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CHAPTER 1 INTRODUCTION 

1.1. Background 

Cancer is accountable for millions of deaths annually worldwide. According 

to the American Cancer Society, cancer is the second most common cause of 

death in the United States. Approximately 1.7 million new cancer cases are 

expected and about 600,000 Americans are expected to die of cancer in 2016 [1]. 

Chemotherapy, radiotherapy, and photothermal therapy are the most common 

treatments for cancer. Chemotherapy is the most common strategy in cancer 

treatment because of its higher efficacy as compared to other types of treatments 

[2–5]. In most cases, cancer diagnosis in the early stage is difficult. Most of the 

patients are diagnosed at the late stage of cancer with a poor prognosis. In the 

advanced stage of cancer, chemotherapy and radiotherapy are the only options. 

However, the development of chemotherapeutic drug resistance is the most 

common reason leading to the failure of cancer treatment. The conventional 

treatment with the systemic distribution of chemotherapeutics is problematic and 

shows a significant flow that can make the difference between success and failure 

[6]. High doses are often required to accumulate adequate amounts of 

chemotherapeutic agents at the tumor site to achieve desirable therapeutic 

efficacy. However, larger doses possess a higher risk of adverse side-effects with 

the increase of toxicity in non-targeted sites or normal tissues. The bleak prognosis 

for patients diagnosed with metastatic cancer along with the low therapeutic 

efficacy and the recurrence of cancer in conventional chemotherapy are prompting 

clinical medicine to adopt a new strategy to detect cancer in early stage and to 
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deliver the anticancer drugs specifically to tumor site to enhance therapeutic 

efficiency and minimize side effects. 

1.2. CDF (3,4-difluorobenzylidene diferuloylmethane) – a highly 

potent but extremely lipophilic anticancer drug 

In our earlier studies  3,4-difluorobenzylidene diferuloylmethane (CDF), a 

synthetic analog of a potent flavonoid anticancer compound has shown 16-fold 

increased half-life and high anticancer activity compared to its natural analog, 

diferuloylmethane when tested on pancreatic cancer cells [7–9]. The observed 

improvement in properties of CDF was attributed to its much higher stability and 

bioavailability compared to the natural counterpart. CDF could inhibit the growth of 

cancer cells through down-regulation of multiple miRNAs, up-regulation of 

phosphatase and tensin homolog (PTEN), and attenuation of histone 

methyltransferase EZH2 [10–12]. These findings strongly indicate that CDF could 

be a good candidate for several cancers, including cervical cancer. However, one 

significant problem limiting CDF from further preclinical and clinical testing is its 

very poor aqueous solubility. In our previous studies, we successfully overcame 

CDF’s solubility problem by using dendrimer and micellar nanocarriers [7,13]. In 

those studies, CDF has shown a significant anticancer activity on tested cancer 

cells including triple marker positive stem-like pancreatic cancer cells. 
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1.3. Polyamidoamine (PAMAM) dendrimers in targeted drug 

delivery 

1.3.1. What are PAMAM dendrimers? 

PAMAM dendrimers are a relatively novel class of polymers with a well-

defined, nano-sized, highly branched and monodispersed structures with 

numerous hydrophilic reactive amine groups on the periphery and lipophilic 

internal cavities. PAMAM dendrimers are known for their ability to encapsulate 

hydrophobic drugs in their internal cavities to enhance the aqueous solubility of 

these hydrophobic compounds [14–16]. The larger numbers of reactive amine 

groups on the periphery makes PAMAM dendrimers suitable for many biomedical 

applications such as drug conjugation, siRNA and gene complexation, and 

conjugation to bio-recognition molecules to achieve active targeting ability [17,18]. 

When PAMAM dendrimers are used as drug carriers, they can enhance the drug 

biodistribution in tumor site possibly by taking the advantage of enhanced 

permeation and retention effect [19–21]. In addition, it is demonstrated that by 

carrying targeting ligands on the surface, PAMAM dendrimers can achieve active 

receptor targeting. In this regards, one of the most commonly used targeting 

ligands is folic acid (FA). Many types of cancer cells (such as ovarian, colon, lung, 

breast and cervical cancer cells) are known to have a high expression of folate 

receptors on their membranes [22–25]. Drug carriers decorated with FA can 

achieve targeting ability and high accumulation in cancer cells by taking advantage 

of the specific binding of FA with folate receptors overexpressed on these targeted 

cancer cells. Cellular internalization is facilitated via folate-receptor mediated 
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endocytosis and followed by the release of anticancer drug; thus, resulting in a 

better accumulation with minimized toxicity to normal cells. 

1.3.2. Dendrimer mediated tumor targeted delivery: Passive and active 

targeting  

1.3.2.1. Dendrimer-mediated passive targeting strategy 

The passive targeting pathway of dendrimers utilizes the inherent ability of 

macromolecules to extravasate and accumulate specifically in the tumor 

microenvironment based on a phenomenon called the enhanced permeability and 

retention (EPR) effect, which was discovered by Matsumura and Maeda [19]. The 

EPR phenomenon suggested that the rapid proliferation of tumor cells create 

complex networks of blood vessels that are highly disorganized and leaky. The 

dilation of blood vessels is facilitated by excessive levels of vascular permeability 

mediators secreted by tumor cells [4,26–28]. The anatomical and 

pathophysiological abnormalities in tumor environment result in an extensive 

leakage of macromolecules and nanoparticles including dendrimers into the tumor 

interstitium [26,28–30]. In addition, the lymphatic clearance in solid tumors is 

dysfunctional in general. As a consequence, drugs conjugated or encapsulated in 

macromolecules and nanoparticles can attain very high local concentrations in the 

tumor environment with negligible accumulation in the non-targeted or healthy 

organs. Particle size is an important factor dictating the localization and retention 

in tumor tissues. It is observed that nanoparticles in the range of ten to a few 

hundred nanometers can exploit the EPR phenomenon to accumulate in tumor 

tissues [31]. In this regards, dendrimers with a typical size range from 10 to 20 nm 
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are favorable to achieve passive tumor targeting [32]. In addition, dendrimers have 

prolonged half-life in the systemic circulation and can avoid renal excretion due to 

the ability to bind to plasma proteins and biomolecules [33]. As a result, dendrimers 

can retain in the blood for an extended duration and accumulate in the tumor 

environment by EPR effect, suggesting a sustained and controlled delivery profile. 

1.3.2.2. Dendrimer-mediated active targeting strategy 

The passive tumor targeting has numerous challenges due to the 

complexity of the anatomic and pathophysiological barriers in the in vivo biological 

environment. The passive targeting strategy is only effective in highly permeable 

solid tumors. In most cases, the permeability in tumors is relatively poor and non-

uniform; thus, it is difficult to take advantage of EPR effect in these heterogeneous 

and impermeable tumors [34]. These limitations can be resolved to some extent 

by utilizing the active targeting strategy, a phenomenon where specific targeting 

ligands are introduced to the nanostructure to facilitate the selective binding to 

unique and overexpressed receptors on specific tumor cells. In this regards, 

dendrimers with numerous reactive functional groups on the periphery are 

favorable for the conjugation with targeting ligands for the active targeting effect. 

Folic acid is one of the most common targeting ligands for several reasons. 

Folic acid is a low molecular weight B-vitamin whose receptors are found to be 

overexpressed in numerous types of cancer cells, including lung, breast, colon, 

choroid plexus brain, choriocarcinoma, cervical, and ovarian cancers [22,24,35]. 

Folate receptors are known to occur in clusters, giving the ability to enhance 

targeting efficacy by using multiple folic acid moieties on nanoparticles. Many types 
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of cancer cells are known to have a high level expression of folate receptors. 

Healthy cells also express folate receptors but with a significantly lower degree. 

Moreover, folate receptors in healthy cells are in a different location which is not 

accessible from the bloodstream, suggesting that folate receptors in cancer cells 

could be a perfect target for actively targeted drug delivery [22]. 

Because of the small size, folic acid is known to be a stable molecule that 

does not induce an immune response. As compared to an antibody, folic acid is a 

better targeting ligand since its  binding affinity to folate receptors is not diminished 

after its conjugation to macromolecules or nanoparticles [36,37]. In addition, 

antigen expression may change over time; whereas, folate receptors are stable 

because folic acid is a crucial ingredient in biosynthesis needed for cellular 

proliferation [37–39]. After the binding of the folate-decorated nanoparticles, 

endocytosis will occur resulting in the internalization of the folate-decorated 

nanoparticles. Then, folate receptors are recycled to the cell surface and ready for 

binding with the next nanoparticles [40].  

