is strong). However, there are also 

some fundamental differences between these two techniques. PCA exploits the total 

variance (the correlation matrix), whereas FA uses only the shared variance (the 

covariance matrix). The former is convenient to use as it does not make any 

assumptions on the distribution of the data, whereas multivariate normality is sought 

when using the latter. 

The basic assumption we make in this step is that what dealers ordering is 

somewhat correlated to what customers want. The estimation is done globally, which 

helps vehicle similarity set to have consistent meaning over time, but has the inability 

to account for trends and inter-temporal variation. This weakness of global estimation 

can be overcome with demand estimation model, which captures the trends and 

changes in customer preferences. 

Traditional PCA cannot deal with binary variables as Spearman’s correlation is 

not appropriate to use with discrete variables. Even though this obstacle can be 

overcome by using tetrachoric or polychoric correlations when reproducing the 

correlation matrix, estimation of these correlations requires maximization of a 

likelihood function, thus convergence many not be achieved in some cases. Besides, 
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it is often time consuming as it involves tedious calculations. Instead, we adopted a 

patented approach by Ford Motor Company (Puskorius et al., 2012) to transform the 

original discrete variables into continuous variables so that PCA can be run without 

hesitation. The formulation for the transformation is given in Equations 5 and 6: 
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where x

ikδ  a binary variable that denotes the absence or presence of the option x on 

vehicle i in period k and S denotes the assortment in period k. We also created the 

conjugates of each ikx

 

for practical reasons: 
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An illustration of the encoding is given in Figure 3. Inventory mix rates are calculated 

for each option (column means) and then column means are subtracted from the 

value of the corresponding option so that conventional factor analysis methods can 

be used. 

 

Figure 3: The Encoding Patented by Ford Motor Company 
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3.2.2. Re-configuration 

In this step, we transform the configuration space to a reduced product variant 

space using quantitative and/or qualitative data. This process starts with the 

employment of three approaches when describing the product variants: 

dichotomization, clustering, and subjective judgments. In the former approach, after 

determining the number of principal components that should be used, the component 

scores are dichotomized based on the corresponding means; under clustering, the 

component scores can be clustered using unweighted pair-group average as the 

linkage rule. In both of these approaches, we are trying to find how much any two 

configurations resemble one another. 

A reasonable next step would be to validate the quantitative results with text 

mining techniques and name the dimensions obtained based on the classification of 

attributes (threshold, central, variety-enhancing) as proposed by Sanchez (1999). 

Our primary interest here would be variety-enhancing attributes, which account for 

product variety perceived by consumers. 

3.2.3. Demand Potential 

Our proposed approach first categorizes the principal components and create 

two-level dimensions to reduce the number of product variants to consider, then the 

dimensions are referred to as product “core features” and their combinations form 

“similarity sets” (consistent with the language from some OEMs). When estimating 

demand, these entities are taken into consideration instead of configurations. 

In some cases, due to unavailability of some configurations, sales of available 

configurations might increase. This type of substitution is considerably high in auto 



37 
 

 
 

markets. Thus, vehicle configurations would be perceived more substitutable than 

real if one used a demand model that does not consider product unavailability. Since 

vehicles are high priced products, we assume that customers would be willing to 

substitute for only a limited number of options when they cannot find the specific 

vehicle configuration for sale. This assumption is in line with the related literature. For 

instance, Smith and Agrawal (2000) assume that customers substitute only once; 

Kök (2003) show that effective demand in case customers are assumed to substitute 

three times can be approximated by changing the parameters of their single-attempt-

substitution model; and Yücel et al. (2009) suggest that assuming the number of 

substitutions customers would make to be three is reasonable since substitution 

probabilities become smaller as the number of times customers can substitute 

increases. Note also that we are doing a region-based analysis, thus the substitutions 

are highly likely to occur within the region.  

Since we needed the most proper demand estimation model in order to 

evaluate the relative attractiveness of each similarity set, we covered a great deal of 

studies in the related literature. The model that could help us should have worked 

when only product characteristics were known and have taken the product 

unavailability and substitution into account. The methods such as well-known BLP 

(Berry et al., 1995) and its likes, which are based on consumer-level discrete choice 

models, cannot be used when practitioners have limited data sources. Therefore, we 

follow the demand estimation procedure provided in Vulcano et al. (2012), which 

employs the expected maximization (EM) method with the assumption of a 

multinomial logit (MNL) model of consumer preferences and a nonhomogeneous 
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Poisson model of consumer arrivals over multiple time periods. Their methodology is 

line with that proposed in Anupindi et al. (1998) as they both relate the rate of 

consumer arrivals to choice probabilities; however, the latter cannot model these 

probabilities within a utility framework. 

Following the notation in Vulcano et al. (2012), we define the probability of a 

vehicle from similarity set j being purchased as  

1
),(

+
=
∑ ∈Xk k

j

j
v
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vXπ  , 

and the probability of customer walking away as 

 
1

1
),(0 +
=
∑ ∈Xk kv

vXπ  

where X denotes the choice set at point of purchase and v denotes the preference 

vector. These probabilities are calculated using the manufacturer’s market share, s, 
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and the transaction data in which the choice sets at each period are provided. 

Vulcano et al. (2012) breaks observed sales into two parts: primary demand, 

and substitute demand. We are mostly interested in the substitute demand as we use 

it to decide whether the definitions of similarity sets are appropriate or not. Customers 

either substitute out of vehicle similarity set q when no vehicle from q is available or 

substitute in vehicle similarity set q when their primary choice is not available. In the 

former case, the substitute demand for vehicle similarity set q in period t, qtŴ , is 

defined by Equation (1), where }0{∪∉ tXq  and zt is the vector of observed sales in 
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period t, in the latter case, qtŴ  is defined by Equation (2), where 
tXq∈  and zqt is the 

observed sales of vehicle similarity set q in period t. 
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This economic consumer choice model is easy to use and understand, and it 

helps decision makers in grouping different configurations without losing too much 

information about external variety. Other than market share parameter, the model 

only needs information on product availability and transaction time (date). We claim 

that if the substitutions between different similarity sets are relatively low, then the 

new product definitions can be used without hesitation. 

3.3. Assortment Structure 

In the marketing literature, there have been a number of studies devoted to 

measuring the variety of an assortment. Hoch et al. (1999) is one of the pioneering 

studies that focused on building efficient assortments based on a variety index. 

Entropy, which was first proposed by Swait and Adamowicz (2001) for the complexity 

of choice sets, measures the degree of the dissimilarity between the products in an 

assortment. The authors state that when the assortment is full of equally attractive 

alternatives, the entropy is at its maximum. Thus, choice gets more complex for 

consumers when they are offered choice sets with high entropy. Note that the first 

use of entropy as a measure dates back to late 1940s. Shannon (1948) used this 
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measure to quantify “the amount of information of a set of objects” (Fasolo et al., 

2009).  

After calculating the choice probabilities of each observation (configuration, 

product variant, or similarity set), we follow the footsteps of Swait and Adamowicz 

(2001) and evaluate the quality of an assortment in each period using the entropy 

measure 

))(log()()()(
1

∑
=

−==
J

j

jjX xxHXH πππ  

which is based solely on the choice probabilities,

 

).( jxπ   

The variety of an assortment can be assessed following a product-based 

approach or an attribute-based approach. In this study, we are employing the former 

approach since our demand model is estimated using similarity sets, product 

variants, or configurations. Thus, we are not able to estimate purchase probabilities 

for attributes. However, one can easily modify the framework to have insights on the 

attribute space. 

Traditionally, the choice probabilities, ),( jxπ  are estimated using a logit-like 

discrete choice model such as MNL, NL, and ML. However, in our case, the choice 

probabilities are estimated using and EM-based demand model proposed by Vulcano 

et al. (2012). The difference is that in most of these discrete choice models, the 

heterogeneity of consumer preferences is taken into account explicitly; however, the 

EM-based demand model can only account for that implicitly. Nevertheless, overall 

conclusions would not suffer from this difference. 
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We should note that this entropy measure has been employed by many 

researchers (Fasolo et al., 2009; Vermeulen et al., 2011), and it is accepted as one of 

the best ways to measure choice complexity (Duquette, 2010). Recently, Kessels et 

al. (2006) adopted this measure for a Bayesian design of choice. Rather than using it 

as a measure of complexity, in this study, we are linking this measure to the 

assortment effectiveness (e.g., the number of products sold in a period). The main 

reason why we are hesitating to make conclusions about consumers’ choice 

complexity is the implicit utility framework employed in our demand estimation model. 

