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1

Chapter 1

Introduction

The study of semiconductor nanostructures has attracted great interest in recent years,

due to their importance in a wide range of applications such as electronic, optical and op-

toelectronic devices, quantum computing, and information storage [1–3]. Development of

modern day electronics strongly depends on the advancement of growing thin solid semi-

conductor films. Capability to precisely control the morphology and the micro-structure

to have desired functionality of electronic devices is crucial in semiconductor device fab-

rication. Elasticity leads to long-range repulsive interactions between the adatoms on

the surface as a result of epitaxially grown film on the substrate. Since the chemical in-

teractions are short-range attractive and strong, there is competition between those two

opposite forces. Generally, when a film is grown on a substrate, surface undulation will

occur due to the growth instability [4]. This occurrence of morphological instability was

first described by Asaro and Tiller [5] and Grinfeld [6], who discussed the stabilization

and destabilization effects of film surface energy and the elastic energy which play a main

role.

Understanding the formation of strained surface islands as a result of this film insta-

bility during epitaxy and controlling the sizes, shapes and the ordering of these islands is
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Figure 1.1. Schematic of strained film epitaxy and the formation of surface islands or
quantum dots.

essential in the study of self-assembly, because,most of the electronic applications require

positioning of islands at predetermined locations. Studies on how to control the forma-

tion and spatial distribution of the strained islands has become essential in the growth

and fabrication of quantum dots. Many experimental and theoretical techniques have

been introduced in different attempts but far more yet to be understood in the desired

control of the positioning of the quantum dots for practical applications. Therefore, in

this thesis work we develop a model to understand the formation and evolution of the

surface nanostructures and to control the ordering of the islands by considering planar

and pre-patterned substrates.

The epitaxial growth can be viewed as a process where the grown film is based on

the atomic pattern of the substrate underneath as if it is the extension of the substrate

structure. If a semiconductor film is grown epitaxially on a substrate, the grown material

can be strained or relaxed depending on the material of the deposited crystalline structure.

There are generally two types of epitaxy: homoepitaxy and heteroepitaxy. In ho-
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Figure 1.2. Schematic of strained film epitaxy.

moepitaxy, both the crystalline film and the substrate consist of the same material.

A typical example of homoepitaxy is Si grown on a Si substrate. Main advantage in

homoepitaxy is that these epitaxialy grown layers are much purer than the substrate.

Heteroepitaxy is the process of growing a film crystalline on a substrate with different

material that can cause strained or relaxed growth; This will lead to interfacial defects or

strained surface nanostructures. Examples of such epitaxy is Ge grown on Si substrate

or InAs grown on GaAs. This technology is commonly used to grow crystalline material

to fabricate electronic, optical and optoelectronic devices.

Under strain (e.g. Ge on Si or InAs on GaAs with lattice mismatch), the relaxation

of strain energy results in the spontaneous formation of surface structures such as small

islands (quantum dots), as seen in Fig. 1.1. The difference between relaxed and strained

films is clearly shown in Fig. 1.2.

Surfaces of these strained films with spontaneous undulation and roughness are usu-

ally of nanostructured configuration. Such surface undulations reduce the stress in the

growing film. Various attempts have been made to explore the lateral patterning of thin
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film systems in order to attain confinement in all three spatial dimensions.

The techniques that are used to grow high quality semiconductor films can be mainly

classified according to the phase of the material- such as liquid phase epitaxy, vapor

phase epitaxy and the molecular beam epitaxy. In liquid phase epitaxy a supersaturated

solution is deposited on a substrate. Generally this technique is used to grow compound

semiconductors with thin, uniform and high quality layers. Vapor Phase Epitaxy (VPE)

is a technique to form a thin solid film on a substrate using a chemical vapor deposition

method. This method has the main advantage of growing films of uniform distributions

over a large surface areas and also drawbacks of some safety and contamination concerns.

Molecular Beam Epitaxy (MBE) is a widely used technique to produce high quality

semiconductor thin films in ultra high vacuum environment. The growth mechanism of

MBE is not that complex and the process starts with heated sources of atomic species,

which can produce clusters of atoms. These atoms then move through an ultra high

vacuum environment until they reach the hot substrate surface where they need to be

deposited.

1.1 Epitaxial growth modes

Epitaxial growth depends on several parameters, most importantly, on the lattice mis-

match between the film and the substrate. Different types of growth modes can be found

during thin film epitaxy. These growth modes also depend on the surface and interface

energies, as shown in Fig.1.3.

In homoepitaxy, the difference in free energies between a single adatom at the surface

and an atom incorporated in an island determines the nucleation and the growth of 2D

islands. In other words, when the surface energy of the substrate is less than the total

energies of the film and the interface, γS < γSF + γF we can see 2D island formation.
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Figure 1.3. Surface energies; γS: surface energy of the substrate, γF : surface energy of
film and γSF :interface energy of substrate-film

If those 2D islands coalesce, a smooth monolayer is formed. This is known as layer-by-

layer growth [1, 4, 7]. In this layer-by-layer growth, the surface energy is higher than

the total of the film and interface energies. The opposite of this growth mode is the

three-dimensional island formation which is known as the Volmer-Weber (VW) growth.

In VW growth, three dimensional islands grow due to the strong interaction between

adatoms. These interactions are much stronger than the interaction between adatoms

and the surface. In the Stranski-Krastanow growth mode, which is the intermediate

case, the nucleation of 3D islands occurs on a smooth surface of wetting layer for large

enough misfit values. In this growth method, island nucleation has to overcome a certain

activation energy which depends on island volume. It has been found that under given

growth conditions these islands have well defined sizes and shapes which are usually stable

against ripening [1, 8–10].

In a competing strain relief mechanism, misfit dislocations are created at the film

surface without roughening the wetting layer. Under certain growth conditions, e.g., at

low temperature, there is a high probability for the nucleation of misfit dislocations than
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Figure 1.4. Different types of growth mode (a) Volmer-Weber growth mode (b) layer-by-
layer growth mode (c) Stranski-Krastanow growth mode.

the appearance of structures formed by surface diffusion. Most of these dislocations have

a tendency to create at the island-layer interface [1, 2, 11].

An important factor of the formation of quantum dots is the correlation of quantum

dot positions which highly affects the nanostructured film qualities. The homogeneity

of a growing island series depends on the size and shape of the semiconductor island

and is affected by the periodicity of the island distribution at the growth surface. The

morphology of the growing surface and the inhomogeneous surface stress are two main

factors that affect the nucleation positions of islands.

1.2 Morphological instability

As we already discussed, strain builds in the presence of lattice mismatch during epitaxy.

This is due to the misfit with the lattice spacing of the substrate. If the misfit strain,

ǫ, greater than zero, i.e. if the equilibrium lattice spacing of the film is larger than the
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Figure 1.5. Schematic diagram of (a)compressive and (b)tensile strain

substrate, the film is compressed horizontally so the strain is compressive. On the other

hand if the lattice spacing of the substrate is larger than that of the film, the strain is

tensile. In our studies such as the growth of SiGe/Si we use compressive strain. Fig. 1.5

illustrates the difference between compressive and tensile strain.

In the Stranski-Krastanov growth, there are three stages of strain relief. The first stage

is the growth of the wetting layer which consist of several monotonic layers. Then the

so-called Asaro-Tiller-Grinfeld (ATG) instability occurs as the film becomes unstable [5].

In the final stage, strained 3D islands are formed. This reduces the strain energy while

increasing the surface energy.

In order to understand the ATG instability, we consider the strain energy density,

which is the product of the stress and the strain tensors. In a flat film, there is a uniform

strain when a uniform uniaxial stress is applied. In the absence of surface fluctuation,

the film can be in a meta-stable state. Instead of a planar film surface, if there is a

perturbation on the surface as shown in Fig. 1.1, there can be nonuniform stress along

the film surface. As a result, there can be stress relaxation at the peaks and stress

concentration at the valleys. This relaxation of the peaks would occur because they are

less constrained from the bulk. Due to this relaxation, the peaks have less strain energy

than at the valleys which would lead to instability [12]. This leads to a mass transport
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Figure 1.6. Coarsening of strained islands of Ge grown on Si [14]

from valleys where there is high strain energy to peaks with low strain energy and the

peaks can be seen growing at the expense of the valleys. It causes the morphological

instability of the film, and hence the formation of strained islands or quantum dots on

the film surface (see Fig.1.1).

In order for the growth of islands, the mean free path of the adatoms should be smaller

than the mean distance of monolayer steps [1]. By obtaining the free energy difference

between adatoms on the surface and on an island, nucleation and growth of islands can

be well understood. Once the island size gets larger and exceeds a critical size, coarsening

process occurs: the large islands grow while the small ones disappear [1] as seen in Fig.1.6.

It has been found that under given conditions, Stranski-Krastanow-grown islands have

well defined sizes and shapes. There are several forms of islands; prepyramids, square

pyramids, elongated pyramids and domes. The elongated pyramids or hut clusters need

low growth temperature while pyramids and domes need higher temperatures for the

growth [13].

1.3 Experimental results

In order to understand the formation of quantum dots or strained islands, detailed in-

stability analysis has been studied for both single-component [15–18] and alloy strained

films [19–23] as well as multilayers/ superlattices [24–27]. This instability is well ob-

served in experiments of semiconductor heteroepitaxial films such as SiGe which shows
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faceted 3D islands or unfaceted-surface morphology without nucleation [8, 18]. In these

experiments, it has been seen that surface roughening and undulations first occur in

dislocation-free films. During the subsequent process of island formation, the initial stage

is the formation of small ripples and cell-like structures developed along the surface. Then

the undulation or surface ripple amplitude grows which is followed by the creation of three

dimensional islands. An example for the nonlinear evolution of the strained islands be-

yond the linear stability stage is the coarsening of quantum dot islands, which shows

an increase of average island size during film evolution and a shrinking of small dots.

This scenario with different mechanisms and behavior of coarsening has been observed

in experiments of Ge/Si(001) [28,29,32,33], SiGe/Si(001) [30], and InAs/GaAs(001) [31].

Also, the slowing [28] or suppression [32] of coarsening process at late stage and the

resulting saturated, stabilized quantum dot arrays [32–34] have been observed in some

experiments, but not others [30].

Several studies has been carried out to find techniques to control the lateral placement

of semiconductor nanostructures by e.g., reducing the surface diffusion kinetics during

growth [35] and pre-patterning the substrate. Deposition of Ge on patterned Si(001)

surfaces that consist of periodic arrays of Si mesas can control the self assembly of Ge

islands by changing the size of the Si mesas [36]. These islands can be obtained in a

”one island on one mesa” [36] relationship by minimizing the sizes of the Si mesas. When

Ge islands are grown on Si substrate of stripe patterns, the formation of islands can be

well seen inside the stripes of the Si substrate [37,38]. This formation of strained islands

can also be controlled by changing the stripe geometry as well as the deposited layer

thickness [38]. Depending on the stripe geometry, the self assembly of the Ge islands can

be seen in the middle or side walls of the grooves which can be controlled by the initial

growth of the film. The shape of these islands depends on the position on the Si stripes

but finally converges into dome islands with increasing Ge concentration. In the growth
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of InAs on pre-patterned GaAs substrates, self assembled quantum dots are seen either

on the top terraces or at the side walls or at the trenches of GaAs substrates [39]. Change

of island density has been observed in these experiments by changing the depth of the

patterned holes; for deeper holes higher island density is observed and for shallow holes

single quantum dots are formed [40]. The quantum dot density can be also controlled

by changing the initial mound density on the buffer. With the increase of the density of

the GaAs buffer, decrease in the quantum dot density on the film has been observed [41].

These results can be used in device applications due to the long-range ordering of the

islands [37]. Thus, understanding the precise control of strained islands formation with

different substrate pattern morphology is essential.

1.4 Theoretical details

Many theoretical/computational studies have been carried out in order to understand the

nonlinear island evolution but it is still far from conclusive. In addition to the techniques

that incorporate crystalline details, such as kinetic Monte Carlo method with elastic inter-

action [42,43] and phase field crystal (PFC) model and the associated amplitude equation

formalism [44–50], approaches including continuum elasticity theory [51–56, 56–64] and

phase field methods, [65,66] are the main efforts to understand this nonlinear island evo-

lution. Due to the large length and time scales involved, continuum elasticity modeling

is set to be the current main avenue for studying strained island coarsening. Much recent

focus has been put on the derivation and simulation of nonlinear evolution equations

through approximating the system elasticity and the dynamics of film morphology via

perturbation methods. The limit of perfectly rigid substrate [52, 58] and the case of in-

finitely thick strained film [56] were the two types of system configuration addressed in

early studies. Similar approximation has been applied in recent studies to heteroepitaxial
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systems consisting of a strained thin film grown on an elastic substrate, as configured in

most experiments. The corresponding reduced nonlinear evolution equations have been

derived and simulated, based on the long-wave or small-slope approximation of film sur-

face profile [59, 63, 64] or the assumption of small surface gradient, [62] and also the

incorporation of some physical mechanisms in thin film growth such as the wetting effect

between the film and the underlying substrate.

Even though there have been many studies carried out in order to understand the

properties of island formation, some properties such as coarsening and saturation of

quantum dots is not well understood giving inconsistent results in various studies [53,

54, 57, 61–64, 67]. In most simulations of film annealing, different coarsening rates have

been found in different approaches [57,63,64] while reproducing the coarsening of strained

island arrays. One main difference is the result for asymptotic and steady state of the

film morphology. In the studies of reduced nonlinear evolution equation [62, 67] and in

the direct solution of the full elasticity problem [53,54,61], persistence of stable quantum

dot arrays after the coarsening stage have been observed, which is consistent with some

Si-Ge experiments [32–34] while in some other experiments [32–34] such scenario of the

suppression or cessation of island coarsening was not found in the modeling processes

[57, 63]. Sub-critical bifurcation [63] has been identified as a reason for the unstableness

of regular quantum dot arrays in recent studies of nonlinear analysis of the evolution

equation. It has also been found that surface energy anisotropy [53,54,61,67] plays a key

role in the saturation of coarsening of islands, however, such saturation processes have

also been observed without the anisotropy effect [62]. These differences in the results

can be due to several reasons: different approximations, different types of ways of small

variable expansion and truncations involved and difficulty in using large system sizes and

evolution times as needed for the comparison to experiments.

