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CHAPTER I. INTRODUCTION 

1.1 Motivation 

Cantilever structures have been widely used in numerous applications in Micro-Electro-

Mechanical Systems (MEMS) due to its simplicity. MEMS is a technology that can generally 

be defined as miniaturized electro-mechanical devices which are made by microfabrication. 

The physical dimensions of MEMS devices can vary from well below one micron all the way 

to several millimeters. In the last several decades, due to the tremendous possibility of MEMS 

applications, many researchers have spent an extremely large amount of efforts on developing 

microsensors, microactuators and microsystems such as lab-on-a-chip.  As a result, nowadays, 

a large number of MEMS products have been developed and are playing an important role in 

consumer, industrial, military as well as medical areas. 

The basic idea of cantilever sensor is to convert input stimuli (inertial, temperature, 

pressure, chemical etc.) into the bending of the cantilever and detect the amount of the bending 

to backtrack the magnitude of the input. Piezoresistive, piezoelectric and optical detections are 

the major approaches to measure the bending of the cantilever. Comparing with optical method, 

piezoresistive/piezoelectric mechanism has generally been the more popular choice due to the 

advantages of being low cost, small foot-print as well as having a simple structure and a simple 

readout circuitry[1-22]. However, compared with optical method, low strain sensitivity is 

recognized as a major disadvantage of piezoresistive/piezoelectric sensors, and it limits the 

applications of this type of sensors. 

There are several approaches to address this issue. For instance, the sensitivity can be 

increased by selecting the proper geometric dimensions of the cantilever and proof mass.  
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Furthermore, the sensor performance can be improved by optimizing the 

piezoresistive/piezoelectric elements on the cantilever.  Alternatively, the performance can be 

improved by employing some novel configurations. In this research, a gapped cantilever 

structure is proposed to potentially increase the sensitivity by orders of magnitude.  

Piezoelectric layer 

d2

Neutral plane

Proof mass

 H/2

Piezoelectric layer y

y2

y1

yc

Proof mass

(b)(a)  

Figure.1.1 Illustraion of the comparison between asymmetric gapped cantilever and 

conventional cantilever. (a) piezoelectric gapped cantilever, (b) piezoelectric conventional 

cantilever. 

For this new design, the supporting beam of the proof mass is an asymmetric gapped 

cantilever, consisting of a bottom mechanical layer and a top piezoelectric/piezoresistive layer 

separated by a gap as shown in Fig. 1.1(a).  The main idea behind asymmetric gapped cantilever 

is that the mechanical strain experienced by the piezoelectric/piezoresistive layer, is proportional 

to the distance between the piezoelectric/piezoresistive layer and the neutral plane.  For 

conventional cantilever as shown in Fig. 1.1(b), this distance is approximately half of the 

cantilever thickness, e.g., 20 m.  For the asymmetric gapped cantilever, this distance is about 

the gap height, which is very close to the wafer thickness, e.g., 500 m.  Therefore, the strain 

sensitivity is significantly higher.  

Furthermore, it is worth noting that the new design allows the majority of the bending 

energy to be used to strain the sensing layer.  But for the conventional cantilever, a large 

percentage of the energy is wasted to strain the non-active layer because the thickness of the 
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piezoelectric/piezoresistive layer is only a small portion of the total cantilever thickness.  For 

example, a conventional Aluminum Nitride (AlN) cantilever such as the one reported in [23], 

with a 45 m thick cantilever and 0.4 m think AlN, has only ~5% of the vibration energy 

allocated to AlN.  In comparison, the design based on asymmetric gapped cantilevers can 

concentrate more than 80% of bending energy to the sensing layer as shown in later chapters. 

Therefore, from energy point of view, the asymmetric gapped cantilever is a much more efficient 

design. Due to the enhanced energy efficiency, gapped cantilever structure has a great potential 

in  the applications of energy harvesting as well.  

1.2  Objective 

Although there have been some previous study presented similar structure by other 

researchers [24-29], the potential of this structure has not been fully realized due to the lack of 

a comprehensive study.  Actually the performance can even be degraded if not properly 

designed.  Therefore, it is necessary to have systematical study to fully dig out the potential of 

gapped cantilever. The main objectives of this work are: 

1. To develop an advanced theoretical model for gapped cantilever in order to guide the 

design of gapped cantilever based sensor and energy harvester.  

2. To verify the analytical model using finite element simulation.  

3. To optimize the design of gapped cantilever transducer using the analytical model that 

developed in this work. 

4. To implement the gapped cantilever structure for several different applications, which 

include but are not limited to 
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1) Piezoresistive accelerometer. 

2) Vibration energy harvester. 

3) Resonant mass sensor.  

1.3  Thesis Organization 

In chapter 2, the development of the analytical model for gapped cantilever will be 

presented. Optimization of the design from energy point of view will also be discussed in 

chapter 2. In chapter 3, finite element simulation will be introduced and utilized to verify the 

analytical model developed in chapter 2. In the following chapters, three specific applications 

of the gapped cantilever will be presented, including piezoresistive accelerometer in chapter 4, 

vibration energy harvester in chapter 5 and resonant mass sensor in chapter 6.  The extents of 

the research progress for these applications vary. For piezoresistive accelerometer in chapter 4, 

the design and optimization taking into account for both sensitivity and noise have been 

completed, and the accelerometers have been micro-fabricated and characterized. In chapter 5, 

vibration energy harvester targeting on powering tire pressure monitoring system has been 

designed, developed and tested both in the lab and on the road.  In chapter 6, the design, 

fabrication and a preliminary characterization of both meso-scale and micro-scale resonant 

mass sensors will be presented. Chapter 7 will conclude with a summary of the main 

contributions of the dissertation and potential future work. 
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CHAPTER 2. ANALYTICAL MODEL  

Since the models for conventional cantilevers may not be directly applied to gapped 

cantilever structure because of the gap between sensing layer and mechanical layer, it is 

necessary to develop a new model to describe the mechanical properties of the new structure, 

facilitating to different applications. 

2.1 mechanics of material method 

Mechanics of material method is a subject that is used to analyze the behavior of a 

material or a mechanical structure under certain loads[30]. With this method, engineers are able 

to theoretically calculate the reacts (deformation, strain, vibration, etc.) of certain type of 

structure under specific conditions (load, boundary, etc.). Once the theory and analytical model 

for the structure are established, one can easily use it to analyze, model and verify similar 

structures in any kinds of engineering applications. Therefore, mechanics of material method has 

long been a powerful tool for engineers and researchers in a large variety of areas, such as 

mechanical, civil, mining engineering, biomechanics, etc. In his section, the basics and 

fundamental concepts of mechanics of material theory will be presented in order to develop the 

analytical model for gapped cantilever.  

2.1.1 Stress and strain 

Stress is the ratio of applied force F and cross section A, defined as "force per unit area”. 

The stress caused by normal force applied to the plane is denoted as normal stress, which is 

AFnn /                                                                   (2.1) 

where Fn is normal force to the plane as shown in Fig. 2.1(a).  
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Whereas stress caused by shear force (force parallel to the plane) applied to the plane is 

denoted as sheer stress, which is expressed as 

AFpp /                                                                  (2.2) 

where Fp is sheer force to the plane.  

 

Figure 2.1 A rectangle block subject to normal and sheer forces on one of the surface plane.  

Deformation of a solid due to stress can be defined using strain. Similar to the 

classification of normal and sheer stresses, there are normal strain and sheer strain corresponding 

to the two types of stresses as well. Mathematically, normal strain can be denoted as the ratio of 

change of length to the initial length, which is 

ll /                                                               (2.3) 

A 
Fn 

Fp 

 
σn 

σp 

 

Δl 

l 

Δu 

l 

γ (a) 

 

(b) 

 

(c) 
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where Δl is the change of length due to normal stress, and l is the initial length as shown in Fig. 

2.1(b).  

Meanwhile, sheer strain is the ratio of the sheer displacement due to sheer stress to the 

length of the block, which is 

lu /                                                                 (2.4) 

where Δu is sheer displacement as shown in Fig. 2.1(c). When the displacement is small enough 

compared to the length, sheer strain is simply equal to the sheered angle.  

Most metals have deformations that are proportional with the induced loads within a 

range. The ratio between normal stress and normal strain is defined as Young’s modulus, which 

is 

 /E                                                               (2.5) 

2.1.2 Euler–Bernoulli beam theory 

In order to understand the behavior of a cantilever subject to bending, infinitesimal 

imaginary cut of the cantilever will be analyzed using the well-known Euler-Bernoulli beam 

theory in the following. 

An infinitesimal cut of the cantilever subject to bending due to a bending moment M is 

shown in Fig. 2.2 (a). If we assume the surface of the cutting edge remain plane after bending, 

the displacement in x direction of the points on the surface can be simply expressed as 

       ( )xu z x                                                                (2.6) 
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where z is the vertical axis from neutral plane, ψ(x) is the bending angle of the cut plane as 

shown in Fig 2.2 (b).  

 

Figure 2.2. (a) Infinitesimal cut of the cantilever which is subject to bending. (b) Relation of the 

bending angle and the beam and displacement of the cutting plane in x direction. 

If the plane AB remains perpendicular to CD, we have  

dw

dx
                                                                  (2.7) 

where dw is the infinitesimal vertical deflection of the beam, and dx is the infinitesimal distance 

in x direction.  

Therefore, displacement in x direction can be expressed as 

x

dw
u z

dx
                                                            (2.8) 

Normal strain (strain in x direction) is the ratio of change in length to original length, 

which can be expressed using infinitesimal term as 

neutral axis 

M 

z A 
ψ 

B 

C dx 
dw 

D 
M x z 

ψ 

ux 

dx 

dw 

(b) (a) 
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x
xx

u

x






                                                       (2.9) 

 Combining Eqs. (2.8) and (2.9), we have 

2

2

x
xx

u d w
z

x dx



  


                                         (2.10) 

Therefore the normal stress is 

2

2xx

d w
Ez

dx
                                                  (2.11) 

 

Figure 2.3. illustration of normal stress and bending moment on the imaginary cutting surface of 

the beam.   

Because the bending moment on the cutting surface can be calculated as the integral of 

bending monent caused by normal stress over the cross-sectional area as illustrated in Fig. 2.3, 

we have 

2 2
2

2 2xx

A A

d w d w
M zdA E z dA EI

dx dx
                                        (2.12) 

z 

z y 

σxx 
y 

x 

A 

M 
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where I is the second moment of area.  

Combining Eqs. (2.11) and (2.12), the normal stress can be simplified to  

xx

Mz

I
                                                          (2.13) 

Noting that the first derivative of bending monent over x axis is sheer force, we have 

( )
dM

V x
dx

                                                          (2.14) 

In addition the first derivative of sheer force is distributed force which is force per unit 

length. 

( )z

dV
q x

dx
                                                          (2.15) 

Therefore, from Eqs. (2.13), (2.14) and (2.15), we can derive 

4

4
( )z

d w
EI q x

dx
                                                   (2.16) 

This equation is called Euler-Bernoulli equation [30].  

2.1.3.beding of cantilever 

Let’s consider a cantilever with one end fixed and the other end subject to a vertical force 

as shown in Fig. 2.4. 
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Figure 2.4. Bending of a conventional cantilever with one end fixed and the other end free. 

At position x, the bending moment is  

)()( xLFxM                                                   (2.17) 

Based on eq. (2.12), we have 

EI

xLF

EI

xM

dx

xwd )()()(
2

2 
                                    (2.18) 

Integrating it over the length from 0 to x, the slope of the cantilever at position x can be 

calculated, which is 

EI

xLxF

EI

sLF

dx

xdw x )2/()()( 2

0





   (Boundary condition 0

)0(


dx

dw
)                (2.19) 

Integrating the slope over the length from 0 to x once again, the vertical deflection of the 

cantilever at position x can be calculated, which is 

EI

xLxF

EI

xLxF
xw

x )6/2/()2/(
)(

32

0

2 



   (Boundary condition 0)0( w )          (2.20) 

Therefore, by substituting x=L into Eqs.(2.19) and (2.20), we can calculate the slope and 

vertical deflection of the cantilever at the free end, which are 

L 

x 

F 
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EI

FL

dx

Ldw

2

)( 2

                                                    (2.21) 

EI

FL
Lw

3
)(

3

                                                       (2.22) 

So far, the fundamental concepts of mechanics of material method and basic equations 

have been presented, which are necessary for developing the theoretical model for gapped 

cantilever structure.  

2.2 Gapped cantilever structure 

Figure 2.5 schematically shows a general form of an asymmetric gapped cantilever, 

which is far more advantageous than conventional cantilever for sensing applications.  This 

structure includes a base, a proof mass, a bottom mechanical beam and a top sensing beam, and 

two wider rigid beams which connect top sensing beam to the base and the proof mass 

respectively. Note that the supporting beam of the proof mass is a composite cantilever, 

consisting of a bottom mechanical layer and a top sensing layer separated by a gap, namely 

gapped-cantilever.  

 

Mechanical beam 

Sensing beam 

Proof mass 

Base 

x 

z

  
y 
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Figure 2.5. Schematic structure of an asymmetric gapped cantilever. The structure includes a 

base, a proof mass, a bottom mechanical beam and a top sensing beam, and two wider beams 

connecting top sensing beam to base and proof mass respectively. 

The symbols for dimensions of the structure are listed in Table 2.1. It's also important to 

note that we assume that 1) the deformation of the proof mass is neglected; 2) mass of the beams 

are neglected; 3) deflection is small; in the following derivations.  

Table 2.1 Symbols for dimensions of the bottom mechanical beam, top sensing beam and proof 

mass. 

 Length (x) Width (y) Thickness (z) 

Bottom mechanical beam l1 w1 t1 

Top sensing beam l2 w2 t2 

Proof mass lm wm tm 

2.3 Force and bending moment equilibriums 

When a force is applied to the proof mass in z direction, the cantilever beams are subject 

to deformation resulting in a displacement and rotation of the proof mass.  If we assume an 

imaginary cut between cantilever beams and proof mass, there will be several forces and bending 

moments applied to each of the separated parts as shown in Fig. 2.6. 

 

F2 

F1 

F 

Fn2 

Fn1 

M1 

M2 

X 

Z 

θ 

D 

lm × wm × tm 

l2 × w2 × t2 

l1 × w1 × t1 

l3  
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Figure 2.6. Forces and bending moments applied to the cantilever in a discrete component 

model. Fn1, Fn2, F1,  F2, M1 and M2 are normal forces, shear forces and bending moments on 

bottom and top beams respectively, F is the total force applied on proof mass, and D is the 

distance between top and bottom beams. 

Based on force and bending moment equilibriums, the following equations can be 

derived: 

Force balance in x-axis: 1 2 0n nF F                                                                 (2.23) 

Force balance in z-axis:      1 2 0F F F                                                          (2.24) 

Bending moment balance by y-axis: 1 2 1 2 0
2 2 2

pm

n n

lD D
M M F F F                      (2.25) 

where Fn1, Fn2, F1,  F2, M1 and M2 are normal forces shear forces and bending moments on 

bottom and top beams respectively, F is the total force applied on proof mass, and D is the 

distance between the two middle planes of the top and bottom beams. 

If we assume the proof mass is rigid, the following conditions need to be satisfied at the 

free ends of the two beams:  

          1 2                                                                      (2.26) 

1 2z z                                                                     (2.27) 

where θ1, θ2, Δz1 and Δz2 are the bending angle and displacement in z direction of bottom and 

top beams at the free ends, respectively.  

2.4 Two bending shapes 

For a conventional cantilever, we usually assume that the transverse section of the beam 

remain plane after bending according to plain assumption[30].  Then the deformation and strain 
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experienced by the cantilever can be obtained based on the well-known classical beam theory.  

However, for the gapped cantilever, the plane assumption is not necessarily valid.  In practice, 

we usually observe two deformation shapes of the gapped cantilever.  The first shape is the 

rotational bending of the composite gapped cantilever as shown in Fig. 2.7(a).  The second one is 

translational bending as shown in Fig. 2.7(b).  In fact, the true bending of the gapped cantilever 

is a linear sum of these two shapes. Which shape will the bending close to mainly depends on the 

geometric parameters [21, 22].  