We are not explicitly modeling utility taking consumer heterogeneity into account as 

aforementioned.  

The entropy measure helps us to gain insights about the relationship between 

the variety (quality) of an assortment and the number (percentage) of products sold 

at a given time. Using this measure, the decision maker can determine whether the 

size or variety of an assortment affects the sales in a time period. It also sheds some 

light on consumers’ buying and variety seeking behavior. Note that when the 

products in the assortment are equally attracted to the consumers, the entropy is at 

its maximum. However, when a product with a very high purchase probability (a 

dominating product) is included in the assortment, then the entropy measure gets so 

close to its minimum. 

3.4. Survival Analysis 

Survival (duration) models estimate the time-to-event using a set of 

explanatory variables, which can be either fixed or time-varying. These models are 

always preferred to an OLS model as they do not impose the basic assumptions of 
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the OLS such as multivariate normality, linearity, and heteroscedasticity among 

explanatory variables (Tabachnick and Fidell, 2007).  

There are mainly three approaches to survival analysis: parametric, semi-

parametric, and non-parametric. In our study, we employ Cox proportional hazards 

model (Equation 5), which is semi-parametric and relates hazard rates to a log-linear 

function of the explanatory variables of interest.  

���� = ������
��	
�             (5) 

Cox PH model has non-parametric baseline hazard; this is why it is often 

preferred to parametric models, in which the distribution of the hazard function needs 

to be determined a priori. Cox PH model also has an efficient partial likelihood 

estimation procedure that makes it more convenient to use. 

The explanatory variables we use in our survival analysis are the mix rate 

factor scores obtained using PCA, and in Eq.5, ti denotes the time a configuration 

spends on lot in week k. Note that ti is always positive and smaller than or equal to 8. 

Cox PH model allows for discrete explanatory variables; however, using 

product attributes (options) as covariates to estimate “survival time” might lead to 

biased results in cases like ours. An unemployed person’s probability of re-

employment does not depend on the set of all the unemployed people in 

consideration. In other words, a person does not stay unemployed since another 

person becomes employed or a new person becomes unemployed. However, in our 

case, the absence or presence of a configuration at a time point might affect the time 

to purchase of the other configurations available at that time. This is why we are 

using the mix rate coding in order to estimate days a configuration spends in store. 
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3.5. Concluding Remarks 

Our methodology, illustrated in Figure 5, can be employed both as a data-

driven and a knowledge-driven decision support tool as it can answer “what-if” 

questions using quantitative models and captures the qualitative knowledge with the 

help of consumer reviews. 

In case of durable goods, since the consumers often are not aware of what 

products exist in the marketplace, the substitution cannot be classified as stock-out or 

assortment-based (Kök et al., 2008). However, substitution between different 

configurations (product varieties) is still valid (present). Even though there is 

evidence in the literature that customers sometimes substitute up to a limited number 

of bits when their first choice is not available (Yücel et al., 2009), we are not making 

any assumptions about the number of substitutions that can occur between different 

varieties/configurations. Our demand model assumes that if customers cannot find 

their first choice (ideal product), they either substitute or walk away. However, when 

customers substitute, we are not interested in the number of substitutions until the 

purchase is made. 
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Figure 5: Flow Chart of the Proposed Framework 

 

 

Initialize: 

• Determine the market and/or market segment 
• Determine the products of interest 
• Define objectives 

Gather Information: 

• Collect primary and secondary data 
• Consult with industry experts 

Configure: 

• Describe vehicle similarity sets 

Validate: 

• Are substitution probabilities between 
each similarity sets that were 
estimated by the demand model 
reasonable? 

Update: 

• Product descriptions 
should be updated 

Report: 

• Display results 

Yes 

No 

Input: 

• Use results to find optimal 
assortment structure  
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CHAPTER IV: RESEARCH SUMMARY AND EXPERIMENTAL RESULTS 

4.1. Introduction and Data Description 

We apply our framework in the midsize cross utility vehicle (CUV) segment of 

the U.S. automobile industry. The market is worth billions of dollars, and it has been 

growing since the mid-2000s. The leading brands are Toyota, Honda, Nissan, Ford, 

and General Motors. The nationwide economic crisis around 2008 increased the 

interest in more fuel-efficient vehicles and the incline of oil prices following the 

recession led consumers from SUVs to CUVs. Having gained 83% market share in 

2011, CUVs are expected to continue dominating the U.S. SUV market (Mintel, 

2012). 

The primary data provided by our collaborating OEM covers daily transactions 

from August 2010 to March 2012 on the product of focus, which is one of the leading 

models in the segments. The firm divides the national market for the product into 17 

regional markets. We observe unit sales, price, options, and availability of each 

product configuration. The dataset was from a perpetual inventory system, i.e. every 

time a purchase was made, the dealer knew how many vehicles were available and 

which configurations were out of stock. It provides information about the alternatives 

that were available at the point of purchase, but were not purchased. However, it 

does not include any information on consumer characteristics. We know the list 

prices for the configurations, but not the transaction prices. Crafton and Hoffer (1980) 

state that the relationship between the list prices and the transaction prices is market 

determined, but they show that the former can be used to explain the latter as 

consumers start negotiating with the dealer based on list prices. 
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As a secondary data source, we use consumer reviews retrieved from main 

auto blogs and consumer web sites, which help practitioners to learn more about 

consumers’ views about the product in consideration. We apply text mining 

techniques to this information to find out post-purchase behavior and perceptions of 

the consumers. This is important since comments and reviews on such web sites 

may have an effect on consumers. We are benefiting from text mining techniques to 

retrieve and extract information on consumer behavior. Note that this is an 

exploratory analysis 

4.2. Data Preprocessing 

We employ our methodology in one of the largest markets in the U.S.: New 

York. We apply our framework on the first 32 weeks of the data, and run the analysis 

for each 8-week period separately. One reason to do this is the carryover effect. 

Using a regression model, we find that the variation in supply at time t can be 

explained significantly by sales at time t-4, but it cannot be explained by sales in t-1, 

t-2, or t-3. Equations 1-4 below show the results of the four separate regression 

models estimated to explain the variation in supply with sales by changing the length 

of time lag. St denotes the supply, whereas Qt denotes the sales volume at time t; p 

value shows the probability of accepting that the beta coefficient is equal to zero 

when it is not. The beta coefficient was found insignificant for time lag smaller than 4. 
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Another reason for repeating the analysis for each sub-period is to reduce the 

effect of possible trends, seasonality, and changes in consumer behavior. Even 

though focusing on a market segment somewhat limits the degree of change in 

consumer preferences, trends are still not easy to capture. In some seasons 

(periods), the manufacturer may expect more sales compared to other ones, and this 

is usually a result of macroeconomic changes. Albuquerque and Bronnenbeg (2009) 

study at the quarter level when estimating demand assuming that the market 

conditions do not differ for the consumers who purchase a car in the same quarter. 

Similarly, we use 8-week periods when running our analyses in order to reduce the 

effect of changes in macro-economic conditions. 