1.4. Biomedical application of Magnetic Resonance Imaging 

1.4.1. Magnetic resonance imaging (MRI)  

MRI is one of the most common clinical diagnostic tools due to its 

noninvasive, tomographic properties that offers superb spatial resolution without 

the dangers of ionizing radiation. Hydrogen nuclei or protons in water molecules 

are the main contributors to MRI signal in biological applications. In a simplistic 

sense, MR imaging is just the proton nuclear magnetic resonance (NMR) in the 

biological systems which yields the intensity maps of the proton relaxation time in 
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tissue [41]. The difference in the proton density and the relaxation time constants 

in the tissue samples gives the contrast in the resulting MR images. However, the 

sensitivity of the MR images is relatively low if we only rely upon these inherent 

contrast mechanisms [42]. This limitation can be addressed by using exogenous 

magnetic agents or contrast agents which can influence the spin relaxation time of 

the local protons thereby enhancing the contrast in the resulting MR images [43–

46]. 

1.4.2. MRI contrast agents  

Among several types of contrast agents, the two major classes are chelated 

paramagnetic ions such as Gadolinium (Gd), and superparamagnetic iron oxide 

nanoparticles (SPIONs). SPIONs have several advantages as compared to 

chelated paramagnetic ions. SPIONs are detectable at nM concentrations or lower, 

whereas chelated paramagnetic ions detection concentration is at the mM in order 

to generate adequate contrast [47]. In addition, paramagnetic chelates need the 

exchange of water protons in order to produce local contrast effects; whereas, 

SPIONs can impact a larger region of tissue without the direct contact with water 

protons by producing magnetic field gradients [39,45,48].  

In recent years, magnetic nanoparticles are getting more attention due to 

their applications in biology and medicine such as enzyme and protein 

immobilization, magnetic resonance imaging, tissue engineering, magnetic cell 

tracking and separation, hyperthermia, and targeted drug and gene delivery 

[49,50]. Drug delivery systems based on magnetic nanoparticle carriers possess 

the ability of magnetic resonance imaging contrast agents as well as the advanced 
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properties of nanocarriers such as the enhanced aqueous solubility, increased 

systemic circulation time, targeting delivery of chemotherapeutic drugs with 

reduced toxicity in normal tissues. Magnetic iron oxide (Fe3O4) nanoparticles, 

especially superparamagnetic iron oxide nanoparticles, have been widely studied 

and shown great potentials in biotechnology because of their biocompatible, inert, 

and excellent superparamagnetism properties [51,52]. In in vivo applications, the 

surface of these magnetic nanoparticles can be modified with polymeric shells 

such as dextran, PEG, chitosan, and dendrimers [53–55]. These polymeric shells 

provide not only the biocompatibility for the magnetic nanoparticles, but also the 

ability for conjugation with biomolecules such as proteins, nucleic acids, enzymes, 

targeting ligands, and drugs [56–59]. 

1.4.3. Iron oxide nanoparticles – Safe and highly effective MRI contrast 

agents 

There are many factors that make iron oxide Fe3O4 excellent MRI contrast 

agents. Iron oxide particles occur naturally in many animals and are currently the 

only inorganic contrast particles approved for in vivo human applications 

(Endorem® or Feridex I.V.®; Advanced Magnetics, Cambridge, Massachusetts, 

USA) [39,60,61]. Iron oxide particles are biodegradable without either acute or 

chronic toxicity [62–65]. Uncoated magnetic iron oxide particles have an LD50 of 

300 to 600 mg iron per kg body weight, and the surface coating has shown to be 

able to improve the biocompatibility of the iron oxides by an order of magnitude 

[39,66]. The typical clinical dose for SPIONs is 1 mg Fe per kg body weight which 

is significantly lower than LD50. It is also a small fraction of the approximately 3500 
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mg of total iron in various forms naturally found in the human body. In addition, 

many studies have shown that the human body has established methods to 

metabolize the excess amount of iron introduced by the particles [48,64,67,68]. 

SPIONs have been studied with many different agents for actively targeted 

MRI. In a study by Cheon et al., SPIONs were modified with dimercaptosuccinic 

acid, followed by the conjugation of Herceptin molecules via the free thiol functional 

groups on the particles. The targeting ability of the particles was demonstrated in 

vitro with different cell lines with a different level of her2/neu expression. The 

results showed a decrease in MRI signal intensity with the increase of the 

expression of her2/neu. In in vivo studies using mice bearing a NIH3T6.7 

xenograft, SPIONs conjugated Herceptin showed an enhanced contrast in MR 

signal as compared to SPIONs conjugated with the irrelevant antibodies [69]. 

Besides antibody, transferrin has been used as a targeting ligand for SPIONs 

[38,70]. Many studies have suggested that SPIONs decorated transferrin could 

benefit from the transferrin receptor-mediated endocytosis, resulting in a higher 

degree of cellular internalization.   

Shi’s group used folic acid as a targeting moiety for SPIONs for targeted 

MRI of tumors. SPIONs were synthesized by co-precipitation method. A layer-by-

layer self-assembly method was used to functionalize SPIONs with dendrimer 

decorated folic acid. The results showed an enhanced in cellular uptake of the 

SPIONs containing folic acid in tumor cells overexpressed folate receptors. MR 

images showed a higher increase in the contrast when incubating the folate-

decorated SPIONs with human epithelial carcinoma cell line (KB cells) indicating 
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the targeting effect of the conjugates [71]. In a recent study done by Akal et al., 

SPIONs were functionalized with APTES ((3-Aminopropyl) triethoxysilane), 

polyethylene glycol (PEG) and folic acid for the targeted delivery of Quercetin for 

brain cancer. Prussian blue staining and fluorescence spectroscopy studies 

showed a higher cellular uptake of the SPIONs containing folic acid. The Quercetin 

loaded folate-decorated SPIONs showed a higher anticancer activity when tested 

on U87 cell line (brain adenocarcinoma cells, which have high expression of folate 

receptors), as compared to L929 cell line (fibroblast cells, which are folic acid 

receptors negative cells). The results are in accordance with previous studies, 

suggesting SPIONs modified with appropriate targeting ligands could result in a 

better accumulation in tumor cells which possess complementary receptor binding 

domains. 

1.5. SPIONs coated FA-PAMAM as a multifunctional agent for 

cancer imaging and therapy 

In this study, SPIONs were synthesized by coprecipitation method, followed 

by surface coating and fabrication of PAMAM-decorated FA. The magnetic 

nanocarriers were used to encapsulate a poorly aqueous soluble but highly potent 

anticancer drug 3,4-difluorobenzylidene diferuloylmethane (CDF), a synthetic 

analog of a potent flavonoid anticancer compound diferuloylmethane. In our 

previous studies, CDF has shown a high anticancer activity when tested on 

pancreatic, cervical, ovarian and lung cancer cells [7–9,72]. The improvement in 

anticancer properties of CDF was attributed to a 16-fold increased half-life, a 

higher stability, and bioavailability as compared to its natural counterpart. CDF has 
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shown to be able to inhibit the growth of cancer cells through down-regulation of 

multiple miRNAs, up-regulation of phosphatase and tensin homolog (PTEN), and 

attenuation of histone methyltransferase EZH2 [10–12]. The theranostic capability 

for cancer imaging and therapy of the magnetic nanocarriers encapsulated CDF 

was examined by in vitro biological studies, cellular uptake, and T2 relaxation 

studies. The results demonstrated that the synthesized magnetic nanocarriers 

could be promising carriers in active targeting cancer imaging and therapy (Fig. 1).

 

Figure 1. The pictorial representation of accumulation of targeted formulation 

(SPIONs@FA-PAMAM-CDF) at the tumor site by EPR-effect, followed by folate 
receptor mediated endocytosis of the formulation due to the specific binding of FA 
to folate receptors overexpressed on cancer cells. 
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CHAPTER 2 EXPERIMENTAL DESIGN 

2.1. Materials 

2.1.1. Reagents 

CDF was synthesized as described earlier [7,13]. Fourth generation (4.0G) 

PAMAM dendrimer, ferrous chloride (FeCl2.4H2O), ferric chloride (FeCl3.6H2O), N-

(3-(dimethylamino) propyl)-N-ethylcarbodiimide hydrochloride (EDC), and 3-[4,5 

dimethylthiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) was purchased from 

Sigma-Aldrich (St. Louis, MO). FA was purchased from Fisher Scientific. Guava 

Nexin Reagent for cell apoptosis kit was purchased from EMD Millipore. All other 

chemicals were of reagent grade and used without any modification. 