In this research, we develop a systematic approach for approximately solving the
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film-substrate elastic state via a perturbation analysis in Fourier space to understand

the nonlinear evolution of strained quantum dot islands grown epitaxially on an elastic

substrate at large spatial and temporal scales. We consider two main approaches with

planar substrate and pre-patterned substrate. In the case of planar substrate, we con-

sider the results up to the second and third order perturbation of surface morphology.

This perturbation method can be extended to obtain higher order solutions although the

process is more complicated. We then derive a new dynamic equation to systematically

examine the island evolution of the surface profile for large enough spatial and temporal

scales. Coarsening and saturation process in post-deposited films is studied with the

consideration of the wetting interaction in the nonlinear equation. It has been found

in recent studies [45, 46] that films with weak strain limits can be well described using

continuum elasticity theory. Therefore we study the effect of the small misfit strain that

corresponds to large length scales when compared to scale of the crystalline lattice. All

our results in the numerical simulation are reproducible. We found three characteristic

regimes: island formation at early times, coarsening of islands at intermediate times and

the saturation at later times. We also identify that the island growth and coarsening

can be well described by considering the effect of higher-order elastic energy of individual

islands and the elastic interaction between them. Up-to second order perturbation of

surface morphology is studied for the case of pre-patterned substrates through consid-

ering the effect of the substrate pattern symmetry and wavelength and the film layer

thickness. The linear analysis has been carried out to identify the wave number of film

surface nanostructure with maximum instability, in particular the influence of substrate

pre-pattern periodicity and amplitude as well as the effect of deposited film thickness.
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Chapter 2

Quantum dot formation and

evolution on planar substrate

2.1 Continuum elasticity model for strain film het-

eroepitaxy

As described in the previous chapter, due to the presence of elastic stress and the stress

relieving procedure, epitaxially deposited films can go through transitions from layer-by-

layer to the growth mode that leads to strained surface islands. Therefore to understand

the stressed state of an epitaxially strained film, we use the continuum elasticity theory.

Due to the diffusion process of surface atoms, the film-vapor surface moves correspond-

ingly and evolves with time. Similarly the film-substrate interface will also move due to

diffusion within the bulk phases. However, since the bulk diffusion is slower than surface

diffusion, we assume that there is no inter diffusion between the film and the substrate.

Consider a strained film of a spatially varying height h(x, y, t), which is deposited

epitaxially on a semi-infinite elastic substrate that occupies the region z < 0. We assume
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that the film occupies the region 0 < z < h(x, y, t) and the vapor occupies the region

z > h(x, y, t). We also assume that vapor is at zero pressure and the film and substrate are

distinct crystalline solids, without dislocations or grain boundaries The film completely

wets the substrate when it is deposited on the substrate and there is no misfit dislocation

at the interface of the film and the substrate.

If af and as are the lattice spacing of the epitaxial film and the substrate respectively,

the misfit strain in the film is given by

ǫ = (af − as)/as. (2.1)

If ǫ > 0, i.e. if the lattice spacing of the film is larger than the substrate, the film is

compressed horizontally. The evolution of the film surface morphological profile h(x, y, t)

for such coherent, dislocation-free system is governed by

∂h

∂t
= Γh

√
g∇2

s

δF
δh

+ v, (2.2)

where Γh represents the kinetic coefficient determined by surface diffusion, ∇2
s is the

surface Laplacian, v is the deposition rate, and g = 1 + |∇h|2 is the determinant of the

surface metric. Here the effect of film-substrate inter-diffusion is neglected. In this study

the total free energy functional F consists of two contributions

F = Fel + Fs (2.3)

where Fel is the elastic energy and Fs is the surface free energy. The elastic energy is

given by

Fel =

∫ h

−∞

d3rE (2.4)
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where E represents the strain energy density, and the surface free energy is represented

by

Fs =

∫

d2rγ(h)
√

g (2.5)

where γ is the thickness-dependent, isotropic surface tension which include the effect

of wetting interactions between the film and substrate. With these free energies, the

dynamical equation (2.2) then becomes [17,59,63]

∂h

∂t
= Γh

√
g∇2

s

[

γκ + W (h) + Ef
]

+ v, (2.6)

where κ is the mean surface curvature, Ef gives the film elastic energy density at the

surface z = h, and W is the wetting potential [63] that depends on the film thickness:

W (h) = −w

(

h

hml

)−αw

e−h/hml . (2.7)

Here w gives the strength of the film-substrate wetting interaction, hml is the charac-

teristic wetting-layer thickness that is usually of few monolayers, and the exponent αw

(> 0) gives the singularity of the potential W in the limit of h → 0 that emulates the

persistence of the wetting layer during film evolution [63].

The elastic energy density in isotropic, linear elasticity theory is given by

E =
1

2
σijuij (2.8)

where i, j = x, y, z, and uij is the linear elastic strain tensor defined by

uij = (∂jui + ∂iuj)/2 (2.9)

with ui being the ith Cartesian component of the displacement field with index i = 1, 2, 3
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corresponding to the x, y, z components respectively. In the above expression the term

∂i indicates the partial derivative with respect to the ith coordinate. The stress tensor

σf
ij in strained film for an isotropic elastic system is given by the Hooke’s law as

σf
ij = 2µ

[

ν

1 − 2ν
δiju

f
kk + uf

ij −
1 + ν

1 − 2ν
ǫδij

]

, (2.10)

and the stress tensor σs
ij in the substrate is given by

σs
ij = 2µ

[

ν

1 − 2ν
δiju

s
kk + us

ij

]

, (2.11)

where µ is the shear modulus, ν is the Poisson ratio and the subscripts “f ” and “s”

refer to the film and substrate phases, respectively. The stress tensor in the substrate is

also given by Eq. (2.10) with ǫ = 0. In our analysis we assume equal elastic constants in

the film and substrate because in most experiments their difference is not significant.It is

assumed that the mechanical equilibrium condition ∂jσij = 0 exists in both the film and

the substrate because the elastic relaxation occurs on a time scale of orders of magnitude

faster than that of the atomic diffusion process and the associated system morphological

evolution. By substituting Eq. (2.10) to the mechanical equilibrium equation, we obtain

Navier’s equations in the whole film-substrate system as

(1 − 2ν)∂2
j ui + ∂i∂juj = 0, (2.12)

which can be applied to both the film and the substrate.

Due to the negligible external pressure on the free surface, we have the corresponding

boundary condition on the top film surface as

σf
ijnj = 0 at z = h(x, y, t). (2.13)
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Here nj is the unit normal to the film surface. This normal vector is oriented toward the

vapor. The continuity of the displacement in the film-substrate interface gives

uf
i = us

i at z = 0, (2.14)

and the continuity of the stress leads to

σf
ijnj = σs

ijnj atz = 0, (2.15)

where nj is the unit vector normal to the interface, showing the coherency at the film-

substrate interface.

Finally, inside the substrate region that is far away from the film we have

us
i , u

s
ij → 0 for z → −∞. (2.16)

The above equations are defined for a given configuration of the free surface z = h(x, y, t).

2.2 Perturbation analysis and nonlinear evolution equa-

tion

In order to solve this elasticity problem, we apply perturbation analysis in Fourier space.

We perturb the basic solution to small vertical variation of film surface profile. The

Fourier transform of the film morphological profile can be written as

h = h̄ +
∑

q

ĥ(q, t)ei(qxx+qyy), (2.17)
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where h̄ = h0 + vt is the average film thickness at any time t and h0 the initial film

thickness. It is also possible to expand the Fourier components of the displacement field

ûi(q), stress tensor σ̂ij(q) (i, j = x, y, z), and film elastic energy density Êf in the order

of surface perturbation ĥ(q). The corresponding expansions are written as

ui = ūi +
∑

q ûi(q)ei(qxx+qyy), σij = σ̄ij +
∑

q σ̂ij(q)ei(qxx+qyy),

Ef = Ēf +
∑

q Êf (q)ei(qxx+qyy),

with

ûi = û
(1)
i + û

(2)
i + û

(3)
i + · · · , σ̂ij = σ̂

(1)
ij + σ̂

(2)
ij + σ̂

(3)
ij + · · · ,

Êf = Ê (1)f + Ê (2)f + Ê (3)f + · · · . (2.18)

For a completely relaxed substrate the base state is referred to as

ūs
i = ūs

ij = σ̄s
ij = 0 for i = x, y, z. (2.19)

The reference state is chosen such that the strain coincide with the substrate lattice.

Therefore the displacement and the strain in the x and y directions are 0,

ūf
i = 0 ūij = 0 for i = x, y. (2.20)

The strain uf
zz is a constant as the z component of the displacement in the film is linear

in the z direction. Thus the displacement and the strain in the z direction is written as

ūf
z = ūf

zzz, where ūf
zz = ǫ(1 + ν)/(1 − ν) and σ̄f

xx = σ̄f
yy = −2µūf

zz. (2.21)
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All the other stress tensors σ̄f
ij = 0 and the strain tensor can be written as ūf

ij = 0 except

for ūf
zz = ǫ(1 + ν)/(1 − ν).

To the first order of perturbed quantities, the linearized boundary conditions are given

by

σ̂f
jz = iqjσ̄ĥ wherej = x, y

σ̂f
zz = 0. (2.22)

At the interfacez = 0, the conditions due to Eqs. (2.14) and (2.15) are expanded to the

first order

ûf
j = ûs

j (2.23)

σ̂f
jz = σ̂s

jz, forj = x, y, z. (2.24)

This work has been well studied previously as applied to the initial stage of the film

evolution [16–18].

With the use of the linearized boundary conditions, the unperturbed (0th-order) elas-

tic energy density can be calculated as Ēf = Eǫ2/(1−ν) (E is the Young’s modulus) and

the 1st order perturbed elastic energy density as

Ê (1)f = −2E(1 + ν)

1 − ν
ǫ2qĥ(q). (2.25)

To obtain the elastic properties at higher orders we substitute the expansions (2.17)

and (2.18) into Eqs. (2.12)–(2.16). Then the Navier’s equations (2.12) in the Fourier
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space can be rewritten as

(1 − 2ν)(∂2
z − q2)û

(ξ)
j + iqj

[

iqxû
(ξ)
x + iqyû

(ξ)
y + ∂zû

(ξ)
z

]

= 0, for j = x, y,(2.26)

(1 − 2ν)(∂2
z − q2)û(ξ)

z + ∂z

[

iqxû
(ξ)
x + iqyû

(ξ)
y + ∂zû

(ξ)
z

]

= 0, (2.27)

for ξth order expansion (ξ = 1, 2, 3, ...). After using the boundary conditions (2.14),(2.15)

and (2.16) at the film-substrate interface and inside the substrate, the corresponding

general solutions for the 1st and 2nd order equations have the same format, which read

û
(ξ)f
i =













α
(ξ)
x

α
(ξ)
y

α
(ξ)
z













cosh(qz) +













β
(ξ)
x

β
(ξ)
y

β
(ξ)
z













sinh(qz) −













C(ξ)iqx/q

C(ξ)iqy/q

D(ξ)













z sinh(qz)

−













D(ξ)iqx/q

D(ξ)iqy/q

C(ξ)













z cosh(qz) (2.28)

for the film, and

û
(ξ)s
i =













α
(ξ)
x

α
(ξ)
y

α
(ξ)
z













eqz −













iqx/q

iqy/q

1













B(ξ)zeqz (2.29)

for the substrate. The coefficients α
(ξ)
i , β

(ξ)
i , C(ξ), D(ξ), and B(ξ) in Eqs. (2.28) and

(2.29) are determined via the expansion of boundary conditions (2.13)–(2.15) in orders

of perturbation ĥ.

For the 2nd order expansion of the boundary conditions by retaining up to 2nd order

perturbed quantities, we obtain that at the top surface of the film, z = h, Eq. (2.13)
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gives

−
∑

q′

i(qx − q′x)σ̂
(1)f
jx (q′)ĥ(q−q′)−

∑

q′

i(qy − q′y)σ̂
(1)f
jy (q′)ĥ(q−q′)+ σ̂

(2)f
jz (q) = 0, (2.30)

while the continuity of stress at the film-substrate interface z = 0 (i.e., Eqs. (2.14) &

(2.15)) yields

σ̂
(2)f
jz (q) = σ̂

(2)s
jz (q), (2.31)

with j = x, y, z. Here the subscription (1) corresponds to the 1st order perturbation

terms that have been known in the linear analysis [17, 19], and (2) corresponds to the

new 2nd order perturbation terms.