   

                         (a)                                                                                             (b) 

Figure 2.7. Side view of the two bending shapes of the gapped cantilever: (a) rotational bending; 

(b) translational bending. 

2.5 Derivations 

2.5.1 Decomposition of force and bending moment 

If zero damping is assumed, the system can be treated as linear. Therefore, the forces 

and bending moments can also be decomposed into two sets corresponding to the two bending 

shapes respectively.  For rotational bending, there should be a bending moment along with a 

normal force applied on each of the bottom and top beams as shown in Fig. 2.8 (a).  On the 

other hand, for translational bending, each beam is experienced by a shear force and a bending 
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moment as shown in Fig. 2.8 (b). Note that for the following derivation, subscripts T and R are 

used to distinguish parameters for translational bending and rotational bending respectively. 

 

    

    

Figure 2.8. (a) Force and bending moment distribution for rotational bending. F1R, F2R, M1R, 

M2R, d1 and d2 are normal forces, bending moments and distance to neutral plane for bottom and 

top beams, respectively. Note that there are no shear forces in this bending mode. (b) Force and 

bending moment distribution for translational bending. F1T, F2T, M1T and M2T are shear forces 

and bending moments for bottom and top beams, respectively. Note that there are no normal 

forces in this bending mode. 

2.5.2 Equations for rotational bending 

For rotational bending, the bending angle of the proof mass is equal to the slope at the 

free end of the bottom and top beams and therefore can be expressed as: 

F2T 

F1T 

M1T 

M2T 

 

X 

Z 

D 

lm × wm × tm 

l2 × w2 × 

t2 

l1 × w1 × t1 

(b) 

F=ma 

F2R 

F=ma 

F1R 

M1R 

M2R 

X 

Z 

θ 

D 

lm × wm × tm 

l2 × w2 × t2 

l1 × w1 × t1 

d2 

d1 

Neutral plane 

(a) 



17 

 

1 1

1 1

RM l

E I
                                                               (2.28) 

2 2

2 2

RM l

E I
                                                               (2.29) 

where  I1 and  I2 are moments of inertia of bottom and top beams respectively. 

The displacements in x-axis of the bottom and top beams at the free end can be expressed 

as: 

1 1
1

1 1

RF l
x

E A
                                                             (2.30) 

2 2
2

2 2

RF l
x

E A
                                                            (2.31) 

where A1=w1t1 and A2=w2t2 are cross sectional area of bottom and top beams respectively. 

Since the neutral plane has zero x-displacement in rotational bending shape, the bending 

angle can be calculated with respect to either bottom or top beams (under small displacement 

assumption) as: 

1 1 1

1 1 1 1

Rx F l

d E A d



                                                      (2.32) 

2 2 2

2 2 2 2

Rx F l

d E A d



                                                    (2.33) 

The total bending moments applied to the whole gapped cantilever is 

1 2 1 1 2 2R R R R RM M M F d F d                                           (2.34) 
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By substituting F1R, F2R, M1R, M2R derived from Eqs. (2.28), (2.29), (2.32) and (2.33) into 

Eq. (2.34), the bending angle can be calculated and expressed by the following equation:   

1

2 2

1 1 2 2 1 2 1 1 1 2 2 2 1 2/ /

RM l

E I E I l l E A d E A d l l
 

  
                           (2.35) 

Define an equivalent bending rigidity for rotational bending RR as  

2 2

1 1 2 2 1 2 1 1 1 2 2 2 1 2/ /RR E I E I l l E Ad E A d l l                               (2.36) 

Then, the bending angle can be simplified to  

1R

R

M l

R
                                                                (2.37) 

Using the equivalent bending rigidity, it is straightforward to calculate the z-displacement 

of the proof mass (center) for rotational bending as well: 

2

1 11 1
0

( )

2 2 2 2

m m R mR R
R R

R R R

l l M l l lM l M l
z z

R R R



                         (2.38) 

where zR0 is z-displacement of  the beams at the free ends. 

It is interesting to note that the total bending moment is 

2

m
R T

Fl
M M M                                                      (2.39) 

In addition, the bending moment for Translational bending can be easily derived based on 

the relationship to the total shear force in this mode, and that is  
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1

2
T

Fl
M                                                        (2.40) 

Therefore, the bending moment for rotational bending mode is 

1( )

2

m
R T

F l l
M M M


                                                        (2.41) 

By substituting Eq. (2.41) into Eq. (2.38), the z-displacement of the proof mass can be 

expressed as 

2

1 1( )

4

m
R

R

Fl l l
z

R


                                                  (2.42) 

Therefore, the spring constant for rotational bending can be derived as 

2

1 1

4

( )

R
R

R m

RF
k

z l l l
 
 

                                                (2.43) 

2.5.3 Equations for translational bending 

For translational bending shape, the displacement of the proof mass in z-direction is equal 

to the z-displacements of bottom and top beams at the free end, which can be expressed as 

3

1 1

1 112

T
T

F l
z

E I
                                                     (2.44) 

3

2 2

2 212

T
T

F l
z

E I
                                                    (2.45) 

Since the total shear force is  

1 2T TF F F                                                    (2.46) 
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Eqs. (2.44) and (2.45) together can be re-arranged as 

3

1

3 3

1 1 2 2 1 212( / )
T

Fl
z

E I E I l l
 


                                        (2.47) 

Define an equivalent bending rigidity for translational bending RT as 

3 3

1 1 2 2 1 2/TR E I E I l l                                          (2.48) 

Then, the z-displacement for translational bending can be simplified to 

3

1

12
T

T

Fl
z

R
                                                                 (2.49) 

Therefore, the spring constant for translational bending can be derived as 

3

1

12 T
T

T

RF
k

z l
 


                                                           (2.50) 

2.5.4 Simplification and total spring constant 

To simplify the expressions and discussion, two dimensionless parameters are introduced:   

   1 m

1

l l

l





                                                           

(2.51)     

T

R

R

R
                                                                  (2.52) 

Then, the spring constants for rotational bending and translational bending presented in 

Eqs. (2.43) and (2.50) can be simplified to 

R

3 2

1

4
R

R
k

l 
                                                             (2.53) 
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T
T 3

1

12R
k

l
                                                            (2.54) 

The total equivalent spring constant can be derived as 

1 1 1 T
E R T 3 2

1

12
( )

3 1

R
k k k

l  

    


                                        (2.55) 

2.5.5 Resonant frequency and normal strain in top sensing beam 

The resonant frequency based on the concentrated mass model is  

  
)13(

12

2

1

2

1
23

1

TE
0




 ml

R

m

k
f      (2.56) 

From Eqs. (2.33), (2.37) and (2.41), the average normal strain experienced by the top 

sensing beam can be derived as 

     2 1 1 m 2
2

2 R 2

( )

2

x Fl l l d

l R l


 
                                                   (2.57) 

A more accurate resonant frequency can be calculated based on Rayleigh-Ritz method [2]. 

As well known, the total mechanical energy, which is the sum of potential and kinetic energy, is 

reserved in a vibrating system if damping is neglected. Therefore, the maximum potential energy 

should be equal to maximum kinetic energy during each cycle of vibration. Maximum potential 

energy occurs when the velocity is zero, and can be easily calculated using the aforementioned 

spring constant equation as 

2 32
21

max (3 1)
2 24E T

F lF
U

k R
                                   (2.58) 
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Meanwhile, maximum kinetic energy (maximum velocity) occurs when displacement is 

zero. If a sinusoidal vibration is assumed, the maximum velocity and maximum displacement 

has the following relationship. 

     ( ) ( )v x z x                                                     (2.59) 

where ω is the radian frequency of the vibration, and Δz(x) is the maximum z-displacement at 

position x. 

By setting the origin at the centre of the proof mass, eq. (2.59) can be expressed as 

 
( ) ( ), 

2 2

m ml l
v x z x x 


                                            (2.60) 

Where Δz is the z-displacement at the center of the proof mass, which can be calculated 

directly using the total spring constant eq. (2.55).  

       
E

F
z

k
                                                              (2.61) 

Therefore, the maximum kinetic energy can be calculated as 

22
/2 /2

2

max
/2 /2

2 6
2 2 2 2 2 21

2

( )
( )

2 2

[(3 1) 3 ( 1) ]
288

m m

m m

l l
m

l l

S

Av x
T dm z x dx

F lm

R

 


     

 
   

   

 
         (2.62) 

where Am=wmtm is the cross sectional area of the proof mass.  By letting maximum 

potential energy eq. (2.58) equal to maximum kinetic energy eq. (2.62), the resonant frequency 

can be calculated as 
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T
0 3 2 2 2 2 2

1

1 12(3 1)
'

2 2 (3 1) 3 ( 1)

R
f

ml

  

      


 

  
                                (2.63) 

2.5 Optimization 

2.5.1 Energy conversion efficiency 

For any kind of applications, the universal figure of merit of gapped cantilever is energy 

conversion efficiency. That’s because we always require as much energy as possible to be used 

to stretch/compress the sensing layer which is the only component that contribute to the output 

signal.  Here we define the energy conversion efficiency  as the ratio of the energy stored by 

pure-stretching/compression of the top sensing layer to the total mechanical energy, which can 

be calculated in two steps.   First, the ratio from the energy stored by rotational bending to the 

total energy can be easily derived from spring constant equations, and that is 

1 2

1

1/ 3 1

T

R T

k

k k


 
 

 
                                                    (2.64) 

Second, when the gapped cantilever is subject to rotational bending, the potential energy 

is distributed in bottom and top beams.  For each of the beams, the energy can be further 

decomposed into two different forms: bending energy and normal stretching/compression energy.  

These energies can be calculated as [30]:  

1
1

2

R
bending

M
U


                                                  (2.65) 

2
2 

2

R
bending

M
U


                                                  (2.66) 
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1 1
1

2

R
compression

F x
U 


                                             (2.67) 

2 2
2

2

R
stretching

F x
U 


                                              (2.68) 

By substituting Eqs. (2.28) ~ (2.33) into Eqs. (2.65) ~ (2.68), we can find the ratios of 

each form of the potential energy: 

1 2 1 2

2 2

1 1 2 2 1 2 1 1 1 2 2 2 1 2

     :   :   :  

         :  /  :         :  /

bending bending compression stretchingU U U U

E I E I l l E Ad E A d l l

   


                     (2.69) 

It can be observed from this equation that the distribution of the energy from rotational 

bending can be exactly described using the four terms that compose rotational bending rigidity 

RR as shown in Eq. (2.36). Therefore, the percentage of the total rotational energy stored in the 

top sensing beam in the form of normal stretching/compression can be expressed as 

2

2 2 2
2 (1 )(1 )

R

E A d

R


                                                      (2.70) 

where µ=l1/l2 and γ=d1/D. 

Therefore, the total energy conversion efficiency is 

1 2 2

(1 )(1 )

1/ 3 1

 
 

 

 
 


                                                   (2.71) 

To find an optimized design, t1 and D are first fixed. Then, β can be simplified to 

3

1 1 2 2 1 1

2 2 2 2

1 1 2 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 2 2

T

R

R E I E I E I C

R E I E I E A d E A d E I E I E A d E A d C




    


   

      
  (2.72) 
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where  

    
2

1

212

t
C

D
                                                               (2.73) 

Substituting Eq. (2.73) into the energy conversion efficiency equation Eq. (2.72), we get 

2

2 2 2 2

3 (1 )

(3 1) (3 2)

C

C C

  


   




   
                                    (2.74) 

By taking derivation ∂η/∂γ=0, we can find the optimal γ. 

2 2

1

1 1
1 1

(3 1)

O
C

C C








  


                                              (2.75) 

To make rotational bending dominant hence increasing the energy conversion efficiency, 

we always prefer a large α. Therefore, for the optimal design, we should keep α >>1. Then, with 

this condition, we have 

1

1 1 1/
O

C
 

 
                                                  .      (2.76) 

The optimal γ can be further simplified when 1D t (large gap), which is 

    11

12
O

t
C

D
                                                    (2.77) 

The plot of efficiency η as a function of γ with different C is presented in Fig. 2.9. As we 

can see from the plot, there exists an optimal γ where the energy conversion efficiency η reaches 
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its maximum value. Once γ0 is decided, we can easily find the distance between neutral plane and 

top piezoelectric beam d2, and other related parameters such as w1, w2 and t2. 

 

Figure 2.9. Plot of efficiency η as a funtion of γ with different C (α =5). 

2.5.2 Effect of the air gap 

Previously, it’s been mentioned that separating the mechanical beam and the sensing 

beam with a gap leads to a larger sensitivity. However it is also important to note that without 

proper design and optimization, the increased gap may decrease the sensitivity instead. This 

phenomenon can be interpreted using energy perspective as well. Figure 2.10 plots 1 , 2 and  

as functions of D when other parameters are fixed.  
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Figure 2.10. Energy efficiencies as functions of D when other parameters are fixed. w1=400 µm, 

t1=50 µm, l1=120 µm, w2=20 µm, t2=2 µm, l2=20 µm, wm=2000 µm, tm=420 µm, lm=4000 µm.  

As we can see from the plot that the total energy conversion efficiency  shows a rapid 

increase at the beginning and start to decrease after reaching maximum as the gap D increases. 

This result clearly indicates that the gap between top sensing beam and bottom mechanical beam 

is not the larger the better. 

Looking further into the two sub energy efficiencies, we can observe that a large D 

always helps to increase 2 (ratio from energy on top sensing beam by pure stretch/compression 

to the rotational bending energy) and make it reaches its theoretical limit (i.e., 100%). This is 

because larger gap separates the top sensing beam from neutral plain further and make it to 



28 

 

stretch or compress even more. This is the exact reason why this gapped cantilever is beneficial 

and introduced at the first place.  

However, we can also see a decrease of a ratio from rotational bending energy to the total 

bending energy 1 as the gap D increases. This is because a larger gap increases rotational 

bending rigidity and makes the cantilever harder to bend in rotational shape. In other words, 

larger gap leads to a dominance of the translational bending. One solution is to make 1 almost 

equal to one and decreases very slowly as the gap D increases.  To make this possible, kR need to 

be much larger than kT at the very beginning by properly choosing other parameters. This 

criterion can be mathematically expressed as 

2

1
( , )

3

R

T

k
N

k
 

 
   <<1                                                 (2.78) 

It can be observed that kR/kT is a complicated function of many parameters.  However, 

one simple way to satisfy the above inequality is to make the length of the proof mass much 

longer than the cantilever length, i.e., lm>>l1 (equivalent to α >>1). 

2.6 Summary 

In this chapter, mechanics of material method is first introduced. Then, the gapped 

cantilever structure is described schematically with all geometric and material properties defined. 

Next, the force and bending moment equilibriums for gapped cantilever are analyzed. With all 

these preparations, the theoretical model for gapped cantilever is developed with the assistance 

of decomposing the cantilever bending into two bending shapes: rotational bending and 

translational bending. Finally, an optimization process focusing on energy conversion efficiency 
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is discussed with the derived model. Some of the most important equations and derived 

parameters are summarized below in Table 2.2. 

Table 2.2. Important equations and parameters derived in the analytical model. 