We treat vehicle options as product characteristics to define product 

configurations; we use binary coding when describing product configurations. Even 

though information on exterior paint and customer type was given in the original data 

set, we should note that we do not use exterior paint in product description and only 

consider the build-to-order vehicles in our analysis. The descriptive statistics of the 

options and MSRP are given in Table 4 below for the New York data set. 
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Table 4: Mean values of the options and list prices 

Variables New York 

Price MSRP 35,443 USD 

Drive 
FWD 31.269% 
AWD 68.731% 

Body Style 

SE 9.732% 
SEL 51.807% 

Limited 33.985% 
Sport 4.476% 

Design: 
Trim Type 

Charcoal Black 60.714% 
Leather 77.243% 

Design: 
Others 

Moonroof 66.070% 
Floor Mats 43.643% 

Headlamps 27.307% 
Roofrack 17.740% 

Ambient Package 77.243% 
Trailer Tow 9.778% 

Design: 
Wheels 

Premium Wheels 42.396% 
Trim Level 1 34.407% 
Trim Level 2 9.163% 
Trim Level 3 51.358% 
Trim Level 4 5.072% 

Tires 1 9.154% 
Tires 2 61.833% 
Tires 3 23.941% 
Tires 4 5.072% 

Technology 

Satellite Radio 97.762% 
Speed Control 11.191% 
Sync (Touch) 55.458% 

Blis 27.096% 
Navigation Center 50.257% 
Driver’s Package 31.802% 

Comfort Group 38.782% 
Rearcamera 88.800% 

Number of Observations 10,902 observations 
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4.2.1. Principal Component Analysis 

 Employing the encoding described in Chapter 3 and using varimax rotation, 

we obtained the principal components that are partially provided in Table X. Varimax 

rotation, which is an orthogonal rotation, was done only to obtain a reasonable 

interpretation. The total variance explained does not change after varimax rotation, 

but the variance explained by each component might. We should note that rotating 

the factor space is not necessary. It is not different than rotating a mirror to look nicer. 

Table 5 partially shows which options load on which components in the periods under 

consideration after varimax rotation.  

Table 5: A Partial View of the Loadings of Some Options across Different Periods 

Component Period 1 Period 2 Period 3 Period 4 

2 
BLIS (-0.5) 
VISION PKG (-0.5) 

BLIS (-0.5) 
VISION PKG (-0.5) 

BLIS (-0.5) 
VISION PKG (-0.5) 

BLIS (-0.5) 
VISION PKG (-0.5) 

4 
SEL (-0.3929) 
LIM (0.4635) 

SEL (0.3577) 
LIM (-0.4110) 

SEL (0.3690) 
LIM (-0.3926) 

SEL (0.4482) 
LIM (-0.4691) 

10 
FWD (0.7071) 
AWD (-0.7071) 

FWD (0.7071) 
AWD (-0.7071) 

FWD (0.7071) 
AWD (-0.7071) 

FWD (-0.7071) 
AWD (0.7071) 

18 
SE (0.8770) 
SEL (-0.5067) 

SE (0.8280) 
SEL (-0.5419) 

SE (0.8340) 
SEL (-0.5304) 

SE (0.8827) 
SEL (-0.4321) 

19 
 
SPORT (0.9310) 

LIM (-0.3542) 
SPORT (0.9200) 

LIM (-0.3893) 
SPORT (0.9066) 

LIM (-0.3355) 
SPORT (0.9257) 

 

Based on Table 5, in Period 1, if there is a positive increase in the relative mix 

rates of both SEL and LIM vehicles, the scores of Component 4 also increases. For 

Periods 1-3, we can express the component associated with Component 10 as 

follows: 

 

Note that since ,ii AWDFWD −= ii FWDComp )7071.0(210 = . 

Option bundling, which is used to build predetermined sets of options so that 

external variety is controlled, is already being used extensively in the auto industry. In 

iii AWDFWDComp 7071.07071.010 −=
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our case, the manufacturer also utilizes this strategy. For instance, blis and vision 

package options are always observed together in the original data. Thus, the 

loadings given in Table 5 is a byproduct of the encoding used since PCA after 

varimax rotation detects the natural bundling of the options. 

4.3. Defining Vehicle Similarity Sets 

Vehicle similarity sets are inputs for the demand and the optimization models 

that could be built to select the most profitable configurations. For each configuration, 

vehicle similarity sets are constructed by taking into account the interactions between 

configurations based on relative mix rates of options. Vehicle similarity sets are the 

most crucial part of the framework since we assume that substitutions occur within 

similarity sets. 

Our approach is similar to the customer migration model proposed in Yunes et 

al. (2007), which aimed to determine the potential configurations a customer can 

purchase based on a few parameters such as the commonality factor, the set of fixed 

features, the first choice probability, etc. However, adopting a data-driven approach, 

we are primarily trying to find a way to group the configurations built for a region so 

that a reasonable number of product variants are taken into consideration; Yunes et 

al. (2007) suggest John Deere & Co. the use of customer migration lists within an 

optimization framework to decrease the size and complexity of production lines. 

Dichotomization and clustering approaches are used separately to extract the 

common information of the car options so that the practitioners do not suffer from the 

curse of dimensionality in further analyses. In any of these approaches, we do not 
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claim to know why correlations between inputs exist, i.e., no inferences on causality 

are made. 

4.3.1. Consumer Reviews 

We are using consumer reviews not because the quantitative analyses are 

incomplete. Such qualitative models and industry expertise can provide better 

insights about the problem. Hogarth has a remarkable quote that can explain our 

intuition better: When driving at night with your headlights on, you do not necessarily 

see too well; however, turning your headlights off will not improve the situation 

(Hogarth, 1987). Besides, if the number of alternatives of a configurable product is 

abundant, it will be implausible for consumers to consider all options (car features) to 

make a choice (Adamowicz et al., 2008). Even though cars are durable goods, it is 

not always the case that consumers will consider all vehicle features at or before the 

point of purchase. Thus, consumer reviews are used to complement the qualitative 

methods. They provide good insights since they can help the practitioners to see 

significant differences based on important features, not only based on accessories. 

Other marketing models such as conjoint analysis or consumer clinics, which focus 

on stated preferences instead of revealed preferences, can also be employed. Thus, 

the use of consumer reviews is only one way of learning more about consumers and 

markets and a different angle to look at the problem to use in the decision making 

process.  

According to the consumer reviews on the product of focus collected from 

online vehicle information data sources such as Cnet.com, Edmunds.com, and 

Kbb.com, consumers value all-wheel-drive configurations, especially the ones whose 
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body style is Limited or SEL. They are also interested in most of the technology 

aspects such as the Sync system, Navigation Center, Rearcamera, and Blis. 

Configurations with leather seats and premium wheels are also appreciated. We 

collect consumer reviews for these reasons. 

4.3.2. Dichotomization Approach 

Before running the PCA, we created as many variables for each vehicle as the 

number of times they were observed during the first 32 weeks of the analysis. After 

obtaining the factor scores, we averaged these scores over the number of weeks 

each vehicle was available in order to maintain consistency. Then, dichotomization 

was done based on these new variables, which we will call average relative mix 

rates. We created one binary variable for each original factor, which takes the value 

of 1 if the average relative mix rate is positive, and zero, otherwise. Figure 6 

illustrates the dichotomization approach for the vehicle with ID=187. 

 

Figure 6: Defining the vehicle similarity set for a vehicle 
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Since we selected 6 principal components for the analysis, we could obtain at 

most 64 vehicle similarity sets. The final number of similarity sets used in the analysis 

was 46. The percentages of each option in each vehicle similarity set are 

summarized in Appendix A. 

The demand model we employ looks at market response at the individual level 

and estimates the purchase probabilities (level of attractiveness) of each similarity set 

of which sum equals the market share. The model needs the market share 

information a priori in order to calculate the purchase probabilities. In our study, we 

set it at 20% after consulting with industry experts.  

The primary demands of each vehicle similarity set at different time periods 

following the dichotomization approach are shown in Figure 7. Primary demand 

corresponds to sales volume in almost each case, which means that demand due to 

substitution is quite low. This indicates that vehicle similarity sets are distinctive from 

each other; substitution is not frequently seen between vehicle sets, but it can be 

high between vehicles within the same similarity set. 

Figure 8 shows how preference weights of each vehicle similarity set change 

over time after dichotomization is employed. A similarity set’s relative attractiveness 

may change by time, which is expectable considering seasonality effect and demand 

fluctuations. We should also note that preference weights are assumed to be 

dependent of the consumer choice set at the point of purchase. 
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Figure 7: Sales (blue legend) versus primary demand (red legend) in (a) Weeks 1-8, 
(b) Weeks 9-16, (c) Weeks 17-24, and (d) Weeks 25-32 
 

 

Figure 8: Relative attractiveness of each similarity set in (a) Weeks 1-8, (b) Weeks 9-
16, (c) Weeks 17-24, and (d) Weeks 25-32 (Dichotomization) 
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Figures 7 and 8 illustrate that the level of attraction of a vehicle similarity set is 

not constant over time. This might be due to the changes in the market environment 

or in the marketing mix such as promotion and advertising, or due to other factors. 