Substituting Eqs. (2.28) and (2.29) to these boundary conditions (2.30) and (2.31),

the second order coefficients of the solution can be obtained as follows:

qα(2)
z = qβ(2)

z = −e−qh̄

[

a
(2)
1 qx + b

(2)
1 qy

2µq
(1 − 2ν + qh̄) − c

(2)
1

2µ
(2 − 2ν + qh̄)

]

, (2.32)

iqxα
(2)
x + iqyα

(2)
y = iqxβ

(2)
x + iqyβ

(2)
y = e−qh̄

[

a
(2)
1 qx + b

(2)
1 qy

2µq
(qh̄ − 2 + 2ν)

+
c
(2)
1

2µ
(1 − 2ν + qh̄)

]

, (2.33)

C(2) = D(2) = B(2) = e−qh̄

[

−a
(2)
1 qx + b

(2)
1 qy

2µq
+

c
(2)
1

2µ

]

, (2.34)
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where

a
(2)
1 qx + b

(2)
1 qy =

∑

q′

ĥ(q − q′)ĥ(q′)

{

2Eǫ

q′(1 − ν)

[

qx(qx − q′x)(q
′2
x + νq′2y )

+qy(qy − q′y)(q
′2
y + νq′2x )

]

+2Eǫ
q′xq

′
y

q′
[

qx(qy − q′y) + qy(qx − q′x)
]

}

,(2.35)

and

c
(2)
1 =

∑

q′

ĥ(q − q′)ĥ(q′)
Eǫ

1 − ν

[

q′x(qx − q′x) + q′y(qy − q′y)
]

. (2.36)

Based on the above solution, we can derive the second order elastic energy density, i.e.,

Ê (2)f =
∑

q′

[

1 + ν

2E
σ̂

(1)f
ij (q′)σ̂

(1)f
ij (q − q′) − ν

2E
σ̂

(1)f
ll (q)σ̂

(1)f
ll (q − q′)

]

+
Eǫ

1 − ν

[

(1 − ν)
a

(2)
1 qx + b

(2)
1 qy

µq
− (1 − 2ν)

c
(2)
1

2µ

]

, (2.37)

where the expressions of 1st-order stress tensor σ̂
(1)f
ij at the top surface are given in

the appendix [see Eqs. (11)–(16)]. The 2nd-order stress tensor are also shown in Eqs.

(5)–(10) of the appendix.

For a composition independent surface, the dynamical equation for the nonlinear

evolution of the film surface morphology [ Eq. (2.6)] is derived by using the results of
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perturbed elastic energy density given in Eqs. (4.6) and (2.37),

∂ĥ
∂t

= (−γΓhq
4 + 2EΓh

(1 + ν)

(1 − ν)
ǫ2q3)ĥ

−Γh

∑

q′

{

E(1 + ν)

2(1 − ν)2
ǫ2 q2

q′|q − q′| [[2(1 − ν) [q′x(qx − q′x)

+q′y(qy − q′y)
]

− q′|q − q′|
2(1 − ν)

]2

+
16ν(1 − ν)3 − 1

4(1 − ν)2
q′2|q − q′|2

]

+4E
(1 + ν)

(1 − ν)
ǫ2 q

q′
[

qx(qx − q′x)(q
′2
x + νq′2y ) + qy(qy − q′y)(q

′2
y + νq′2x )

+(1 − ν)q′xq
′
y

[

qx(qy − q′y) + qy(qx − q′x)
]]

−E(1 − 2ν)(1 + ν)ǫ2

(1 − ν)2
q2

[

q′x(qx − q′x) + q′y(qy − q′y)
]

}

ĥ(q′)ĥ(q − q′). (2.38)

In order to simplify the calculation, we choose a length scale l = γ/E0 and a time

scale τ = l4/γΓh, where the characteristic strain energy density E0 = 2Eǫ2
0(1+ ν)/(1− ν)

with ǫ0 a reference misfit value. The corresponding 2nd order strain energy density then

becomes,

Ê (2)f = −ǫ2

[

(1 − ν)
[q′ · (q − q′)]2

q′|q − q′| − q′ · (q − q′) + νq′|q − q′|
]

−2ǫ2

qq′
{

qx(qx − q′x)(q
′2
x + νq′2y ) + qy(qy − q′y)(q

′2
y + νq′2x )

+(1 − ν)q′xq
′
y

[

qx(qy − q′y) + qy(qx − q′x)
]}

. (2.39)

The non-dimensional dynamic equation for the perturbed surface profile ĥ(q, t) can then

be given by

∂ĥ

∂t
= (−q4 + ǫ∗2q3)ĥ − q2Wq − ǫ∗2

∑

q′

ĥ(q′)ĥ(q − q′)Λ(q,q′). (2.40)
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Here the Fourier transform of the re-scaled wetting potential W (h)/E0,

Wq = −w ∗
(

h

h∗
ml

)−αw

e−h/h∗

ml (2.41)

is used, and all the other terms have been calculated up to second order of surface

perturbation. Also ǫ∗ = ǫ/ǫ0 and

Λ(q,q′) = q2

[

(1 − ν)
[q′ · (q − q′)]2

q′|q − q′| − q′ · (q − q′) + νq′|q − q′|
]

+
2q

q′
{

qx(qx − q′x)(q
′2
x + νq′2y ) + qy(qy − q′y)(q

′2
y + νq′2x )

+(1 − ν)q′xq
′
y

[

qx(qy − q′y) + qy(qx − q′x)
]}

. (2.42)

This recursive method can be applied to the third-order calculations and the results

of elastic energy density Ê (3)f are shown in the appendix. The corresponding higher-order

surface evolution equation can be obtained via adding term −q2Ê (3)f to Eq. (2.40).

In the above evolution equation (2.40), the first term consists of the 1st order elastic

energy Ê (1)f and the term obtained by the lowest order expansion of surface energy. This

is consistent with the previous linear-order results [17, 59, 63]. The last term is from the

nonlinear contribution of the elastic energy density, i.e., Eq. (2.37) for Ê (2)f .

Using a similar process higher-order contributions can be obtained although they

are much more complicated. In order to obtain the nth-order elastic results, we can

first express the nth-order expansion of the boundary conditions in terms of ξth-order

(ξ = 1, 2, ..., n − 1, n) stress tensors [similar to the expression in Eq. (2.30)], and use it

to calculate the nth-order solution of the displacement field given in Eq. (2.28); The cor-

responding film elastic properties can then be derived, particularly the nth-order elastic

energy density Ê (n)f at the film surface which can be expressed as a function of ξth-order

(ξ = 1, 2, ..., n − 1) elastic quantities that are already known.
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Figure 2.1. The growth rate of perturbation as a function of perturbation wavelength q
for ǫ = 2% with wetting potential parameters w∗ = 0.2, h∗

ml = 0.3 and αw = 2

In this study,we only focus on Eq. (2.40) up to the 2nd-order elastic properties of

nonlinear film evolution and strained island dynamics. We first determine the conditions

of morphological instability of the system by performing a linear stability analysis of Eq.

(2.40); such conditions are needed for the nonlinear calculations given in Sec. 3.1.

2.3 Linear analysis

In order to examine the detailed evolution of strained film morphology, we first consider

the effect of the linear results on the surface morphology.

We Follow a standard procedure where we assume an exponential growth ĥ = ĥ0 exp(σht)

at early time, and apply it to the linearized evolution equation of ĥ. The characteristic

equation for the perturbation growth rate σh is then given by

σh = −q4 + q3ǫ∗2 − q2a, (2.43)

where a = (w∗/h∗
ml)(x + αw)x−αw−1e−x, x = h̄/hml, w∗ = w/E0, and h∗

ml = hml/l.

From figure 2.1 we can see that the growth rate rises to a maximum initially and

then decreases, crossing the σ = 0 axis at the cutoff wave number,q = qc . With the use
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Figure 2.2. The 2D image of the variation of the surface height with x and fixed y at
y = Ly/2.

of the wetting potential parameters w∗ = 0.2, h∗
ml = 0.3 and αw = 2, for ǫ = 3%, 2.5%

and ǫ = 2% we find the cutoff wave numbers as 0.659, 0.4924 and 0.3716 respectively.

It clearly shows that for the wave numbers smaller than qc, the destabilization due to

strain energy (∝ q3) dominates and for wave numbers larger than qc, the surface energy

stabilization (∝ q4) and the contribution from the wetting term (∝ q2) dominates.

If we consider the effect of the linear results on the film surface, stability of film will

not occur and we can see that film will grow with time. The variation of the height of the

film surface with x and fixed y at y = Ly/2 for times t = 15, t = 210, t = 270 and t = 300

for ǫ = 3% are shown in Fig. 2.2. It is clearly seen that the surface height increases with

increasing time without saturation. In order to find the condition for the occurrence of

the instability, we use the dispersion relation (2.43) and by setting dσh

dq
= 0, and we can
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find the condition for the instability as ǫ∗4 ≥ 4a or equivalently,

exxαw+1

x + αw

≥ 4w∗

ǫ∗4h∗
ml

. (2.44)

The corresponding characteristic wave number of film instability (for the fastest instability

growth mode) can be written as

qmax =
3

8

[

ǫ∗2 +

√

ǫ∗4 − 32

9
a

]

. (2.45)

The instability condition (2.44) is used to identify the parameters in our numerical sim-

ulations, for which the initial film instability and hence the appearance of nonplanar

surface morphology or islands are needed.
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Chapter 3

Numerical simulations and results

3.1 Numerical method

In our numerical calculations, we use pseudospectral method [68] to solve the nonlinear

equation with periodic spatial domain in both x and y directions. In order to generate

a numerical approximation, we apply the discrete Fourier transform on h(x, y, t) (Eq.

(2.17)). Since our film morphological profile h(x, y, t) is real, we can use the fact that

complex conjugate of the amplitude of negative wave numbers are related to their coun-

terparts with positive wave numbers; ĥ(q, t) = ĥ∗(−q, t).

Here we consider only the case of periodic boundary conditions where we would use

the condition h(x + Lx, y + Ly, t) = h(x, y, t). We can then relate ĥ(q, t) to h(x, y, t)

through the Fourier transform by

ĥ(q, t) =
1

LxLy

∫ Lx

0

dx

∫ Ly

0

dyh(x, y, t)e(−iqxx−iqyy). (3.1)

Here Lx and Ly are the dimensions of x and y respectively. In our numerical approxima-
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tion, we use the regular grid

xi =
(i − 1)Lx

Nx

, i = 1, ..., Nx

yj =
(j − 1)Ly

Ny

, j = 1, ..., Ny, (3.2)

and the wave numbers

qx(i) =
2πi

Lx

for − (Nx/2 − 1) ≤ i ≤ Nx/2

qy(j) =
2πj

Ly

for − (Ny/2 − 1) ≤ j ≤ Ny/2. (3.3)

We then apply the Trapezoidal rule on to the equation Eq. (3.1) to get

ĥ(q, t) =
1

NxNy

Nx
∑

i=1

Ny
∑

j=1

h(xi, yj, t)e
−iqxxie−iqyyj . (3.4)

Let N̂ be the nonlinear term and σqĥq be the linear term of the evolution equation

Eq. (2.40);

∂ĥq

∂t
= σqĥq + N̂q (3.5)

with

σh = −q4 + q3ǫ∗2 − q2a, (3.6)

and

N̂q = ǫ∗2
∑

q′

{

q2

[

(1 − ν)
[q′ · (q − q′)]2

q′|q − q′| − q′ · (q − q′) + νq′|q − q′|
]

+
2q

q′
[

qx(qx − q′x)(q
′2
x + νq′2y ) + qy(qy − q′y)(q

′2
y + νq′2x )

+(1 − ν)q′xq
′
y

[

qx(qy − q′y) + qy(qx − q′x)
]]}

ĥ(q′)ĥ(q − q′). (3.7)
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We evaluate the nonlinear term N̂q by using the pseudospectral method in the Fourier

space. We assume that this nonlinear term can be approximated by a linear function of

t′ in the interval t ≤ t′ ≤ t + ∆t [68];

N̂ ≈ N̂0 + N̂1(t − t′) (3.8)

where

N̂0 = N̂q(t)

N̂1 =
N̂q(t + ∆t) − N̂q(t)

∆t
. (3.9)

We use this procedure to integrate the nonlinear term. We then have the final algorithm

in the form [68]

ĥq(t + ∆t) = eσq∆tĥq(t) + N̂q(t)

[

eσq∆t − 1

σq

]

+
N̂q(t + ∆t) − N̂q(t)

∆t

[

eσq∆t − (1 + σqt)

σ2
q

]

. (3.10)

When σq → 0 we can rearrange the terms by taking the power serires of the exponential

term as

eσq∆t−1
σq

= ∆t
[

1 + 1
2
σq∆t(1 + 1

3
σq∆t + 1

12
σ2

q
∆t2) . . .

]

eσq∆t−(1+σq∆t)

σ2
q
∆t

= 1
2
∆t(1 + 1

3
σq∆t(1 + 1

4
σq∆t)) + . . . . (3.11)
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3.2 Results

3.2.1 Effect of the wetting potential

The numerical simulations of the dynamic equation (2.40) are carried out for small film-

substrate misfit strains because, the continuum elasticity theory can be well applied in

weak strain limits [45]. In the analysis we use pseudospectral method with periodic

boundary conditions along the directions x and y and an exponential propagation algo-

rithm for time integration , as described above [68]. We use a large time step ∆t = 1,

and a numerical grid spacing ∆x = ∆y = 1.

In a film/substrate epitaxial system, the change of material properties across interlayer

interfaces is the main cause for wetting effect [62]. When a film is grown on a substrate,

there can be a wetting interaction between the film and the substrate. Previous work

has been carried out to find the wetting effect on single-layer strained film growth [59,62]

and for multilayers [26] by considering either the change of material properties such as

surface tension across the interface [18] or the nonlinear effect of the material elasticity

[25,26].

We first perform numerical simulation of Eq. (2.40) with only the first order linear

term and the glued-layer wetting potential given in Eq. (2.7) in order to validate our

model system and the nonlinear dynamic equation. In the absence of the 2nd-order

elastic contribution, the elastic energy relaxation would dominate and we can see the

islands growing continuously even in the presence of the wetting potential. In order

to understand this process we used the same wetting potential approximation for the

comparison and with all the other parameters remain unchanged. As seen in Fig. 3.1

(a) and (b) where we see the variation of the surface height for misfit 2.5% with initial

thickness 0.5 for times t = 1200 and t = 1600 respectively, the rapid growth of the surface

islands would occur without any slowing down or saturation. This is also clearly seen in
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the corresponding 2D surface profile as shown in Fig. 3.2 where we can identify several

features of the surface dynamics. One characteristic is the large mass transport of the

film surface which leads to thinner film layer and much higher islands. This diffusion

process would occur even with the consideration of the wetting potential as a result

of the increasing dominance of the destabilization effect of the 1st-order elastic energy.