Names Equations 

Bending rigidity for rotational bending 2 2

1 1 2 2 1 2 1 1 1 2 2 2 1 2/ /RR E I E I l l E Ad E A d l l        (2.36) 

Bending rigidity for translational bending 3 3

1 1 2 2 1 2/TR E I E I l l                                          (2.48) 

length ratio of proof mass and bottom beam 
1 m

1

l l

l



                                                             (2.51) 

Ratio of two bending rigidities 
T

R

R

R
                                                                  (2.52) 

Spring constant for rotational bending 
R

3 2

1

4
R

R
k

l 
                                                              (2.53) 

Spring constant for translational bending 
T

T 3

1

12R
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l
                                                             (2.54) 

Resonant frequency (concentrated mass model) 
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 Normal strain in top sensing beam 
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Resonant frequency (Rayleigh-Ritz method) 2
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Energy ratio from rotational bending to total 
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Energy ratio from top stretching to rotational 2

2 2 2
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Total energy conversion efficiency 
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Optimal γ 
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Criterion to make rotational bending dominant 
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CHAPTER 3. FINITE ELEMENT SIMULATION  

Theoretical analysis of mechanical systems in engineering has been carried out by 

deriving differential equations of multiple variables using well-known basic physical principles 

such as equilibrium, conservation of energy, the laws of thermodynamics, Maxwell's equations 

and Newton's laws of motion. However, it is very difficult or sometimes even impossible to 

solve such a group of complex equations to derive a mathematical model, especially when 

dealing with nonlinear partial differential equations. Only very simple problems of regular 

geometry such as a rectangular or a circle with the simplest boundary conditions are tractable. 

Therefore, several numerical methods assisted by computer programs have been developed to 

solve complex mechanical structures to find the mathematical models..  

3.1 Finite element analysis 

Finite Element Analysis is one of several numerical methods that can be used to solve 

complex problems and is the dominant method used nowadays. As the name implies, finite 

element analysis is an approach to break a complex problem down into a finite number of simple 

problems and finally develop the system model by adding up all the solutions of each of these 

finite problems.  

Practically, it breaks the continuous mechanical structure into a large number of analogue 

finite elements such as triangular or quadrilateral shape in two dimensions and cube or triangular 

prism shape in three dimensions. Each element in a finite element model will have a fixed 

number of nodes that define the element boundaries to which loads and boundary conditions can 

be applied. The breaking down procedure is usually called ‘mesh’. An example of a 2D mesh 

with triangular shape finite element is shown in Fig. 3.1. One principle regarding mesh is that the 
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finer the mesh, the closer we can approximate the geometry of the structure, the load conditions, 

as well as the stress and strain gradients. It’s also worth noting that regions of interest (e.g. 

regions that have large stress) usually have a higher mesh density than other regions. However, 

the tradeoff is that it will take much more time for the computer to calculate the mathematical 

model if meshed element number increases. Therefore, learning how to limit the finite element 

numbers and meanwhile guarantee enough calculation accuracy is a crucial skill as an engineer 

for finite element analysis.  

Node

Element

 

Figure 3.1 Mesh of a block in 2D. Each triangle in the picture represents an element. One 

triangular element has 3 nodes and 3 boundaries. 

Using finite element analysis, one can easily predict how a product reacts to real-world 

forces, vibration, heat, fluid flow, or other physical effects. Therefore, once a design idea came 
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out, engineers can directly use finite element analysis to analyze whether the product work the 

way it was designed or just predict what is going to happen. 

3.2 COMSOL FEA software 

The commercial FEA software COMSOL version 4.3 is used to model the gapped 

cantilever structure in this work. A screen shot of COMSOL software interface is shown in Fig. 

3.2. 

 

Figure 3.2 Screen shot of COMSOL version 4.3 interface. 

The simulation process of a mechanical stress-strain problem in COMSOL is summarized 

below: 
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1. Pre-processing 

a) Design of physical model: In this step the proper physical module is selected from the 

simulator, which determines the physical mechanism for modeling. The geometry of the model is 

then drawn in the simulator along with selection of materials properties for each domain and the 

assignment of boundary conditions. 

b) Meshing: The geometric domain is meshed based on a balance between accuracy 

required and the available computing power. A fine mesh creates more discrete elements in the 

model which gives more accurate results. However, the time required to compute the problem 

also increases when the number of elements increases. In this work, a fine mesh is implemented 

on the top sensing beam and bottom mechanical beam which experience large stress and strain. 

On the other hand, a coarse mesh is implemented to base and proof mass which are rigid enough 

that the deformation can be neglected. 

2. Solving 

This step specifies the type of analysis that needs to be done. Static analysis was 

performed first to find out the displacement of the proof mass and the strain and stress in the top 

sensing beam when the system is subject to a vertical force or a vertical acceleration at proof 

mass. Then, an eigenfrequency analysis was performed to obtain the resonant frequencies for 

several different resonant modes. Frequency response analysis was also performed if necessary 

to find out the vibration amplitude at different frequencies. Theoretically, vibration amplitude 

reaches its maximum at resonant frequencies. 

3. Post-processing 
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The solution of finite element simulation is interpreted in several ways. For example, the 

deformation of the gapped structure can be schematically observed. Values of the deformation, 

strain or stress at any point in the structure can be directly obtained as well. In addition, a plot of 

variables of interest along a defined line or a surface can be drawn too. In frequency response 

analysis, the vibration amplitude versus frequency can also be plotted. 

3.3 Finite element analysis of gapped cantilever. 

A systematic finite element analysis is carried out in several steps to fully understand the 

gapped cantilever structure in this work.  

3.3.1. Model verification 

It is obvious that the first step should be a verification of the theoretical model which is 

developed in chapter 2. It’s important to note that in this step all the assumptions that are made 

during analytical derivation should preserve in the simulations as well. Three key assumptions 

are 1) deformation of the proof mass is neglected; 2) mass of the beams are neglected; 3) small 

deflection is assumed. Practically, 1) the Young’s modulus of the proof mass is set to a very high 

number; 2) the densities of the beams are set to very small numbers; and 3) small deflection 

option is selected in the simulation to mimic these assumptions.  

In order to make sure the model above is valid for all conditions, it’s also necessary to 

simulate in several different cases. Since the bending of gapped cantilever tends to have 

rotational bending shape or translational bending shape, the simulations are performed in three 

cases 1) rotational bending is dominant; 2) rotational and translational bending are equally 

distributed; 3) translational bending is dominant. Mathematically, these conditions can be 

expressed using the criterion parameter from Eq. (2.73), and that is 1) N(α,β)<<1; 2) N(α,β)=1; 
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and 3) N(α,β)>>1. Therefore, three sets of simulations with these three different conditions are 

designed and the results are compared with analytical calculations. For the purpose of evaluating 

material effect, three different materials are specified for bottom beam (Aluminum), top beam 

(PZT) and proof mass (Steel) respectively. The simulation results and corresponding analytical 

values for the three cases are summarized in Tables 3.1 ~ 3.3 respectively. Note that the length of 

top beam and bottom beam are designed as equal in this simulation for simplicity, and the design 

with different bottom and top beam will be investigated later. Also note that 1 m/s
2
 acceleration 

is applied in vertical direction on the proof mass in static analysis. 

Table 3.1. Simulation and analytical results for N(α,β)=0.11. Geometry parameters: w1=1.2 mm, 

t1=0.3 mm, w2=0.4 mm, t2=0.1 mm l=0.5 mm, wm=1.2 mm, tm=1 mm, lm=2 mm 

 Simulation  Analytical Difference(%) 

Spring constant (N/m) 1.75e+06 1.88e+06 6.78 

Resonant frequency f0 (Hz) 4.41e+04 4.66e+04 5.43 

Average normal strain ε 9.82e-09 1.04e-08 5.72 

Table 3.2. Simulation and analytical results for N(α,β)=1.03. Geometry parameters: w1=1 mm, 

t1=0.3 mm, w2=0.5 mm, t2=0.1 mm l=1 mm, wm=1 mm, tm=1.2 mm, lm=1.4 mm. 

 Simulation  Analytical Difference (%) 

Spring constant (N/m) 8.91e+05 9.77e+05 8.73 

Resonant frequency f0 (Hz) 4.04e+04 4.29e+04 5.81 

Average normal strain ε 4.60e-09 4.79e-09 3.88 

Table 3.3. Simulation and analytical results for N(α,β)=10.3. Geometry parameters: w1=1 mm, 

t1=0.2 mm, w2=0.5 mm, t2=0.1 mm l=1 mm, wm=1 mm, tm=2 mm, lm=1.4 mm. 

 Simulation  Analytical Difference (%) 

Spring constant (N/m) 5.12e+05 5.39e+05 4.97 

Resonant frequency f0 (Hz) 2.43e+04 2.50e+04 2.68 

Average normal strain ε 4.37e-09 4.54e-09 3.81 
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As shown in the tables above, the analytical values for spring constant, resonant 

frequency and average normal strain agree very well with simulation results for all three cases. 

Note that the differences between theoretical model and simulation results can be further reduced 

by increasing the finite element numbers or using elements with more nodes. The bending shapes 

of gapped cantilever for three different cases are shown in following figures as well. It’s very 

obvious that rotational bending shape in Fig. 3.3 and translational bending in Fig.3.5 are clearly 

observed. However, it is difficult to say which shape the bending is close to in Fig. 3.4 since 

rotational bending and translational bending are equally distributed in this case. In conclusion, 

the two bending shape theory that we proposed is clearly observed and the accuracy of the 

analytical model that derived in chapter 2 is demonstrated by finite element method. 

 

Figure 3.3 Side view of the deformed gapped cantilever when rotational bending is dominant 

(N(α,β)=0.11).  

 

Figure 3.4 Side view of the deformed gapped cantilever when rotational bending and 

translational bending are equally distributed (N(α,β)=1.03).  
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Figure 3.5 Side view of the deformed gapped cantilever when translational bending is dominant 

(N(α,β)=10.3).  

3.3.2 Real conditions 

It's worth noting that the simulations conducted in the previous section are based on 

several ideal assumptions. However, it's possible that those assumptions may be far away from 

the real conditions in many cases. For example, the bending of proof mass cannot be neglected if 

the proof mass is thin and long or it's composed by a material with small Young's modulus. The 

mass of the beams cannot be neglected either if the beams are made by materials with high 

density or the beams are just large enough. In those cases the results from analytical model may 

have a large difference with the experimental results from real devices. Therefore, it's really 

important to perform another type of simulation without those assumptions to examine the 

difference between ideal cases (with assumptions) and real cases for every design. 

In these series of simulations, normal Young’s moduli of proof mass and normal densities 

of the beams are applied to simulate the real conditions as close as possible. Note that the large 

deflection option is not selected in this step since the deflection of the cantilevers is usually very 

small compared to the length of the device itself. In addition, it will take much more time to 

calculate with large deflection option which is not efficient at all in the work. Since these types 

of simulations are targeted for the evaluation of the difference between analytical calculations 
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and experimental results from real devices, the simulation have to be performed during design 

period for each of the gapped cantilever applications.  

As an example to show the importance of simulation without assumptions, a simple case 

is presented in the following. The geometric and material properties of the gapped cantilever in 

this simulation are summarized in Table 3.4. The simulation results with assumptions, simulation 

results without assumptions and analytical results are listed in Table 3.5. As we can see in the 

tables, the simulation results with ideal assumptions agree very well with analytical calculations. 

However, the simulation results without those assumptions show a fairly large discrepancy with 

analytical results. Since the simulations without assumptions must be closer to the real conditions, 

we have to consider these results as better expectation for the performance of the real device in 

the design phase in this case.  

Table 3.4 Geometric and material properties of bottom beam, top beam and proof mass for the 

simulated gapped cantilever. 

 Bottom beam  Top  beam  Proof mass  

Length (mm) 1 1 3 

Width (mm) 1 0.5 0.1 

Thickness (mm) 0.2 0.1 0.5 

Young’s modulus (GPa) 70 62 200 

Density (kg/m
3
) 2700 7800 7800 

Table 3.5. Simulation results with and without ideal assumptions and analytical results for 

gapped cantilever defined in table 3.4. 

 Simulation 

with  assumption 

Simulation 

no assumption Analytical 

Spring constant (N/m) 7.75×10
4 

7.22×10
4
 7.81×10

4
 

Resonant frequency f0 (Hz) 1.21×10
4
 1.16×10

4
 1.22×10

4
 

Average normal strain ε 1.86×10
-8

 1.85×10
-8

 1.86×10
-8
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However, it’s also worth noting that analytical calculations are much more convenient 

and take much less time than simulations. In addition, the analytical results are usually not too 

far away from simulations without assumptions as we can see in Table 3.5. Therefore, there is no 

doubt that the analytical model that developed in this work can provide accurate enough 

guidance during the design period, and simulations are used to assist verifying and finding more 

precise expectations of the design. 

The deformation of gapped cantilever with normal beam mass and normal proof mass 

stiffness is presented in Fig. 3.6. Compared with the results seen from Figs 3.3~3.5 in which the 

proof mass is rigid, we can observe a slight deformation of the proof mass in this case.  

 

Figure 3.6 Side view of the deformed gapped cantilever with no assumptions made.  

3.3.3 Higher resonant modes 

In the previous simulations, we assumed the proof mass resonates in vertical direction 

and only focused on this resonant mode. However, as well known, there are multiple resonant 

modes in mechanical vibrations. It’s worth noting that resonant frequencies of other resonant 

modes could be very close to the vertical mode and sometimes even smaller than that for gapped 

cantilever structure. In these cases, the performance of the devices may be severely affected by 

those other resonant modes and it is difficult to achieve the normal function that we expected.  
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Considering difficulty to calculate higher resonant modes theoretically, it is very 

important to perform finite element simulation to find out other resonant modes. If the results 

show resonant frequencies of other modes close to the vertical mode, it is also required to modify 

design or look for solutions to avoid or compensate that. This process is again need to be done 

for every design in the real applications.  

As an example of investigating higher resonant mode, another series of simulations is 

performed in this section. The geometric and material properties of the gapped cantilever in this 

simulation are summarized in Table 3.6. At this time, an eigenfrequency analysis is utilized to 

study multiple resonant modes of the gapped cantilever. The first three resonant frequencies and 

corresponding resonant mode shapes are summarized in Table 3.7 and Figs. 3.7~3.9 respectively.  

Table 3.6 Geometric and material properties of bottom beam, top beam and proof mass for the 

simulated gapped cantilever. 

 Bottom beam  Top  beam  Proof mass  

Length (mm) 1 1 2 

Width (mm) 0.8 0.2 2 

Thickness (mm) 0.2 0.1 1 

Young’s modulus (GPa) 70 62 Infinity 

Density (kg/m
3
) 0 0 7800 

Table 3.7. Simulation results of the first three resonant frequencies for gapped cantilever with 

properties specified in Table 3.6.  

Resonant mode number 1 2 3 

Resonant frequency (Hz) 1.06×10
4 

1.23×10
4
 1.75×10

4
 

Mode shape Lateral Vertical Torsional  
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Figure 3.7 Illustration of the mode shape corresponding to the first resonant frequency (10.6 

kHz). The deformation of the gapped cantilever is close to lateral (y-direction) bending. 

 

Figure 3.8 Illustration of the mode shape corresponding to the second resonant frequency (12.3 

kHz). The deformation of the gapped cantilever in this mode is vertical (z-direction) bending. 

 

Figure 3.9 Illustration of the mode shape corresponding to the third resonant frequency (17.5 

kHz). The deformation of the gapped cantilever in this mode is torsional around x-axis. 
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As we can see from the simulation results that the resonant frequency of lateral vibration 

mode is smaller than vertical vibration mode.  In this case, there is a high possibility that lateral 

vibration is dominant, and the device will not vibrate in vertical direction which we expected to 

see. Another problem with other dominant resonant mode is that the device may be easily 

damaged due to unexpected deformations. 

Additionally, we can also observe from the results that the resonant frequency of 

torsional vibration is higher but still very close to the resonant frequency of the vertical mode. 

This adjacent torsional vibration may also severely affect the vertical vibration. Consequently, 

torsional vibration along with lateral vibration interfere the signal from the device which is only 

supposed to pick up the signal from vertical vibration mode. In this case, it is really difficult to 

post-process the signal to extract useful information about vertical vibration that we are 

interested in. Therefore, it is really necessary to design carefully to make vertical vibration mode 

far more dominant than other resonant modes with the assistance of finite element simulations. 