The twelfth vehicle similarity set is found very attractive in the first 8 weeks of the 

study period; however, it does not appear to any consumers in the following periods. 

There was no vehicle from the similarity set #12 available after the second week of 

the study period. All 11 vehicles from this set were sold very fast (within the first two 

weeks), so the 12th preference weight was found to be very high. This is not a flaw of 

the estimation procedure; on the contrary, it helps us to see how ignoring product 

availability information could affect the conclusion. It also shows us how important it 

is to run such an analysis in sub-periods separately instead of running one analysis 

for the overall period. Table 6 below shows the time each vehicle from similarity set 

#12 spent on lot and their list prices. The average “days on lot” is 6.64 days (less 

than a week) and the average list price is $ 38,107.56. This set, in which all the 

vehicles have Limited body style, headlamps, moonroof, rearcamera, satellite radio, 

leather seats, ambient package, drivers package, and navigation center, is well 

distinguished. It is also composed of mostly all-wheel drive vehicles. Note that most 

of these options were also appreciated in consumer reviews. 
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Table 6. The days on lot and list prices of the vehicles in the 12th similarity set 

Days on Lot MSRP (in USD) 

7 36,239.29 

3 37,922.29 

4 37,922.29 

5 37,922.29 

11 37,922.29 

11 37,922.29 

6 37,986.29 

11 38,683.29 

3 38,747.29 

3 38,747.29 

9 39,168.29 

  

The 19th similarity set, one of the largest sets obtained after dichotomization, 

attracted too many customers in the last three sub-periods, which is not surprising 

considering its similarity to the 12th set. Table 7 compares the mix rates of each 

option in these two similarity set. 
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Table 7: The structures of the vehicle similarity sets #12 and #19 
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We should also note that the vehicles from the 19th set started to arrive more 

frequently starting with the fourth week of the study period. Until then, the vehicles 

from the 12th set were already sold. The average days on lot for the vehicles in the 

19th set is around 77 days (almost 2 months), thus the preference weights of these 

two sets indicate the difference in days on lot, which denotes how fast a vehicle 

leaves the dealer.  

According to Figures 7 and 8, note also that the 25th vehicle similarity set 

along with the 14th, 29th, 31st, 43rd sets attracted too many customers in all of the four 

sub-periods. 

Figure 9 gives a three-dimensional look at the preference weights of the 

change in each similarity set changing between 8-weekly periods. The x-axis denotes 

the sales of each similarity set. Likewise, Figure 10 illustrates how preference 

weights changed with time based on the percentage of front-wheel drive vehicles 

present in the similarity sets. Figures 11, 12, 13, and 14 are the similar graphical 

representations when the y-axis is selected to denote the SE, SEL, Limited, and the 

Sport body styles, respectively.  

Based on Figure 9, it is apparent that even the level of attraction of the best-

selling vehicles can change significantly over time. Figure 10 shows that vehicle 

similarity sets with more all-wheel drive vehicles were found to be relatively more 

attractive. A similar conclusion cannot be made easily using the figures for the body 

styles; however, we can clearly see that consumers were more attracted to the 

vehicles that do not have an SE body style.  

 



59 
 

 
 

 

Figure 9: Change in preference weights with time as sales indicating the vehicle 
similarity sets (Dichotomization) 
 

 

Figure 10: Change in preference weights by time with percentage of front-wheel drive 
indicating vehicle similarity sets (Dichotomization) 
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Figure 11: Change in preference weights by time when percentage of SE vehicles 
indicating the structure of vehicle similarity sets (Dichotomization) 
 

 

Figure 12: Change in preference weights by time when percentage of SEL vehicles 
indicating the structure of vehicle similarity sets (Dichotomization) 
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Figure 13: Change in preference weights by time when percentage of Limited 
vehicles indicating the structure of vehicle similarity sets (Dichotomization) 
 

 

Figure 14: Change in preference weights by time when percentage of Sport vehicles 
indicating the structure of vehicle similarity sets (Dichotomization) 
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4.3.3. Clustering Approach 

As an alternative to the previous approach, instead of using the relative mix 

rates of options, we try grouping the configurations based on their normalized list 

prices taking the number of weeks they spent on lot into account. Thus, we define 

ikMSRP  for each observation i in period k as
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when forming clusters. 

Since we intended to employ a data-driven approach, we tried to let the data 

tell us which steps we should take when describing the similarity sets. Thus, we 

preferred using a hierarchical method to a non-hierarchical one such as k-means in 

which the value of k has to be chosen in advance even though hierarchical clustering 

algorithms need more computational resources. 

In hierarchical cluster analysis, every data point starts as a cluster, and then 

clusters are combined into larger groups based on similarity measures (linkage 

rules). We are using unweighted pair-group average as the linkage rule when 

clustering the configurations as numerous Monte Carlo studies claimed that this 

method most often leads to the best solution. Thus, its use is highly recommended in 

practice. There is no significant test in cluster analysis that can help us whether or 

not our results are meaningful; however, since we have a priori information about the 

product definitions, we can greatly benefit from cluster analysis. 

Using the average linkage rule, we formed clusters for each sub-period 

separately, and with the help of dendograms given collectively in Figure 15 below, we 



63 
 

 
 

decided to use 12 clusters to estimate the preference weights for each cluster 

(vehicle similarity sets). Note that consistency between different sub-periods was 

satisfied before doing further analyses. 

 

Figure 15. Dendograms from Each Time Period 
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As seen in Figure 16 below, excluding Cluster #4, #5, and #9 the sizes of the 

clusters are do not significantly differ.  

 

Figure 16: Number of Vehicles in Each Cluster 

 

Table 8 below reports the summary statistics of the list prices of each cluster. 

According to the table, Cluster #7 is most likely composed of standard configurations, 

whereas Cluster #4 consists of high-end configurations. 
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Table 8: Descriptive Statistics of MSRP of Each Cluster 

Cluster Mean Median Std Dev 

1 34122 34057 1149 

2 39631 39894 775 

3 35858 36046 894 

4 41767 42013 708 

5 38798 38996 803 

6 32882 32541 1733 

7 27971 28028 392 

8 35013 35113 1050 

9 37972 38140 868 

10 39947 40176 887 

11 36532 36593 1652 

12 33663 33319 1635 

 
We are not reporting the primary and substitute demand estimates as 

substitution between different clusters is minimal. This insight is also supported by 

Table 9 below.  

Table 9: Performance measures for demand estimation using the clusters 

 
 

Period 

 
No. of 

Iterations 

Total 
Primary 
Demand 

Total 
Substitute 
Demand 

Total 
Demand for 

No-Purchase 

 
% of Lost 

Sales 

 
Recapture 

Rate 

1 7 948.454 2.546 0 0 0.26844% 

2 6 1714.591 0.409 0 0 0.02388% 

3 6 1109.474 0.526 0 0 0.04744% 

4 6 1431.600 0.400 0 0 0.02791% 
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The preference weights of each cluster in each period are given in Figure 17. 

The most stable clusters in terms of attractiveness are Clusters #3, #5, and #12.  

 

Figure 17: Preference Weights (Clustering Approach) 

4.3.4. Subjective Selection 

 In the previous approaches, we relied on data when describing vehicle similarity 

sets; however, one might also want to re-configure product variants based on 

subjective judgments. We will prefer the terms product variant and product 

configuration throughout this subsection to describe vehicle similarity sets. The 

experimental results obtained when the full configuration space is used will be 

summarized right after the results for the limited information case. 

Following the subjective approach, we define the product variants as shown in 

Table 16 in Appendix. We excluded the all-wheel drives with the SE body style from 

further analysis as it was not observed in the first 32 weeks of the study period. Full 

information approach uses all vehicle options (except paint and exterior trim level) 

and uses binary coding when describing product configurations. 
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Table 10 summarizes the preference weights estimated for each product 

variant in each period. In parallel with the consumer reviews and the results obtained 

from dichotomization approach, all-wheel drive vehicles with a body style of SEL or 

Limited are found to be consistently attractive among the four sub-periods. All the 

other product variants show some level of fluctuation as the period changes. 

