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Chapter 1

Introduction

One of the challenges facing High-Performance Computing(HPC) in peta-scale

computing is the rapidly increasing of I/O demands of both scientific and industrial

applications, such as climate change forcasting [60], nuclear security maintaining [31],

and financial data modeling [36]. More specifically, storage system for peta-scale com-

puting must have the ability to process tera-bytes, if not peta-bytes, of data which

are generated in bursty [24, 28, 31] and handle very high I/O concurrency from par-

allel processes running on millions of cores [29, 32, 27]. Because the performance of

hard-disk-based storage systems is state-dependent for its mechanical moving parts

inside [79], many research and optimization efforts have been made at different lay-

ers of I/O stack, such as runtime library and OS kernel in order to explore higher

parallelism and better locality of data access for I/O performance improvement.

However, isolated optimizations at individual layers of the I/O stack are often unable

to achieve the full potential of storage devices since it is the aggregated impact on

the whole layers that determines the I/O performance of the systems. Therefore, a

comprehensive re-examination of the design and implementation of existing software

stack, especially for parallel I/O, is necessary for solving performance bottleneck in
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A Scenario: Running an MPI Program with a Parallel File System

P P P
Compute 

Nodes CN0 CN1 CN2 CNn

P0 P1 P2 Pn

…
Nodes

Cluster Network

Data

Cluster Network

Meta-SData 
Servers

…DS0 DS1 DSm

Meta S

Metadata Server

4Figure 1.1: System architecture of a representative cluster for high-performance computing using
a parallel file system for management of concurrent data access on shared files.

HPC systems. Before describing the issues which can compromise I/O efficiency I

will first review the current hardware and software architecture for high-performance

I/O.

1.1 Hardware and Software Architecture for High-

Performance I/O

The architecture of a high-performance computing machine has evolved over the

decades. Since our research focuses on performance impact of increased parallelism

and dynamic data access patterns on the storage system using hard disks, in this

dissertation we target on a computing environment, where requests are directly served

on the storage system without using staging areas [88]. Figure 1.1 shows such a cluster

for high-performance computing using a parallel file system [17, 71, 92, 2, 10]. In the

system which is widely used in in-house cluster computing environment, some nodes
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are configured as compute nodes, where processes such as those of an MPI program

are running in parallel, and some are data servers, where user data files are striped.

There is a meta-data server, which provides meta-data service such as the locations

of the requested data in response to the inquiries from compute nodes. Usually, there

is a file system daemon running on every data server, which receives I/O requests

from clients and issues to operating systems of servers. There is no communication

or coordination between data servers. There are three parameters: striping unit size,

striping factor, and striping index that describe the on-disk layout of file data. In

order to achieve the maximal parallelism of data access, file is often striped over the

whole data servers regardless of programs’ access patterns.

In addition to using dedicated data servers to handling I/O requests, the software

system for high-performance I/O is also highly optimized over all the layers, which

form a deep I/O stack. Many of the optimizations concern Temporal Locality

and Spatial Locality of data access. Applications with temporal locality tend to

repeatedly access a small set of data. Spatial locality describes the sequentiality of

continuously requested data on storage devices. Usually this concept applies to the

hard-disk-based storage. Hard disks are such devices that accesses of sequential data

is at least a magnitude faster than accesses of random data, because significant seek

time is usually involved in accessing non-sequential data. The optimization techniques

can be implemented on either compute node side or data server side. Figure 1.2 shows

possible techniques which can be applied to an individual layer of an I/O stack.

Application layer contains the software that a user interacts with. Some applica-

tions may have special knowledge of its data access pattern, which can be leveraged

by operating system making smarter decision [40]. Compiling technique [67] can also

help in this layer to maximize reuseness on a small data set.

MPI-IO middleware layer, which brings transparency and adaptability of software
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Figure 1.2: System components which form a deep parallel I/O stack for highly efficient I/O
services in support of high-performance computing.

to users, is widely used for high-performance computing to improve I/O performance.

Many optimization techniques have been proposed to transform many small and non-

contiguous I/O requests to a few large and contiguous requests, using techniques such

as collective I/O [100], data sieving [100], datatype I/O [48], and list I/O [47] in this

layer.