2.1.2. Cell lines 

Human cervical cancer cells (HeLa cells) and human ovarian carcinoma 

cells (SKOV3 cells) were used in this study due to their high expression of folate 

receptors [73–76]. HeLa cells were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM; Fisher Scientific, Waltham MA) with 10% fetal bovine serum 

(FBS) and streptomycin sulfate (10mg/L). SKOV3 cells were cultured in Roswell 

Park Memorial Institute (RPMI) 1640 Medium (Thermo Fisher Scientific, USA) with 

10% FBS and streptomycin sulfate (10mg/L). All cell lines were incubated at 37oC 

in a 5% CO2 air humidified atmosphere. 
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2.2. Superparamagnetic iron oxide nanoparticles (SPIONs) 

synthesis 

Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized 

using co-precipitation method [77]. Prior to the synthesis, 0.5 M NaOH solution in 

deionized water (DIW) was prepared in a three-neck 500 ml round bottom flask 

(RBF) and degassed by bubbling N2 while stirring at room temperature RT) for 30 

min, followed by degas under vacuum while stirring at RT for another 30 min, then 

was heated to 40oC. Then, ferric chloride FeCl3.H2O (6.56 g, 0.024 mol) and 

ferrous chloride FeCl2.4H2O (2.48 g, 0.012 mol) were dissolved in 25 ml of 

degassed 0.4 M HCl solution in DIW and then added to the RBF through a septum. 

The RBF was heated at 80oC under strong stirring for 1 h. SPIONs were 

precipitated using a strong neodymium N52 magnet and then decant the reaction 

mixture. The SPIONs were washed 5 times by dispersing them back in EtOH (300 

ml) with probe sonication for 10 min, followed by magnet precipitation and decant 

the liquid. A dry powder of SPIONs was obtained by drying under vacuum on a 

rotary evaporator. The product was characterized by Fourier Transform Infrared 

Spectroscopy (FTIR). Hydrodynamic size and zeta potential were characterized by 

dynamic light scattering using Beckman Coulter Delsa Nano. 

2.3. FA-PAMAM decorated SPIONs fabrication 

FA was conjugated to 4th generation PAMAM dendrimers through 

carbodiimide coupling chemistry according to our previously reported method [72]. 

Prior to the FA-PAMAM conjugation, the surface of SPIONs was modified to create 
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the activated carboxyl groups (Fig 2). The fabrication process includes three main 

steps: amine functionalization, carboxylation, and FA-PAMAM conjugation. 

 

Figure 2. SPIONs decorated FA-PAMAM (SPIONs@FA-PAMAM) 

fabrication process. 

2.3.1. Amine functionalized SPIONs (SPIONs@APTS) 

Synthesized SPIONs were functionalized by (3-aminopropyl) 

trimethoxysilane (APTS) to have peripheral amino groups [78–80]. Briefly, 1g of 

SPIONs were dispersed in 300 ml EtOH with probe sonication for 1 h. Then 6 ml 

of APTS was added to the EtOH solution. The solution was sonicated for another 

1 h. The resulting product SPIONs@APTS were precipitated using a strong 

neodymium N52 magnet and then the reaction mixture was decanted. The product 

was washed 3 times by dispersing in 300 ml EtOH with probe sonication, followed 

by magnet decantation. SPIONs@APTS were dried under vacuum on a rotary 

evaporator. Energy dispersive X-ray spectroscopy (EDS) and FTIR spectroscopy 
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were used to characterized the product. Size and zeta potential were measured by 

Beckman Coulter Delsa Nano instrument. 

2.3.2. Carboxylation of amine functionalized SPIONs (SPIONs@COOH) 

Succinic anhydride was used to carboxylate the amine groups of 

SPIONs@APTS according to previously reported study [81]. Briefly, 100 mg of 

SPIONs@APTS were dispersed in 150 ml EtOH using probe sonication. Succinic 

anhydride (500 mg) was added to 150 ml of DMSO under vigorous stirring and 

then added to the SPIONs@APTS in EtOH solution. The reaction was stirred at 

RT for 24 h. The resulting product SPIONs@COOH were precipitated using a 

strong neodymium N52 magnet, followed by the decantation of the supernatant. 

The product SPIONs@COOH were washed 3 times by dispersing in 300 ml EtOH 

using probe sonication, followed by decantation, and were dried under vacuum on 

a rotary evaporator. The product was confirmed by FTIR spectroscopy, size, and 

zeta potential measurements. 

2.3.3. Activation of SPIONs@COOH and fabrication of FA-PAMAM and 

SPIONs@COOH conjugate 

Carboxyl groups of SPIONs@COOH were activated using carbodiimide 

reaction. In brief, 50 mg of SPIONs@COOH were dispersed in 100 ml DMSO using 

probe sonication for 1 h. Then, 490 mg EDC and 735 mg NHS were added to the 

solution. The reaction was left for 24 h under vigorous stirring. Activated 

SPIONs@COOH were conjugated with 100 mg PAMAM or 100 mg FA-PAMAM 

(dissolved in DMSO) to have SPIONs@PAMAM or SPIONs@FA-PAMAM. The 

final products SPIONs@PAMAM and SPIONs@FA-PAMAM were purified by 
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precipitation by a strong neodymium N52 magnet, followed by decantation of the 

supernatant. The products were washed 3 times by dispersing in 300 ml EtOH and 

followed by magnet decantation. The products were characterized by size and zeta 

potential measurements. 

To quantify the amount of dendrimers conjugated to SPIONs, PAMAM 

dendrimers, and FA-PAMAM conjugates were labeled with Rhodamine B 

isothiocyanate according to previously reported method [82]. In short, PAMAM or 

FA-PAMAM conjugates were dispersed in 50 ml EtOH. Rhodamine B 

isothiocyanate was added to the EtOH dispersion. The amount of Rhodamine B 

isothiocyanate was calculated to have the ratio of Rhodamine B isothiocyanate to 

PAMAM or FA-PAMAM of 3:1. The reaction was stirred at RT for 1h, and followed 

by dialysis in 5L of DIW for 3 times with the molecular weight cut-off 3.5 kDa. 

Lyophilization was performed at the end of the dialysis to have the dry powder of 

Rhodamine B label PAMAM (RhoB-PAMAM) and Rhodamine B labeled FA-

PAMAM (RhoB-FA-PAMAM). Fluorescence spectroscopy was employed to 

measure the fluorescence of the Rhodamine B labeled formulations 

(SPIONs@RhoB-PAMAM and SPIONs@RhoB-FA-PAMAM). The amounts of 

PAMAM and FA-PAMAM conjugated to SPIONs were calculated based on the 

linear equation of Rhodamine B fluorescence and Rho B-PAMAM or Rho B-FA-

PAMAM concentrations. 

2.3.4. Transmission electron microscopic analysis 

The size of the synthesize SPIONs and the fabricated product 

SPIONs@PAMAM and SPIONs@FA-PAMAM were studied using transmission 
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electron microscopy. Samples were prepared according to a previous method [72]. 

Briefly, 4 µL of each sample (dispersion of 2 mg powder of the sample in 5 ml of 

DIW) was applied to a Formvar-coated, carbon-stabilized copper grid (400 mesh). 

The copper grid was air-dried and negatively stained with 5% aqueous uranyl 

acetate, and was allowed to dry. Samples were analyzed by JEOL Transmission 

electron microscope equipped with LaB6 filament gun (JEM 2010, Tokyo, Japan) 

at an accelerating voltage of 200 kV. 

2.4. CDF encapsulation 

Anticancer drug CDF was encapsulated in SPIONs@PAMAM and 

SPIONs@FA-PAMAM separately using equilibrium dialysis method as described 

earlier [72,83]. Briefly, CDF and SPIONs formulations were calculated to have CDF 

and dendrimer (PAMAM or FA-PAMAM) at the molar ratio of 50:1. Both CDF and 

SPIONs@PAMAM or SPIONs@FA-PAMAM were dissolved in the mixture of 

DMSO and phosphate buffered saline (PBS) pH 7.4 (ratio 4:6). The mixed solution 

was stirred in the dark at a low speed of 50 rpm for 72h at RT. The CDF 

encapsulated SPIONs@PAMAM-CDF and SPIONs@FA-PAMAM-CDF were 

precipitated using a strong neodymium N52 magnet. The supernatant was used 

for indirect drug loading method. After decantation, the formulations were washed 

by dispersing in 100 ml EtOH by vortexing, followed by magnet decantation. Dry 

products were obtained by drying under vacuum on a rotary evaporator. 

The remaining CDF in the supernatant after drug loading was determined 

by High-performance liquid chromatography (HPLC) method using a C18 column 

with photodiode array detector (PDA) at 447 nm.  For the remaining CDF 
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concentration determination, a standard curve of CDF was made by dissolving 

known amounts of CDF in DMSO and its successive dilutions in the mobile phase, 

followed by HPLC analysis at the absorbance of 447 nm. A known amount of the 

supernatant containing unloaded CDF was diluted in DMSO, followed by further 

dilution in the mobile phase and HPLC analysis at the absorbance of 447 nm. The 

amount of remaining CDF was calculated based on the CDF standard curve, and 

the percentage of CDF loaded in the formulations were calculated based on the 

subtraction of the initial amount of CDF and the remaining amount of CDF. 