In fact, splitting top and bottom beams into two and separating them far away from each 

other is a very effective way to suppress lateral and torsional vibrations. In the following, another 

simulation result is presented to show the effect of this approach. The geometric and material 

properties are kept the same as previous simulation which are shown in Table 3.6. The only 

difference in this step is that the bottom and top beams are both split in half and each piece is 

moved the two edges in lateral (y) direction. Theoretically, this change will not affect the 

vibration in vertical direction but only suppress lateral and torsional vibrations. The simulation 

results are shown in Table 3.8. Comparing the new simulation results with previous ones shown 

in Table 3.7, we can clearly observe an increase of the resonant frequencies for lateral and 

torsional vibration modes without varying the resonant frequency of vertical mode. Consequently, 
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the resonant frequency of vertical vibration mode is turned to be the lowest one with this new 

design. This means vertical vibration will be dominant now and less interferences will be 

induced by other resonant modes. Therefore, if there is no much of difficulty during development 

phase, the cantilever beam splitting scheme is always preferable in the applications. The 

illustrations of the deformed of gapped cantilever with bottom and top beams split are shown in 

Figs. 3.10~3.12.  

 Table 3.8. Simulation results of the first three resonant frequencies for gapped cantilever after 

bottom and top beams are split.  

Resonant mode number 1 2 3 

Resonant frequency (Hz) 1.23×10
4 

1.96×10
4
 3.63×10

4
 

Mode shape Vertical Lateral Torsional  

 

 

Figure 3.10 Illustration of the mode shape corresponding to the first resonant frequency after 

bottom and top beams are split (12.3 kHz). The deformation is in vertical direction. 
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Figure 3.11 Illustration of the mode shape corresponding to the second resonant frequency (19.6 

kHz) after bottom and top beams are split. The deformation is close in lateral direction. 

 

Figure 3.12 Illustration of the mode shape corresponding to the third resonant frequency (36.3 

kHz) after bottom and top beams are split. The deformation is in torsional. 

3.4 Summary 

In this chapter the finite element simulation of gapped cantilever is studied systematically. 

First of all, a brief introduction of finite element analysis has been presented. The FEA, assisted 

by computer program, is one of the most popular numerical methods that can be used to solve 

complex mechanical problems. In this work, a commercial FEA software Comsol version 4.3 is 

used to simulate gapped cantilever structure. Finite element simulations are performed in several 

steps for different purposes. First, the analytical model developed in chapter 2 is verified using 

FEA. In this step, the three ideal assumptions (rigid proof mass, zero beam mass and small 
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deflection) made during analytical model derivation are kept the same. The results show a great 

agreement between simulation and theory, and therefore the analytical model is verified. Next, 

another series of simulations is performed with all ideal assumptions removed, and the larger 

discrepancy between real case and analytical calculations is shown. This tells us the analytical 

calculations sometimes may not precisely predict the performance of real devices and it is really 

necessary to simulate the real conditions to make a better estimation. In the last, a series of 

eigenfrequency analyses has been performed to study lateral and torsional resonant modes other 

than vertical resonant mode. The results from this simulation indicate that there is a chance that 

lateral and torsional modes may interfere vertical mode if the gapped cantilever is not properly 

designed. One direct solution is that bottom and top beams can be split and widely separated to 

suppress lateral and torsional vibration mode, and this approach is demonstrated by simulations 

as well. In conclusion, finite element simulation is an excellent tool to assist the design of gapped 

cantilever transducers and it will be implemented specifically for each of the applications in the 

following several chapters. 
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CHAPTER 4. PIEZORESISTIVE ACCELEROMETER  

Gapped cantilever structure has proven to have a great potential to increase the sensitivity 

of cantilever based sensors by both analytical calculation in chapter 2 and finite element 

simulation in chapter 3. Now, it is time to seek the applications of gapped cantilever in 

engineering by taking the advantage of high sensitivity. As the first demonstration, the most 

typical and popular cantilever based sensor, piezoresistive accelerometer is chosen in this work. 

4.1 Introduction 

4.1.1 Piezoresistive accelerometer  

Micromachined accelerometers have been extensively researched in the past several 

decades due to their small size, low power consumption, low unit cost, and the possibility of 

integration with circuits.   These sensors are used for a large variety of military, industrial, 

medical and consumer applications.  Among various sensing mechanisms for micromachined 

accelerometers [31], piezoresistive sensing has been a popular choice [1, 6, 8, 11, 12, 32-39].  

However, low sensitivity has been recognized as one of the disadvantages of piezoresistive 

accelerometers [17].  There are several approaches to address this issue.  For instance, the 

sensitivity can be increased by selecting the proper geometric dimensions of the cantilever and 

proof mass.  Furthermore, the sensor performance can be improved by optimizing the 

piezoresistors on the cantilever using methods similar to those reported in [10, 14, 40].  

Alternatively, the performance of the piezoresistive accelerometers can be improved by 

employing some novel configurations.  Suminto reported a configuration in which the support 

beam of the proof mass was composed of a central hinge and two decoupled piezoresistors [41].  

Later, a high performance piezoresistive accelerometer, consisting of two axially-stressed tiny 
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beams combined with a central supporting cantilever, was demonstrated by Huang et al based 

on a similar idea [17].    

In this work, the development of a piezoresistive accelerometer based on a gapped 

cantilever structure is reported.  It is worth noting that patents issued to Wilner in Endevco 

Corporation and Kurtz in Kulite Semiconductor Products, Inc. in the 1960s and 1970s have 

described similar structures with strain gauges mounted across a gap or slot [26, 28].  The silicon 

micromachined versions of such a structure were also described in later patents [27, 29].   In 

2005, Naeli et al. reported the development of piezoresistive cantilevers using a similar stress 

concentration structure [25].  Nevertheless, how the sensor’s performance is affected by the 

geometrical parameters of the asymmetrically-gapped cantilever has not been systematically 

studied.  Consequently, there is no well-developed methodology for the optimization of the 

design  and the potential of this structure has not been fully realized.  As a matter of fact, this 

structure may degrade, instead of enhance, the sensor performance if not properly designed.   

4.1.2 Continuous lung sound monitoring 

Among numerous applications of micromachined accelerometers, the original goal of 

inventing the more sensitive piezoresistive accelerometer in this research is to accurately and 

continuously monitor human lung sound (or respiratory sound). In the following, the importance 

of continuous lung sound monitoring is first introduced to further emphasize the significance of 

our work. Then, the requirements of the accelerometer for lung sound measurement are analyzed 

for preparation of the sensor design.  
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4.1.2.1 Importance of continuous lung sound monitoring 

Most people probably have experience with respiratory sound monitoring via stethoscope 

auscultation in the clinic or hospital or just in a regular physical checkup. In fact, respiratory 

sounds play much more important roles than most of us realize.  They are physiological vital 

signs (together with heart sounds, heart rate, blood pressures, oxygen saturation, etc.) designated 

by American Society of Anesthesiologists (ASA), containing a rich reservoir of vital 

physiological and pathological information [42-44].  We are very familiar with the scenes on 

TV/movie or from personal experience that the electrocardiogram (ECG) of the patient is being 

continuously monitored in ORs or ICUs.  But we have never seen continuously monitoring of 

respiratory sound.  This is not because the respiratory sounds are not important.  Instead, this is 

because the technology of continuous respiratory sound monitoring is far from mature at this 

moment.  

The successful development of the proposed accelerometer will have significant impacts 

on various clinical and healthcare applications. One specific example is anesthesia monitoring in 

the operating room. The continuous monitoring, recording and computer-assisted signal 

processing of respiratory sounds can provide critical and prompt information in situations of 

airway complications such as pulmonary edema, bronchial intubation, tube malfunctioning, etc. 

[45-47].  For instance, when bronchospasm occurs during surgery, a pattern change in breathing 

sounds is perhaps its fastest indication.  Unfortunately, now in the operation room, the 

respiratory sound is only monitored intermittently using stethoscopes. Our technology will allow 

direct, continuous, and non-invasive monitoring of pulmonary functions, greatly enhancing the 

diagnosis capability that is currently provided indirectly by measured variables such as airway 

pressure, flow rate, O2 and CO2 levels, blood O2 saturation, etc. The potential impact of the 
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system on the targeted anesthesia application will be substantial in increasing diagnostic 

accuracy and speed, avoiding unnecessary lab tests, easing the physician stress levels, increasing 

decision accuracy, reducing drug consumption, shortening recovery time and hospital stay, and 

enhancing the safety of the anesthesia decision process. It will, therefore, improve the quality of 

anesthesia and patient care in ORs. 

This technology will have important applications to many other clinical areas in which 

the non-invasive and continuous monitoring of lung functions plays an important role. This 

includes continuous asthma monitoring for severity characterization, diagnosis, and drug impact 

analysis; non-invasive vital sign monitoring for pilots and other military personnel; patient 

monitoring in ICU, nursing facilities and Emergency Medical Services (EMS); the assessment of 

drug effectiveness for pain management in cancer patients, etc. [48-55]. Consequently, the 

successful development of this technology will break grounds for developing smart monitoring 

systems in many clinical applications. When integrated ultimately with wireless communication 

capability, it would be a convenient option to connect the device with communication and 

internet systems for telemedicine.  

4.1.2.2 Technology 

In the following paragraphs, a brief introduction to respiratory sound detection is 

presented and challenges of continuous respiratory sound monitoring are discussed.  The 

dominant tool for measuring respiratory sounds is the stethoscope, which is comprised of a bell-

shaped air chamber and a microphone to pick up sound signals.  As shown in Fig 4.1 (a), the 

respiratory sound generates a vibration on the chest skin with an amplitude of x1. Due to the 

amplification effect of the air chamber, the vibration amplitude on the microphone membrane x2 

is much larger. Although widely used, the stethoscope has a number of limitations for continuous 
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respiratory sound monitoring.  For instance, the stethoscope is bulky due to the air chamber. 

Therefore, it is difficult to be body-worn or applied to obstructed auscultation sites.  Furthermore, 

the signal picked up by the stethoscope is very sensitive to the way in which the stethoscope is 

applied on the patient (location, angle, force, etc.), and a slight movement (e.g., caused by patient) 

may result in a complete loss of the respiratory signal.   Therefore, stethoscopes are only used for 

intermittent auscultation but are not suitable for continuous respiratory sound monitoring.  

The vibration of the skin due to respiratory sounds can also be detected by accelerometers 

[43, 56-58].  Compared with the stethoscope, the accelerometer is in direct contact with the skin 

and does not need an air chamber to couple the acoustic signal.  However, the accelerometers 

need to be much more sensitive since there is no air chamber to amplify the signal.  For 

monitoring respiratory sounds, especially lung sounds, we have found that the resolution of the 

accelerometer needs to be ~1g/Hz
1/2

 (1g represents the acceleration equivalent to one 

millionth of the gravity of earth).  A highly sensitive accelerometer usually requires a large proof 

mass. The conventional packaging method also increases the overall mass and size 

significantly.Therefore, current high sensitive accelerometers usually are heavy and bulky.  

microphone

Skin 

x1

x2
Air chamber

Chest wall

(a)
   

Chest wall

Accelerometer 
Elastic strip

Msensor

ktape kskin

(b)

(c)
 

Figure 4.1. (a) A schematic drawing of the operating principle of the stethoscope after [43]; (b) a 

schematic drawing of using an accelerometer to detect respiratory sounds; (c) a simplified 
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mechanical model of an accelerometer attached to the chest by an elastic strip.  Msensor is mass of 

the whole sensor including packaging.  

To detect respiratory sounds, an elastic strip is usually used to tape the sensor on the 

chest wall as shown in Fig. 4.1 (b). The large mass of the sensor has an important disadvantage, 

i.e., mass-loading effect. The mass-loading effect induces a cut-off frequency that is given by  

sensor

skintape

o
M

kk
f




2

1
      (4.1) 

where keff is the effective spring constant determined by the skin and tape. The above equation 

indicates that when the mass of the sensor is too large, the cut-off frequency will be fairly low, 

and the higher frequency components of the respiratory signals will be significantly attenuated. 

This is the undesirable mass-loading effect [43, 57, 59].   

For continuous respiratory sound monitoring, another requirement is that these 

accelerometers need to be wearable, or more specifically, can be attached to the skin 

conveniently and comfortably.  This is not only a nicety but also a necessity for this type of 

device to be widely accepted by doctors and patients.  For example, in the operating room, the 

sensor needs to be applied to obstructed auscultation sites.  For daily life asthma or vital sign 

monitoring, the sensor has to be comfortable and non-visible.   

In conclusion, the accelerometers for continuous respiratory sound monitoring have to be 

(1) sensitive, (2) light-weight and (3) wearable.  There have been a few efforts in developing 

systems for continuous respiratory sound monitoring [60, 61]. Most of these efforts were based 

on off-the-shelf stethoscopes/microphones or accelerometers.  So far we have not seen any 

sensor that satisfies all three requirements.  As a result, in most clinical studies that involved 
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continuous respiratory sound monitoring, off-the-shelf accelerometers and stethoscopes were 

used [45-48, 51].  Even though all these studies were done in a well-controlled clinical 

environment, the performance was not satisfactory.  For example, Nishida et al. stated that in 21 

of 43 cases in their clinical study, the monitoring system failed to measure respiratory sounds 

continuously enough for the diagnosis of diseases [62].  The continuous monitoring of 

respiratory sounds in the non-controlled daily environments is much more challenging and has 

not been achieved so far.  

4.2 Design 

Even though continuous lung sound monitoring requires the accelerometer to be wearable, 

the priority task of our work is the design of a highly sensitive micromachined piezoresistive 

accelerometer.  In this section, the proposed accelerometer based on gapped cantilever structure 

is presented first. Then, the performances are analyzed by discussing sensitivity and noise issues.  

4.2.1 structure 

The structure of the piezoresistive accelerometer based on gapped cantilever is 

schematically shown in Fig. 4.2(a).  For this design, the supporting beam of the proof mass is a 

composite cantilever, consisting of a bottom mechanical layer and a top piezoresistive layer (red 

color) separated by a gap. Note that, as introduced in section 3.3, top beam is split into two and 

widely separated in order to suppress lateral and torsional vibration mode in this design. This 

structure is also preferable in the fabrication process as explained later in section 4.4. The 

advantage of this design can be conceptually explained by using the cross sectional view in Fig. 

4.2(b).  The mechanical strain experienced by the piezoresistors is proportional to d2, the 

distance between the piezoresistors and the neutral plane.  This conclusion is valid for 
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conventional cantilevers as well.  However, for gapped cantilevers, this distance is 

approximately equal to the height of the gap between the top and bottom beams, which can be as 

large as the wafer thickness (e.g., 400 µm).  For the conventional cantilever, this distance is only 

half of the cantilever thickness, which is much smaller.  Therefore, this design leads to a higher 

sensitivity. For the first demonstration, the following parameters are selected in our design: 

w1=400 µm, t1=50 µm, l1=120 µm, w2=20 µm, t2=2 µm, l2=20 µm, wm=2000 µm, tm=420 µm, 

lm=4000 µm, D=394 µm and E1= E2= Em=168 Gpa. Based on the analytical model derived in 

chapter 2, a resonant frequency of 5.85 kHz and an average normal strain of 5.23 ×10
-5

 on the top 

piezoresistive beam (with 1 g vertical acceleration) are calculated. 

  

Piezoresistor 

d2

Neutral plane

Proof mass

z
z2

z1

zc

d1

 

                                       (a)                                                                  (b) 

Figure 4.2. (a) Schematic structure of the accelerometer based on gapped cantilever structure.  

The dimensions (width × thickness ×length) of the bottom mechanical beam, the top short 

piezoresistive beams and proof mass are w1 × t1 × l1, 0.5w2 × t2 × l2 and wm × tm × lm, 

respectively.  (b) Cross sectional view of the accelerometer based on gapped cantilever structure. 

z1 and  z2 are the coordinates of the middle planes of the bottom and top beams. zc is the effective 

neutral plane.  