Kernel process management layer Since I/O latency on a regular storage device

using hard disks is easily longer than hundreds of CPU cycles, I/O requests of parallel

processes are usually completed asynchronously using kernel interrupts [107]. After

issuing requests, processes move to waiting mode. Using asynchronous/nonblocking

I/O [23], with which processes continue its computing assignment, can significantly

improve I/O efficiency by generating a batch of requests as well as the usage of

computing resource. When a system is I/O bottlenecked, pre-execution threads [44,

56, 117] can also help to generate I/O hints for underlying layers of I/O stacks.
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Networking I/O layer Networking design is crucial to both performance and scal-

ability of a high-performance computing machine. 10-gigabit Ethernet [22] and In-

finiband [26] are two of the most popular networking protocals in HPC platform.

Performance of collective communications also hinges on networking topology and

CPU architecture [77].

Parallel file system layer By leveraging parallel file systems, such as PVFS [17, 71],

GPFS [92], and Lustre [2, 10], which are developed to exploit the natural parallelism

in a shared cluster having multiple data servers by striping file data over them, if I/O

request size is much larger than stripe size and the number of concurrent requests is

much more than number of data servers, all the servers will service requests concur-

rently to provide superior aggregate I/O throughput in the order of GB/s for most

systems in production.

Local file system layer Local file systems, such as EXT3 [25] and NTFS [30],

provides both data manageability and availability to users. Designed for handling

write-intensive workloads, log-structured file systems [91] place updates sequentially

on storage medium for better spatial locality.

Memory management layer Memory management is one of the most important

component of operating system. Concerning program’s locality, a large body of data

caching [78, 35, 66, 65, 81] and prefetching [54, 85] algorithms have been proposed

according to different criterions such as recency, frequency, reuse distance, and so on.

In addition, buffer cache in main memory helps improve write-back efficiency through

providing more optimization space.

Disk scheduler layer Before being dispatched to device drivers, the service order

of block-level I/O requests are adjusted based on sequentiality in this layer. Disk

I/O schedulers such as anticipatory scheduler [64, 1] and completely fairness queuing

scheduler [7] are widely adopted in Linux operating system. I/O requests in the
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scheduling queue are sorted and merged according their logical block addresses to

explore spatial locality on hard disks.

1.2 Thesis Contributions

The main contributions of this thesis are to 1) investigate and identify the exis-

tence of four performance bottlenecks in the layered I/O stack through benchmarking

the HPC system with parallel I/O benchmarks with a wide coverage of workload char-

acteristics; 2) find the root causes through re-examining the limitations in their design

and implementation of process management, collective I/O, parallel file systems, and

disk scheduler; 3) present and implement efficient solutions to each of them by taking

advantages of software techniques such as pre-execution or leveraging novel storage

device such as solid-state disks.

1.2.1 DualPar: Enabling Data-driven Execution for I/O Effi-

ciency

A parallel system relies on both process scheduling and I/O scheduling for efficient

use of resources, and a program’s performance hinges on the resource on which it

is bottlenecked. Existing process schedulers and I/O schedulers are independent.

However, when the bottleneck is I/O, there is an opportunity to alleviate it via

cooperation between the I/O and process schedulers: the service efficiency of I/O

requests can be highly dependent on their issuance order, which in turn is heavily

influenced by process scheduling.

We propose a data-driven program execution mode in which process scheduling

and request issuance are coordinated to facilitate effective I/O scheduling for high disk
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efficiency. Our implementation, DualPar, uses process suspension and resumption,

as well as pre-execution and prefetching techniques, to provide a pool of pre-sorted

requests to the I/O scheduler. This data-driven execution mode is enabled when

I/O is detected to be the bottleneck, otherwise the program runs in the normal

computation-driven mode. DualPar is implemented in the MPICH2 MPI-IO library

for MPI programs to coordinate I/O service and process execution. Our experiments

on a 120-node cluster using the PVFS2 file system show that DualPar can increase

system I/O throughput by 31% on average, compared to existing MPI-IO with or

without using collective I/O.

1.2.2 Resonant I/O: high-performance I/O with Data Layout

Awareness

Collective I/O is a widely used technique to improve I/O performance in par-

allel computing. It can be implemented as a client-based or server-based scheme.

The client-based implementation is more widely adopted in MPI-IO software such as

ROMIO because of its independence from the storage system configuration and its

greater portability. However, existing implementations of client-side collective I/O do

not take into account the actual pattern of file striping over multiple data servers in

storage systems. This can cause a significant number of requests for non-sequential

data at data servers, substantially degrading I/O performance.