2.5. Fluorescence microscopy study 

Fluorescence microscopic study was performed in SKOV3 cells to compare 

the targeting ability of SPIONs@FA-PAMAM and SPIONs@PAMAM. In brief, 

SKOV3 cells were seeded in a four-well chamber slide (5 x 104 cells in each well) 

and incubated at 37oC in a 5% CO2 air humidified atmosphere for 24 h. The 

medium was removed and Rhodamine B labeled formulations (SPIONs@PAMAM-

Rho and SPIONs@FA-PAMAM-Rho) were added and incubated for 6 h. The 

formulation containing medium was removed, and cells were washed for 3 times 

with cold PBS (pH 7.4), and fixed with 3% formaldehyde in the PBS pH 7.4 at RT 

for 10 min. Samples were analyzed qualitatively using a fluorescent microscope 

(Leica, Germany) [84]. 
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2.6. T2 relaxivity and in vitro relaxometry and imaging studies 

2.6.1. T2 relaxivity studies of SPIONs, SPIONs@PAMAM, and 

SPIONs@FA-PAMAM 

T2 relaxometry was performed using a 7.0 T Bruker ClinScan system. The 

instrumental parameters wecre set as follows: a 7.0 T magnetic field strength, pixel 

spacing at 0.297/0.297, repetition time 2000 ms, echo time 11 ms, and slice 

thickness of 2 mm. Synthesized SPIONs and their modification SPIONs@PAMAM 

and SPIONs@FA-PAMAM were analyzed at different iron concentrations 10, 20, 

40, 60, 80, and 100 μg/ml. The T2 relaxivity was calculated from the linear slope of 

the inverse T2 (1/T2) relaxation time according to the iron concentration. 

2.6.2. In vitro MR relaxometry and imaging 

5 x 105 HeLa and SKOV3 cells were incubated with both the non-targeted 

formulation SPIONs@PAMAM and the targeted formulation SPIONs@FA-

PAMAM at iron concentrations of 10,20,40, and 80 μg/ml for 30 min at 4oC 

according to the previously reported method [59]. In short, 5 x 105 HeLa and 

SKOV3 cells were trypsinized and suspended in cold PBS (in an ice bath) and 

incubated with the formulations. After 30 min incubation, cells were centrifuged 

down at 800 rpm for 3 min to form a pellet. Cells were washed 3 times with cold 

PBS to remove free particles. Final pellets were resuspended in cold PBS and 

used for MR imaging. A phantom was constructed consisting of all of the sample 

vials. The instrumental parameters were set a 7.0 T magnetic field strength, pixel 

spacing at 0.297/0.297, repetition time 2000 ms, echo time 11 ms, and slice 

thickness of 2 mm. 
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2.7. In vitro cytotoxicity study 

The in vitro cytotoxicity of free CDF, SPIONs@PAMAM-CDF, and 

SPIONs@FA-PAMAM-CDF formulations were evaluated by MTT assay on HeLa 

and SKOV3 cell lines. In brief, HeLa and SKOV3 cells were seeded in 96 well-

plates with an average of 3000 cells in each well. After 24 h incubation at 37oC in 

a 5% CO2 air humidified atmosphere, cells were treated with various formulations 

with a concentration range from 0.25 μM to 5 μM. Treated cells were incubated for 

72 h at 37oC followed by addition of MTT solution (1mg/ ml) and further incubation 

at 37oC for 3h. Then, the media was replaced by DMSO (100 μl in each well). The 

absorbance was measured at 590 nm using a high-performance multi-mode plate 

reader Synergy 2 (BioTek). The percentage of viable cells was determined by 

comparing the absorbance with appropriate controls [7,13]. 

2.8. Folate receptor blocking assay 

The folate receptor blocking assay was performed to understand the 

mechanism by which the targeting SPIONs@FA-PAMAM-CDF internalize HeLa 

and SKOV3 cells via folate receptor mediated endocytosis. This assay is based on 

the principle of the initial blockade of folate receptors of HeLa and SKOV3 by 

adding an excess amount of free FA (1 mM) [72], followed by treatment with 

formulations (CDF, SPIONs@PAMAM-CDF, and SPIONs@FA-PAMAM-CDF).  

The cell viability of HeLa and SKOV3 were determined by MTT assay after 72 h 

incubation at 37oC. This assay is performed according to the previously reported 

protocol [85]. In short, HeLa and SKOV3 cells were seeded in 96 well-plates for 24 

h, followed by addition of 100 μl of 1mM FA in each well and incubation at 37oC 
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for 3 h. Then, cells were washed twice with PBS (pH 7.4), followed by media and 

addition of formulations. After 72 h incubation at 37oC, MTT assay was performed 

to determine the cell viability as stated in the previous section. 

2.9. Apoptosis assay by flow cytometry 

Apoptosis assay was performed on HeLa cell line according to our previous 

study [72]. In brief, HeLa cells were cultured in 6-well plates at 5x104 cells in each 

well and incubated for 24 h at 37oC under 5% CO2, followed the treatment of plain 

CDF, SPIONs@PAMAM-CDF, and SPIONs@FA-PAMAM-CDF to induce 

apoptosis. The concentration of CDF, SPIONs@PAMAM-CDF and SPIONs@FA-

PAMAM-CDF were chosen based on the IC50 value of CDF on HeLa cells from the 

in vitro cytotoxicity assay. After 72h incubation, cells were collected and the sample 

was prepared according to the protocol for Guava Nexin Annexin V assay (EMD 

Millipore, USA). In short, media and trypsinized treated cells were collected in 15 

ml tubes and centrifuged at 300 x g for 7 min. Cell pellets were dispersed in PBS 

pH 7.4 with 1% FBS to have the number of cells in the range of 2 x 105 – 1 x 106 

cells/mL. Then 100 μL of cell dispersion of each sample was added 100 μL of the 

Guava Nexin Reagent and was incubated for 20 min at RT in the dark. The 

samples were analyzed by Guava Easycyte flow cytometer (EMD Millipore, USA). 

2.10. Western blot 

Western blot analysis was performed to determine the level expression of 

Phosphatase and tensin homolog PTEN and Nuclear factor kappa B (NF-κB) in 

HeLa cell line using reported method [86]. Briefly, HeLa cells were treated with 

different formulations as well as free CDF and lysed. The protein concentration 
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was determined by the Bio-Rad Protein Assay (Bio-Rad kit). Lysates were 

electrophoresed by SDS-PAGE and the proteins were transferred onto the 

nitrocellulose blotting membrane, followed by blocking with 5% BSA in TBST buffer 

at RT for 1h. Primary PTEN or NF-κB antibodies were added and incubated 

overnight at 4oC, subsequently washed and incubated with compatible secondary 

antibodies. The protein bands were visualized by incubation with 

chemiluminescent substrate (Thermos scientific) at room temperature for 2 min, 

followed by chemiluminescent detection using a digital imaging system 

ImageQuant LAS 4000 (GE Healthcare Bio-Sciences AB, Sweden).  
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CHAPTER 3 RESULTS 

A vast majority of cancer cells are known to have a high expression of folate 

receptors, while normal tissues and organs have very limited expression of folate 

receptors [87]. Many studies have shown an enhance in anticancer activity 

employing folic acid decorated nanocarriers in different cancer types such as 

ovarian, lung, cervical, breast, kidney, colorectal, epithelial and brain cancers 

[85,88–90]. CDF has been shown a high anticancer activity against various types 

of cancers as well as overcome drug resistance [11,86]. However, extremely low 

aqueous solubility of CDF makes its systemic administration problematic. Our 

previous study suggested that PAMAM dendrimer conjugated with folic acid could 

improve the aqueous solubility of CDF dramatically and gave the active targeting 

with an enhanced anticancer activity due to the folate receptor mediated 

endocytosis [72]. In addition, many studies reported the potential usage in 

biomedical imaging of PAMAM dendrimers when fabricated with magnetic iron 

oxide nanoparticles [59,78,91–93]. Based on these information, the goal of this 

present work was to design a theranostic nanoparticles consisting of FA-PAMAM 

conjugate as the outer shell and iron oxide nanoparticles as the inner core loaded 

with CDF which could be used in both cancer imaging and therapy for multiple 

cancers. 

3.1. SPIONs synthesis and characterization 

The magnetic iron oxide nanoparticles SPIONs were synthesized by 

controlled co-precipitation of Fe2+ and Fe3+ ions according to previously reported 

method [77,94,95]. The synthesized SPIONs were confirmed by FTIR 
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spectroscopy. The presence of Fe3O4 core was identified by the strong stretching 

absorption band between 408 and 673 cm-1 corresponding to the Fe-O bond of the 

particles (Fig. 3a) [78]. Dynamic light scattering technique measurement showed 

a hydrodynamic size of 78.8 nm (PDI 0.177) and a zeta potential at – 59.73 mV 

(Fig. 3d). 