4.2.2 Sensitivity 

If the piezoresistor is configured as a Wheatstone bridge with three other reference 

resistors, the output voltage will be 
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where V0 is the supply voltage of the Wheatstone bridge, G is the gauge factor and 2 is the 

mechanical strain.  Based on Eq. (2.57), the sensitivity is  
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It can be clearly observed that the sensitivity is proportional to d2, the distance between 

the middle plane of the piezoresistor and the neutral plane of the gapped beam.  The position of 

the neutral plane is determined by the ratio of cross sectional areas of top and bottom beams.  For 

an optimized design, the cross section of the bottom beam is much larger than the top beams.  

Therefore, the neutral plane is very close to the bottom beam.  Consequently, the distance 

between the top sensing beam and the neutral plane is approximately equal to the wafer thickness, 

e.g., ~400 m.  For the conventional design, the neutral plane is usually in the middle of the 

beam, and d2 is simply half of the cantilever thickness, which is usually much smaller.  Therefore, 

the design based on gapped cantilever has a sensitivity higher than that of the conventional one. 

A specific design of conventional piezoresistive accelerometer is given to show the 

increase of sensitivity quantitatively.  To make a meaningful comparison, the proof masses of the 

two designs are identical.  The length and width of the conventional cantilever are chosen to be 

120 µm and 400 µm, same as the bottom beam of the gapped cantilever. The thickness is 

selected to be 82 µm, resulting in the same spring constant as the gapped cantilever.  The 

piezoresistor is placed on the top surface of the cantilever and is 2 µm thick.  The sensitivity of 

this conventional design (assuming rigid boundary condition) is 1.98×10
-6

/g, 25 times less than 
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our new design.  Even if the soft boundary is considered, the design based on the gapped 

cantilever is still 21 times more sensitive.  

It must be noted that the sensitivity improvement predicted by Eq. (4.3) is based on the 

assumption that RR remains constant when d2 increases.  Since 2

222 dAE  term is dominant in RR  

equation for an optimized design, it is necessary to decrease the cross sectional area of the 

piezoresistors accordingly to keep RR constant.   This is an important design rule for gapped 

cantilevers.  

It can also be observed from Eq. (4.3) that translational bending does not affect the 

sensitivity.  This is because translational bending generates opposite mechanical strains across 

the middle plane of the top piezoresistive beams.  The mechanical strains cancel with each other 

and do not lead to net resistance change if these strains are small and only first order effect is 

considered.  Although translational bending does not contribute to the sensitivity, it does 

decrease the resonant frequency.  Therefore, translational bending should be minimized when the 

bandwidth is considered.   This requirement can also be derived from the energy perspective, i.e., 

the energy should be concentrated in rotational bending.   

4.2.3 Noise 

Noise is another critical issue of transducers.  For piezoresistive accelerometers, there are 

three major noise sources: 1/f noise, Johnson noise and thermomechanical noise.  At low 

frequencies, 1/f noise, given by the following equation, is typically dominant [9, 14, 15, 63] 

Nf
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n
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where f is the frequency, N is the total carrier number in the piezoresistor, V is the voltage across 

the piezoresistor, n is typically between 0.9-1.1 [4], and H is an empirical coefficient usually 

called Hooge factor.  

The buckling and self-heating of the piezoresistive layer of the gapped cantilever have 

been discussed elsewhere [18] 

4.3 Finite element simulation 

Finite element simulation has been carried out to verify the analytical calculations. In the 

finite element simulation, the top piezoresistive beam is selected to be 20µm long, 10µm (each 

beam) wide, and 2 µm thick. As explained later, piezoresistive beams are fabricated using the 

device layer of the SOI (Silicon-in-Insulator) wafer. The length, width and thickness of the 

bottom beam (mechanical beam) are 120 µm, 400 µm and 50 µm, respectively. The proof mass 

has a dimension of 4000 × 2000 × 420 µm
3
.  The distance between the middle planes of the top 

and bottom beam D is approximately 394 µm.  Note that as shown in Eq. (4.3), a short 

piezoresistive beam is preferred for higher sensitivity.  Due to the aspect ratio limit of DRIE, the 

piezoresistors are connected to wide plates (as shown in Fig. 4.2(a)) which are also formed by 

the device layer.  Since the plates are much wider than piezoresistors, they are treated as rigid 

boundary in our analytical model.  

Static analysis is first conducted with 1 g vertical acceleration applied on the structure. 

Figure 4.3 schematically shows the simulation results of the deformed piezoresistive 

accelerometer based on gapped cantilever structure.  



57 

 

 

Figure 4.3 Simulation result of the deformed piezoresistive accelerometer based on gapped 

cantilever structure.  

In addition to rigid boundary condition which is asumed in analytical model as well, soft 

boundary case is also simulated in order to anticipate real situation and to evaluate the accuracy 

of our analytical model.  The simulation results of normal strain experienced by top piezoresistor 

along x-axis are ploted in Fig. 4.4 in both rigid and soft boundary cases. As we can see from the 

figure that, the normal strain apears to be nearly constant along the piezoresistive beam, but 

shows a rapid decay close to the boundaries ajacent to base and proof mass. This is normal when 

two subjects experiencing different strains are connected together. Due to the non-uniformity of 

the strain in the piezoresistors, an average normal strain is calculated from the simulation results 

as shown in Table 4.1. It can also be observed from Fig. 4.4 and Table 4.1 that the normal strain 

in piezoresistor is larger in case of rigid boundary compared with soft boundary case. This can be 

easily explained by the strain distribution on piezoresistor and the ajacent boundaries as shown in 

Fig. 4.4 (insets) that the soft boundaries share some of the strain energy from piezoresistor.  
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Figure 4.4 The average normal strain (in x direction) experienced by the top piezoresistive 

beams for both rigid boundary and soft boundary cases. The acceleration applied is 1g in vertical 

direction.  Insets show the top views of the normal strain distribution in the piezoresistors and 

ajacent boundaries.  

The fundamental resonant frequency has been studied using finite element simulation as well.  

The simulation results and corresponding analytical values are listed in Table 4.1. The resonant 

frequencies are calculated using both concentrated mass model and Rayleigh-Ritz method and 

the difference is about 15% for this specific design. As expected, the resonant frequency 

calculated by Rayleigh-Ritz method matches with the simulation result based on rigid boundary 

condition very well.  

Table 4.1. Analytical and simulation results for the designed piezoresistive accelerometer. The 

analytical resonant frequencies are calculated using both concentrated mass model and Rayleigh-
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Ritz method.  The finite element simulation is carried out for both rigid boundary and soft 

boundary cases. 

 Analytical  
Simulation 

Rigid boundary Soft boundary 

Resonant frequency f0 (kHz) 
Concentrated Mass 6.71 

5.84 3.96 
Rayleigh-Ritz  5.85 

Average normal strain ε2 

(with 1 g acceleration)  
5.23×10

-5
 5.26×10

-5
 4.28×10

-5
 

 

It is worth nothing that the proof mass can also resonate in lateral and torsional modes.  

Eigenfrequency analysis shows that the resonant frequencies of lateral and torsional modes are 

15.4 kHz and 23.5 kHz respectively, which are much higher than the resonant frequency of 

vertical mode. The corresponding mode shapes are schematically shown in Fig. 4.5. In the future 

development, the bottom beam can also be split into two and widely separated to further suppress 

lateral and torsional modes.  

        
                                        (a)                                                                            (b) 

Figure. 4.5 Mode shapes of (a) lateral and (b) torsional vibration for piezoresistive 

accelerometer based on gapped cantilever structure. Resonant frequencies for these two modes 

are 15.4 kHz and 23.5 kHz respectively. 

4.4 Fabrication 

The fabrication process is carried out on 4” (100) SOI wafers purchased from MEMS 

Engineering & Material, Inc (Fremont, California).  The p-type device layer has a thickness of 
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2.0µm and a resistivity of 0.008~0.01 cm.  The buried oxide layer and substrate layer are 2.0 

µm and 420 µm thick, respectively.  First, a 250 nm thick Au film was deposited by E-beam 

evaporation with 20 nm Cr adhesion layer. This metal layer was then patterned to form the metal 

traces and contact pads, as shown in Fig. 4.6 (a).  In the next step, with a photoresist mask, DRIE 

was used to etch the device layer to form the top piezoresistive beams, as shown in Fig. 4.6 (b). 

In order to protect the accelerometer from shocks while handling and packaging, a 5-6 µm thick 

parylene C layer was deposited on the front side of the wafer.  This parylene layer was patterned 

and etched by oxygen plasma using a thick photoresist mask layer.  An etching window for the 

bottom mechanical beam was opened in this step, as shown in Fig. 4.6 (c).  The exposed SiO2 

was subsequently stripped by Buffered HF (BHF).  Next, DRIE was carried out on the front side 

of the wafer to etch the exposed area.  The inset in step (d) shows a magnified view of the cavity 

etched.  The etching stopped when the remaining Si thickness was about 50 µm. Note that this 

thickness was not accurately controlled due to the lack of an etch stop.  However, this inaccuracy 

of bottom beam thickness will not cause a large variation of the sensor performance. In the future 

development, special SOI wafers with device layers on both sides can be used to accurately 

control the thickness of the mechanical beam.  Then the second DRIE was carried out from the 

back side of the wafer as shown in step (e).  The bottom beam was first shaped during this 

etching.  The DRIE stopped when the buried SiO2 was reached.  The SiO2 layer was then 

removed by BHF.  Note that after this step, the proof mass was not completely free-standing 

because of the protective parylene C layer.  The device was glued on a printed circuit board 

(PCB) and wire-bonded.  It is worth noting that the top parylene C layer is critical during the 

wire bonding process.  Without this protective layer, the large shock generated during wire 

bonding may destroy the accelerometer. The parylene C layer was removed by oxygen plasma 
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after the packaging process was finished.  A photograph of a fabricated accelerometer is shown 

in Fig. 4.7 (a). Note that parylene C layer was removed for clarity.  The scanning electron 

microscope (SEM) images of the fabricated devices are shown in Fig. 4.7 (b, c).  

(a) (b)

(c)

(e) (f)
 

Figure 4.6. Simplified fabrication process of the accelerometer based on gapped cantilever:   (a) 

deposit and pattern Au/Cr thin films on the SOI wafer; (b) pattern the device layer to form top 

piezoresistive beams; (c) deposit and pattern a parylene layer; strip the exposed oxide layer; (d) 

etch from the front side of the wafer using DRIE; (e) DRIE from the back side of the wafer 

(backside view); (f) top side view of the finished accelerometer (parylene layer is not shown for 

clarity). 
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(a) 

 

(b) 

 

(c) 

Figure 4.7.  (a) Photograph of a fabricated device.  (b) SEM image of one fabricated 

piezoresistive accelerometer based on an gapped cantilever. (c) Magnified view of one free-

standing top piezoresistor. 
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4.5 Characterization 

The packaged piezoresistive accelerometer was characterized using a mechanical shaker 

(Labworks, ET-126B) and a commercial accelerometer (Model 752A13, Endevco), as shown in 

Fig. 4.8.  The dimension of the accelerometer under characterization is given in section 4.2.1.  

The nominal resistance of the piezoresistor is ~300 ohm. A Wheatstone bridge circuit was 

formed using two fixed resistors and one adjustable resistor. 5V dc supply voltage was used.  

The bridge voltage was tuned to zero by varying the resistance of the adjustable resistor. The 

output signal was first amplified by a pre-amplifier (Stanford Research SR560, with a noise 

spectral density of 4 nV/Hz
1/2

 at 1 kHz) and then recorded by a data acquisition board (National 

Instrument NI 4461).   

                                

Figure 4.8.  The packaged device was mounted on a mechanical shaker. A commercial 

accelerometer was used to calibrate the acceleration. 

Figure 4.9 (a) shows the output voltage as a function of the amplitude of applied 

acceleration at 100Hz. The measured sensitivity is 0.36 mV/V/g.  The frequency response of the 

accelerometer is shown in Fig. 4.9 (b).  A resonant frequency of about 4060Hz was observed.  If 

the piezoresistive coefficient is 32×10
-11

 N
2
/m [4, 14], a sensitivity of 0.36 mV/V/g is equivalent 
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to a strain sensitivity of 2.710
-5

/g in the piezoresistors.  It can be observed that the experimental 

value of resonant frequency is less than the analytical value presented in Table 4.1.  The main 

reason for this discrepancy is that we treated the top wide plates to which the piezoresistors are 

anchored as a rigid boundary in our analytical model.  However, in the real case, these plates also 

experience mechanical strains, reducing the strain in the piezoresistors.  The effect of elastic 

boundary was studied by finite element simulation using the actual Young’s modulus of silicon 

in <110> direction (168 GPa) [13].  The results are presented in Fig. 4.4 and Table 4.1.  It can be 

observed that the simulated resonant frequency based on soft boundary is 3.96 kHz, matching 

with the experimental value very well.   However, the sensitivity is still lower than the simulation 

value.  This discrepancy is likely because the actual piezoresistive coefficient is smaller than the 

value (32×10
-11

 N
2
/m) which is used in our calculation. The piezoresistive coefficient may vary 

considerably depending on several factors including doping concentration, temperature and 

crystal orientation[4]. For instance, a temperature increase caused by self-heating of the 

piezoresistor will result in a decrease of the piezoresistive coefficient.  In addition, it has been 

reported that the piezoresistive coefficient of silicon could be 33% lower than generally accepted 

value, probably simply due to material property variation [5].  In addition, the parasitic resistance 

connected in series with the piezoresistor may also contribute to the lower sensitivity. 
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(b) 

Figure 4.9. (a) Output voltage of the accelerometer as a function of acceleration at 100Hz with 5 

V supply voltage. A sensitivity of 0.36 mV/V/g is observed with good linearity. (b) Frequency 

response of the accelerometer under 1 g acceleration. A resonant frequency of 4060Hz and a 

quality factor of 23 are measured. 
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The noise of the fabricated piezoresistive accelerometer was also measured. Figure 4.10 

shows the measured noise spectral density.  The dashed line shows the noise floor of the 

measurement system.  This noise floor was measured by replacing the sensor with a low noise 

metal film resistor in the Wheatstone bridge. It is clearly observed that 1/f-like noise, with a 

frequency exponent n approximately equal to 1.4, is dominant at low frequencies.  When n1, 

the origin of 1/f noise is generally considered to be conductivity fluctuation [16].  With n>1, 

other noise mechanisms such as current constriction are believed to play important roles [63, 64].  

Assuming Eq. (4.4) is still valid, αH of our device is 8.7×10
-3

, which is at the upper end of 

reported Hooge factors of single crystal silicon (10
-7

 to 10
-3

) [40, 63].   The larger noise is likely 

due to the excessive amount of defects in the device layer of the SOI wafer.  It is reported that 

high temperature annealing could reduce 1/f or 1/f-like noise significantly [3, 40, 63].  The 

minimum detectable acceleration can be calculated based on the measured noise and sensitivity. 

With a bandwidth from10 Hz to 1000 Hz, the minimum detectable acceleration based on the 

experimental results is 670 µg.   

 

Figure 4.10. The measured noise spectral density ( Hz/V ) of the piezoresistive accelerometer.   
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4.6 Summary 

Micromachined piezoresistive accelerometer based on gapped cantilever structure is 

studied in this chapter. The accelerometer is designed in response to the requirements of 

continuous lung sound monitoring which is very important in clinical. The micro-scale prototype 

is designed and corresponding sensitivity and noise are discussed theoretically using the 

analytical model derived previously in chapter 2. Finite element simulation is also performed 

systematically to verify several important parameters such as average normal strain in 

piezoresistor and resonant frequency, etc. Higher resonant modes are proved to have little effect 

on the fundamental resonant mode for the proposed design as well using eigenfrequency analysis. 