Table 10: Preference weights obtained using the subjective approach 

Product 
Variant 

Coefficient 
Period 1 Period 2 Period 3 Period 4 

FWD SE 0.0161 0.0195 0.0224 0.0158 
FWD SEL 0.0248 0.0231 0.0171 0.0207 
FWD Limited 0.0084 0.0129 0.0091 0.0079 
FWD Sport 0.0010 0.0009 0.0010 0.0008 
AWD SE N/A N/A N/A N/A 
AWD SEL 0.0908 0.0852 0.0915 0.1087 
AWD Limited 0.0885 0.0928 0.0898 0.0792 
AWD Sport 0.0205 0.0156 0.0191 0.0170 

 

As a benchmark to the models estimated so far, we repeated all the steps on 

the configuration space also. Using 26 binary options, we obtained 1,210 

configurations that were built for the region under study. It is very inconvenient to 

show the detailed results of the full information case; however, in Table 1Y in 

Appendix A, we summarize the structures of the most attractive configurations in the 

first 32-weeks of the analysis. On the other hand, Table 11 shows the estimated 

preference weights of these configurations in each period. 

 

 

 

 

  



68 
 

 
 

Table 11: The preference weights of the most attractive configurations 

Period 1 Period 2 Period 3 Period 4 

Configuration 
Pref. 

Weight Configuration 
Pref. 

Weight Configuration 
Pref. 

Weight Configuration 
Pref. 

Weight 

1092 0.69% 424 0.61% 275 0.62% 224 0.63% 

416 0.52% 416 0.55% 227 0.56% 568 0.53% 

690 0.51% 385 0.50% 424 0.51% 403 0.48% 

1033 0.51% 227 0.47% 568 0.51% 424 0.44% 

424 0.49% 216 0.43% 403 0.49% 416 0.41% 

568 0.40% 224 0.42% 423 0.42% 803 0.36% 

451 0.37% 403 0.41% 85 0.40% 220 0.35% 

403 0.35% 568 0.37% 224 0.40% 385 0.34% 

385 0.34% 536 0.34% 385 0.40% 312 0.34% 

84 0.33% 220 0.30% 416 0.39% 702 0.34% 

 

Table 12 summarizes the performance measures of the full information 

demand model. The percentage of lost sales, which is the percentage of time 

customers walked away due to configuration unavailability, is found to be acceptable 

in each period. The recapture rate, which shows the total percentage of customers 

that substituted the unavailable configuration they primarily demanded with an 

available configuration, is relatively low; however, this is quite reasonable considering 

the level of study. We estimated our models at the regional level, where the level of 

configuration unavailability is much smaller than the one at the dealer level; thus, the 

analyst should pay attention to this fact when interpreting the recapture rate. 
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Table 12: Performance measures for demand estimation  
using the configuration space 

 
 
 

Period 

 
No. of 

Iterations 

Total 
Primary 
Demand 

Total 
Substitute 
Demand 

Total 
Demand for 

No-Purchase 

 
% of Lost 

Sales 

 
Recapture 

Rate 

1 263 1230.98 103.38 326.93 26.56% 8.40% 

2 147 2138.17 162.69 497.54 23.27% 7.61% 

3 115 1397.23 112.39 339.61 24.31% 8.04% 

4 154 1777.01 141.02 410.84 23.12% 7.94% 

 

4.4. Analyzing Assortment Structures 

Assortment analysis can provide greater insight on the data sets contained 

information about vehicle availability at the dealer level. It may not say much at the 

region level; however, it can provide better insight when it is done at the dealer level. 

One could consider adding trend or supply as additional covariates when modeling 

the percentage/number of cars sold. We do not believe that it would be a good idea 

to comment on whether the consumers are utility maximizers or not since the level of 

analysis is not sufficiently deep. 

The relationship between the number (percentage) of cars sold and the 

entropy measure defined in Chapter 3 is given in Figure 18 (Figure 19) for full 

information. The maximum number of cars sold (321) when the entropy measure of 

the regional assortment is used was approximately 12.694. This is also the value of 

the entropy measure when the percentage of cars sold was at maximum (20.34%). 

Note that it is the 10th week of the analysis when the entropy measure was at this 

level. Figure 18 (Figure 19) suggests that entropy and number (percentage) of cars 

sold have a non-linear relationship (flat). 
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Figure 18: The relationship between number of cars sold and entropy of an 
assortment (Full Information) 
 

 

Figure 19: The relationship between percentage of cars sold and entropy of an 
assortment (Full Information) 

 

The relationships between these measures when the subjective approach was 

followed are illustrated in Figures 20 and 21 below. Both the percentage of cars sold 

and the number of cars sold are at their maximum when the entropy was measured 

as 225.761 (regional assortment in the 10th week). 
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Figure 20: The relationship between number of cars sold and entropy of an 
assortment (Subjective) 

 

 

Figure 21: The relationship between percentage of cars sold and entropy of an 
assortment (Subjective) 

 

The two approaches (subjective judgment and full information) both 

emphasize that the assortment structure in the 10th week is the best in terms of 

number of vehicles sold. The high entropy in this week shows that the alternatives 

were closer to each other in terms of relative attractiveness. Table 13 shows the 
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number of each product variant (described following the subjective judgment) 

available in the 10th week; Figure 22 illustrates how many cars were available of each 

configuration in this week. Figure 22 shows that the configurations with AWD SEL 

(#416 and #424) and the configuration with FWD SE (#85) were supplied the most. 

This finding is also supported by Table 13. 

Table 13: The assortment structure in the 10th week (Subjective Selection) 

Product 
Variant 

Number of Cars 
Available 

FWD SE 252 

FWD SEL 165 

FWD Limited 86 

FWD Sport 6 

AWD SE 0 

AWD SEL 462 

AWD Limited 503 

AWD Sport 92 
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Figure 22: Number of Cars Available per Configuration in the 10th Week 

 

Figure 23 provides a closer look to the configurations #84, #416, and #424. As 

shown in Table 11 above, configurations #416 and #424 did sell very well in all sub-

periods. They were in the same product variant group when subjective judgment 

approach was employed. These two configurations only differ on the floor mats 

option. Since most consumers would not insist on having or not having this option, it 

is not surprising to find that they are substitutable. 
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Figure 23: A Partial View of Three Best Selling Configurations 

 

 

 

 

 

 

 

 

 

 

4.5. Survival Analysis 

The relative mix rate gives us an idea about the absence/presence of an 

option on a vehicle and the mix rate of that option in the region in a week. Most of the 

time, the real mix rates of options are not equal to 0% or 100%, so a vehicle has a 

positive relative mix rate if it has an option that is not present on all the vehicles in a 

given week. When we sum the relative mix rates of an option of all the vehicles in a 

week, we obtain 0. Moreover, the relative mix rates are always the elements of the 

Option 84 416 424

drive FWD AWD AWD

body SE LIM LIM

charcoalblacktrim 1 1 1

sync (touch) 1 0 0

floormats 0 0 1

headlamps 0 1 1

moonroof 0 1 1

rearcamera 0 1 1

roofrack 0 0 0

satelliteradio 1 1 1

speedcontrol 0 1 1

trailertowpackage 0 0 0

leather seats 1 0 0

premium wheels 1 0 0

ambient pkg 0 1 1

blis 0 1 1

comfort grp 0 0 0

drivers pkg 0 1 1

navigation center 0 1 1

tires1 1 0 0

tires2 0 1 1

tires3 0 0 0

Configuration
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interval [-1,1]. If the absolute values of the relative mix rates in a week are close to 

each other, then there is a theoretically perfect balance between the absence and the 

presence of the option.  

Since there is collinearity between the relative mix rates of different options, 

we use PCA to avoid multicollinearity related problems. PCA also helps us work with 

fewer variables when estimating the hazard rates. Note that the factor scores are 

linear combinations of the relative mix rates, so the factor scores in this context are 

indices that indicate the relative mix rates of bundles.  

Figure 24 below illustrates the hazard rates (HRs) estimated weekly for each 

sub-period using these six factors. Note that in survival analysis, the change in 

survival conditions is assumed to be fixed over time (Tabachnick and Fidell, 2007). 

This is the primary reason why we estimate days on lot weekly.  