 

Figure 3. (a) FTIR spectra of SPIONs, SPIONs@APTS, and 
SPIONs@COOH; (b) Energy dispersive X-ray spectroscopy (EDS) analysis of 
SPIONs@APTS; (c) Hydrodynamic size of the fabricated nanoparticles 
SPIONs@PAMAM and SPIONs@FA-PAMAM; and (d) Zeta potential 
measurement of each step of the fabrication process are shown. 
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3.2. FA-PAMAM decorated SPIONs fabrication and 

characterization 

3.2.1. Amine functionalized SPIONs (SPIONs@APTS) 

The sonication time was optimized according to previous reported method 

[78]. Sonication of the synthesized SPIONs before modification with APTS 

improved the magnetic properties and size distribution of the particles. After 

aminosilane modification of the SPIONs, the achieved product SPIONs@APTS 

could be dispersed back in DIW to form a stable dispersion with a hydrodynamic 

size of 95.9 nm (PDI 0.113). SPIONs@APTS showed a zeta potential of 56.94 mV 

confirming the presence of the positively charged amine groups of APTS (Fig 3d). 

Energy-dispersive X-ray spectroscopy (EDX) spectrum showed the unique peak 

of Si further confirmed the successful coating of the aminosilane APTS on the 

surface of SPIONs (Fig 3b). FTIR spectrum confirmed the presence of APTS on 

the surface of SPIONs with the characteristic peaks of C-H at 2888, 2979 cm-1, Si-

C at 1330 cm-1, Si-O at 1049 cm-1, and Fe-O at 574 cm-1 (Fig. 3a). 

3.2.2. Carboxylation of amine functionalized SPIONs (SPIONs@COOH) 

The carboxylation of primary amine groups on the surface of 

SPIONs@APTS was confirmed by the change in zeta potential from a positive 

charge of 56.94 mV (of the amine groups) to a negative charge of -63.22 mV (of 

the carboxyl groups) (Fig 3d). FTIR spectrum of SPIONs@COOH showed the 

characteristic peaks of C-H bond at 2981 cm-1 and 2862 cm-1, Si-O bond at 

1045cm-1, Fe-O bond at 571 cm-1, and the C=O stretching at 1700 cm-1 (Fig. 3a). 

SPIONs@COOH had a hydrodynamic size of 96.2 nm (PDI 0.246). 
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3.2.3. Activation of SPIONs@COOH and fabrication of FA-PAMAM and 

SPIONs@COOH conjugate 

Zeta potential was used to confirmed the conjugation of PAMAM and FA-

PAMAM to the activated SPIONs@COOH. Before conjugation, SPIONs@COOH 

had the zeta potential of -63.22 mV. After the conjugation, the zeta potential values 

were changed to 48.79 mV and 9.97 mV in case of SPIONs@PAMAM and 

SPIONs@FA-PAMAM, respectively (Fig. 3d). Dynamic light scattering showed an 

average size of 110.1 nm (PDI 0.125) and 159.4 nm (PDI 0.127) of 

SPIONs@PAMAM and SPIONs@FA-PAMAM, respectively (Fig 3c). 

Fluorescence spectroscopy measurement showed an average of 20.37% (wt/wt) 

of PAMAM in SPIONs@PAMAM, and 27.61% (wt/wt) of FA-PAMAM conjugates in 

SPIONs@FA-PAMAM structure. 

3.2.4. Transmission electron microscopic analysis 

To further determine the size of the nanoformulations, electron microscopic 

analysis of the synthesized SPIONs, and the carrier SPIONs@PAMAM and 

SPIONs@FA-PAMAM was performed. TEM images showed that the morphology 

of the fabricated SPIONs was remained the same as the unmodified SPIONs. TEM 

data showed that the inner SPIONs core had the average size of 11 nm confirming 

the nano-metric size of the formulations (Fig. 4). 
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Figure 4. Transmission electron microscopic images of SPIONs, 
SPIONs@PAMAM and SPIONs@FA-PAMAM show the morphology of the 
fabricated nanoparticles. 

3.3. CDF drug loading in nanoparticles 

The CDF drug loading was studied based on the indirect method. The 

remaining of CDF in the supernatant after drug loading was measured by HPLC 

method. A calibration curve of CDF was developed from 10 μg/ml to 250 μg/ml 

with the R2
 value of 0.99. The HPLC method was validated for its accuracy and 

precision and was used to determine the CDF concentration. The loading of CDF 

in SPIONs@PAMAM and SPIONs@FA-PAMAM was 12.37% (wt/wt) and 9.81% 

(wt/wt), respectively. 

3.4. Fluorescence microscopy study 

SKOV3 cells were selected for in vitro fluorescence microscopic study 

based on the results of in vitro cytotoxicity assay and receptor blocking assay to 

compare the level of cellular internalization of the non-targeted formulation 

SPIONs@PAMAM-CDF and the targeted formulation SPIONs@FA-PAMAM-CDF. 

In this cell uptake studies, SKOV3 cells were incubated with Rhodamine B (having 

red fluorescence) labeled nanoformulations and analyzed after 6 hours of 

incubation at 37oC in the dark. As shown in figure 5, SKOV3 cells treated with both 

of the non-targeted and the targeted formulations showed apparent fluorescence. 

As compared to the non-targeted formulation, there was a significantly higher 

fluorescence in cells treated with targeted formulations. 
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Figure 5. Fluorescence microscopic images (40X) of SKOV3 cells 
incubated with nuclear stain Hoechst (blue fluorescence) and Rhodamine B (red 
fluorescence) labeled non-targeted SPIONs@PAMAM and targeted formulations 
SPIONs@FA-PAMAM at 6 h are shown. 

3.5. T2 relaxivity and in vitro relaxometry and imaging studies 

3.5.1. T2 relaxivity studies of SPIONs, SPIONs@PAMAM and 

SPIONs@FA-PAMAM 

T2 relaxivity studies were performed to examine the magnetic behavior of 

the synthesized SPIONs and the nano-carrier SPIONs@PAMAM and 

SPIONs@FA-PAMAM in their biomedical application in MR imaging. The potential 

of the fabricated magnetic nanoparticles SPIONs@PAMAM and SPIONs@FA-

PAMAM to be used as T2-based contrast agent for MR imaging was evaluated 

using the measured transverse relaxation time (T2) of SPIONs@PAMAM and 

SPIONs@FA-PAMAM as compared to SPIONs. The T2 values were used to 

calculate the transverse relaxivity rate (r2) per μg/ml of iron, which showed the 
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efficiency of the fabricated nanoparticles as a MR contrast agent. From figure 6a, 

there was a significant decrease in the signal intensity of the T2-weighted MR 

images with the increase of iron concentration in both of the non-targeted 

SPIONs@PAMAM and the targeted SPIONs@FA-PAMAM nanoparticles as 

compared to the control PBS. Pseudo-color MR images showed a decrease in 

signal intensity for the fabricated nanoparticles from red (high intensity) to purple 

(low intensity). The T2 relaxation rate (1/T2) increased linearly with the iron 

concentration (μg/ml) in both cases of the non-targeted SPIONs@PAMAM and the 

targeted SPIONs@FA-PAMAM nanoparticles. The slope values (r2) were 

calculated to be 1.92 (μg/ml)-1s-1 and 1.81(μg/ml)-1s-1 in case of SPIONs@PAMAM 

and SPIONs@FA-PAMAM, respectively.  Unmodified SPIONs had the slope value 

(r2) of 2.01 (μg/ml)-1s-1. The results suggested that both of the non-targeted 

nanoparticle SPIONs@PAMAM and the targeted nanoparticle SPIONs@FA-

PAMAM could be used as T2-shortening agents. 

3.5.2. In vitro MR relaxometry and imaging studies 

In vitro MR relaxometry and Imaging studies were performed to examine 

the effect of the targeting ability of folate-based nanoparticle SPIONs@FA-

PAMAM in MR imaging. To study the effect of SPIONs@PAMAM and 

SPIONs@FA-PAMAM on SKOV3 and HeLa cells, we measured the T2 of SKOV3 

and HeLa cells after incubation with different concentration of SPIONs@PAMAM 

and SPIONs@FA-PAMAM for 30 min. There was a significant decrease in signal 

intensity in SKOV3 and HeLa cells when incubated with the targeted nanoparticle 

SPIONs@FA-PAMAM. In contrast, non-targeted nanoparticle SPIONs@PAMAM 
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showed a very little decrease in the signal intensity in both SKOV3 and HeLa cells. 