The designed piezoresistive accelerometers are microfabricated using double-side DRIE process 

on SOI wafers. The developed accelerometers have been successfully characterized and the 

results show an agreement with analytical predictions and finite element simulations. In 

conclusion, the concept of micromachined piezoresistive accelerometer based on gapped 

cantilever structure is demonstrated. In the future, techniques (e.g., silicon islands on parylene 

membrane) which are able to make the accelerometer wearable will be investigated to finally 

make lung sound monitoring possible by using the accelerometer invented in this work.  
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CHAPTER 5. VIBRATION ENERGY HARVESTER 

Vibration energy harvesting has attracted a great interest due to its various applications in 

both civilian and military fields, e.g. powering wireless sensor networks. Cantilever-mass 

structures are widely used in vibration energy harvesting devices. To convert the mechanical 

energy to electrical energy, a layer of piezoelectric material is usually fabricated on the surface 

of the cantilever or the cantilever itself is a piezoelectric bimorph.  The AC voltage generated 

usually needs to be converted to DC voltage before it can be used to power the following circuits.  

Therefore, it is always desirable to increase the voltage and power output of a piezoelectric 

vibration energy harvester. Vibration energy harvester based on gapped cantilever structure is 

proposed in this work by taking the advantage of high voltage sensitivity and high energy 

conversion efficiency of gapped cantilever structure.  

5.1 Introduction 

5.1.1 Tire pressure monitoring system (TPMS) 

This work is pursued in response to a new federal rule (Federal Moving Vehicle Safety 

Standard 138) mandating that every passenger vehicle sold in the U.S. market after January 1
st
, 

2008 should be equipped with Tire Pressure Monitoring Sensors (TPMS) on every tire.  The 

ruling further mandates that only direct measurement systems that monitor all four tires 

simultaneously to detect under-inflation of 25% or more of recommended pressure be 

utilized.  This means that every tire including the spare contains a TPMS and each TPMS 

requires a power source, mainly batteries. 

Currently TPMS power sources contain a finite amount of energy, and based on 

manufacturer’s own early estimates, are expected to last as few as 6 years in this 



69 

 

application.  This can present a conundrum for the vehicle owners at the time of battery 

failure.  TPMS batteries are not rechargeable and the vast majority of the devices on the market 

do not allow for the replacement of these batteries.  Because of the less than ideal environment 

inside tires, the pressure sensor and surrounding electronics are protected with the use of a 

material that makes it impossible to replace any components within the TPMS device.  Owners 

will have to decide whether they will replace the TPMS devices at a cost of as much as $240 per 

tire or $1200 for all tires, including the spare, or forego the use of a mandated safety feature that 

they have become accustomed to.  So customers will be forced to live without this technology or 

pay a lot of money for replacement devices because of a battery that would cost the consumer at 

most $3.00 a piece at the local Radio Shack. Lithium batteries are considered a hazardous 

material and must be disposed of properly.  Based on information obtained from engineers within 

Ford and General Motors (GM), automakers are actively searching for alternatives to the lithium 

battery because of the potential warranty issues, potential customer backlash, and potential 

litigation that could occur because of battery failure as well as the environmental issues caused 

by the use of lithium.   

Generally alternative power sources for battery-less TPMS [65] can be grouped into three 

categories.  The first method is based on back scatter technology, which has been used for RFID. 

In this method, readers are mounted on chassis. The RF signal sent by readers is reflected back 

and modulated by the pressure signal.   In the second method, the power is transmitted to TPMS 

module wirelessly, e.g., using low frequency (LF) electromagnetic wave.  In the third category, 

the energy is scavenged from the environment, including vibration energy scavenging and 

thermal energy scavenging based on thermoelectricity.   The following table is a comparison of 

different approaches[65].  Freescale, a major TPMS supplier, concludes that the vibration energy 
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harvesting device based on piezoelectric material is the most promising solution [65].  This is 

mainly because the automotive industry is extremely sensitive to cost.  The piezoelectric 

vibration harvesting device is so far the lowest cost battery-less solution.  It is also the least 

disruptive to the current TPMS module production process.  In addition, installation is not 

complicated by any chassis mounted devices at each wheel location, reducing labor cost.   

Table 5.1. Comparison of different power approaches for TPMS (adapted from [65]) 

 Battery Piezoelectric Thermal LF power Back-scatter 

Total system cost $42 $50 $54 $58 $80 

Replacement 

Interval 
6-10 years Life of car Life of car Life of car Life of car 

Consumer Life 

Cycle Cost 
$204-1164 $100 $108 $116 $160 

 

5.1.2 Advantage of gapped cantilever for TPMS 

To make satisfactory vibration energy harvesting devices for TPMS, two conflicting 

challenges have to be addressed simultaneously.  First, the power generated by the vibration 

energy harvesting devices needs to be large enough.  According to [65], it takes 21.9 J, 6.54 J 

and 258.3 J to make, process and transmit one measurement. Tire Pressure Monitor Global 

SSLT Workgroup of General Motor specifies that the TPS shall measure the tire pressure at least 

once every 30 seconds.  Therefore, the power harvested needs to be >10 W.  Second, the device 

has to be robust enough to withstand the huge shock acceleration and large centrifugal 

acceleration inside a fast-spinning tire.  This poses a unique challenge on vibration energy 

harvesting for TPMS.  Since at one hand, a large spring constant is required to withstand this 

acceleration; but on the other hand, this large spring constant considerably decreases the power 

level. 



71 

 

Proof mass
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Piezoelectric layer
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                              (a) Bimorph structure     (b) Unimorph structure 

Figure 5.1. Conventional vibration energy harvesting devices based on piezoelectric bimorph 

and unimorph cantilevers.  One end of the cantilever is fixed. The other end is attached with a 

proof mass.  

Vibration energy harvesting devices based on conventional piezoelectric bimorph or 

unimorph cantilevers[66-71] [72-80] as shown in Fig. 5.1 are used to explain the challenges for 

TPMS.  When there is a vibration, the proof mass will oscillate up and down, straining the 

piezoelectric material.  The piezoelectric material then converts the mechanical strain to 

electrical energy, by generating electrical charges on its top and bottom surfaces.  If the 

amplitude of the external vibration is constant, the power generated is proportional to frequency 

of the vibration and the proof mass, and inversely proportional to the spring constant.  Due to the 

space and weight constraint of TPMS, the proof mass is limited and thus can not be too large.  At 

the same time, the spring constant needs to be large enough to withstand the huge accelerations 

inside tires.  However, this large spring constant reduces the output power. 

Please note that there is a large centrifugal acceleration (up to ~400g under normal 

driving condition) inside tires when the vehicle is running. But the majority of this acceleration is 

a constant component, leading to no energy harvesting.  Only the variation of the acceleration 

(e.g., due to gravity) can be used to generate electricity.  The frequency of this variation is same 
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as the rotation rate of the tire, which is usually between 10-20 Hz.  This is a fairly low frequency, 

which makes it even more challenging to meet the power requirement of TPMS.  

It is also worth noting that when operating at resonant frequency, the amplitude of the 

proof mass vibration will be much larger and thus the power generated will be much higher.  

Therefore, most vibration energy harvesting devices are designed to operate at resonant 

frequency.  Nevertheless, it is not possible in the case of TPMS, where the majority energy of the 

vibration is between 10Hz~20Hz.  To make it robust enough, the energy harvesting device needs 

to be very rigid. Consequently, the resonant frequency is chosen around 1000 Hz, far beyond 10-

20 Hz.  Therefore, the vibration energy harvesting device for TPMS has to operate far below the 

resonant frequency.  This is a significant difference compared with most other vibration energy 

harvesting devices developed so far.    
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Figure 5.2. (a) A full-wave rectifier (bridge rectifier); (b) AC-DC efficiency of a full-wave 

rectifier as a function of the amplitude of the input AC voltage for typical diodes (Is=10-14 A, 

n=1.5, RL=1kohm. VT=0.026V).  
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This power problem is further worsened by the fact that the AC voltage usually needs to 

be converted to DC voltage in order to power the following circuits/sensors.  This is usually done 

by a diode rectifier as shown in Fig 5.2. (a).  This AC-DC conversion efficiency could be far 

below 100% when the amplitude of the AC voltage is small.  For a simplified model,  AC-DC of a 

full-wave diode rectifier can be estimated using the following equation: 

  0.812 / [1 ]d
AC DC

L

R

R
                                                         (5.1) 

where RL is the load resistance, Rd is the diode resistance. 

As shown in Fig. 5.2 (b), the AC-DC conversion efficiency of diode rectifier quickly 

drops to almost zero when the amplitude is below a threshold voltage.  Accordingly, the 

converted DC power will be very small.  This could be a serious issue.   Many researchers are 

starting to look into this issue.  For example, one approach is to develop rectifiers with almost 

zero forward drop voltage (VD0) [81, 82]. However, these rectifiers are active circuits that need 

to be powered during operation.  In many cases, the power consumed by these active circuits is 

even larger than the power harvested.  Therefore, the ideal approach is to increase VI.  

Another big issue is the reliability since the energy harvesting device inside the tire is 

subject to huge accelerations. For example, the centrifugal acceleration can be as large as 650g.  

The weakest link is usually the piezoelectric material (e.g., PZT).  The fracture strain of PZT 

when it is stretched is about 500 microstrain (500×10
-6

).  But when PZT is compressed, the 

fracture strain is at least 5 times larger.  Therefore, it is more robust for the PZT to operate in the 

compression mode.  But for the conventional bimorph structure, there must be one PZT layer 

being stretched no matter how the proof mass displaces.  Unimorph, with one piezoelectric and 
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one metal layer, is more robust.  But more than 50% of the mechanical energy is wasted to strain 

the metal layer.  

5.2 Design 

The schematic vibration energy harvester based on asymmetric gapped cantilever 

structure is shown in Fig. 5.3.  The composite cantilever consists of a top piezoelectric layer and 

a bottom mechanical layer, separated by an air gap.  With such structures, the AC voltage 

generated will be significantly higher due to the increased distance between the piezoelectric 

layer and neutral plane. Therefore, the AC to DC conversion efficiency is increased significantly. 

Interestingly, the mechanical to electrical energy conversion efficiency is also improved because 

gapped cantilevers enable the majority of the strain energy to stretch/compress the piezoelectric 

layer.  Furthermore, the asymmetric structure allows the piezoelectric layer to operate in the 

compression mode when the centrifugal acceleration is applied in the upward direction.  

Therefore this design will be more robust than the bimorph structure.  

The design parameters of vibration energy harvester in this work are as follow: w1=15 

mm, t1=0.9 mm, l1=8 mm, w2=5 mm, t2=0.502 mm, l2=8mm, wm=15 mm, tm=3 mm, lm=30mm, 

E1= Em=200Gpa and E2=66Gpa, ρ1= ρm=8000 kg/m
3
 and ρ2=7800 kg/m

3
. Note that in this design, 

top piezoelectric beam and bottom mechanical beam have same lengths. Based on analytical 

model the spring constant, average normal strain on top piezoelectric beam and resonant 

frequency of vertical vibration are calculated. The results are summarized in Table 5.2 along 

with corresponding simulation results. 
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Figure 5.3. Schematic structure of vibration energy harvester based on gapped cantilever 

structure. 

5.3 Finite element simulation 

A fast finite element simulation is performed to completely evaluate the performance of 

the designed gapped cantilever vibration energy harvester. As discussed in chapter 3, simulations 

with ideal assumptions, simulations without assumptions and eigenfrequency analysis are all 

conducted. All the results are summarized in Table 5.2 along with corresponding analytical 

results. 

Table 5.2 Simulation and analytical results for designed vibration energy harvester based on 

gapped cantilever structure. Simulations are performed both with and without ideal assumptions. 

Eigenfrequency analysis is also performed to find out resonant frequencies of torsional and 

lateral vibration modes. 

 Simulation with 

assumptions 

Simulation without 

assumptions 

Analytical 

Spring constant (N/m) 3.22×10
4 

2.96×10
4
 3.24×10

4
 

Strain on top beam 4.42×10
-6

 4.39.×10
-6

 4.40×10
-6

 

Vertical resonant 

frequency (Hz) 

800 757 803 

Torsional resonant 

frequency (Hz) 

4070 3676 N/A 

Lateral resonant 

frequency (Hz) 

5750 5598 N/A 
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As we can see from the tables above, when ideal assumptions are adopted in the 

simulation, spring constant, average normal strain and resonant frequency of the first mode 

(vertical) match really well with theoretical calculations. Meanwhile, even though same 

parameters from simulation without those assumptions show larger discrepancy from analytical 

results, the differences are still within acceptable range (less than 10%). We can also observe 

from the eigenfrequency analysis results that the resonant frequencies of higher resonant modes 

(torsional and lateral) are far above the first resonant mode (vertical). Therefore, the vertical 

vibration which will be mainly used to harvest energy is dominant for the designed device. An 

illustration of the deformed energy harvester from simulation is shown in Fig. 5.4.  

 

Figure 5.4. Illustration of the deformed vibration energy harvester from simulation result. 

5.3 Bench-top characterization  

A prototype vibration energy harvester based on gapped cantilever structure is developed 

using PZT sheets (T105-A4E-602) purchased from Piezo System, Inc., Cambridge, MA, USA.  

The piezoelectric coefficient d31 is equal to -190×10
-12

 meters/volt.  The Young’s modulus E1 is 

66GPa.  The relative dielectric constant is 1800 (at 1 kHz).  The base, the bottom beam and the 
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proof mass is machined together using one piece of stainless steel. Then, the top PZT layer is 

glued onto the base/bottom beam/proof mass combined metal piece using conductive epoxy. 

Another separate stainless steel mass will be glued onto the proof mass if it’s necessary to 

increase the mass of the proof mass. The resulting gapped cantilever energy harvester is shown 

in Fig.5.5. The device is mounted to a mechanical shaker, which is used to generate mechanical 

vibrations.  A commercial accelerometer (Model 752A13 isominTM, Endevco, CA, USA) is 

attached to the base to measure the acceleration generated by the shaker.  Sinusoidal signals are 

applied to the shaker at various frequencies. 

 

Figure 5.5. Picture of a prototype vibration energy harvester up-side-down mounted on a 

mechanical shaker. Commercial accelerometer is also attached to the shaker for calibration 

purpose. 

When the mechanical shaker vibrates in vertical direction, the vibration energy harvester 

also vibrates generating a sinusoidal voltage between top and bottom surfaces of the PZT sheet.  

The voltage sensitivity (V/g) at low frequency can be easily calculated since the expression of 

average normal strain in the top piezoelectric beam ε2 is already known by Eq. (2.57): 
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                         31

2 2 2

0 3

/
d

V a E t



 

                                                        (5.2) 

where d31 is the piezoelectric coefficient, ε3 is the relative dielectric constant of PZT in direction 

3, ε0 is vacuum permittivity, and λ=l/lT ( lT is the total length of the diced PZT) is a coefficient 

which is used to compensate the parasitic PZT capacitances on the base and the proof mass.  The 

voltage sensitivity versus frequency is plotted in Fig. 5.6 based on bench-top characterization 

results. As we can see, the voltage sensitivity is 1.81 V/g at low frequency, and it is close to the 

theoretical one calculated by Eq. (5.3) which is 1.97 V/g.  In addition, we can find that the 

resonant frequency of the device is 354 Hz, and this is about 25% lower than the theoretical 

resonant frequency of 471 Hz calculated by Eq. (2.63). Note that some of the geometric 

parameters are modified from the design in section 5.2 based on the real device geometry, and 

consequently the two parameters theoretically calculated above are different from the simulation 

results shown in sections 5.3 as well.  
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Figure 5.6. Output voltage sensitivity of the vibration energy harvester as a function of 

frequency. 
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There are several possible reasons for the discrepancy between experimental results and 

theoretical calculations. First, the real spring constant is smaller than the theoretical one since the 

proof mass is also subject to deformation in the experiment which was ignored in the analytical 

model.  Second, the mass of the system is larger than theoretical one since we didn’t consider the 

mass of the mechanical beam and PZT layer in the analytical model.  Last, the bonding is not 

perfectly rigid, possibly leading to softening effect of the boundary.  

5.4 Road test 

This prototype vibration energy harvester is also road-tested to practically inspect the 

feasibility of harvesting energy from tire vibrations. This test also allows us to find out any 

possible problems of the gapped vibration energy harvester and consequently improve the design 

in the future.   