 When more than one observation fails at a certain time, which is almost 

always the case in practice, the partial likelihood function needs to be approximated 

(Jenkins, 2008). The most common techniques used to estimate the survival 

parameters are the Breslow Method, the Efron Method, the Exact Partial Likelihood 

Method, and the Exact Discrete Partial Likelihood Method. We are reporting the 

results of the Breslow Method in Figure 24, but we must note that the results did not 

significantly deviate from the ones we are reporting. 

According to Figure 24, the HRs did not fluctuate substantially until the 17th 

week. In the first 8-week period, the HRs of all the factors are close to each other 

across the weeks, except the first week. In periods 1 through 3, the hazard ratios of 

the component mostly associated with FWD was found smaller than 1. Thus, a one-
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unit increase in FWD

ikδ  (denotes whether vehicle i  is a front-wheel drive or not) leads 

to a 
S

1
1−  increase in the relative mix rate of FWD, and a 










−
S

1
1442.1  increase in 

the component FWD/AWD. Let 









−=
S

1
1442.1α , which is always positive. Then, the 

baseline hazard rate is )exp( FWDαβ times as large as in the baseline scenario, 

indicating a smaller hazard, and hence, an increase in the expected duration (days 

on lot). In other words, if the vehicle was a FWD, its expected days on lot would be 

longer. 

 

Figure 24: The Principal Component Based Hazard Rates across Time 
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4.6. Concluding Remarks 

We used a univariate approach to demand modeling; i.e., we built a model 

separately for a single product without accounting for competition. However, in case 

the product of interest is correlated with other products within or outside the brand (or 

product family) of focus, the demand model can easily be altered as multivariate in 

order to better estimate relative attractiveness of each product variant. If the product 

variants are described properly using the data set in hand, it is not vital to study at 

disaggregate level or at aggregate level. On the other hand, since we did our 

analyses in 8-week periods, we reduced the degree of inter-temporal dependence of 

the product variants. In other words, if there was a seasonal effect or a trend, we 

partially accounted for that. We also accounted for product dependence of demand 

by collecting highly substitutable products in the same set. 

A utility based demand model can also be used in our case; however, such a 

model should not fail to consider heterogeneity in consumer preferences. If one had 

represented the potential car buyers by a single agent, he/she must have shown that 

the distributions of days different cars spent on lot were similar (when controlling for 

marketing variables). Some studies in the assortment planning literature failed to take 

this into account by using locational choice models of demand, in which consumers 

are assumed to have similar preferences. Such a representative approach should not 

be employed in case of high-priced configurable products such as automobiles. 

Although sophisticated demand estimations can be easily made by today’s 

cutting-edge computers, most demand models are inapplicable in the case of 

configurable products as they suffer from the abundance of alternatives that should 
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be considered. As the number of product variants increases, they begin converging 

slowly; in some cases, they do not converge at all. In our experiments, we had at 

most 1,210 configurations; however, in real life, there might be tens of thousands of 

configurations even at product level (e.g., Ford F-150). This is why shrinkage of the 

configuration space is essential.  

We focused on a single market segment assuming that the environment is 

static and there is no competition (or the effect of competition is singled out). Thus, if 

the decision maker does not take competition into account, her only focus should be 

short-run profit as our models cannot be used as a standalone approach when the 

goal is maximizing long-profits. To evaluate marketing actions and improve profit 

margins or market shares, the decision makers should definitely take competition into 

account (employing the optimization model). However, note that when competition is 

considered, the configuration space may substantially increase. 

Note also that the vector of preference weights is the exponential of the 

product of beta weights and the vector of product attributes: v = eβ’z. In our case, the 

median of the list prices can be used as an attribute to estimate the corresponding 

beta coefficient. 

The MNL model is embedded in the demand estimation model we benefit 

from. The literature underlines one of the disadvantages of using discrete choice 

models and their alike as the inability in considering more than one product at a time. 

However, in case of durable and configurable goods, practitioners are not affected by 

this disadvantage since the possibility of a consumer buying two of such goods in 

one store visit is very low. 
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Note that the first 8 weeks is the transient phase of the sales season, so the 

results obtained in this period should be approached carefully. This is a possible 

reason why the 12th set was not observed after the first 8 weeks. However, future 

research should consider development of techniques for further dimension reduction 

of similarity sets. 
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CHAPTER V: CONCLUSION AND FUTURE WORK 

The decision of what configurations of a product to offer is a difficult one for 

most marketing and sales departments. Economies of scale suggest smaller 

numbers of configurations to keep unit costs low. Conversely, realizing high sales 

requires a large number of configurations to ensure that customers are satisfied with 

the available selection. Retailers also need to know the right level of variety to make 

decisions regarding the assortment structure and inventory. 

Existing decision support tools for managing external variety cannot support 

complex configurable products. Since the abundance of too many product variants to 

consider affects the efficiency of demand and assortment planning models, 

practitioners need a suitable technique to reduce the configuration space. In this 

dissertation, we propose a flexible framework and associated techniques to 

overcome this limitation. We develop decision support models that can help decision 

makers when they use operational models to manage the external variety of 

configurable products, and the type of analysis we propose can generate reliable and 

meaningful inputs to the futher steps of decision making (e.g., assortment 

optimization model). 

Our study supports different levels of understanding and analysis. Due to its 

ability and flexibility, it can be employed under various marketing actions. It should be 

used primarily for marketing and sales; however, it can also guide product 

development-related decisions. This is not a retrospective study, and we believe that 

the insights resulting from the proposed methodology can shed some light on 

designing new products.  
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Our overall framework is quite logical and intuitive, but as Lillien et al. (2007) 

noted, “marketing engineering succeeds because of sophisticated managers, not 

sophisticated models.” Our proposed framework helps transform quantitative and 

qualitative data about a market segment into sub-decisions that can help improve 

strategic decisions about pricing, bundling, options development, and so on. The 

marketing literature is full of different models that can answer our main research 

questions: ‘Which configurations should be offered?’, ‘How many configurations 

should be offered?’, and ‘Which options should be bundled?’ For instance, stated 

preferences data are extremely valuable and can improve experimental results 

obtained in this study. However, one should note that we are proposing our 

framework as an additional tool to extract deeper understanding and explore what 

more we can learn. 

To the best of our knowledge, this is the first attempt to develop a data-driven 

framework for the external variety of configurable products using historical data. We 

are contributing to the literature by showing what can be done with limited data 

(information) when making decisions in case of configurable products. Our framework 

would not improve when richer data sets were used; however, our experimental 

results could. For instance, the EM-based demand model we employ cannot account 

for heterogeneity in consumer preferences; therefore, the experimental results due to 

this limitation might be biased compared to the case where complete information on 

consumer demographics and characterists is available when modeling demand. 

However, this bias is not due to the proposed approach as the EM-based demand 

model can easily be replaced with a solely utility based demand model that can 
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account for heterogeneity. The second contribution is providing a proper way to 

shrink the size of product (configuration) space by taking the interactions between 

product features (options) into account (i.e., determining super-options) and creating 

product entities (similarity sets). We are also contibuting to the literature by 

discussing how to employ survival analysis in order to argue about the effect of 

product attributes on the expected survival time 

Some possible avenues for future research in the durable goods market could 

investigate the effect of sales person (e.g., the persuasive ability of most sales 

representatives in dealers) on the consumer’s decision making process, the use of 

discrete time duration models in case of configurable goods, and significance of 

environmental conditions (competition, market dynamics, etc.) and consumer 

perception on the assortment structure in case of configurable products. 

We attempted to estimate how long products (configurations) remain unsold 

using a simple survival model. Future research should benefit from frailty models, 

which are used to estimate hazard rates in case there are omitted variables, as 

unobserved heterogeneity might be significant. Discrete time duration models and 

survival models treating mix rates as time varying covariates should also be 

considered as a benchmark. 

Future research should benefit from the EM-based demand model employed 

in this study by considering all the products available in the market segment. In such 

a case, competition should definitely be taken into account and market share 

parameters should be set more carefully. 
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The insights gained for the present design of a product can have a substantial 

use when designing the future designs of the product. However, a more in-depth 

analysis is needed in order to make conclusions about a completely new product. 