In the T2-weighted MR images, targeted formulation SPIONs@FA-PAMAM at the 

iron concentration of 80 μg/ml decreased the MR signal intensity to 45.6% in 

SKOV3 and 28% in HeLa, as compared to 100% of PBS control. However, non-

targeted nanoparticle SPIONs@PAMAM at the iron concentration of 80 μg/ml 

showed a lower decrease in MR signal intensity with 87% in SKOV3 and in 71.4% 

HeLa, as compared to 100% of control PBS (Fig 6b). 

 

Figure 6. (a) T2-weighted MR images of the aqueous dispersion of 

SPIONs@PAMAM and SPIONs@FA-PAMAM with the T2 relaxation rate (1/T2) as 
a function of iron concentration indicating the ability of the fabricated nanoparticles 
to enhance the contrast in MR images; (b) MR images of SKOV3 and HeLa cell 
pellets after 30 min incubation with the non-targeted SPIONs@PAMAM and the 
targeted SPIONs@FA-PAMAM nanoparticles (with the color change from red to 
purple indicating the gradual decrease of MR signal intensity). The percentage of 
signal intensity compared to cells in PBS was plotted as a function of iron 
concentration indicating the faster internalization with a higher decrease in MR 
signal intensity of the targeted SPIONs@FA-PAMAM. 
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3.6. In vitro cytotoxicity study 

In vitro cytotoxicity of the CDF loaded nanoformulations was examined in 2 

cell lines [SKOV3 (human ovarian carcinoma cell line), HeLa cells (human cervical 

cancer cells)] with a broad range of CDF concentrations (0.25 µM - 5 µM). Plain 

targeted carrier (SPIONs@FA-PAMAM) showed negligible cytotoxicity with cell 

viability more than 90% confirming the safety of the targeted carrier. The 

anticancer activity of the nanoformulations (non-targeted formulation 

SPIONs@PAMAM-CDF and targeted formulation SPIONs@FA-PAMAM-CDF) 

was studied and compared with free drug CDF. The results showed a dose-

dependent cell killing for both SPIONs@PAMAM-CDF and SPIONs@FA-PAMAM-

CDF. The outcome of the study revealed an IC50
 (half maximal inhibitory 

concentration) of 0.45 µM, 0.78 µM, and 1.79 µM for free CDF, SPIONs@FA-

PAMAM-CDF, and SPIONs@PAMAM-CDF, respectively in SKOV3 cells. The 

noticeably lower IC50 of the targeted SPIONs@FA-PAMAM-CDF as compared to 

the non-targeted SPIONs@PAMAM-CDF was probably due to the folate receptor-

specific targeting of SPIONs@FA-PAMAM-CDF. The same pattern was also 

observed in HeLa cells with the IC50 of 0.66 µM, 0.87 µM, and 1.98 µM for free 

CDF, SPIONs@FA-PAMAM-CDF, and SPIONs@PAMAM-CDF, respectively (Fig. 

7a). 
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Figure 7. (a) In vitro cytotoxicity assay showing percentage of cell viability 
observed at 72 h after treating SKOV3 and HeLa cells with various formulations 
are shown (n=8); (b) MTT assay observed at 72 h after folate receptor blocking 
and treating of SKOV3 and HeLa cells with SPIONs@PAMAM-CDF and 
SPIONs@FA-PAMAM-CDF are shown (n=8); (c) Induction of apoptosis in HeLa 
cells when treated with CDF, SPIONs@PAMAM-CDF, and SPIONs@FA-PAMAM-
CDF as evaluated by Annexin V/7-AAD dual staining. An increased percentage of 
the apoptotic cell population was noted when cells were treated with targeted 
formulation (SPIONs@FA-PAMAM-CDF) as compared to the non-targeted 
formulation (SPIONs@PAMAM-CDF), suggesting the better killing activity of the 
targeted formulation SPIONs@FA-PAMAM-CDF. 
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3.7. Folate receptor blocking assay 

Folate receptor blocking assay was performed to examine the fate of the 

folate-based targeting formulation. SKOV3 and HeLa cells with high expression of 

folate receptors were treated with an excess amount of FA (1 mM) to overwhelm 

the folate receptor binding domains on the cell membrane, followed by the 

treatment with the nanoformulations [73–76,96]. In vitro cytotoxicity MTT assay 

was used to determine the change in the cell viability in SKOV3 and HeLa treated 

with the formulations after blocking the folate receptors. It was observed that 

before blockade of folate receptors, the IC50 values on SKOV3 were 0.80 µM and 

1.81 µM for the targeted SPIONs@FA-PAMAM-CDF and the non-targeted 

SPIONs@PAMAM-CDF, respectively. After the blockade of folate receptors, the 

IC50 value of the targeted SPIONs@FA-PAMAM-CDF was increased to 1.36 µM. 

However, there was not a significant change in the IC50 of the non-targeted 

SPIONs@PAMAM-CDF (1.82 µM). The same outcome was observed in HeLa 

cells with the IC50 of 0.85 µM and 2 µM for SPIONs@FA-PAMAM-CDF and 

SPIONs@PAMAM-CDF, respectively before the folate receptor blockade. After 

blocking folate receptors, the IC50 values were found to be 1.26 µM and 1.94 µM 

for SPIONs@FA-PAMAM-CDF and SPIONs@PAMAM-CDF, respectively. The 

results suggested a decrease in anticancer activity of the targeted formulation 

SPIONs@FA-PAMAM-CDF in SKOV3 cells when folate receptors are blocked 

(Fig. 7b). 
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3.8. Apoptosis assay 

HeLa cells were selected for this apoptosis assay. Apoptosis induction in 

HeLa cells of free CDF and the CDF loaded formulations was determined by flow 

cytometry with Annexin V/7-AAD dual staining. The percentage of Annexin V-/7-

AAD - (R5), Annexin V+/7-AAD - (R6) and Annexin V-/7-AAD + (R4) and Annexin V-

/7-AAD + (R3) were used to determine the number of live cells, early apoptotic, late 

apoptotic and necrotic cells. Apoptosis assay revealed a higher percentage of 

apoptotic and necrotic HeLa cells (34.2 ± 3.2 %) after treatment with the targeted 

formulation SPIONs@FA-PAMAM-CDF. Non-targeted formulation showed a lower 

number of apoptotic and necrotic cells at 20.5 ± 2.7 % of the cell population. The 

results suggested a higher apoptosis induction ability of the targeted formulation 

SPIONs@FA-PAMAM-CDF as compared to the non-targeted formulation 

SPIONs@PAMAM-CDF (Fig. 7c). The results were consistent with higher 

anticancer activity of the targeted formulation SPIONs@FA-PAMAM-CDF in in 

vitro cytotoxicity assay using MTT with higher cellular uptake in fluorescence 

microscopic studies and in vitro relaxometry and imaging studies. 

3.9. Western blot 

Western blot was performed to examine the level expression of PTEN and 

NF-κB in HeLa cells after treatment with the nanoformulations. In case of NF-κB, 

control HeLa cells without treatment showed a higher expression of NF-κB as 

compared to HeLa cells treated with plain CDF and the nanoformulations. 

Targeted formulation SPIONs@FA-PAMAM-CDF showed a slightly better 

downregulation of NF-κB (76.4 ± 4.6 % as of control) as compared to the non-



35 
 

 

targeted formulation SPIONs@PAMAM-CDF (83.6 ± 8.2 % as of control). In case 

of PTEN expression, the control HeLa cells without treatment showed a 

significantly low expression of PTEN. However, after treatment with plain CDF and 

nanoformulations, PTEN expression was elevated. Noticeably, in comparison to 

control, HeLa cells treated with the targeted formulation SPIONs@FA-PAMAM-

CDF showed the highest upregulation of PTEN expression (319.9 ± 27.1 %) as 

compared to free CDF (158.9 ± 13.5 %) and the non-targeted formulation 

SPIONs@PAMAM-CDF (214.2 ± 10.9%) (Fig. 8). 

 

 

Figure 8. Western blot analysis showing PTEN and NF-κB expression in HeLa 

cells in control without treatment (CTL), and cells treated with CDF, targeted 
formulation SPIONs@FA-PAMAM-CDF (T) and non-targeted formulation 
SPIONs@PAMAM-CDF (NT), (GAPDH expression was used as the protein 
loading control).  
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CHAPTER 4 DISCUSSION 

The bleak prognosis for patients diagnosed with metastatic cancer along 

with the high costs of treating cancer in its advanced stages are urging for a better 

predictive and preventative method [97]. With the advantages of noninvasive MR 

imaging with superb spatial resolution, targeting MRI contrast agents are believed 

to be critical tools which can fully benefit from this new technique [98,99]. The 

targeting ability of MRI contrast agents depends strongly on their ability to carry 

specific molecular markers for tumor recognition. As a result, the tumor can be 

visualized and diagnosed earlier accurately leading to an effective treatment, and 

ultimately improving patient survival [37,98]. In this regards, PAMAM dendrimers 

with the ability to conjugate targeting ligands through numerous peripheral reactive 

amine groups have been studied recently for surface modification of iron oxide 

nanoparticles for targeting MRI [78,100,101]. In terms of targeting ligands, folic 

acid recently has received considerable attention as a targeting ligand to target 

folate receptors overexpressed on numerous types of tumors [89,90,96,102–106]. 