Another characteristic would be the island migration or the coarsening process which can

be controlled only by the second order elastic contribution. When the islands grow higher

and higher, this process will blow up eventually and the applicability of the perturbation

method will not be acceptable.

To further illustrate this instability we plot the variation of the maximum surface

height with time (Fig. 3.3 ). This is consistent with previous work [63], where we see a

monotanically increasing maximum surface height with time.

We then examine the effect of the wetting potential by studying the 2D and 3D mor-

phological profiles via solving the nonlinear evolution equation without the incorporation

of the wetting effect. We use the misfit, ǫ = 3% and the initial film thickness h0 = 0 to

see deep grooves or cusps formed in the stressed solid systems. In this study, we use two

types of initial conditions; one with the random disturbance of the film thickness h0 in

a 128 × 128 system (Fig 3.4(a) and (b)), and the other with doubly-periodic sinusoidal

surface profile h = h0 +0.01[cos(qx0x)+ cos(qy0y)] with a system size of λx0×λy0 (Fig 3.4

(c) and (d)). Here λx0 = 2π/qx0 and λy0 = 2π/qy0 where we choose qx0 = qy0 = 3/4
√

2

which corresponds to the wave number of most linearly unstable mode. In this study, we

use ∆t = 0.01. In both the cases we see cusps or grooves formation and the rapid growth

during film evolution as shown by the 3D surface profile in Fig. 3.4 (a) and (c) and the

2D cross section profile in Fig. 3.4(b) and (d). The results we obtained are consistent

with the results of Spencer and Meiron [69] and Xiang and E [56].

We also study the strength of the wetting interaction by changing the parameters of
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Figure 3.1. Morphological profiles and the the corresponding 2D gray scale top-view
images of 2.5% strained films at times (a),(c) t = 1200 and (b),(d) t = 1600 with the
considering of linear elastic energy contribution and wetting effect.
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obtained by considering the linear elastic energy contribution and wetting potential.
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Figure 3.3. Maximum surface height as a function of time t for the two conditions where
we consider results of the strained film evolution with first order elastic energy ξ̂(1)f and
the results from calculations up to 2nd-order elastic energy(ξ̂f = ξ̂(1)f + ξ̂(2)f ).
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Figure 3.4. Surface morphologies of 3% strained films, as obtained from numerical simu-
lations without the wetting effect. The simulations start either from small random initial
perturbation of a planar film [(a) and (b)] or from a doubly-periodic surface profile with
wave vector qx0 = qy0 = 3/4

√
2 and amplitude A0 = 0.01 [(c) and (d)]. Both 3D mor-

phologies, (a) at t = 46.77 for a portion of a 128 × 128 system and (c) at t = 34.35 for
system size λx0 × λy0, and also time evolution of 2D cross-section profiles are shown.
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Figure 3.5. Time evolution of 3% strained films with different wetting strength w∗ = 0.08
and 0.2. (a) Evolution of maximum surface height, with a 3D island morphology for
w∗ = 0.08 at t = 330 shown in the inset; (b) 2D cross-section profiles at y = Ly/2 for
w∗ = 0.08 at t = 330 and w∗ = 0.2 at t = 10000.

the wetting potential. We changed the wetting interaction strength w∗ by using w∗ = 0.08

and w∗ = 0.2 while the other parameters are ǫ = 3%, h0 = 0.41, αw = 2 and the time

step ∆t = 1. Fig. 3.5 shows the comparison of the numerical results for weak and strong

wetting interactions. When the strength of the wetting interaction is not strong enough,

we see a rapid growth of the surface islands and the blow up of numerical solutions at

later times, while stabilization and saturation of the surface islands are found for much

stronger wetting potentials. This phenominan is clearly seen in Fig. 3.5 (a) showing the

instability of the time evolution of the maximum surface height. This can be understood

from the fact that the mass transport from the valleys to peaks increases when the wetting

potential is not strong which leads to thinner wetting layer as seen in Fig. 3.5 (b). Much

thicker film layers can be seen when the wetting interaction is strong (large w∗) which

leads to a suppression on the valley-to-peak diffusion process.
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3.2.2 Effects of nonlinearities on coarsening and saturation

The parameters that are assosiated with the nondimensional equation (2.40) is rescaled

with the reference misfit ǫ0 = 3%. If we use the material parameters of Si/Ge system,

we find the estimated length scale as l ≃ 5.5 nm . The wetting potential parameters are

chosen as ν = 1/3, h∗
ml = 0.3, w∗ = 0.2, and αw = 2. In this research we focus only

on the nongrowing films with deposition rate v = 0. We simulate the annealing process

of film evolution with the rescaled initial film thickness of h0 = 0.67 for misfit strain

ǫ = 2%, h0 = 0.5 for ǫ = 2.5%, and h0 = 0.41 for ǫ = 3%, all of which are within the

corresponding instability parameter region for each misfit as determined by Eq. (2.44).

In order to understand the evolution of the surface morphology, we examine the

dynamic equation (2.40) by conducting numerical simulations for three different misfit

strains ǫ = 2%, 2.5% and 3%. In this simulation we use 3 different system sizes (128×128,

256×256, and 512×512) for each parameter set in order to examine any possible artifacts

of finite size effect. In the systems 128 × 128 and 256 × 256, the quantitative results are

averaged over 20 independent runs and in the system 512 × 512 they are averaged over

10 runs.

Fig. 3.6 illustrates the simulation results of formation and evolution of quantum dot

arrays for 2.5% mismatch between the film and substrate. As shown in Fig. 3.6(a),

strained surface islands or quantum dots are formed due to surface undulation which

occurs at the beginning stage as a result of the film morphological instability determined

in Eq. (2.44). Due to the effect of the nonlinear term on the elastic interaction, islands

will form and grow gradually at different rates at different surface locations. The next

stage is the coarsening of islands where some quantum dots grow at the expense of other

shrinking ones by decreasing the island density on the film surface. This is clearly seen in

Figs. 3.6(d)–(f) in the corresponding 2D top-view images when we compare the quantum
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(e) (f)(e) (f)(d)

(a) (b) (c)

Figure 3.6. Morphological profiles for misfit 2.5% at times t = 1000 [(a) and (d)], 2000
[(b) and (e)], and 10000 [(c) and (f)]. Only a fraction of the system 256×256 is shown in
the figures (a)-(c) with the corresponding 2D gray scale top-view images of the full size
shown in (d)-(f).
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(d)

(b)

(c)

(a)

Figure 3.7. Morphological profiles for misfits (a) 2% and (b) 3% at late time stage of
t = 10000. Only a portion of the 256× 256 system is shown in the 3D images of (a) and
(b). The corresponding 2D top-view images of the full system size are given in (c) and
(d).
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Figure 3.8. Structure factor of the surface height as a function of wave number q, for
different misfits (a) ǫ = 2%, (b) ǫ = 2.5%, and (c) ǫ = 3%, system size 256 × 256, and
times t = 2000, 6000, and 10000.

dot distribution for the times t = 1000, 2000, and 10000. As the time increases, this

coarsening process becomes much slower and the system approaches to an asymptotic

state with steady arrays of quantum dots. We have found that this film surface structure

depends on the film-substrate misfit strain. As we increase the film-substrate misfit strain,

the island density increases and the island spacing decreases. As shown in Fig. 3.7, our

results of 2% and 3% confirm this as compared to the 2.5% film shown in Figs. 3.6(c)

and 3.6(f). In our simulations no long-range spatial order can be found for quantum dot

arrays, even at the late-time stage, agreeing with the observation of most experimental

and theoretical studies.

To quantify these results, we study the structure factor S(q, t) = 〈|ĥ(q, t)|2〉q̂. Here

〈|ĥ(q, t)|2〉q̂ is the circular average over orientation of the wave vector. Figs. 3.8–3.11

show the variation of the structure factor, its moments, the maximum height of surface

profile, and the surface roughness to analyze the film surface morphology. Fig. 3.8 shows

the results of S(q, t) for different misfit strains of 2%, 2.5%, and 3%. In this figure, we see

that the wave number related to the peak location of the structure factor becomes larger

as misfit increases. As a result, island spacing becomes smaller and also quantum dot
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Figure 3.9. Time evolution of the three moments of structure factor: (a) m1, (b) m2, and
(c) m3, for misfit strains ǫ = 2%, 2.5%, and 3%. The solid lines represent the simulation
results of grid size 256 × 256, whereas the dashed and dotted lines represent the results
for grid sizes 128×128 and 512×512 respectively. Power law fittings (i.e., the thin lines)
at the beginning of coarsening stage for the 256 × 256 system are also shown.

density increases. This is also seen in the Figs. 3.7(c), 3.6(f), and 3.7(d). Also, for the

initial formation of islands, for smaller misfit strain larger time is needed (if we compare

the t = 2000 curves in Figs. 3.8(a)–(c)), consistent with the result of σh in the linear

stability analysis.

To characterize the details of the time evolution of quantum dots, we calculate the

moments of the structure factor. The nth moment of S(q, t) is defined as

mn(t) =

∫

dqqnS(q, t)
∫

dqS(q, t)
. (3.12)

Using this moment, we can find the information of the characteristic size and spatial

scale of surface structures. [71] For the three different misfits, we calculated the time

evolution of the first three moments of S(q, t). This is shown in Figs. 3.9(a) (for m1),

3.9(b) (for m2), and 3.9(c) (for m3). In each simulation, we can see three characteristic
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regimes of film evolution. During the early times, there is the process of surface instability

developement and island formation as followed by the coarsening of these strained islands

at the intermediate stage. These first two stages can be clearly distinguished in the results

of moments shown in Fig. 3.9, as separated by the turning point (i.e., maximum of mn)

of the time evolution curve for each moment mn. At late times, we see the asymptotic

stage of island saturation. The reason for the increase of mn at the initial stage is the

continuous appearance of new islands at various times, and thus the decrease of average

island spacing. Due to the overall smaller instability growth rate [see Eqs. (2.43)–(2.45)],

the time range of this early stage of island formation is longer for smaller misfit strain.

This can be also seen when we compare the three panels of misfits 3%, 2.5%, and 2%

(from top to bottom) for results of each moment in Fig. 3.9.

After the formation, the islands start to coarsen with an increase of the average

distance between islands, leading to the decrease of mm. We can obtain a power-law

behavior of coarsening, mn(t) ∼ t−βn , but such behavior is limited to a transient time

range at the beginning of the coarsening stage. This time range is smaller for larger film-

substrate misfit strain ǫ, as shown in Fig. 3.9. We have also found that the larger the

misfit, the slower the coarsening rate is, corresponding to smaller coarsening exponents

βn which are identified as (for system size 256× 256): For ǫ = 2%, β1 = 0.1010± 0.0008,

β2 = 0.181 ± 0.002, and β3 = 0.235 ± 0.003; For ǫ = 2.5%, β1 = 0.0702 ± 0.0007,

β2 = 0.120 ± 0.002, and β3 = 0.145 ± 0.004; For ǫ = 3%, β1 = 0.0449 ± 0.0009, β2 =

0.076±0.003, and β3 = 0.090±0.006. If the structure factor is assumed to obey a simple

dynamic scaling behavior due to coarsening, one would usually expect that mn(t) ∼ t−nβ1 ;

i.e., βn = nβ1. However, these results that we have obtained for coarsening exponents

in the intermediate/transient time range for all different misfit strains do not support

this assumption, and we cannot identify a simple format of scaling for the structure

factor. This might be due to the nonlinear relaxation of strain energy in the film and the
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Figure 3.10. Time evolution of the maximum value of structure factor, for misfits ǫ = 2%,
2.5%, and 3%. Results for different system sizes 256 × 256 and 512 × 512 are shown for
comparison.

nonlinear elastic interaction between surface islands [see e.g., Eq. (4.23)] which are more

complicated than that revealed by simple scaling.

This island formation and coarsening can also be illustrated in our numerical results

for the maximum value of the structure factor Smax (Fig. 3.10), the maximum surface

height hmax (Fig. 3.11), and the surface roughness r(t) = 〈(h− h̄)2〉1/2 (Fig. 3.12). In all

these three quantities, we can see the first stage of instability growth and island formation

which corresponds to the same initial time range as the mn results in Fig. 3.9. Both Smax

and the roughness r(t) grow exponentially with time at this stage, consistent with the

behavior of linear instability analysis. However, these quantities show rather slow growth

and an approach to saturation at later times during the coarsening process, even for

hmax. Even though the phenomenon of surface roughness saturation has been obtained in

a recent study of a nonlinear evolution equation, [62] no other studies have observed this

phenomenon when using different evolution equations (which instead observed power-law



44

200 1000
0.4

0.9

1.4
 3% misfit (512*512)
 2.5% misfit (512*512)
 2% misfit (256*256)
 2.5% misfit (256*256)
 3% misfit (256*256)

 

 

h m
ax

time

Figure 3.11. Time evolution of maximum surface height for misfits ǫ = 2%, 2.5%, and
3% and system sizes 256 × 256 and 512 × 512.

200 1000
0.002

0.01

0.1

 
 

 3% misfit (512*512)
 2.5% misfit (512*512)
 2% misfit (256*256)
 2.5% misfit (256*256)
 3% misfit (256*256)

ro
ug

hn
es

s

time

Figure 3.12. Time evolution of surface roughness for various misfits ǫ = 2%, 2.5% and
3%. Note that for each misfit, results of different system sizes 256 × 256 and 512 × 512
almost overlap with each other.
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growth) [63,64]. The limited growth of maximum surface height given in Fig. 3.11 during

island coarsening has not been reported in those previous studies, which usually showed

faster growth of hmax such as a power-law behavior [63].