Endogeneity might be seen as a problem in our experimentation since 

transaction prices are unknown to us. Even though Crafton and Hoffer (1980) state 

that MSRP can be used in case transaction prices are not reported, future research 

should address endogeneity and try to overcome it. 
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APPENDIX: STRUCTURES OF VEHICLE SIMILARITY SETS 

Table 14: The percentages of each option in each vehicle similarity set after 
dichotomization 
 

  Vehicle Similarity Sets 

Options 1 2 3 4 5 6 7 8 9 10 11 12 

FWD 52% 0% 91% 98% 26% 0% 100% 88% 50% 91% 67% 9% 

SE 0% 0% 82% 85% 0% 0% 0% 0% 0% 0% 0% 0% 

SEL 100% 100% 18% 13% 100% 100% 100% 100% 100% 100% 100% 0% 

LIMITED 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 

SPORT 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 
Charcoal 

Black Trim 66% 76% 44% 59% 59% 57% 45% 58% 50% 54% 0% 73% 
Sync 

(Touch) 100% 100% 82% 85% 100% 97% 78% 91% 100% 92% 67% 0% 

Floormats 39% 33% 22% 21% 45% 67% 45% 28% 50% 28% 0% 36% 

Headlamps 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 

Moonroof 90% 71% 0% 2% 73% 77% 93% 38% 50% 49% 0% 100% 

Rearcamera 100% 100% 0% 2% 100% 100% 100% 100% 100% 100% 100% 100% 

Roofrack 4% 10% 53% 60% 15% 13% 3% 34% 50% 26% 100% 0% 

Satelliteradio 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
Speed 

Control 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
Trailertow 

Pkg 5% 8% 2% 1% 15% 10% 7% 12% 0% 12% 33% 0% 

Leather 100% 100% 0% 2% 100% 100% 100% 0% 0% 100% 100% 100% 
Premium 

Wheels 26% 56% 100% 100% 41% 63% 52% 69% 100% 45% 67% 0% 

Ambient Pkg 100% 100% 0% 2% 100% 100% 100% 0% 0% 100% 100% 100% 

Blis 0% 0% 0% 2% 46% 97% 0% 0% 0% 15% 33% 0% 

Comfort Grp 100% 100% 0% 0% 100% 100% 100% 0% 0% 100% 100% 0% 

Drivers Pkg 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 100% 
Navigation 

Center 66% 30% 0% 1% 46% 67% 50% 0% 0% 20% 33% 100% 

Trim Level 1 92% 5% 9% 1% 91% 3% 3% 32% 100% 15% 67% 0% 

Trim Level 2 0% 0% 91% 98% 0% 0% 97% 68% 0% 85% 0% 0% 

Trim Level 3 8% 95% 0% 2% 9% 97% 0% 0% 0% 0% 33% 100% 

Trim Level 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Tires 1 0% 0% 91% 98% 0% 0% 97% 68% 0% 85% 0% 0% 

Tires 2 56% 2% 0% 2% 38% 7% 0% 15% 100% 1% 0% 100% 

Tires 3 44% 98% 9% 1% 62% 93% 3% 17% 0% 15% 100% 0% 

Tires 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 14 (Continued) 
 

  Vehicle Similarity Sets 

Options 13 14 15 16 17 18 19 20 21 22 23 24 

FWD 23% 79% 2% 2% 53% 8% 7% 11% 90% 100% 0% 5% 

SE 20% 79% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 

SEL 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 100% 

LIMITED 73% 2% 100% 100% 94% 94% 99% 95% 10% 0% 0% 0% 

SPORT 7% 19% 0% 0% 6% 6% 1% 5% 90% 0% 0% 0% 
Charcoal 

Black Trim 57% 68% 59% 57% 63% 65% 53% 59% 100% 69% 62% 51% 
Sync 

(Touch) 14% 50% 0% 0% 0% 0% 0% 0% 0% 77% 0% 100% 

Floormats 55% 30% 47% 48% 47% 40% 59% 56% 50% 46% 32% 40% 

Headlamps 73% 1% 100% 100% 63% 49% 96% 67% 0% 0% 0% 0% 

Moonroof 79% 19% 100% 100% 79% 73% 98% 77% 80% 0% 0% 65% 

Rearcamera 80% 21% 100% 100% 100% 100% 100% 100% 100% 0% 0% 100% 

Roofrack 14% 43% 0% 0% 6% 19% 1% 10% 10% 48% 62% 13% 

Satelliteradio 94% 72% 100% 100% 100% 100% 100% 100% 100% 77% 100% 100% 
Speed 

Control 57% 1% 0% 0% 0% 0% 69% 47% 0% 0% 0% 0% 
Trailertow 

Pkg 17% 0% 22% 20% 9% 21% 15% 18% 0% 0% 11% 6% 

Leather 80% 21% 100% 100% 100% 100% 100% 100% 100% 0% 0% 100% 
Premium 

Wheels 27% 98% 0% 0% 6% 6% 1% 5% 90% 100% 100% 42% 

Ambient Pkg 80% 21% 100% 100% 100% 100% 100% 100% 100% 0% 0% 100% 

Blis 80% 21% 0% 0% 0% 0% 100% 100% 100% 0% 0% 0% 

Comfort Grp 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 

Drivers Pkg 80% 20% 100% 100% 72% 67% 99% 94% 90% 0% 0% 0% 
Navigation 

Center 80% 21% 100% 100% 74% 63% 99% 88% 70% 0% 0% 52% 

Trim Level 1 0% 0% 0% 0% 42% 0% 6% 0% 0% 0% 0% 0% 

Trim Level 2 20% 79% 0% 0% 5% 0% 0% 0% 90% 0% 0% 0% 

Trim Level 3 80% 20% 100% 35% 53% 87% 94% 58% 10% 100% 100% 100% 

Trim Level 4 0% 1% 0% 65% 0% 13% 0% 43% 0% 0% 0% 0% 

Tires 1 20% 79% 0% 0% 5% 0% 0% 0% 90% 0% 0% 0% 

Tires 2 80% 18% 100% 35% 60% 46% 93% 29% 10% 100% 100% 100% 

Tires 3 0% 2% 0% 0% 35% 41% 7% 28% 0% 0% 0% 0% 

Tires 4 0% 1% 0% 65% 0% 13% 0% 43% 0% 0% 0% 0% 
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Table 14 (Continued) 
 

  Vehicle Similarity Sets 

Options 25 26 27 28 29 30 31 32 33 34 35 36 

FWD 1% 74% 0% 2% 0% 12% 1% 0% 0% 0% 57% 0% 

SE 0% 68% 0% 0% 0% 0% 0% 0% 0% 0% 57% 0% 

SEL 100% 32% 33% 100% 100% 100% 100% 100% 100% 100% 0% 0% 

LIMITED 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

SPORT 0% 0% 67% 0% 0% 0% 0% 0% 0% 0% 43% 100% 
Charcoal 

Black Trim 61% 47% 84% 48% 50% 46% 65% 33% 70% 61% 81% 100% 
Sync 

(Touch) 91% 68% 0% 100% 86% 100% 87% 0% 100% 100% 0% 0% 

Floormats 34% 18% 49% 71% 51% 38% 32% 67% 11% 25% 19% 35% 

Headlamps 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Moonroof 62% 0% 61% 86% 73% 50% 36% 0% 0% 6% 43% 87% 

Rearcamera 100% 0% 67% 100% 100% 100% 100% 100% 100% 100% 43% 100% 

Roofrack 19% 76% 26% 11% 17% 18% 34% 100% 48% 58% 52% 0% 

Satelliteradio 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 43% 100% 
Speed 

Control 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
Trailertow 

Pkg 12% 12% 7% 7% 10% 14% 9% 0% 15% 22% 0% 0% 

Leather 100% 0% 67% 100% 100% 0% 0% 100% 0% 0% 43% 100% 
Premium 

Wheels 47% 100% 100% 67% 64% 88% 82% 67% 74% 70% 100% 100% 

Ambient Pkg 100% 0% 67% 100% 100% 0% 0% 100% 0% 0% 43% 100% 

Blis 0% 0% 67% 100% 100% 0% 0% 0% 0% 0% 0% 0% 

Comfort Grp 100% 0% 0% 100% 100% 0% 0% 100% 0% 0% 0% 0% 

Drivers Pkg 0% 0% 62% 0% 0% 0% 0% 0% 0% 0% 19% 35% 
Navigation 

Center 28% 0% 63% 78% 57% 0% 0% 0% 0% 0% 24% 77% 

Trim Level 1 0% 12% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Trim Level 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Trim Level 3 100% 88% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Trim Level 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Tires 1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Tires 2 98% 79% 95% 100% 100% 96% 97% 33% 85% 80% 95% 100% 