PAMAM dendrimers conjugated folic acid can take advantage of the favorable 

binding of targeting ligand folic acid to folate receptors on tumor cells to enhance 

the cellular uptake via folate receptor mediated endocytosis. Many studies have 

shown that iron oxide nanoparticles decorated with folate-based PAMMA 

dendrimer could achieve MRI targeting with higher cellular internalization in cancer 

cells with a higher contrast in T2-weighted MR images [59,71,78]. However, in most 

of the studies, the ability of PAMAM dendrimers in drug delivery was not fully 

examined. 
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The poor aqueous solubility of several potent anticancer compounds could 

be a major issue and deciding factor in realizing its translation potential from the 

bench to the bedside. The non-specific distribution of chemotherapeutic agents in 

the systemic circulation gives the conventional chemotherapy a low therapeutic 

index and severe side effects which cause the treatment to be ineffective and lead 

to the recurrence of tumor after initial treatment. Recently, CDF has been shown 

to be a very potent anticancer compound with the ability to treat different types of 

cancers [12,13,72]. However, low solubility profile of CDF makes its systemic 

administration problematic. In this regard, PAMAM dendrimers have revealed 

promising potentials. Our earlier reported study suggested that folate-decorated 

PAMAM dendrimers could encapsulate CDF in their hydrophobic cavities for 

aqueous solubility enhancement and deliver CDF specifically to the tumor site with 

minimizing adverse side effects [72]. The aim of this study was to design a 

theranostic carrier consisting of iron oxide nanoparticles with folate-based PAMAM 

dendrimers for active targeting MR imaging and anticancer drug delivery. As a 

result, the targeted nanoparticles SPIONs@FA-PAMAM can enhance the aqueous 

solubility of CDF and deliver it specifically to cancer cells with a higher contrast in 

T2-weight MR images. 

The synthesis of SPIONs was confirmed by FTIR spectrum with the 

characteristic peak of Fe-O at 574 cm-1. The synthesized SPIONs could be 

dispersed back in DIW or EtOH to form a stable dispersion with a hydrodynamic 

size of 78.8 nm (PDI 0.177) and a zeta potential of -59.73 mV. TEM images of 

SPIONs showing an average size at 10.5 ± 1 nm further reconfirmed the success 
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of the synthesis. Surface modification of SPIONs was confirmed by zeta potential 

with a change from an initial zeta potential of -59.73 mV of SPIONs to 56.94 mV 

of SPIONs@APTS, and -63.22 mV of SPIONs@COOH (Fig 3d). In EDX analysis 

of SPIONs@APTS, the atomic ratio of Fe/Si was shown to be 17.55/1 (Fig. 3b). 

The mathematic calculation was used to estimate the number of silanes per gram 

particles according to the reported method [77]. From TEM images, synthesized 

SPIONs were shown to have an average diameter (rSPIONs) of 5.5 nm; therefore, 

the surface area (SASPIONs) of one particle is 380 nm2 (SASPIONs = 4πrSPIONs
2). One 

silane is known to cover an approximately 0.4 nm2 of the particle’s surface area, 

so we have an average of 950 silanes covered the surface of one SPION [77]. 

With the atomic ratio 17.55/1 of Fe/Si in SPIONs@APTS from EDX analysis, it is 

estimated that 950 silanes would cover one particle with an average of 16,672.5 

iron atoms. Therefore, 1 g of SPIONs would have an average of 0.099 g of APTS 

coating, theoretically. 

PAMAM and FA-PAMAM conjugation was confirmed by a change in zeta 

potential. After conjugation, SPIONs@PAMAM and SPIONs@FA-PAMAM had a 

zeta potential of 48.79 mV and 9.97 mV, respectively (Fig. 3d). FA conjugation 

helped the targeted carrier SPIONs@FA-PAMAM reduce the highly positive 

charge, which is known to be associated with the toxicity of PAMAM dendrimers 

[16]. The morphology of nanoparticles could be affected by several factors 

including the fabrication and reaction involved. The shape and size of 

nanoparticles could have a high impact on their biodistribution, clearance, and 

biocompatibility [107]. TEM images suggested that the morphology of the particles 
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remained unchanged after the fabrication. Dynamic light scattering measurement 

showed that both of the non-targeted and targeted formulations were in the nano-

sized range with an average hydrodynamic size of 110.1 nm (PDI 0.125) and 159.4 

nm (PDI 0.127) of SPIONs@PAMAM and SPIONs@FA-PAMAM, respectively (Fig 

3c). A higher value in hydrodynamic size of SPIONs@FA-PAMAM could be 

attributed to the presence of FA resulting in a low positive charge of the particles. 

Drug loading studies showed a little higher in CDF encapsulation in SPIONs@FA-

PAMAM-CDF as compared to SPIONs@PAMAM-CDF. The presence of FA might 

be responsible for a higher drug loading with a shielding effect outside the 

hydrophobic cavities; thus, a higher amount of CDF was encapsulated inside the 

hydrophobic cavities. 

Targeting ability of folate-decorated nanoformulations was examined in 

fluorescence microscopic study on SKOV3 cell line. SKOV3 cells treated with 

Rhodamine B labeled targeted formulation SPIONs@FA-PAMAM-CDF showed a 

significantly higher red fluorescence intensity of Rhodamine B dye as compared to 

the Rhodamine B labeled non-targeted formulation SPIONs@PAMAM. The 

fluorescence microscopic images were taken after only 6 h incubation of SKOV3 

cells with the Rhodamine B labeled formulations, which proved the ability of the 

targeted formulation to internalize the cells within such a short time frame [Fig 5]. 

The magnetic behavior of the non-targeted SPIONs@PAMAM and the 

targeted SPIONs@FA-PAMAM was examined in the T2 relaxivity studies to test 

their ability to enhance the contrast in MR images [Fig 6]. The T2 relaxation rate 

(1/T2) as a function of the iron concentration (from 10 μg/ml to 40 μg/ml) of both of 
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the carriers showed that the relaxation rate increases linearly with the iron 

concentration with a slope (r2) of 1.92 (μg/ml)-1s-1 and 1.81(μg/ml)-1s-1 for 

SPIONs@PAMAM and SPION@FA-PAMAM, respectively. The slightly lower r2 of 

SPIONs@FA-PAMAM may be due to the presence of FA on the periphery of the 

particles, which shields water molecules from accessing the surface of SPIONs. 

The results suggested that SPIONs@PAMAM and SPIONs@FA-PAMAM could 

be used as T2-shortening agents which helped enhance the contrast in the MR 

images. To study the effect of the non-targeted SPIONs@PAMAM and the 

targeted SPIONs@FA-PAMAM on the MR images of SKOV3 and HeLa cells, T2 

of SKOV3 and HeLa cells was measured after 30 min incubation with various 

concentrations of SPIONs@PAMAM and SPIONs@FA-PAMAM. The T2 values of 

SKOV3 and HeLa cell pellets treated with SPIONs@FA-PAMAM particles 

decreased dramatically as a function of iron concentration. In contrast, there was 

a small decrease in the T2 values of SKOV3 and HeLa cell pellets treated with the 

non-targeted SPIONs@PAMAM particles. In the T2-weighted MR images (the 

color change from red to purple indicates a decrease in MR signal intensity) 

observed in SKOV3 and HeLa cells, targeted SPIONs@FA-PAMAM nanoparticles 

at 80 μg/ml reduced the signal intensity to 45.6% and 28% of the initial value (PBS 

control) in SKOV3 and HeLa cells, respectively; whereas non-targeted 

SPIONs@PAMAM nanoparticles at 80 μg/ml reduced the signal intensity to 87% 

and 71.4% of the initial value in SKOV3 and HeLa cells, respectively. The results 

suggested the targeted nanoparticles SPIONs@FA-PAMAM can specifically 

hamper the MR signal intensity through folate receptor mediated endocytosis. The 
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results are in accordance with the higher cellular internalization of the targeted 

nanoparticles in the fluorescence microscopic studies. 