5.4.1 Single device 

A single device test is first conducted on a vehicle (2003 Mazda Tribute) as planned. The 

assembly is shown in Fig. 5.7. The vibration energy harvester is mounted on the wheel up-side-

down to make sure the PZT operates in compression mode.  The wiring to the rotary assembly on 

the wheel is achieved using a slip-ring from Michigan Scientific.  The two lead wires from the 

energy harvester are connected to the “rotor” of the slip-ring.  There is an internal mechanism to 

electrically connect the terminals on the “rotor” to the “stator”.  Then the signals from the 

“stator” are wired out through the aluminum tube and recorded by a USB-based data acquisition 

board (NI USB 6210) controlled by a laptop computer.   
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Figure 5.7. The road test assembly on the wheel for a single device test.  

Two sets of experiments with different driving speeds and different weights of the proof 

mass are carried out, and the power spectral density of the output voltage from the device is 

plotted in Figs. 5.8 and 5.9.  As we can see in the figures, there are two peaks in the power 

spectrum plot.  It is obvious that the first peak at low frequency relative to the rotation rate of the 

tire, i.e., 11 Hz peak in Fig. 5.8 is corresponding to a driving speed of 55 mph and 6 Hz in Fig. 

5.9 is corresponding to a driving speed of 30 mph. The second peak at high frequency represents 

to the resonant frequency of the device. Since resonant frequency is inversely proportional to the 

square root of mass (Eq. (2.63)), 470 Hz peak in Fig. 5.8 is  corresponding to mass weight of 

10.8 gram and 340 Hz peak in Fig. 5.9 is corresponding to mass weight of 21.6 gram. 
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Figure 5.8. Power spectral density of the output voltage in road test when driving speed is 55 

mph and proof mass is 10.8 gram. Two peaks: 11 Hz (inset) and 475 Hz 
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Figure 5.9. Power spectral density of the output voltage in road test when driving speed is 30 

mph and the proof mass is 21.6 gram.  Two peaks: 6 Hz (inset) and 336 Hz 
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The voltage generated by the vibration energy harvester is used to charge a 32 F 

capacitor through a bridge rectifier. The result of the capacitor voltage charged by energy 

harvester with ~50 mph driving speed and 21.6 gram of proof mass is shown in Fig. 5.10. As we 

can see in the figure, it takes about 35 seconds to charge the capacitor to around 8 V, and the 

maximum power is calculated to be 47 µW. Inset shows the magnified view of the charging 

waveform at 60s.  
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Figure 5.10. Top: the voltage of a 32 F capacitor charged by the energy harvester. Bottom: 

fitted voltage of one charging cycle and corresponding power.  Driving speed is ~50 mph, and 

the mass of the proof mass is 21.6 gram. Inset shows the magnified charging waveform. 

5.4.2 Double device. 

The road test performed previously harvested energy of a vibration in centrifugal 

direction. In order to explore the potential of harvesting energy by vibration in tangential 

direction, another set of experiment is performed additionally. In this experiment, two identical 
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vibration energy harvesters (w1=15 mm, t1=0.9 mm, l1=8 mm, w2=5 mm, t2=0.502 mm, l2=8mm, 

wpm=15 mm, tpm=6 mm, lpm=30mm, E1= Epm=200Gpa and E2=66Gpa.) are developed and  

simultaneously used to harvest energy from centrifugal and tangential vibrations respectively to 

make a reasonable comparison between these two modes.  

The two vibration energy harvesters are bench-top characterized first. As shown in Fig. 

5.11, the resonant frequency and sensitivity of the two harvesters match really well (2% and 10% 

difference). The road test is performed on the same vehicle (2003 Mazda Tribute).  The new 

assembly is shown in Fig. 5.12 The two vibration energy harvesters are mounted in two different 

directions (centrifugal and tangential) on the same plastic base which is glued on the wheel.  

Wires and a slip-ring are again used to transfer signals from the harvesters to the laptop in 

vehicle.   
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Figure 5.11. Frequency response of two identically designed vibration energy harvesters. 

Harvester #1 has resonant frequency of 494 Hz and sensitivity of 1.21 V/g, and harvester #2 has 

resonant frequency of 483 Hz and sensitivity of 1.08 V/g. 

Harvester #1 

Harvester #2 
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Figure 5.12. The road test assembly on the wheel for centrifugal and tangential vibration 

simultaneously.  
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Figure 5.13. Voltages from the harvesters measuring centrifugal vibration and tangential 

vibration respectively. RMS voltages of centrifugal and tangential signals are 1.4 V and 3.8 V 

respectively. 
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The voltages from the two harvesters are recorded simultaneously. Figure 5.13 shows the 

voltages of the harvesters in centrifugal and tangential directions respectively at a vehicle speed 

of 50 mph. It is interesting to note that the RMS voltage of the harvester vibrating in tangential 

direction is 3.8 V which is more than twice of the RMS voltage of 1.4 V from the harvester 

vibrating in centrifugal direction. This result indicates that the vibration energy harvesting is 

more efficient in tangential direction of the tire than in centrifugal direction. 

In order to further verify the higher efficiency of tangential vibration mode, the two 

harvesters are also used to charge capacitors with same capacitance (32 F) through identical 

bridge rectifiers. Voltages across the two capacitors are monitored during charging process, and 

the results are shown in Fig. 5.14. As we can see, the capacitor connected to the harvester in 

tangential mode is charged faster to a higher saturation voltage compared to the other.  By means 

of excluding the errors induced by non-identical capacitors and rectifier circuits, the two 

connection lines from harvesters to charging circuits are switched to each other in the next test. 

As can be seen from the switched charging voltages shown in Fig. 5.15, similar results are 

obtained. In conclusion, the vibration energy in tangential direction of the tire is higher than the 

energy in centrifugal direction, hence it is more efficient to harvest energy from the vibration in 

tangential direction in the tire for TPMS. 
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Figure 5.14. The voltage of a 32 F capacitor charged by the vibration energy harvesters for 

vibration in centrifugal and tangential directions respectively. 
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Figure 5.15. The voltages of 32 F capacitors charged by the vibration energy harvesters for 

vibration in tangential and centrifugal directions respectively after the charging lines are 

switched. 
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5.5 Summary 

In this chapter, vibration energy harvester based on gapped cantilever structure is studied. 

Among many applications of vibration energy harvester, the design in this work is specifically 

targeted to power tire pressure monitoring system on vehicles. Finite element simulations are 

performed to verify the harvester design. Prototype vibration energy harvesters are developed 

and tested both in the lab and on the road respectively. The output voltage sensitivity and 

resonant frequency from bench-top characterization show good agreement with theoretical 

values calculated using our analytical model. The road test results show the device is able to 

produce a as large as 8 V absolute voltage and 47 µW power, which preliminarily demonstrated 

the feasibility of powering tire pressure monitoring system using vibration energy harvester 

based on gapped cantilever structure. Another road test is performed using two identical 

prototype harvesters simultaneously to compare the vibration energy for different directions in 

the tire. The results interestingly indicate that the vibration energy in tangential direction is much 

higher than the vibration energy in centrifugal direction. 
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CHAPTER 6. RESONANT MASS SENSOR  

In this chapter, the resonant mass sensor based on gapped cantilever structure is 

investigated. Theoretically, the gapped structure is advantageous in resonant mass sensing due to 

increased displacement sensitivity. A meso-scale prototype is first developed and tested to prove 

the concept of gapped cantilever mass sensor. Later, a micro-scale prototype is designed, 

fabricated and preliminarily tested.  

6.1 Introduction 

Recently, resonant mass sensors based on MEMS/NEMS (Micro or Nano-Electro-

Mechanical Systems) cantilevers have attracted a lot of attention and many exciting results have 

been reported [83-95].  For these resonant mass sensors, one critical component is the transducer 

that detects the vibration of the cantilever.  Optical methods such as laser Doppler vibrometer, 

interferometry and optical lever technique seem to be the most popular choice because they offer 

very high displacement sensitivity and make the microfabrication of cantilevers very simple [83-

85, 87] [86, 89, 90].  However, the overall system becomes expensive, bulky, and not very 

portable although the cantilever resonator itself is very small.  Furthermore, these methods 

become insensitive when the dimension enters nanometer regime due to diffraction issue. 

Piezoresisitvity and piezoelectricity are another two well-developed sensing mechanisms.  Their 

advantages include low cost, simplicity and on-chip integration that may lead to a portable 

system.  A number of piezoresistive and piezoelectric cantilevers have already been developed 

for resonant mass sensing [88, 92-95]. To improve the performance of the resonant mass sensor, 

it is highly desirable to increase the sensitivity of piezoresistive and piezoelectric sensing. 
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Therefore, we proposed resonant mass sensor based on gapped cantilever structure as well to 

achieve higher sensitivity in this work. 

6. 2 Design 

Based on concentrated mass model, the resonant frequency of a mechanical resonator is  

eff

0
2

1

M

k
f




,
                      (6.1) 

where k is the spring constant and Meff is the effective mass of the resonator. When there is a 

mass change M, a resonant frequency change f can be observed: 

 M
M

f
f  0

2

1
                     (6.2) 

Therefore, the mass change can be detected by measuring the resonant frequency shift. If 

the noise is white, following the procedure reported in [96], the minimum detectable mass of the 

resonant sensor can be expressed as, 

carrier

noiseeff
min

2

v

v

Q

M
M


             (6.3) 

where vcarrier is the carrier voltage (RMS) of the resonator, vnoise is the noise voltage, and Q is the 

quality factor of the resonator.  Note that the above three equations are generic and valid for 

various resonant mass sensors. 

The basic structure of the proposed resonant mass sensor in this work is schematically 

shown in Fig. 6.1. Similar to previous applications of gapped cantilever structure, the supporting 

beam is an asymmetrically gapped cantilever, consisting of a bottom mechanical layer (gray 
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color) and a top sensing layer (red color) separated by a gap.  The sensing layer can either be 

piezoresistive or piezoelectric. The proof mass is designed as hollow to reduce the mass, since 

smaller proof mass makes the device more sensitive to mass change.  

Top sensing layer

Neutral plane

y

y2

y1

yc

Proof mass  d2 =(y2-yc)

 
(a)                                                                   (b) 

Figure. 6.1. (a) Schematic of the resonant mass sensor based on asymmetrically-gapped 

cantilever (the proof mass is hollow to reduce the effective mass); (b) cross sectional view of the 

asymmetrically-gapped cantilever.  

As mentioned in chapter 2, the mechanical strain experienced by the top sensing beam is 

significantly increased in gapped cantilever structure, and this in turn leads to larger vcarrier.  

Consequently, a better mass resolution can be achieved as illustrated in Eq. (6.3) if vnoise is a 

constant (e.g., the noise of readout circuit).   

6.3 Meso-scale prototype  

6.3.1 Structure 

To prove the concept of resonant mass sensor based on gapped cantilever structure, a 

meso-scale prototype is designed and developed. Note that the top beam is piezoelectric in this 

meso-scale design. The schematic structure of designed meso-scale resonant mass sensor is 

shown in Fig. 6.2. As we can see from the top and side views, the shape of proof mass in this 

design is hollow and tapered. This is because we prefer the proof mass as light as possible to 

increase the resolution of mass sensing.  
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(a) top view            (b) side view 

Figure. 6.2. Schematic (a) top view and (b) side view of the meso-scale resonant mass sensor 

based on gapped cantilever structure.  

6.3.2 Development 

The developed meso-scale resonant mass sensor is shown in Fig. 6.3. The sensor body 

contacting base, bottom mechanical beam and proof mass is made by one piece of aluminum 

block. Top PZT sheet (T105-A4E-602, Piezo System, Inc., Cambridge, MA, USA) is then glued 

across a narrow trench machined on the aluminum substrate using conductive epoxy to form the 

gapped cantilever structure.  A grove is carved on the sidewall of the resonator to fit the PEEK 

tubing which allows the flow-through of liquid sample. Another PZT sheet is bonded to the 

bottom surface of the aluminum mechanical beam for the purpose of driving the resonator for 

vibration.  Lead wires are glued to both PZT sheets using conductive epoxy. The aluminum 

substrate serves as the ground. A PEEK tubing (0.5 mm i.d.) is glued to the groove on the 

sidewall of the resonator. The total length of the tubing wrapped around the resonator lever is 

about 47 mm which results in a sample volume of 38 μL. 

Base 

proof mass 

bottom mechanical beam bottom PZT  

for actuation 

top PZT for sensing 

groove on the side wall 
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Figure. 6.3. Picture of a meso-scale prototype device made by an aluminum block, PZT sheets, 

PEEK tubing and lead wires. 

6.3.3 Characterization  

The resonator is tested in a vacuum chamber to reduce the air damping.  The electrical 

connections are made using an electrical feed-through. The PEEK tubing glued on the resonator 

can be accessed externally via two small holes drilled on the vacuum chamber.  The 

measurement setup is schematically illustrated in Fig. 6.4.  In our preliminary test, the resonator 

is driven at a fixed frequency.  The shift of resonant frequency is then measured indirectly 

through the amplitude change of the vibration (slope detection) [97].  Specifically, a sinusoidal 

voltage provided by a function generator (Agilent 33120A) is applied to the bottom PZT sheet to 

actuate the resonator at a frequency fd slightly higher than its resonant frequency.  At this 

frequency, the amplitude has the maximum slope with respect to the frequency.  The vibration 

signal from the top PZT beam is first high-pass filtered and then amplified using a pre-amplifier 

(Stanford Research SR560).  The RMS amplitude of the sinusoidal voltage is measured by a 

multi-meter (Agilent 34401A) and recorded into a computer via a GPIB port of the multi-meter 



93 

 

with 5 Hz sampling rate.  Note that the measured signal is RMS amplitude of the voltage from 

the top sensing PZT beam which indicates the RMS amplitude of the resonant level. 

 
 

Figure. 6.4. Schematic diagram of the measurement setup for the resonant mass sensor. 

 
Figure. 6.5. Frequency response of the resonant mass sensor. Vertical axis is the steady-state 

RMS amplitude. 

The frequency response of the resonant mass sensor when the channel is empty is 

measured and the result is shown in Fig. 6.5.  Based on the frequency response curve, the quality 

factor can be calculated, which is   

0 / 240Q f f                                     (6.4) 
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To maximize the sensitivity of slope detection, the driving frequency is selected as [97] 

                      )
8

1
1(0

Q
ffd                               (6.5) 

 

Figure. 6.6. Frequency responses of RMS amplitude before and after the channel is filled with 

DI water. 

Figure 6.6 plots the frequency responses of the sensor before and after the PEEK tubing 

is filled with DI (de-ionized) water. The shift of resonant frequency can be clearly observed.  

Figure 6.6 also illustrates the basic principle of slope detection.  When the resonator is driven at 

a fixed frequency, the resonant frequency shift can be measured indirectly by monitoring the 

vibrating amplitude change.  It can also be observed that the quality factor almost remained 

unchanged after the channel is filled by water. A well-known challenge of resonant mass sensor 

is the viscous damping in liquid.  It has been demonstrated previously that integration of fluidic 

channels with the resonator is a promising approach to address the liquid damping issue [89-91, 

98].  The experimental results shown above confirmed this conclusion.  
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In another set of experiment, the prototype is tested by sequentially injecting alcohol and 

DI water in the PEEK tubing. Fig. 6.7 shows the real-time amplitude of the resonator when 

alcohol and DI water are sequentially injected.  The signal change caused by different densities 

of solutions can be clearly observed.  The transient response due to the sample injection can also 

be observed. Similar experiment is also performed using 1X, 5X, and 10X phosphate buffered 

saline (PBS) solutions. The output voltage change, together with the alcohol and DI water data, 

are plotted in Fig. 6.8.  Note that the drifting of the ambient temperature has considerable impact 

on the resonant frequency.  In order to acquire more consistent data, vibration amplitude of the 

empty tubing is always measured as a reference for every solution measurement.  