In our simulation results, we see a crossover from the island coarsening regime to

an asymptotic state of steady quantum dot arrays, showing as saturated values of Smax,

hmax, and r(t) (see the 2.5% and 3% results in Figs. 3.10–3.12), and more clearly, the

saturation of mn given in Fig. 3.9. This crossover occurs earlier for larger misfit strain

and corresponds to the slowing of the mn decay after the transient of power-law-type

coarsening. To check the finite size effect,we test on different system sizes ranging from

128 × 128 to 512 × 512 but obtained quantitatively similar results. This slowing and

saturation of coarsening process is consistent with some experimental findings in Ge/Si

systems [28, 32–34] and some modeling and simulation results based on either direct so-

lution of system elasticity [53, 54, 61] or reduced film evolution equations; [62] however,

no sign of coarsening termination in annealing films has been found in some other experi-

mental [30] and theoretical [57,63,64] work. An important finding from our results, which

is the effect of misfit strains on island coarsening and saturation, has not been studied

in most previous works. We can suggest from the results that to observe the slowing

or cessation of island coarsening for smaller misfits much longer times are needed. This

could be useful for addressing the discrepancy of experimental observations. One example

is that it is more difficult to observe the island saturation in SiGe/Si(001) experiments

with weak misfit strain (< 1%) [30], while the suppression or saturation of quantum dot

growth can be found at relatively short annealing times for Ge/Si(001) system with large

misfit (∼ 4%) [28,32,33].

It would be useful to compare our calculations to previous theoretical work, particu-

larly to that of Ref. [63] where the same wetting potential approximation Eq. (2.7) was

adopted. They have found a power law coarsening behavior without any slowing or satu-
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ration process observed. The main difference of their study and ours is the contribution

of the system elasticity in the film evolution equation. In their model they have used

only the linear elastic term while in ours we used the effect of nonlinear elasticity contri-

bution up to 2nd order. Therefore we can argue that nonlinear contribution of the elastic

energy plays a major role in determining the steady state of quantum dot arrays. There

are also some other factors which paly an important role on island stabilization such as

the anisotropy of surface energy which would lead to island shape/facet selection and

transition, [28, 33], which will be addressed in our further studies. Note that our results

are purely due to nonlinear elastic energy contribution while some previous theoretical

studies (with various assumptions of the wetting effect), [53,54,61] have used the effect of

surface energy anisotropy which also plays an important role on the existence of steady

state island arrays.

The effect of the nonlinear interaction can be clearly seen in Fig. 3.2. We use the

misfit 2.5% and the initial height of the surface profile as 0.5. If we consider only the linear

interaction and the wetting potential, we see that the islands grow faster and diverge at

small time period. More details of the important effect of higher-order elastic energy

contribution will be given below.

3.2.3 Discussion

We study the time-varying profiles of the chemical potential µ = γκ+W +Ef and its cor-

responding elastic contribution Ef at the film surface to further illustrate the saturating

process (Fig. 3.13 is for 2.5% misfit and at the cross section x = Lx/2). Smaller spatial

variations of chemical potential µ along the film surface are obtained at later times [note

the very small vertical scale in Fig. 3.13(a)], indicating an approach to an asymptotic

saturated state. This is consistent with the results given in Figs. 3.9–3.12 for various
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Figure 3.13. Cross-section profiles of (a) surface chemical potential µ and (b) elastic
energy density Ef , for misfit ǫ = 2.5% and different times t = 5000, 7000, 9000, and
10000. The boxed region will be further studied in Fig. 3.14.
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Figure 3.14. Cross-section profiles of (a) surface morphology and (b)-(d) various energy
densities, for 2.5% misfit and times t = 1000 (at early stage of instability and island
formation), 2000 (island coarsening stage), and 10000 (saturating stage). Different com-
ponents of the film surface chemical potential are shown, including the surface-energy
contribution (dot-dashed orange curves), 1st-order elastic energy density E (1)f (dashed
black), 2nd-order elastic density E (2)f (green stars), and the total elastic contribution
Ef = E (1)f + E (2)f (solid brown).
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morphological properties, and also with the evolution profiles of elastic energy density Ef

given in Fig. 3.13(b). Furthermore, in Fig. 3.14 we examine the detailed mechanisms of

such saturation through identifying the time evolution of various components of chemical

potential, including the surface-energy contribution γκ and the first and second order

elastic energy densities E (1)f and E (2)f . We focus on a small region of 4 islands [see Fig.

3.14(a)], representing 3 scenarios of quantum dot evolution: (1) large islands that are

growing and saturating, (2) small islands that are shrinking [see the middle island in Fig.

3.14(a)], and (3) islands that are migrating (see the one at the right corner). As expected

from previous analysis [17], for an undulated surface (i.e., in the region of surface islands),

the strain energy is concentrated at surface valleys but released at peaks; the resulting

surface elastic energy density gradient would drive the diffusion process from the valleys

to peaks and thus the growth of surface islands. On the other hand, this morphological

destabilization process is competed by the stabilization effect of surface energy, showing

as energy penalty for high-curvature surface areas and hence a spatial distribution oppo-

site to that of elastic density (see the dot-dashed curves). This classical view of quantum

dot formation has been well reproduced in our results of all three evolution stages: the

early morphological instability shown in Fig. 3.14(b) (at t = 1000), a coarsening regime

in Fig. 3.14(c) (at t = 2000), and a saturating stage in Fig. 3.14(d) (at t = 10000).

For islands to be saturated and stabilized, one would expect mechanisms of film evolu-

tion involving additional energy penalty for large, increasing island size, so that the overall

stabilization factors would compensate and suppress the destabilization effect (i.e., con-

tinuing growth and coarsening of surface islands) caused by stress relaxation. In previous

studies such factors are usually provided by additional surface energy terms particularly

the surface energy anisotropy, which has been shown to enhance the surface-energy sta-

bilization effect, constrain the island height, and lead to island shape/facet selection and

transition [33,70]; this effect of surface anisotropy has been deemed essential for the exis-
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tence of steady island arrays in some previous theoretical work (with various assumptions

of the wetting effect) [53,54,61,67]. However, in this work we only consider isotropic sur-

face energy. What we identify here is a new factor that is due to the contribution of

higher-order perturbed elastic energy on the interaction and evolution of surface islands,

as detailed in Fig. 3.14: Positive contribution from the 2nd-order elastic energy density

E (2)f is found for large surface islands, showing as an effective energy-penalty term and

hence a reduction of strain relaxation effect. [Note that this result is still compatible with

the well-known strain relaxation mechanism, since the total elastic density Ef still shows

a destabilization effect due to the dominance of 1st-order density E (1)f ; see Figs. 3.14

(c) and (d).] Such effect of E (2)f becomes important only at late stage with large enough

islands, and is negligible for small ones, as seen from the comparison between Figs. 3.14

(b)-(d).

To understand this seemingly counter-intuitive result which is beyond the conventional

view based on linear instability analysis, we examine the detailed expression of E (2)f

which, from Eqs. (2.37)–(4.23), is rewritten as

E (2)f (r) = ǫ∗2

[

f(h) +

∫

dr′
∫

dr′′h(r′)G(r − r′, r′ − r′′)h(r′′)

]

, (3.13)

where

f(h) = |∇h|2 + ν
(

E (1)f/ǫ∗2
)2

+ (1 − ν)
3

∑

i=1

g2
i (h), (3.14)

with gi(h) (i = 1, 2, 3) the Fourier transform of q2
xĥ/q, q2

yĥ/q, and
√

2qxqyĥ/q respectively,
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and

G(r − r′, r′ − r′′) =
∑

q,q′

eiq·(r−r
′)+iq′·(r′−r

′′)

× 2

qq′
{

qx(qx − q′x)(q
′2
x + νq′2y ) + qy(qy − q′y)(q

′2
y + νq′2x )

+(1 − ν)q′xq
′
y

[

qx(qy − q′y) + qy(qx − q′x)
]}

. (3.15)

In Eq. (3.13), the first part f(h) is always positive, analogous to the “self” elastic energy

of a given surface profile that serves as a energy penalty to suppress its coarsening; the

2nd part represents the correlation between surface heights and thus the elastic inter-

action between surface islands. Within each island region (particularly near the peak),

the magnitudes of both parts increase with the island size as verified in our numerical

calculations.

If these 2nd-order elastic contributions are absent or not strong enough, the elas-

tic energy relaxation would increasingly dominate over the surface-energy stabilization

effect, driving the continuing island growth even in the presence of the wetting poten-

tial. This can be illustrated clearly from our numerical results given in Fig. 3.2, where

the same film evolution equation (2.40) is simulated, but with only first-order elastic

energy E (1)f incorporated. All other parameters remain unchanged, including the same

wetting potential approximation Eq. (2.7). The maximum surface height is found to

increase monotonically with time [see Fig. 3.3], without any slowing or saturation pro-

cess observed, a result that is consistent with previous work [63]. Time evolution of the

corresponding 2D cross-section surface profiles is given in Fig. 3.3, from which two main

features of surface dynamics can be identified: (1) Large mass transport from film layers

to islands is observed, leading to much thinner film layers between surface islands as com-

pared to the result shown in Fig. 3.14 (a) which incorporates the 2nd-order elastic energy
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effects. Although the wetting potential still has the effect of preserving the wetting layer

in-between surface islands and then limiting the diffusion process from the depleted wet-

ting layer to the peaks, here such effect becomes relatively weaker as time evolves due to

the increasing dominance of the destabilization effect of 1st-order elastic energy and the

absence of “self” energy penalty term f(h) for large islands. (2) Mass transport between

islands continues to occur, which corresponds to island migration or coarsening process

and is actually a secondary effect compared to (1). This process cannot be prevented by

the wetting effect, and can be controlled only by the higher-order elastic energy terms

describing island interaction and correlation [see Eq. (3.13)]. Thus at late times the

island heights increase rapidly, resulting in the formation of surface islands with large

aspect ratio between height and width as shown in Fig. 3.2. The perturbation method

used here is no longer valid for such high islands, and the simulations will ultimately blow

up. This is qualitatively different from the results given above with the incorporation of

2nd-order elastic energy, where islands with well constrained aspect ratio are obtained

which also shows the applicability of the perturbation method developed here.

All these results indicate that the nonlinearities given by the higher-order strain energy

of individual islands and the elastic interaction between islands can affect the pathway of

film strain relaxation at late evolution times, slow down the decrease of total elastic energy

via their increasing positive energy contribution for large islands, and thus effectively

reduce the effect of stress relaxation as the surface instability driving force. Such reduction

leads to relatively stronger role played by the surface energy and the wetting potential

at later times [see the comparison between Figs. 3.14 (c) and (d), and between Figs.

3.14 (a) and 3.3], limiting the mass transport between film layers and islands and hence

suppressing the island growth and coarsening.
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Chapter 4

Effect of pre-patterned substrate on

quantum dot growth

Formation of self assembled quantum dots on a pre-patterned substrate has attracted

great interest due to the controllable positioning and perfect ordering of quantum dots

arrays. In order to determine and predict island positioning and island sizes, factor that

affect the arrangement of islands on patterned substrates such as lattice mismatch be-

tween the film and the substrate, surface energy and the substrate shape must be well

understood. Here we consider the growth of strained islands on sinusoidal shape of sub-

strate patterns with small and large amplitudes that can affect the size and shape of the

grown islands. We need to address these factors and the dependency on the substrate

pre-patterned amplitude to understand their effects on island growth, because, where

these islands are formed and how to control the formation are not well understood in pre-

vious theoretical studies. In this study, we examine the dependency of the morphological

instability and island properties on initial film thickness and the substrate pre-patterned

amplitude.
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Figure 4.1. Nonplanar film-substrate interface

4.1 Continuum elasticity model with pre-patterned

substrates

When we consider nonplanar or pre-patterned substrate (see Fig. 4.1), we assume

that the substrate occupies the region z < ζ(x, y) and the film occupies the region

ζ(x, yt) < z < h(x, y, t) with ζ(x, y) the profile of the film-substrate interface. We use

the same mechanical equilibrium equation (Eq. (2.2)) as we used in the model with planar

substrate. To the first order of perturbed quantities, the linearized boundary conditions

at the film surface are given by

σ̂
(1)f
xz (q) = iqxσĥ(q),

σ̂
(1)f
yz (q) = iqyσĥ(q), (4.1)

σ̂
(1)f
zz (q) = 0.