The anticancer activity of the CDF loaded nanoformulations was examined 

using the in vitro cytotoxicity assay on SKOV3 and Hela cells. The MTT assay 

results showed a high anticancer activity on SKOV3 and HeLa cells with both the 

formulations with relatively low IC50. It should be noted that the targeted formulation 

SPIONs@FA-PAMAM-CDF showed a higher anticancer activity with lower IC50 as 

compared to the non-targeted formulation SPIONs@PAMAM-CDF when tested at 

a concentration range from 0.25 µM to 5 µM. IC50 values of SPIONs@FA-PAMAM-

CDF were found to be 0.78 µM and 0.87 µM in SKOV3 and HeLa, which were 

lower by 2.29 fold and 2.27 fold as compared to the non-targeted 

SPIONs@PAMAM-CDF in SKOV3 and HeLa, respectively. The better anticancer 

activity of the targeted formulation could be attributed to the targeting effect of FA, 

which helped the formulations have a higher degree of cellular internalization via 

folate receptor mediated endocytosis. Fourth generation PAMAM dendrimers are 

known to be cytotoxic due to the highly positive charge of 64 amino groups on the 

periphery. FA conjugation gave the targeted formulation the ability to target folate 

receptors overexpressed on cancer cells, and also helped reduce the positive 

charge of the nanoconstruct. As a result, SPIONs@FA-PAMAM carrier showed a 

relatively safe profile on both SKOV3 and HeLa cells with more than 90% viable 

cells at all tested concentrations. The results proved that SPIONs@FA-PAMAM 

could be promising carriers for anticancer drug delivery (Fig 7a). The folate 

receptor assay was performed to evaluated the fate of the nanoformulations under 
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blocking the folate receptors. An increase in IC50 values of the targeted formulation 

SPIONs@FA-PAMAM-CDF in SKOV3 and HeLa cells after blocking folate 

receptors was observed. In contrast, IC50 values of the non-targeted formulation 

SPIONs@PAMAM-CDF did not show a significant change after the blocking of 

folate receptors. The results suggested that the higher activity of the targeted 

formulation SPIONs@FA-PAMAM-CDF was due to the active targeting ability of 

the folate-decorated nanoformulations. However, it should be noted that the IC50 

value of SPIONs@PAMAM-CDF was still higher than SPIONs@FA-PAMAM-CDF 

in both SKOV3 and HeLa after the blocking the folate receptors (Fig 7b). The 

results suggested that the blocking of folate receptors on SKOV3 and HeLa cells 

could decrease the cellular uptake of the targeted formulation to a certain degree, 

and when the folate receptors are recycled, the folate receptor mediate 

endocytosis pathway was recovered and the targeting ability of SPIONs@FA-

PAMAM was regained. 

As a next step, apoptosis assay and western blot studies were performed 

to further examine the targeting ability of the targeted formulation SPIONs@FA-

PAMAM-CDF in anticancer activity against HeLa cells. It should be noted that free 

CDF showed the highest percentage of apoptotic and necrotic cells. This could be 

explained by the small molecular weight and the highly lipophilic profile of CDF 

which gives CDF a high rate of internalization of passive diffusion. Apoptosis assay 

showed a higher percentage of apoptotic and necrotic cells in HeLa after treatment 

with the targeted formulation SPIONs@FA-PAMAM-CDF as compared to the non-

targeted formulation SPIONs@PAMAM-CDF. A better apoptosis induction ability 
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of the targeted formulation SPIONs@FA-PAMAM-CDF could be explained by a 

higher cellular uptake of the formulation due to the targeting ability of FA to the 

folate receptors overexpressed on HeLa cells [Fig 7c]. The results from apoptosis 

assay were in accordance with higher anticancer activity of the targeted 

formulation with higher cellular uptake in fluorescence microscopic studies and in 

vitro T2 relaxation studies. 

Western blot studies were performed on HeLa cells to determine the 

expression levels of PTEN and NF-κB after treatment with the formulations. CDF 

is known to upregulate PTEN, which is a tumor suppressor gene with a key role in 

stem cell self-renewal [86]. PTEN can dephosphorylate phosphatidylinositol 3,4,5-

triphosphate (PIP3) an antagonize the PI3-K/Akt pathway. It is believed that PTEN 

downregulation is a key factor contributing to the development of chemotherapy 

resistance and recurrence of various human tumors [108]. PTEN is known to 

regulate many cellular processes including growth, adhesion, migration, invasion, 

and apoptosis [11,86]. Nuclear factor kappa B (NF-κB) is known to upregulate anti-

apoptotic genes such as bcl-xL and X-linked inhibitor of apoptosis (XIAP) leading 

to induce cell survival. Activation of NF-κB was observed in many types of cancer 

and was shown to contribute to apoptosis resistance in cancer cells [109]. In case 

of NF-κB expression, control HeLa cells without treatment showed a high 

expression of NF-κB. After treatment with CDF and the formulations, NF-κB levels 

in HeLa were decreased. Higher downregulation of NF-κB in HeLa cells was found 

when cells treated with the targeted formulation SPIONs@FA-PAMAM-CDF 

(decreased by 1.3 folds as compared to control) as compared to the non-targeted 
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formulation SPIONs@PAMAM-CDF (decreased by 1.19 folds as compared to 

control), indicating a better anticancer activity of the targeted formulation. In case 

of PTEN expression, western blot results showed a significantly low expression of 

PTEN in control cells. However, there was an increase in PTEN expression in cells 

treated with CDF and both of the formulations. Noticeably, PTEN level in cells 

treated with the targeted formulation SPIONs@FA-PAMAM-CDF was higher than 

CDF and the non-targeted formulation SPIONs@PAMAM-CDF. As compared to 

control, PTEN expression was upregulated by 3.2 folds in HeLa treated with the 

targeted formulation; whereas, in HeLa treated with free CDF and the non-targeted 

formulation, PTEN expression was increased by 1.58 and 2.14 folds, respectively 

[Fig 8]. The results suggested the ability of the targeted formulation SPIONs@FA-

PAMAM-CDF to upregulate PTEN and downregulate NF-κB, which is known to 

play an important role in tumor suppressor activity and cancer cell death. 

Summary 

In this study, theranostic nanoparticles for cancer imaging and therapy were 

successfully fabricated with SPIONs in the core and FA-PAMAM conjugates on 

the periphery. To our knowledge, this is the first study employing a simple and 

efficient carbodiimide coupling chemistry to fabricate SPIONs decorated PAMAM 

dendrimers for MR imaging and targeted anticancer drug delivery. This fabrication 

method could be used to encapsulate different types of hydrophobic anticancer 

drugs for targeting MRI and therapy in various types of cancers by using 

appropriate targeting molecules for specific recognition of unique biomarkers 

overexpressed on cancer cells. In this study, the fabricated magnetic nanoparticles 
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SPIONs@FA-PAMAM showed great potential to be a promising MR contrast agent 

as well as an anticancer drug delivery system for CDF, a potent anticancer but 

highly lipophilic compound. The targeted nanoparticles SPIONs@FA-PAMAM 

possesses numerous favorable characteristics such as improved aqueous 

solubility of CDF, biological safety and targeting ability to cancer cells due to the 

presence of FA. As compared to SPIONs@PAMAM, SPIONs@FA-PAMAM 

showed a better ability to enhance MR contrast with a faster cellular uptake in in 

vitro T2-weighted images and fluorescence microscopic studies. In addition, 

targeted formulation SPIONs@FA-PAMAM-CDF showed a higher anticancer 

activity, a higher percentage of apoptotic and necrotic cells with the ability to 

upregulate PTEN and downregulate NF-κB which could help overcome anticancer 

drug resistance and the recurrence of cancer after initial treatment. The results 

showed a promising potential of SPIONs@FA-PAMAM-CDF in targeted MRI and 

therapy in cancer, warranting further in vivo investigations underway in our 

laboratory. 
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The bleak prognosis for patients diagnosed with metastatic cancer along 

with the low therapeutic efficacy and the recurrence of cancer in conventional 

chemotherapy are prompting clinical medicine to adopt a new strategy to detect 

cancer in early stage and to deliver the anticancer drugs specifically to tumor site 

to enhance therapeutic efficiency and minimize side effects. The aim of this study 

is to design a theranostic nanocarrier consisting of iron oxide nanoparticles 

(SPIONs) for magnetic resonance imaging (MRI) and Polyamidoamine dendrimers 

conjugated with folic acid (FA-PAMAM) for active targeted delivery of a highly 

potent but extremely lipophilic anticancer compound 3,4-difluorobenzylidene 

diferuloylmethane (CDF). The resulting targeted nanoparticles SPIONs@FA-

PAMAM-CDF showed a significantly enhanced MR contrast as compared to the 

non-targeted nanoparticles. When tested on SKOV3 (ovarian cancer cells) and 

HeLa (cervical cancer cells), the targeted nanoformulations showed a higher 

accumulation in cancer cells with a better anticancer activity, a larger population 

of apoptotic cells and the ability to upregulate tumor suppressor phosphatase and 
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tensin homolog (PTEN) and inhibit nuclear factor kappa B (NF-κB) which further 

confirmed the ability of the folate decorated nanoparticles for targeted MRI and 

anticancer drug delivery. 
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