Investigating the surprisingly high I/O throughput achieved when there is an ac-

cidental match between a particular request pattern and the data striping pattern

on the data servers, we reveal the resonance phenomenon as the cause. Exploiting

readily available information on data striping from the metadata server in popular file

systems such as PVFS2 and Lustre, we design a new collective I/O implementation
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technique, resonant I/O, that makes resonance a common case. Resonant I/O rear-

ranges requests from multiple MPI processes according to the presumed data layout

on the disks of data servers so that non-sequential access of disk data can be turned

into sequential access, significantly improving I/O performance without compromis-

ing the independence of a client-based implementation. We have implemented our

design in ROMIO. Our experimental results on a small- and medium-scale cluster

show that the scheme can increase I/O throughput for some commonly used parallel

I/O benchmarks such as mpi-io-test and ior-mpi-io over the existing implementation

of ROMIO by up to 157%, with no scenario demonstrating significantly decreased

performance.

1.2.3 IOrchestrator: Preserving Spatial Locality using Inter-

Server Coordination

A cluster of data servers and a parallel file system are often used to provide

high-throughput I/O service to parallel programs running on a compute cluster. To

exploit I/O parallelism parallel file systems stripe file data across the data servers.

While this practice is effective in serving asynchronous requests, it may break indi-

vidual program’s spatial locality, which can seriously degrade I/O performance when

the data servers concurrently serve synchronous requests from multiple I/O-intensive

programs.

In order to preserve the spatial locality of programs, we propose a scheme, IOrches-

trator, to improve I/O performance of multi-node storage systems by orchestrating

I/O services among programs when such inter-data-server coordination is dynamically

determined to be cost effective. We have implemented IOrchestrator in the PVFS2

parallel file system. Our experiments with representative parallel benchmarks show
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that IOrchestrator can significantly improve I/O performance by up to a factor of

2.5-delivered by a cluster of data servers servicing concurrently-running parallel pro-

grams. Notably, we have not observed any scenarios in which the use of IOrchestrator

causes significant performance degradation.

1.2.4 iTransformer: Using SSD to Improve Disk Scheduling

The parallel data accesses inherent to large-scale data-intensive scientific comput-

ing require that data servers handle very high I/O concurrency. Concurrent requests

from different processes or programs to hard disk can cause disk head thrashing be-

tween different disk regions, resulting in unacceptably low I/O performance. Current

storage systems either rely on the disk scheduler at each data server, or use SSD as

storage, to minimize this negative performance effect. However, the ability of the

scheduler to alleviate this problem by scheduling requests in memory is limited by

concerns such as long disk access times, and potential loss of dirty data with system

failure. Meanwhile, SSD is too expensive to be widely used as the major storage

device in the HPC environment.

We propose iTransformer, a scheme that employs a small SSD to schedule requests

for the data on disk. Being less space-constrained than with more expensive DRAM,

iTransformer can buffer larger amounts of dirty data before writing it back to the disk,

or prefetch a larger volume of data in a batch into the SSD. In both cases high disk

efficiency can be maintained even for concurrent requests. Furthermore, the scheme

allows the scheduling of requests in the background to hide the cost of random disk

access behind serving process requests. Finally, as a non-volatile memory, concerns

about the quantity of dirty data are obviated. We have implemented iTransformer in

the Linux kernel and tested it on a large cluster running PVFS2. Our experiments
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show that iTransformer can improve the I/O throughput of the cluster by 35% on

average for MPI-IO benchmarks of various data access patterns.

1.3 Thesis Organization

The rest of the dissertation is organized as follows:

Chapter 2 provides an overview of existing work on execution modes, optimization

techniques in MPI-IO middleware, scheduling of resource entities, and application of

SSDs in computer systems.

Chapter 3 describes why data-driven execution mode is needed when performance

of HPC system hinges on I/O resources. Then we present the design and implemen-

tation of DualPar, which enables the system to on-line adapt to computing-driven

execution or data-driven execution according to its resource constraints. We then

compare our solution with existing techniques using real implementation in MPI-IO

middleware.

In Chapter 4, we first investigate the reason of I/O resonance phenomenon which

results in surprisingly high I/O throughput. Then according to our findings, we design

and implement resonant I/O, replacing the current implementation of collective I/O

in MPI/IO library, to achieve a better match between request patterns and data

striping pattern on data servers. Finally, we compare resonant I/O to collective I/O

with representative MPI-IO benchmarks.