At the interface z = ζ̄ = 0, the boundary conditions expanded to the 1st order are

−iqxσ̄ζ̂(q) + σ̂
(1)f
xz (q) = σ̂

(1)s
xz (q),

−iqyσ̄ζ̂(q) + σ̂
(1)f
yz (q) = σ̂

(1)s
yz (q), (4.2)

σ̂
(1)f
zz (q) = σ̂

(1)s
zz (q).
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and

û
(1)f
i = û

(1)s
i for i = x, y,

ūζ̂(1) + û
(1)f
z = û

(1)s
z . (4.3)

(4.4)

With the use of the linearized boundary conditions, we can obtain the first order

coefficients of the solution given in Eqs. (2.28) and (2.29) as,

qα(1)
z = −qζ̂ūe−2qh̄

[

qh̄ + 2(1 − ν) − 1

2
+

1

2
e2qh̄

]

+ qĥūe−qh̄(1 − 2ν + qh̄),

qβ(1)
z = −qζ̂ūe−2qh̄

[

qh̄ + 2(1 − ν) − 1

2
− 1

2
e2qh̄

]

+ qĥūe−qh̄(1 − 2ν + qh̄),

iqxα
(1)
x + iqyα

(1)
y = −qζ̂ūe−2qh̄

[

−qh̄ + 2(1 − ν) − 1

2
+

1

2
e2qh̄

]

+ qĥūe−qh̄(2(1 − ν) + qh̄),

iqxβ
(1)
x + iqyβ

(1)
y = −qζ̂ūe−2qh̄

[

−qh̄ + (1 − 2ν) +
1

2
− 1

2
e2qh̄

]

+ qĥūe−qh̄(2(1 − ν) + qh̄),

and

C(1) = D(1) = −qζ̂ūe−2qh̄ + qĥūe−qh̄. (4.5)

Based on the above solutions, we calculate the 1st order perturbed elastic energy

density as

Ê (1)f = −2E(1 + ν)

1 − ν
ǫ2q

(

ĥ(q) − e−qh̄ζ̂(q)
)

. (4.6)

Substituting the expansions (2.17)-(2.18) into the boundary conditions (2.13)-(2.16)

and retaining up to 2nd order perturbed quantities, we obtain the same boundary con-
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ditions as at the top of the surface, z = h(x, y, t),

(1 − 2ν)(∂2
z − q2)û

(ξ)
j + iqj

[

iqxû
(ξ)
x + iqyû

(ξ)
y + ∂zû

(ξ)
z

]

= 0, for j = x, y, (4.7)

(1 − 2ν)(∂2
z − q2)û(ξ)

z + ∂z

[

iqxû
(ξ)
x + iqyû

(ξ)
y + ∂zû

(ξ)
z

]

= 0, . (4.8)

The corresponding second order boundary conditions at the film-substrate interface

z = 0 are as follows;

−
∑

q′

i(qx − q′x)[σ̂
(1)f
jx (q′) − σ̂

(1)s
jx (q′)]ζ̂(q − q′)

−
∑

q′

i(qy − q′y)[σ̂
(1)f
jy (q′) − σ̂

(1)s
jy (q′)]ζ̂(q − q′)

+σ̂
(2)f
jz (q) = σ̂

(2)s
jz (q), (4.9)

and

û
(2)f
i = û

(2)s
i for i = x, y (4.10)

with j = x, y, z.

The solutions to the mechanical equation (2.2)is given by Eqs. (2.28) and (2.29) with

the second order coefficients determined by the above boundary conditions, i.e.,

qα
(2)
z = −e−qh̄

[

a
(2)
1 qx + b

(2)
1 qy

2µq
(1 − 2ν + qh̄) − c

(2)
1

2µ
(2 − 2ν + qh̄)

− f
(2)
1 e−qh̄

4µ(1 − ν)

[

q2h̄2 + 4(1 − ν)2 +
3 − 4ν

2
(e2qh̄ − 1 + 2qh̄)

]

]

,

(4.11)
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qβ
(2)
z = −e−qh̄

[

a
(2)
1 qx + b

(2)
1 qy

2µq
(1 − 2ν + qh̄) − c

(2)
1

2µ
(2 − 2ν + qh̄)

− f
(2)
1 e−qh̄

4µ(1 − ν)

[

q2h̄2 + (1 − 2ν)2 +
3 − 4ν

2
(e2qh̄ − 1 + 2qh̄)

]

]

,

(4.12)

iqxα
(2)
x + iqyα

(2)
y = iqxβ

(2)
x + iqyβ

(2)
y = e−qh̄

[

a
(2)
1 qx + b

(2)
1 qy

2µq
(qh̄ − 2 + 2ν)

+
c
(2)
1

2µ
(1 − 2ν + qh̄) +

f
(2)
1 e−qh̄

4µ(1 − ν)
[

q2h̄2 − 2(1 − ν)(1 − 2ν)
]

]

,

(4.13)

C(2) = D(2) = B(2) = e−qh̄

[

−a
(2)
1 qx + b

(2)
1 qy

2µq
+

c
(2)
1

2µ

− f
(2)
1 e−qh̄

4µ(1 − ν)

[

qh̄ + 2(1 − ν) +
1

2
(e2qh̄ − 1)

]

]

, (4.14)

where

a
(2)
1 qx + b

(2)
1 qy =

∑

q′

ĥ(q − q′)ĥ(q′)

{

2Eǫ

q′(1 − ν)

[

qx(qx − q′x)(q
′2
x + νq′2y )

+qy(qy − q′y)(q
′2
y + νq′2x )

]

+ 2Eǫ
q′xq

′
y

q′
[

qx(qy − q′y) + qy(qx − q′x)
]

}

,(4.15)

c
(2)
1 =

∑

q′

ĥ(q − q′)ĥ(q′)
Eǫ

1 − ν

[

q′x(qx − q′x) + q′y(qy − q′y)
]

. (4.16)

and

f
(2)
1 =

∑

q′

ζ̂(q − q′)ζ̂(q′)
Eǫ

1 − ν

[

q′x(qx − q′x) + q′y(qy − q′y)
]

. (4.17)
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In Fourier space, we write the second order correction to the free energy as

Ê (2)f = 2E
(1 + ν)

(1 − ν)

∑

q′

{

Λ(q,q′)ĥ(q′)ĥ(q − q′) + 2ǫ∗2e−q′h̄ĥ(q − q′)ζ̂(q′)×
[

(qx − q′x)

qq′
[

qx(q
′2
x + νq′2y ) + (1 − ν)q′xq

′
yqy

]

+
(qy − q′y)

qq′
[

qy(q
′2
y + νq′2x ) + (1 − ν)q′xq

′
yqx

]

+ νq′|q − q′|

+
(1 − ν)

q′|q − q′| [q′.(q − q′)]
2

]

−ǫ∗2ζ̂(q′)ζ̂(q − q′)q2

[

e−q′h̄

2(1 − ν)
(qh̄ + 1 − 2ν)([q′.(q − q′)]

2
)

e−(q′+|q−q
′|)

[

(1 − ν)

q′|q − q′| [q′.(q − q′)]
2
+ νq′|q − q′|

]]}

. (4.18)

The above expressions can be made dimensionless using the length scale l = 2γ(1 −

ν)/3E(1 + ν)ǫ2 and the time scale τ = 3l4/4γΓh. Using the length scale and time scale,

we can write the first order correction to the free energy density as

Ê (1)f = qǫ∗2e−qh̄ζ(q) − qǫ∗2ĥ(q) (4.19)
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and the second order correction to the free energy as

Ê (2)f =
∑

q′

{

Λ(q,q′)ĥ(q′)ĥ(q − q′) + 2ǫ∗2e−q′h̄ĥ(q − q′)ζ̂(q′)×
[

(qx − q′x)

qq′
[

qx(q
′2
x + νq′2y ) + (1 − ν)q′xq

′
yqy

]

+
(qy − q′y)

qq′
[

qy(q
′2
y + νq′2x ) + (1 − ν)q′xq

′
yqx

]

+ νq′|q − q′|

+
(1 − ν)

q′|q − q′| [q′.(q − q′)]
2

]

−ǫ∗2ζ̂(q′)ζ̂(q − q′)q2

[

e−q′h̄

2(1 − ν)
(qh̄ + 1 − 2ν)([q′.(q − q′)]

2
)

e−(q′+|q−q
′|)

[

(1 − ν)

q′|q − q′| [q′.(q − q′)]
2
+ νq′|q − q′|

]]}

. (4.20)

Thus, we obtaine the dynamics of the surface profile as

∂ĥ
∂t

= (−q4 + ǫ∗2q3)ĥ − ǫ∗2q3e−qh̄ζ̂(q) − q2Wq

+q2
∑

q′

{

Λ(q,q′)ĥ(q′)ĥ(q − q′) + 2ǫ∗2e−q′h̄ĥ(q − q′)ζ̂(q′)×
[

(qx − q′x)

qq′
[

qx(q
′2
x +′2

y ) + (1 − ν)q′xq
′
yqy

]

+
(qy − q′y)

qq′
[

qy(q
′2
y + νq′2x ) + (1 − ν)q′xq

′
yqx

]

+ νq′|q − q′|

+
(1 − ν)

q′|q − q′| [q′.(q − q′)]
2

]

−ǫ∗2ζ̂(q′)ζ̂(q − q′)q2

[

e−q′h̄

2(1 − ν)
(qh̄ + 1 − 2ν)([q′.(q − q′)]

2
)

e−(q′+|q−q
′|)

[

(1 − ν)

q′|q − q′| [q′.(q − q′)]
2
+ νq′|q − q′|

]]}

. (4.21)

For simplicity, we consider a substrate stripe pattern with one characteristic wave

number q∗ = (q∗x, q
∗
y)) with ζ̂(q∗) = ζ0, i.e.
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ζ̂(q∗x, q
∗
y) =











ζ0 if q = ±q∗;

0 otherwise.

The dynamics of the surface profile is then given by

∂ĥ
∂t

= (−3

4
q4 + q3)ĥ − q2Wq

+q2
∑

q′

Λ(q,q′)ĥ(q′)ĥ(q − q′) + f1(q,q∗)ĥ(q − q∗) + f2(q,q∗)ĥ(q + q∗) + f3(q,q∗)

(4.22)

with

Λ(q,q′) = q2

[

(1 − ν)
[q′ · (q − q′)]2

q′|q − q′| − q′ · (q − q′) + νq′|q − q′|
]

+
2q

q′
{

qx(qx − q′x)(q
′2
x + νq′2y ) + qy(qy − q′y)(q

′2
y + νq′2x )

+(1 − ν)q′xq
′
y

[

qx(qy − q′y) + qy(qx − q′x)
]}

, (4.23)

f1(q,q∗) = 2ζ0qe
−q∗h̄

[

qg(q,q∗) +
1

q∗
f(q,q∗)

]

,

f2(q,q∗) = 2ζ0qe
−q∗h̄

[

qg(q,−q∗) +
1

q∗
f(q,−q∗)

]

f3(q,q∗) = −ζ0q
∗3e−q∗h̄(δq,q∗ + δq,−q∗)

−2ζ2
0q

∗4e−2q∗h̄ 3 − 4ν + 2q∗h̄

1 − ν
(δq,2q∗ + δq,−2q∗) (4.24)
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where

f(q,q∗) = qx(qx − q∗x)(q
∗2
x + νq∗2y ) + qy(qy − q∗y)(q

∗2
y + νq∗2x )

+(1 − ν)q∗xq
∗
y[qx(qy − q∗y) + qy(qx − q∗x)],

g(q,q∗) = (1 − ν)
[q∗.(q − q∗)]2

q∗|q − q∗| + νq∗|q − q∗|. (4.25)

In this study we determine the conditions of morphological instability of the system

by performing a linear stability analysis on the dynamic equation (4.22) .

4.2 Linear analysis

Linear stability analysis for pre-patterned substrate is more complex than for the planar

substrate. We can write the dynamic of the surface profile to the first order of ĥ as

∂ĥ(q)

∂t
= f0(q)ĥ(q) + f1(q,q∗)ĥ(q − q′) + f2(q,q∗)ĥ(q + q′) + f3(q,q∗) (4.26)

where f0(q) = q3 − 3
4
q4 if we neglect the wetting effect as applied to the analysis given

below. The general linear equation of ĥ can be written as

∂ĥ(q + jq∗)

∂t
= f0(q)ĥ(|q + jq∗|)ĥ(q + jq∗)

+f1(q + jq∗,q∗)ĥ(q + (j − 1)q∗) + f2(q + jq∗,q∗)ĥ(q + (j + 1)q′)

+f3(q + jq∗,q∗), (4.27)

with j = −N,−N + 1, . . . ,−1, 0, 1, . . . , N − 1, N . For large values of q (i.e. q >> 1), we

have ĥ(q) → 0. Therefore, at the boundary we can take ĥ(q + (N + 1)q′) = ĥ(q− (N +

1)q′) = 0 for N >> 1. In order to solve this linear equations we convert the differential



62

equations to a matrix form:

∂

∂t

































































ĥ(−N)

.

.

.

ĥ(−1)

ĥ(0)

ĥ(1)

.

.

.

ĥ(N)

































































=

































































f0(−N) f2(−N) 0 ... 0

.

.

.

0 0 0 ... 0

0 0 0 ... 0

0 0 0 ... 0

.

.

.

0 0 0 ... f0(N)

































































































































ĥ(−N)

.

.

.

ĥ(−1)

ĥ(0)

ĥ(1)

.

.

.

ĥ(N)

































































+

































































f3(−N)

.

.

.

f3(−1)

f3(0)

f3(1)

.

.

.

f3(N)

































































which is equivalent to:

∂
−→
h

∂t
= A

−→
h + f3 (4.28)

We then can find the corresponding eigenvalues (σi) and the eigenvectors (
−→
b i) for the

homogeneous equation

∂
−→
h c

∂t
= A

−→
h c (4.29)

and obtain the complementary solution for the
−→
h c,

−→
h c(j) =

∑

i

−→
b ie

σit. (4.30)

This can now be written as

ĥc(j) =
∑

i

bije
σit (4.31)
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with bij being the jth component of the eigenvector
−→
b i which corresponds to the eigen-

value σi. For this analysis we consider the case where j = 0,

ĥc(q) = ĥ(j = 0) =
∑

i

bi0e
σit. (4.32)

Therefore, finding the maximum component of the eigenvector bi0(max) with maximum

perturbation growth rate σi for different wave vectors q = (qx, qy)results in finding the

maximum wave number in the linear stability analysis. We use substrate stripe patterns

with characteristic wave number q∗x = 0.5 with fixed q∗y at q∗y = 0. For different amplitudes

(ζ0) of the substrate stripes at ζ0 = 1, 1.2, 1.4 and 1.6 we analyzed the effect of the initial

film thickness h0 on the instability growth rate to obtain the corresponding maximum

wave number for the linear stability analysis. The relation between the periodicity of

the pre-patterned substrate and of the grown islands is shown schematically in Fig. 4.2

We compare these results with the case of planar substrate pattern to understand the

behavior of the pre-patterned substrate pattern. For the comparison, we use the condition

for the occurrence of instability without considering the effect of the wetting potential.