Based on the date shown in Fig 6.8, the sensitivity is calculated to be 1.1 V/(g cm
-3

) for 

the prototype device. The standard deviation of the signal is 6.6×10
-5

 V as shown in the inset of 

Fig. 6.7. Therefore, the minimum detectable density change is calculated to be 6.0×10
-5

 g cm
-3

 

and the corresponding mass change is 2.3 g.  

 

Figure 6.7. RMS Vibration amplitude (voltage) of the resonator when alcohol and DI water are 

sequentially injected. Inset shows the noise information with low frequency drift removed.  
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Figure. 6.8. Vibration amplitude change (referenced to the case when the channel is empty) as a 

function of liquid density  

Note that these results are achieved using a meso-scale prototype and the experimental 

conditions are not ideal.  Even based on these non-optimal results, a simple scaling analysis 

based on Eq. (6.3) indicates that atto-gram (10
-18

 gram) mass resolution in liquid can be achieved 

if the dimension of the resonator is scaled down by a factor of 1000 (to ~20 m), and the quality 

factor and signal to noise ratio combined can be improved by 500. 

It is worth noting that the meso-scale prototype based on PZT sheets can potentially 

function as a densitometer. Commercial densitometers have been developed based on vibrating 

U-tubes.  The vibration of U-tubes is typically detected using coils [99]. Research prototypes of 

vibrating U-tube densitometers based on optical detection methods have also been developed 

[100]. Compared with existing products on the market, the advantages of this new design include 

low cost and portability. The stability and repeatability need to be further investigated.  
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6.4 Micro-scale prototype 

6.4.1 structure 

The schematic structure of the proposed micro-scale resonant mass sensor is shown in 

Fig. 6.9. Note that the top beams are piezoresistive in this micro-scale design. This sensor 

includes three main parts: 1) a gapped cantilever piezoresistive resonator; 2) a base with gold 

contact pads; and 3) and two solid legs for tube coupling. Note that there is a micro channel 

going through the whole structure routing one leg, base, cantilever resonator, base and the other 

leg. This channel serves as a tube from which the liquid is injected for mass sensing. In this 

design, the gapped cantilever resonator has four top silicon beams, two bottom mechanical 

beams with micro channel and a hollow proof mass with micro channel. It’s worth noting that 

one pair of the top silicon beams are used as a thermo-elastic actuators to drive the cantilever to 

vibrate, and the other pair are used as piezoresistors for strain sensing as shown in Fig. 6.9(inset).  

 

Figure 6.9. schematic top view (inset) and 3D view of the proposed micro-scale resonant mass 

sensor based on gapped cantilever structure. 
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6.4.2 Simulation 

Finite element simulations are carried out to verify the parameters that derived from our 

analytical model. The geometric and material properties are selected as: w1=400 µm, t1=100 µm, 

l1=95 µm, w2=100 µm, t2=20 µm, l2=95 µm, wm=700 µm, tm=400 µm, lm=495 µm, E1= 

E2=Em=168 Gpa, ρ1= ρ2 =ρm= 2330 kg/m
3
. The hollow cavity inside the proof mass is 245 µm 

wide and 350  µm long. Based on the theoretical model derived in chapter 2, a resonant 

frequency of 6.46×10
5
 Hz and normal strain of 5.34×10

-9
 on top piezoresistive beams are derived. 

Finite element simulation is again performed using commercial software Comsol 4.3. The 

simulation results show an average normal strain of 5.45×10
-9

 on the top piezoresistive beams, 

which is very close to the analytical result.  The simulated resonant frequency is 5.45×10
5
 Hz 

which is about 15 % less than analytical result. The resonant frequency discrepancy is mainly 

caused by the error induced from the hollow proof mass. Finite element simulation result of the 

deformed resonant mass sensor is schematically shown in Fig. 6.10.  

 

Figure 6.10. Schematic result of the finite element simulation for the piezoresistive resonant 

mass sensor. The micro channels in the bottom beams and proof mass are neglected in the 

simulation. 
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6.4.3 Fabrication 

The proposed micro-scale piezoresistive resonant mass sensor is fabricated in this work. 

The fabrication process is similar to the process for piezoresistive accelerometer described in 

section 4.4, except for the fabrication of the micro channels. A 4” (100) SOI wafers purchased 

from MEMS Engineering & Material, Inc (Fremont, California) is also used for resonant mass 

sensor.  The handle/oxide/device layers have thicknesses of 380 µm/0.5 µm/20 µm respectively. 

The resistivity of the device layer is 0.01~0.02 cm. First, a 20 nm/200 nm thick Cr/Au film is 

deposited and patterned to form the metal traces and contact pads. Next, DRIE is used to etch the 

device layer to form the top piezoresistive beams. Then, a 5-6 µm thick parylene C layer is 

deposited on both sides of the wafer. Note that back parylene C layer is used to form micro 

channel, but front parylene C layer serves as a protection layer while performing backside 

processes, Next, a 200 nm thick aluminum layer is deposited and patterned on backside. Oxygen 

plasma process is then performed to etch parylene C underneath using the aluminum layer 

patterned previously as the mask. The next step on backside is XeF2 isotropic etching of silicon 

using parylene C layer as the mask to form the micro channels, followed by another parylene C 

deposition of about 7 µm thick to seal the channel openings. A photograph of the fabricated 

micro channel is shown in Fig. 6.11. Coming back to the front side process, aluminum 

deposition/patterning, parylene C patterning, and silicon etching are processed in sequence to 

form the cavity which defines the top edges for bottom mechanical beams. Another back DRIE is 

then performed using the same process as front DRIE to complete the side edges of bottom 

mechanical beam and release the devices. In the last, the buried oxide layer is removed using 

BHF solution. Next, the micro fabricated devices are seperated from the wafer, glued on printed 

circuit boards (PCB) and wire-bonded.  Finally, the protective front parylene C layer is removed 
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by oxygen plasma after the packaging process is finished.  A photograph of the fabricated 

resonant mass sensor is shown in Fig. 6.12.  

                 

Figure 6.11. Photograph of the micro channel fabricated on back side of the wafer. Simplified 

fabrication process: 1) first layer of parylene C is deposited and patterned to form the opening 

holes. 2) XeF2 isotropic etching is performed to etch silicon underneath to form the channel 

cavity. 3) another parylene C is deposited to seal the channel openings. 

 

Figure 6.12. Photograph of the fabricated prototype resonant mass sensor. 

6.4.4 Preliminary characterization 

Preliminary test has been carried out. A sinusoidal voltage is applied to the thermo-elastic 

Small opening holes 
Micro channels 
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actuation beams, and signals from the sensing piezoresistors are measured through a wheatstone 

bridge. The result is shown in Fig. 6.13. As expected, the output signal is sinusoidal  as well. 

However, it's interesting to note that the frequency of output signal is doubled from input signal 

since the thermo-elastic actuators experience expansion twice in one cycle of the input signal at 

both positive and negative voltage phases. This results show the feasibility of driving the sensor 

using thermo-elastic actuation, and sensing using piezoresistive method.  

 

Figure 6.13. The output voltage from wheatstone bridge with sensing piezoresistors connected 

and the input voltage to the driving piezoresistors. Note that frequency of output signal is 

doubled from input voltage. 

However, the output voltage amplitude shows a rapid decay after about 10 kHz and the 

frequency turns to be the same as the input signal as well. This phenomenon makes it impossible 

to measure the vibration of the micro-scale resonant mass sensor close to its resonant frequency 

at ~500 kHz. Consequently, the mass sensing could not be carried out. There are several possible 

reasons for the suppression of output voltage at high frequency. First, the power of thermoelastic 

actuation using one pair of top silicon beams may not be large enough to drive the sensor to 

vibrate at high frequencies. Second, the electro-magnetic coupling may be enhanced as 

Output signal 

Driving signal 



102 

 

frequency increases, and thus severely interfere the signal from sensing piezoresistors. The third 

possible reason is that the thermal actuation may be suppressed by thermoelastic damping at high 

frequencies. In order to be able successfully characterize the micro-scale resonant mass sensor, 

these issues have to be solved by implementing new design, new fabrication process or just 

simply a better signal processing unit in the future. 

6.5 Summary 

Resonant mass sensor based on gapped cantilever structure is studied in this chapter. First, 

the sensing mechanism and the advantage of gapped cantilever for resonant mass sensor are 

theoretically interpreted by analyzing minimum detectable mass. Following the analysis carried 

out previously, a design of resonant mass sensor based on gapped cantilever structure is 

proposed, in which the proof mass is made hollow in order to reduce the mass for higher mass 

sensitivity. A meso-scale piezoelectric prototype is first designed and developed using aluminum 

block and PZT sheets. A series of tests have been done with this device for liquid mass sensing, 

and a sensitivity of 1.1 V/(g cm
-3

) and a minimum detectable mass of 2.3 g are obtained. These 

results prove the concept of mass sensing using resonant mass sensor based on gapped cantilever 

structure. In the next step, a micro-scale piezoresistive prototype is designed and successfully 

microfabricated. Preliminary test demonstrates the feasibility of thermoelastic actuation and 

piezoresistive sensing mechanism at low frequencies (below ~10 kHz). However, the 

functionality of the prototype is not proved at high frequencies, especially around the resonant 

frequencies at which the resonator should be operated. Possible reasons include low power, 

electro-magnetic coupling and thermo-elastic damping. 
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CHAPTER 7. CONCLUSION & FUTURE WORK 

7.1 Conclusion 

In this Ph.D. thesis work, gapped cantilever structure is proposed to significantly improve 

the performances of cantilever based piezoresistive/piezoelectric transducers. This novel 

structure is implemented to several applications in this work with the assistance by analytical 

model and finite element simulations. Numerous meso-scale or micro-scale prototypes are 

developed and tested. The experimental results demonstrate the advantage and feasibility of 

gapped cantilever structure for the enhancement of strain sensitivity and energy efficiency.   

Major results and accomplishments in this work can be summarized as follow: 

 Analytical model for gapped cantilever structure is established by decomposing the 

deformation into rotational and translational bending.  

 Optimization process is discussed to maximize the energy conversion efficiency.  

 Finite element simulation is performed to verify the analytical model and to guide the 

design. 

 Piezoresistive accelerometer based on gapped cantilever structure is designed and 

successfully micro-fabricated. 

 Characterization results of the piezoresistive accelerometer show a good agreement with 

analytical model and finite element simulation. 

 Vibration energy harvester based on gapped cantilever structure is designed and a meso-

scale prototype is developed. 
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 Bench-top characterization results of vibration energy harvester show good agreement 

with analytical model and finite element simulation. 

 Road test of the vibration energy harvester proves the feasibility of scavenging enough 

energy for tire pressure monitoring.  

 Road test also indicates that it is more efficient to harvest energy from the vibration of the 

tire in tangential direction rather than in centrifugal direction. 

 Resonant mass sensor based on gapped cantilever structure is designed and prototypes are 

developed both in meso-scale and micro-scale.  

 Meso-scale prototype experiments successfully prove the concept of mass sensing using 

resonant mass sensor based on gapped cantilever structure. 

In summary, this Ph.D. work has resulted in a number of important contributions to the 

field of cantilever based piezoresistive/piezoelectric transducers.  

7.2 Future work 

An enormous amount of research on the applications of gapped cantilever structure for 

piezoresistive accelerometer, vibration energy harvester and resonant mass sensor is still 

underway.  Even though a great effort has been made on these subjects in this work and as a 

result plenty of important accomplishments have been achieved, there are still a lot more 

improvements could be made in the future.  
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7.2.1 Piezoresistive accelerometer 

In the future, the performance of the piezoresistive accelerometer could be further 

improved by optimizing the structure parameters, material properties and fabrication process.  

For example, the mechanical beam can be split into two beams and moved to the two edges of 

the proof mass to further reduce the torsional mode and in-plane deflection. Another 

improvement is to select optimal doping concentration of the piezoresistor.  In the current work, 

the piezoresistor is heavily doped for the simplification of the fabrication process whereas not 

necessarily optimal for signal-to-noise ratio.  The fabrication process can be improved by using 

SOI wafers with two device layers, i.e., device layers on both sides of the handle wafer, to 

precisely control the thickness of the mechanical beam.  Methods such as high temperature 

annealing can be investigated to further reduce noise in the future.  To reduce the temperature 

sensitivity, the method reported in [7] which utilizes the orientation dependence of the 

piezoresistive coefficient of single crystal silicon can be employed as well. 

 

Figure 7.1. 3D illustration of a bandage-like wearable accelerometer for continuous respiratory 

sound monitoring. 

In order for the accelerometer to eventually be able to continuously monitor human lung 

sound, it is necessary to make the accelerometer wearable as mentioned in section 4.1.2. 

Textile 
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Stitch 
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Currently, our group is investigating a technique called "intelligent textile" to make the 

piezoresistive accelerometer be able to attach on textile as shown in Fig. 7.1. In this case, 

vibrations from human chest can be easily measured by the sensor on textile which can be worn 

by human.  

7.2.2 Vibration energy harvester 

The fabricated vibration energy harvester has not fully optimized, and the performance 

can be further improved by selecting proper geometric and material properties. Based on 

theoretical analysis, the energy conversion efficiency can reach even up to 90%. Diodes with 

lower bias voltage or better circuit scheme can be used to increase the AC to DC conversion 

efficiency as well. The size of the device can also be further reduced even to micro-scale in order 

for more applications and to somehow match with industry requirement. Since the vibration 

energy harvesting in tangential direction on the tire is proved to be more efficient than in 

centrifugal direction, it is necessary to re-investigate the design accordingly in the future to meet 

the requirement for tangential direction. By taking the advantage of higher energy efficiency of 

the gapped cantilever structure, vibration energy harvesters can also be designed for many other 

applications. 

It's also worth noting that the vibration energy harvester based PZT is not totally green 

because PZT contains lead. To make it completely green, other lead-free piezoelectric materials 

can be utilized. One candidate is reported by Saito et al. [101], whose performance is comparable 

to PZT. 

7.3.3. Resonant mass sensor 

The study for resonant mass sensor based on gapped cantilever is still at initial stage, and 

a lot more systematic study is underway. Even though meso-scale prototype shows a good 
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performance, the characterization of micro-scale resonant mass sensor encounters some 

difficulties. For example, the thermo-elastic actuation is only working at low frequency (less 

than 10 kHz) for current prototype in current measurement system, and the problems at high 

frequencies is still under investigation. The liquid injection testing of the micro-channels are also 

planned in the next step to verify the feasibility the micro-channel design and fabrication process. 

Once the functionality of the resonant mass sensor is demonstrated, different types of liquid will 

be injected into the channel while keeping the sensor vibrating at resonant frequency to 

characterize the sensitivity of the sensor. Noise issues are also critical and need to be studied a 

lot more in the future.  

7.3.4 Other potential applications 

As mentioned previously, there could be plenty of other applications of gapped cantilever 

structure by taking the advantage of high sensitivity and high energy conversion efficiency. For 

example, investigations of gapped cantilever for atomic force microscope, ultrasonic power 

transfer, force sensing and time reference, etc. can be conducted in the future.   
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Cantilever structures have been widely used in a large variety of transducer 

applications. For cantilever based transducers, piezoresistive/piezoelectric mechanisms has 

always been a popular choice due to the advantages of being low cost, simple structure and 

portability. However, low sensitivity is recognized as a major disadvantage of these 

transducers compared with optical based measurement. In this research, a gapped cantilever 

structure is proposed to potentially increase the sensitivity by orders of magnitude. In order to 

guide the design, an advanced analytical model is developed, and the increased strain 

sensitivity is theoretically demonstrated. In addition, optimizations with this model 

interestingly reveal that the gapped cantilever is much more efficient than conventional 

cantilever from energy perspective as well. Applications of gapped cantilever structure 

including piezoresistive accelerometer, vibration energy harvester and resonant mass sensor 

are carefully investigated in this work.  Multiple prototypes of these applications both in 

meso-scale and micro-scale are designed, manufactured and characterized. The testing results 

show good agreement with theoretical expectation, and demonstrate a good potential of 

gapped cantilever structure for the enhancement of strain sensitivity and energy efficiency. 
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