Tires 3 2% 21% 5% 0% 0% 4% 3% 67% 15% 20% 5% 0% 

Tires 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 14 (Continued) 
 

  Vehicle Similarity Sets 

Options 37 38 39 40 41 42 43 44 45 46 

FWD 0% 0% 0% 0% 25% 7% 23% 0% 13% 50% 

SE 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

SEL 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

LIMITED 100% 0% 0% 3% 0% 98% 96% 100% 100% 100% 

SPORT 0% 100% 100% 98% 100% 2% 4% 0% 0% 0% 
Charcoal Black 

Trim 50% 100% 100% 99% 100% 58% 58% 0% 56% 83% 

Sync (Touch) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Floormats 50% 27% 60% 59% 50% 46% 38% 0% 64% 33% 

Headlamps 100% 0% 0% 0% 0% 79% 44% 0% 0% 0% 

Moonroof 100% 88% 100% 95% 50% 90% 66% 100% 36% 0% 

Rearcamera 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Roofrack 0% 0% 0% 0% 0% 4% 16% 0% 28% 100% 

Satelliteradio 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Speed Control 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Trailertow Pkg 50% 0% 0% 1% 0% 22% 14% 0% 8% 33% 

Leather 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Premium Wheels 0% 100% 100% 98% 100% 2% 4% 0% 0% 0% 

Ambient Pkg 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Blis 0% 0% 100% 100% 0% 0% 0% 100% 100% 100% 

Comfort Grp 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Drivers Pkg 100% 49% 100% 90% 100% 81% 54% 100% 54% 100% 

Navigation Center 100% 55% 100% 93% 100% 81% 53% 0% 79% 0% 

Trim Level 1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Trim Level 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Trim Level 3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Trim Level 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Tires 1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Tires 2 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Tires 3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Tires 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 15: The definitions of the most attractive configurations 
 

configurations 

options 84 85 216 220 224 227 275 312 385 403 416 

drive FWD FWD AWD AWD AWD AWD AWD AWD AWD AWD AWD 

body SE SE LIM LIM LIM LIM SEL SEL LIM LIM LIM 

charcoalblacktrim 1 1 0 0 1 1 1 1 0 0 1 

sync (touch) 1 1 0 0 0 0 1 1 0 0 0 

floormats 0 0 0 1 0 1 0 0 0 1 0 

headlamps 0 0 1 1 1 1 0 0 1 1 1 

moonroof 0 0 1 1 1 1 1 1 1 1 1 

rearcamera 0 0 1 1 1 1 1 1 1 1 1 

roofrack 0 1 0 0 0 0 0 0 0 0 0 

satelliteradio 1 1 1 1 1 1 1 1 1 1 1 

speedcontrol 0 0 0 0 0 0 0 0 1 1 1 

trailertowpackage 0 0 0 0 0 0 0 0 0 0 0 

leather seats 1 1 0 0 0 0 0 0 0 0 0 

premium wheels 1 1 0 0 0 0 0 0 0 0 0 

ambient pkg 0 0 1 1 1 1 1 1 1 1 1 

blis 0 0 0 0 0 0 0 0 1 1 1 

comfort grp 0 0 0 0 0 0 1 1 0 0 0 

drivers pkg 0 0 1 1 1 1 0 0 1 1 1 

navigation center 0 0 1 1 1 1 0 1 1 1 1 

tires1 1 1 0 0 0 0 0 0 0 0 0 

tires2 0 0 1 1 1 1 1 1 1 1 1 

tires3 0 0 0 0 0 0 0 0 0 0 0 
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Table 15 (continued) 
 

configurations 

options 423 424 451 536 568 690 702 803 1033 1092 

drive AWD AWD AWD AWD AWD AWD AWD AWD AWD AWD 

body LIM LIM SEL SPRT SPRT LIM SEL SEL SEL SEL 

charcoalblacktrim 1 1 0 1 1 0 0 1 0 1 

sync (touch) 0 0 1 0 0 0 1 1 1 1 

floormats 1 1 1 0 1 0 1 1 0 1 

headlamps 1 1 0 0 0 0 0 0 0 0 

moonroof 1 1 0 1 1 1 1 1 0 1 

rearcamera 1 1 1 1 1 1 1 1 1 1 

roofrack 0 0 1 0 0 0 0 0 0 0 

satelliteradio 1 1 1 1 1 1 1 1 1 1 

speedcontrol 0 1 0 0 0 0 0 0 0 0 

trailertowpackage 0 0 0 0 0 1 0 0 1 1 

leather seats 0 0 0 0 0 0 0 0 0 0 

premium wheels 0 0 0 1 1 0 1 1 1 0 

ambient pkg 1 1 1 1 1 1 1 1 1 1 

blis 1 1 1 1 1 0 1 1 0 1 

comfort grp 0 0 1 0 0 0 1 1 1 1 

drivers pkg 1 1 0 1 1 1 0 0 0 0 

navigation center 1 1 0 0 1 0 1 1 0 1 

tires1 0 0 0 0 0 0 0 0 0 0 

tires2 1 1 1 1 1 1 1 1 0 1 

tires3 0 0 0 0 0 0 0 0 1 0 

 
 
Table 16: The description of the product variants based on subjective selection 

Variant Code Description Frequency 

1 FWD SE 428 
2 FWD SEL 435 
3 FWD Limited 185 
4 FWD Sport 13 
5 AWD SE 0 
6 AWD SEL 1,971 
7 AWD Limited 1,843 
8 AWD Sport 333 
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Marketers, retailers, and manufacturers have all been trying to know how 

much product variety is sufficient to satisfy consumer needs while keeping stocking 

and production costs at a reasonable level. Even though all manufacturing firms face 

competing objectives in determining the product variants to be built, this problem is 

especially troublesome for manufacturers of configurable products (e.g., automobiles) 

that sell a complex product with many options and features resulting in a very large 

buildable configuration space. 

This study proposes a framework for analyzing external product variety in case 

of configurable products and provides a methodology to reduce the number of 

product variants that should be considered before building operational models to 

estimate demand or optimize assortments in case of configurable products. The main 

goal is reduction of the abundance of configurations offered by manufacturers as 

analytically as possible within a decision support framework rather than product 

assortment planning. The research proposes a number of methods and techniques to 

extract meaningful and actionable information on external variety when the data 
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sources are limited. The proposed methods are validated using multiple datasets 

from a large North American automotive original equipment manufacturer covering 

vehicles in multiple segments and U.S markets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 
 

 
 

AUTOBIOGRAPHICAL STATEMENT 

Erkan Isikli was born in Istanbul, Turkey on July 13, 1982, as the son of 

Nizami and Tulay Isikli. He received his bachelor’s degree in mathematical 

engineering from Istanbul Technical University (ITU) in 2004. Then, he started 

studying for his MBA at the same university, and in December 2005 he was accepted 

to the Industrial Engineering department of ITU as a research assistant. He received 

his master’s degree in January 2007, and soon after that he was admitted to the 

Ph.D. program in the Industrial & Systems Engineering Department at Wayne State 

University.  

He decided to pursue his doctoral education at the Wayne State University, 

Detroit, Michigan, USA as a recipient of the fellowship granted by the Higher 

Education Council of Turkey in September 2007. In November 2012, he finished his 

study at this program with great encouragement and help of his colleagues and 

instructors. Upon graduation, he plans to work as an Assistant Professor at the 

Industrial Engineering Department of ITU. 

Isikli has published and presented many proceedings at several conferences 

in different countries and is focused mainly on publishing quality journal papers 

related to his research of interest. He wants to specialize in constructing statistical 

models for real-world problems in various fields such as non-profit organizations, 

sports, environment, marketing, supply chain, and healthcare. 


	Wayne State University
	1-1-2012
	Decision Support Models For The External Variety Of Configurable Products
	Erkan Isikli
	Recommended Citation