The corresponding dispersion relation for the planar substrate is,

σh = −3

4
q4 + q3. (4.33)

By setting dσh

dq
= 0, we obtain that the condition for instability occurs when qmax = 1

at σ0 = 1/4. Fig. (4.3) shows the variation of the eigenvector bi0 corresponding to

the maximum instability growth rate for different initial thicknesses for a fixed substrate

pattern amplitude ζ0. The peak of each curve corresponds to the maximum value of the

wave number.

When we increase the thickness of the film, the surface islands are less influenced
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Figure 4.2. Schematic diagram of islands grown on pre-patterned substrate.

(a) (b)

(d)(c)

Figure 4.3. Variation of the eigenvector bi0 with respect to the wave number for various
initial film thickness (a)h0 = 3, (b)h0 = 4, (c)h0 = 5 and (d)h0 = 6 for a fixed substrate
pattern amplitude ζ0 = 1.6 and a fixed substrate pattern wave number qx∗ = 0.5, qy∗ = 0.
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Figure 4.4. Variation of the maximum wave number with respect to the initial thickness
of the film for different substrate wave patterns at ζ0 = 1, 1.2, 1.4 and 1.6. Here we used
the wave number of the substrate pre-pattern q∗X = 0.5 and q∗y = 0.
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Figure 4.5. Variation of the maximum wave number with respect to the substrate
pre=pattern amplitude for different initial film thicknesses at h0 = 1, 1.2, 1.4 and 1.6
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Figure 4.6. Variation of the maximum perturbation growth rate with respect to initial
film thickness for different substrate wave patterns at ζ0 = 1, 1.2, 1.4 and 1.6. The dashed
line represents the maximum growth rate (σmax = 1/4) for a planar substrate.

1.0 1.1 1.2 1.3 1.4 1.5 1.6
0

1

2

3

4

5

m
ax

 
 

 h0=3
 h0=4
 h0=5
 h0=6

Figure 4.7. Variation of the maximum perturbation growth rate with respect to substrate
pre-pattern amplitude for different initial film thicknesses at h0 = 1, 1.2, 1.4 and 1.6. The
dashed line represents the maximum growth rate (σmax = 1/4) for a planar substrate.
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by the substrate pattern. As a result, the maximum wave number corresponding to the

morphological instability of the film surface would approach to the results of a planar

substrate when h0 increases. Also, if we increase the substrate pre-pattern amplitude,

the effect from the substrate would lead to larger film instability wave number. This can

be clearly seen in figures 4.4 and 4.5. Same scenario can be explained when we study

the effect of the film thickness and the substrate pattern amplitude on the maximum

perturbation growth rate (σmax), as seen in figures 4.6 and 4.7. As we increase the film

thickness, the effect of the substrate is negligible so qmax → 1 which is the maximum film

instability wave number in the planar substrate. The difference between the maximum

wave number and the substrate pre-pattern q∗ (here we used q∗ = 0.5) increases with

decreasing h0. As a result we see larger island wavenumber for smaller film thicknesses.
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Chapter 5

Conclusions

We have investigated the nonlinear dynamic processes governing the formation, coarsen-

ing, and stabilization of strained quantum dot islands on the surface of heteroepitaxial

films, through the development of a nonlinear evolution equation for film morphology.

Our study is based on a continuum elasticity model that incorporates the film-substrate

wetting effect and importantly, on the construction of a perturbation method in Fourier

space for determining the system elastic properties. In addition to a linear stability

analysis which yields the conditions of film morphological instability, we have performed

large scale numerical calculations of the dynamic equation derived to study the detailed

behavior of film evolution. We focus on effects of small misfit strains which correspond

to relatively large length scale of surface nanostructures, and analyze the evolution of

strained surface islands/dots using a variety of characteristics of film morphology, includ-

ing the structure factor of surface height, its first three moments, the maximum height

of surface profile, and the surface roughness.

Consistent with previous experimental and theoretical work, our results have shown

three characteristic stages of island evolution for post-deposited annealing films in the case

of planar substrate, including (1) the early stage of morphological instability and island
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formation, as characterized by the exponential growth of maximum structure factor Smax

and the surface roughness as well as the increase of maximum surface height and moments

mn; (2) a nonlinear island coarsening stage, with a transient power-law behavior of mn

decay that appears at the beginning of this stage; and (3) a crossover to an asymptotic

state of saturated island arrays (although without long-range spatial order), after the

slowing and suppression process of coarsening. Also, the dependence of these detailed

properties on the film-substrate misfit strain has been obtained, such as the values of

coarsening exponents and the time ranges for the crossover between different evolution

stages. These have been shown important for the understanding of different, or seemingly

inconsistent, experimental results particularly for the late time stage of island coarsening

or stabilization. On the other hand, such dependence does not qualitatively affect our

results of the three evolution regimes; same conclusion can be drawn for the effect of

different finite system sizes used in our simulations. To understand the mechanisms

underlying the nonlinear evolution of strained films, we have examined the effects of film-

substrate wetting potential, in particular its role on the suppression of the valley-to-peak

mass diffusion process that would lead to wetting layer depletion, and its constraining

effect on island growth. Furthermore, through a detailed study of time evolution of elastic

energy density distribution at the film surface, we find that higher-order terms of film

elastic energy, which incorporate the interaction between strained surface islands and the

higher-order “self” elastic energy of individual islands, can effectively alter the relaxation

pathway of film strain energy at late stage. They play an important role on the saturation

and stabilization of quantum dot arrays, in particular the crossover to the saturated state

with balanced multi-island interactions and limited island-layer and between-island mass

transport. Thus our results indicate that both effects of film-substrate wetting interaction

and high-order elastic energy are pivotal for the achieving of steady quantum dot arrays

and also for the understanding of self-assembly process of strained film heteroepitaxy.
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In the case of pre-patterned substrates, the morphological instability depends on the

initial film thickness and the substrate pattern amplitude. Larger film instability wave

number could be found for increasing film thickness, due to less influence of the substrate

pattern on the morphological profile of an epitaxially grown film. We also study the effect

of substrate pre-pattern amplitude on the film instability and island formation, and find

the increase of island wave number (for maximum film instability) with the increasing

substrate pattern amplitude.
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APPENDIX A

Third order perturbation results of

film elasticity

As described in Sec. 2.1, our perturbation approach developed here for solving the

system elasticity problem can be extended to obtain higher order results through a recur-

sive procedure. We have calculated the elastic properties of this heteroepitaxial system

up to third order. In this appendix we present our results for the 3rd-order perturbed

elastic energy density, which is given by

Ẽ (3)f =
Eǫ

1 − ν

[

(1 − ν)
a

(3)
1 qx + b

(3)
1 qy

µq
− (1 − 2ν)

c
(3)
1

2µ

]

+
∑

q′

{

1 + ν

2E

[

σ̂
(1)f
ij (q′)σ̂

(2)f
ij (q − q′) + σ̂

(2)f
ij (q′)σ̂

(1)f
ij (q − q′)

]

− ν

2E

[

σ̂
(1)f
ll (q′)σ̂

(2)f
ll (q − q′) + σ̂

(2)f
ll (q′)σ̂

(1)f
ll (q − q′)

]}

, (1)

where

a
(3)
1 =

∑

q′

[

(qx − q′x)σ̂
(2)f
xx (q′) + (qy − q′y)σ̂

(2)f
xy (q′)

]

ĥ(q − q′), (2)

b
(3)
1 =

∑

q′

[

(qx − q′x)σ̂
(2)f
xy (q′) + (qy − q′y)σ̂

(2)f
yy (q′)

]

ĥ(q − q′), (3)

c
(3)
1 =

∑

q′

i
[

(qx − q′x)σ̂
(2)f
xz (q′) + (qy − q′y)σ̂

(2)f
yz (q′)

]

ĥ(q − q′). (4)
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Based on the perturbation solutions of the system elasticity, we have obtained the

first and second order results for the elastic stress tensor at film surface, which are used

to calculate the perturbed elastic energy density given above. In second order we have

σ̂
(2)f
xx (q) = − Eǫ

1 − ν

∑

q′

{

4
qx(qx − q′x)

q3q′
(νq′2y + q′2x )(q2 + νq2

y)

+4ν
(qy − q′y)q

3
y

q3q′
(q′2y + νq′2x )

+4(1 − ν)
q′xq

′
y

q3q′
[

qx(qy − q′y) + qy(qx − q′x)
]

(q2
x + νq2)

− 1

q2

[

q′x(qx − q′x) + q′y(qy − q′y)
]

(2νq2
y + q2

x)

+4(1 − ν)
qxqyq

′
xq

′
y

q3q′
[

qy(qy − q′y) − qx(qx − q′x)
]

}

ĥ(q′)ĥ(q − q′), (5)

σ̂
(2)f
yy (q) = − Eǫ

1 − ν

∑

q′

{

4
qy(qy − q′y)

q3q′
(νq′2x + q′2y )(q2 + νq2

x)

+4ν
(qx − q′x)q

3
x

q3q′
(q′2x + νq′2y )

+4(1 − ν)
q′xq

′
y

q3q′
[

qx(qy − q′y) + qy(qx − q′x)
]

(q2
y + νq2)

− 1

q2

[

q′x(qx − q′x) + q′y(qy − q′y)
]

(2νq2
x + q2

y)

−4(1 − ν)
qxqyq

′
xq

′
y

q3q′
[

qy(qy − q′y) − qx(qx − q′x)
]

}

ĥ(q′)ĥ(q − q′), (6)

σ̂(2)f
zz (q) =

Eǫ

(1 − ν)
(3 − 2ν)

∑

q′

[

q′x(qx − q′x) + q′y(qy − q′y)
]

ĥ(q′)ĥ(q − q′), (7)
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σ̂
(2)f
xy (q) = Eǫ

∑

q′

{

−4
qxqy

q′q3

[(

qx(qx − q′x)(q
′2
x + νq′2y ) + qy(qy − q′y)(q

′2
y + νq′2x )

)

+(1 − ν)q′xq
′
y

(

qx(qy − q′y) + qy(qx − q′x)
)]

+
(1 − 2ν)

(1 − ν)

qxqy

q2

[

q′x(qx − q′x) + q′y(qy − q′y)
]

− 4

(1 − ν)

q2
y

q3q′
[

qy(qx − q′x)(q
′2
x + νq′2y ) − qx(qy − q′y)(q

′2
y + νq′2x )

+(1 − ν)q′xq
′
y

(

qy(qy − q′y) − qx(qx − q′x)
)]}

ĥ(q′)ĥ(q − q′), (8)

σ̂
(2)f
xz (q) =

2Eǫ

1 − ν

∑

q′

i
qx

q2q′
{

qx(qx − q′x)(q
′2
x + νq′2y ) + qy(qy − q′y)(q

′2
y + νq′2x )

+(1 − ν)q′xq
′
y

[

qx(qy − q′y) + qy(qx − q′x)
]

−
q2
y

qx

[

(qx − q′x)(q
′2
x + νq′2y ) + (1 − ν)(qy − q′y)q

′
xq

′
y

]

+(1 − ν)qy(qx − q′x)q
′
xq

′
y + qy(qy − q′y)(q

′2
y + νq′2x )

}

ĥ(q′)ĥ(q − q′), (9)

σ̂
(2)f
yz (q) =

2Eǫ

1 − ν

∑

q′

i
qy

q2q′
{

qx(qx − q′x)(q
′2
x + νq′2y ) + qy(qy − q′y)(q

′2
y + νq′2x )

+(1 − ν)q′xq
′
y

[

qx(qy − q′y) + qy(qx − q′x)
]

−q2
x

qy

[

(qy − q′y)(q
′2
y + νq′2x ) + (1 − ν)(qx − q′x)q

′
xq

′
y

]

+(1 − ν)qx(qy − q′y)q
′
xq

′
y + qx(qx − q′x)(q

′2
x + νq2

y)
}

ĥ(q′)ĥ(q − q′), (10)
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while the results for first order perturbation are given by

σ̂(1)f
xx (q) =

2Eǫ

q(1 − ν)
(q2

x + νq2
y)ĥ(q), (11)

σ̂(1)f
yy (q) =

2Eǫ

q(1 − ν)
(q2

y + νq2
x)ĥ(q), (12)

σ̂(1)f
zz (q) = 0, (13)

σ̂(1)f
xy (q) = 2Eǫ

qxqy

q
ĥ(q), (14)

σ̂(1)f
xz (q) = − Eǫ

1 − ν
iqxĥ(q), (15)

σ̂(1)f
yz (q) = − Eǫ

1 − ν
iqyĥ(q). (16)



75

BIBLIOGRAPHY

[1] J. Stangl, V. Holy, and G. Bauer, “Structural properties of self-organized semicon-

ductor nanostructures”, Rev. Mod. Phys. 76, 725 (2004).

[2] J. Tersoff et al, “Critical Island size for layer-by-layer growth”, Phys. Rev. Lett.

72, 266 (1994).

[3] M. Rost, P. Smilauer, and J. Krug, “Unstable epitaxy on vicinal surfaces”, Surf.

Sci. 369, 393 (1996).

[4] I. Berbezier and A. Ronda, “SiGe nanostructures” ,Surf. Sci. Rep. 64, 47 (2009).

[5] R. J. Asaro and W. A. Tiller, Metall. Trans. 3, 1789 (1972),

[6] M. A. Grinfeld, Sov. Phys. Dokl. 31, 831 (1986).

[7] S. Kiravittaya, A. Rastelli, and O. G. Schmidt, “Advanced quantum dot configu-

rations”, Rep. Prog. Phys. 72, 046502 (2009).

[8] R. M. Tromp, F. M. Ross, and M. C. Reuter, “Instability-Driven SiGe Island

Growth”, Phys. Rev. Lett. 84, 4641 (2000).

[9] J. Tersoff, B. J. Spencer, A. Rastelli, and H. von Känel, “Barrierless Formation and

Faceting of SiGe Islands on Si(001)”, Phys. Rev. Lett. 89, 196104 (2002).

[10] D.E. Jesson and S.J. Pennycook, “Direct imaging of surface cusp evolution during

strained-layer epitaxy and implications for strain relaxation”, Phys. Rev. Lett. 71,

1744 (1993).

[11] M.D. Seta, G. Capellini, F. Evangelisti, and C. Spinella, “Intermixing promoted

Scaling of Ge/Si(100) island sizes”, J. Appl. Phys. 92, 614 (2002).



76

[12] R. C. Desai and R. Kapral, “Dynamics of Self-Organized and Self-Assembled Struc-

tures”, (2009).

[13] Michael R. Mckay, John Shumway, and Jeff Drucker, “Real-time coarsening dynam-

ics of Ge/Si(100) nanostructures”, J. Appl. Phys. 99, 094305 (2006).

[14] W. Dorsch et al, “Strain-induced island scaling during Si1xGex heteroepitaxy”,

Appl. Phys. Lett. 72, 179 (1998).

[15] D. J. Srolovitz, Acta Metall. 37, 621 (1989).

[16] B. J. Spencer, P. W. Voorhees, and S. H. Davis, “Morphological instability in

epitaxially strained dislocation-free solid films”, J. Appl. Phys. 73, 4955 (1993).

[17] B. J. Spencer, P. W. Voorhees, and S. H. Davis, “Morphological instability in

epitaxially strained dislocation-free solid films”, Phys. Rev. Lett. 67, 3696 (1991).

[18] P. Sutter and M. G. Lagally, “Nucleationless three dimensional island formation in

low-misfit heteroepitaxy”, Phys. Rev. Lett. 84, 4637 (2000).

[19] J. E. Guyer and P. W. Voorhees, “Morphological Stability of Alloy Thin Films”,

Phys. Rev. Lett. 74, 4031 (1995).

[20] B. J. Spencer, P. W. Voorhees, and J. Tersoff, “Morphological instability theory

for strained alloy film growth: The effect of compositional stresses and species-

dependent surface mobilities on ripple formation during epitaxial film deposition”,

Phys. Rev. B 64, 235318 (2001).

[21] Z.-F. Huang and R. C. Desai, “Epitaxial growth in dislocation-free strained alloy

films: Morphological and compositional instabilities”, Phys. Rev. B 65, 205419

(2002).



77

[22] Z.-F. Huang and R. C. Desai, “Instability and decomposition on the surface of

strained alloy films”, Phys. Rev. B 65, 195421 (2002).

[23] R. C. Desai, H. K. Kim, A. Chatterji, D. Ngai, S. Chen, and N. Yang, “Epitaxial

growth in dislocation-free strained asymmetric alloy films”, Phys. Rev. B 81, 235301

(2010).

[24] L. E. Shilkrot, D. J. Srolovitz, and J. Tersoff, “Morphology evolution during the

growth of strained-layer superlattices”, Phys. Rev. B 62, 8397 (2000).

[25] L. E. Shilkrot, D. J. Srolovitz, and J. Tersoff, “Erratum: Morphology evolution

during the growth of strained-layer superlattices”, Phys. Rev. B 67, 249901(E)

(2003).

[26] Z.-F. Huang and R. C. Desai, “Stress-driven instability in growing multilayer films”,

Phys. Rev. B 67, 075416 (2003).

[27] Z.-F. Huang, D. Kandel, and R. C. Desai, “Wetting effect and morphological sta-

bility in growth of short-period strained multilayers”, Appl. Phys. Lett. 82, 4705

(2003).

[28] F. M. Ross, J. Tersoff, and R. M. Tromp, “Coarsening of Self-Assembled Ge Quan-

tum Dots on Si(001)”, Phys. Rev. Lett. 80, 984 (1998).

[29] A. Rastelli, M. Stoffel, J. Tersoff, G. S. Kar, and O. G. Schmidt, “Kinetic Evolution

and Equilibrium Morphology of Strained Islands”, Phys. Rev. Lett. 95, 026103

(2005).

[30] J. A. Floro, M. B. Sinclair, E. Chason, L. B. Freund, R. D. Twesten, R. Q. Hwang,

and G. A. Lucadamo, “Novel Sige Island Coarsening Kinetics: Ostwald Ripening

and Elastic Interactions” Phys. Rev. Lett. 84, 701 (2000).



78

[31] T. J. Krzyzewski and T. S. Jones, “Ripening and annealing effects in

InAs/GaAs(001) quantum dot formation”, J. Appl. Phys. 96, 668 (2004).

[32] M. R. McKay, J. A. Venables, and J. Drucker, “Kinetically suppressed ostwald

ripening of Ge/Si(100) hut clusters”, Phys. Rev. Lett. 101, 216104 (2008).

[33] G. Medeiros-Ribeiro, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, “Anneal-

ing of Ge nanocrystals on Si(001) at 550 C: Metastability of huts and the stability

of pyramids and domes”, Phys. Rev. B 58, 3533 (1998).

[34] W. Dorsch et al., “Strain-induced island scaling during Si1xGexheteroepitaxy”,

Appl. Phys. Lett. 72, 179 (1998).

[35] J.L. Gray, R. Hull, and J.A. Floro, “Periodic arrays of epitaxial self-assembled

SiGe quantum dot molecules grown on patterned Si substrates” J. Appl. Phys. 100

084312 (2006).

[36] Takeshi Kitajima et al., “Two-dimensional periodic alignment of self-assembled Ge

islands on patterned Si(001)surfaces” Appl. Phys. Lett. 80 497 (2002).

[37] Zhenyang Zhong et al., “Ge island formation on stripe-patterned Si(001) sub-

strates”, Appl. Phys. Lett. 82, 445 (2003).

[38] B. Sanduijav et al., “Shape transitions and island nucleation for Si/Ge molecular

beam epitaxy on stripe-patterned Si (001) substrate”, Phys. Rev. B 80, 125329

(2009).

[39] Zhenyang Zhong et al., “Positioning of self-assembled Ge islands on stripe-patterned

Si(001) substrates” J. Appl. Phys. 93 6258 (2003).

[40] T. Ishikawa et al., “site control if InAs quantum dots on GaAs surfaces patterend

ny in situ electron-beam lithography” J. Vac. Sci. Technol. B 18 2635 (2000).



79

[41] W. Ye et al., “Control of InAs/GaAs quantum dot density and alignment using

modified buffer layers” J. Vac. Sci. Technol. B 23 1736 (2005).

[42] G. Nandipati and J. G. Amar, “Effects of strain on island morphology and size

distribution in irreversible submonolayer growth”, Phys. Rev. B 73, 045409 (2006).

[43] T. P. Schulze and P. Smereka, “An energy localization principle and its application

to fast kinetic Monte Carlo simulation of heteroepitaxial growth”, J. Mech. Phys.

Solids 57, 521 (2009).

[44] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, “Modeling Elasticity in

crystal growth”, Phys. Rev. Lett. 88, 245701 (2002).

[45] Z.-F. Huang and K. R. Elder, “Mesoscopic and microscopic modeling of island

formation in strained film epitaxy”, Phys. Rev. Lett. 101, 158701 (2008).

[46] Z.-F. Huang and K. R. Elder, “Morphological instability, evolution, and scaling in

strained epitaxial films: An amplitude-equation analysis of the phase-field-crystal

model”, Phys. Rev. B 81, 165421 (2010).

[47] K.-A. Wu and P. W. Voorhees, “Stress-Induced Morphological Instabilities at the

Nanoscale Examined Using the Phase Field Crystal Approach” Phys. Rev. B 80,

125408 (2009).

[48] K. R. Elder, Z.-F. Huang, and N. Provatas, “Amplitude expansion of the binary

phase-field-crystal model”, Phys. Rev. E 81, 011602 (2010).

[49] K. R. Elder and Z.-F. Huang, “A phase field crystal study of epitaxial island for-

mation on nanomembranes”, J. Phys.: Condens. Matter 22, 364103 (2010).

[50] Z.-F. Huang, K. R. Elder, and N. Provatas, “Phase-field-crystal dynamics for binary

systems: Derivation from dynamical density functional theory, amplitude equation



80

formalism, and applications to alloy heterostructures”, Phys. Rev. E 82, 021605

(2010).

[51] W. H. Yang and D. J. Srolovitz, “Cracklike surface instabilities in stressed solids”,

Phys. Rev. Lett. 71, 1593 (1993).

[52] B. J. Spencer, S. H. Davis, and P. W. Voorhees, “Morphological instability in

epitaxially strained dislocation-free solid films: Nonlinear evolution”, Phys. Rev. B

47, 9760 (1993).

[53] C.-h. Chiu, “The self-assembly of uniform heteroepitaxial islands”, Appl. Phys.

Lett. 75, 3473 (1999).

[54] C.-H. Chiu and Z. Huang, “Numerical simulation for the formation of nanostruc-

tures on the StranskiKrastanow systems by surface undulation”, J. Appl. Phys.

101, 113540 (2007).

[55] F. Liu, A. H. Li, and M. G. Lagally, “Self-Assembly of Two-Dimensional Islands

Via Strain-Mediated Coarsening”, Phys. Rev. Lett. 87, 126103 (2001).

[56] Y. Xiang and E. Weinan, “Nonlinear evolution equation for the stress-driven mor-

phological instability” J. Appl. Phys. 91, 9414 (2002).

[57] P. Liu, Y. W. Zhang, and C. Lu, “Coarsening kinetics of heteroepitaxial islands in

nucleationless Stranski-Krastanov growth” Phys. Rev. B 68, 035402 (2003).

[58] A. A. Golovin, S. H. Davis, and P. W. Voorhees, “Self-Organization of Quantum

Dots in Epitaxially-Strained Solid Films”, Phys. Rev. E 68, 056203 (2003).

[59] W. T. Tekalign and B. J. Spencer, “Evolution equation for a thin epitaxial film on

a deformable substrate”, J. Appl. Phys. 96, 5505 (2004).



81

[60] W. T. Tekalign and B. J. Spencer, “Thin-film evolution equation for a strained

solid film on a deformable substrate: Numerical steady states” J. Appl. Phys. 102,

073503 (2007).

[61] H. R. Eisenberg and D. Kandel, “Formation, ripening, and stability of epitaxially

strained island arrays”, Phys. Rev. B, 71, 115423 (2005).

[62] Y. Pang and R. Huang, “Nonlinear effect of stress and wetting on surface evolution

of epitaxial thin films” Phys. Rev. B 74, 075413 (2006).

[63] M. S. Levine, A. A. Golovin, S. H. Davis, and P. W. Voorhees, “Self-Assembly of

Quantum Dots in a Thin Epitaxial Film Wetting an Elastic Substrate”, Phys. Rev.

B 75, 205312 (2007).

[64] J.-N. Aqua, T. Frisch, and A. Verga, “Nonlinear evolution of a morphological in-

stability in a strained epitaxial film”, Phys. Rev. B 76, 165319 (2007).

[65] J. Muller and M. Grant, “Model of Surface Instabilities Induced by Stress”, Phys.

Rev. Lett. 82, 1736 (1999).

[66] K. Kassner, C. Misbah, J. Müller, J. Kappey, and P. Kohlert, “Phase-field modeling

of stress-induced instabilities”, Phys. Rev. E 63, 036117 (2001).

[67] J.-N. Aqua, T. Frisch, and A. Verga, “Ordering of strained islands during surface

growth”, Phys. Rev. E 81, 021605 (2010).

[68] M. C. Cross, D. I. Meiron, and Y. Tu, “Chaotic domains: a numerical investigation”,

Chaos 4, 607 (1994).

[69] B. J. Spencer and D. I. Meiron, Acta Metall. Mater. 37, 621 (1994)



82

[70] F. M. Ross, J. Tersoff, and R. M. Tromp, “Coarsening of Self-Assembled Ge Quan-

tum Dots on Si(001)”, Phys. Rev. Lett. 80, 984 (1998).

[71] C. Sagui and R. C. Desai, “Kinetics of phase separation in two-dimensional systems

with competing interactions”, Phys. Rev. E, 49, 2225 (1994).



83

ABSTRACT

CONTINUUM ELASTICITY MODELING OF

NANOSTRUCTURE EVOLUTION IN STRAINED FILM

EPITAXY

by

CHAMPIKA G GAMAGE

December 2012

Advisor: Dr. Zhi-Feng Huang

Major: Physics

Degree: Doctor of Philosophy

The formation of surface nanostructures such as islands or quantum dots during

strained film epitaxy has attracted great interest in recent years. The underlying mecha-

nisms have been attributed to the occurrence of morphological instabilities of the strained

films, for which the coupling between film-substrate material properties and growth con-

ditions plays a major role. Morphological properties of an epitaxially grown film and the

self-organization process of coherent strained islands are analyzed via the development

of a continuum elasticity model based on the 2nd order perturbation method. Effects

of wetting stress due to film-substrate interactions have been incorporated in the re-

sulting nonlinear dynamic equation governing the film morphological profile. We study

the formation and evolution of surface strained islands or quantum dots for different

film/substrate misfit strains, via analyzing the time-dependent behavior of the structure

factor for surface heights, its various moments, and the surface roughness. Three regimes

of island array evolution have been identified, including a film instability regime at early

stage, a slow power-law-type coarsening at intermediate time, and the crossover to a sat-
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urated state, with detailed behavior dependent on misfit strains but not qualitatively on

finite system sizes. It is found to be controlled by the strength of film-substrate wetting

interaction which would constrain the valley-to-peak mass transport and hence the growth

of island height, and also determined by the effect of elastic interaction between surface

islands and the high-order strain energy of individual islands at late evolution stage. The

results are compared to previous experimental and theoretical efforts on quantum dots

coarsening and saturation. We also study the formation of these nanostructures on a

nonplanar patterned substrate. The properties of islands formed are highly affected and

controlled by the periodicity and amplitude of the pre-defined substrate patterns and also

the initial film thickness, as shown in our stability analysis results.
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