Chapter 5 presents the reason that spatial locality can be compromised when

multiple data servers concurrently service I/O requests of different applications. Then

we propose IOrchestrator scheduling framework, which uses inter-server coordination

to preserve the spatial locality and improve disk efficiency.

In Chapter 6, we first use a motivation example to show why the current disk
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scheduling framework cannot handle high I/O concurrency for peta-scale comput-

ing. Then we describes the design and implementation of iTransformer using SSDs

as queue extension of disk scheduler. In the end, we benchmark the system using

iTransformer with both benchmarks and real-world workloads.

Finally, Chapter 7 summarizes our contributions and the limitations of the work,

and we propose open questions and directions for future research.
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Chapter 2

Related Work

This chapter reviews research literature on improving I/O performance of high-

performance computing systems using parallel file systems in four categories: (1)

data-driven execution mode and the pre-execution technique for improving I/O per-

formance; (2) optimization techniques in MPI-IO middleware; (3) recovering lost

spatial locality when running multiple processes/programs using disk scheduler; (4)

application of SSD in the memory hierarchy; (5) quality of service(QoS) for end users

of I/O-intensive HPC applications. We compare our work DualPar [117], resonant

I/O [119], IOrchestrator [114], and iTransformer [116] to the related work in contexts,

respectively.

2.1 Data-driven Process Scheduling and Pre-execution

In the parallel computing paradigm, the dataflow architecture has been investi-

gated to expose the greatest concurrency. If the operations are encapsulated as pro-

cesses, in the dataflow architecture process scheduling is explicitly affected by data

availability. The concept is closely related to large-scale data-parallel computation
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infrastructures, including Google’s MapReduce [53] and Microsoft’s DryadLINQ [110].

In contrast, DualPar introduces a data-driven execution mode into the general-purpose

computing environment to overcome the I/O bottleneck. To reduce I/O latency,

Steere proposed a new operating system abstraction—Dynamic Sets—to allow the

I/O system to access a group of data items in an order deemed most efficient to the

system [98]. Accordingly the order of processing the data items follows the order

in which they become available. To adopt the data-driven computation model, pro-

grammers need to disclose the set of data that can be processed concurrently. In

another work, a set of language constructs for asynchronous IO are introduced into

native languages such as C/C++ [59]. In this work long-latency I/O operations can

be overlapped with computations with retaining a sequential style of programming.

The potential performance advantage of these works is limited by the data concur-

rency that can be disclosed by programmers. In contrast, DualPar uses pre-execution

to obtain the set of data to be requested by multiple processes without requiring any

changes on the application source code.

Chang et al. proposed to exploit speculative execution (or pre-execution) to initi-

ate I/O prefetching to reduce I/O stalls [44, 56]. Whenever the normal execution of

a process is blocked by I/O requests, speculative execution takes the opportunity to

run ahead and issue non-blocking prefetch requests. In these works the researchers

made every effort to ensure that speculative execution uses only spare CPU cycles

and normal processing always takes higher scheduling priority than the pre-execution

process. Recently in the parallel computing arena a speculative prefetching approach

was proposed to use program slicing to extract I/O-related code from the program,

which is executed by a prefetch process [108]. All these works aim to hide I/O latency

behind computation rather than improve I/O efficiency in serving prefetch requests,

so prefetch requests are issued for service as soon as they are generated. For I/O-
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intensive programs, when there is a disparity between application access patterns and

the physical data layout on disk, sequences of I/O requests that do not respect the

physical data layout may induce a large I/O latency that is almost impossible to hide

behind computation. In contrast, by being aware of the I/O bottleneck DualPar uses

pre-execution for improving I/O efficiency instead of attempting to hide I/O time

behind minimal computation time.

2.2 Optimization Techniques in MPI-IO Middle-

ware

To improve I/O performance for data-intensive parallel applications, researchers

have expended much effort on developing I/O middleware to transform a large number

of small non-contiguous requests into a smaller number of larger contiguous requests.

Data sieving [100] is one such technique wherein instead of accessing each portion

of the data separately, a larger contiguous chunk that spans multiple requests is

read/written. If the overhead for accessing additional unneeded data, called holes, is

not excessive, its benefit can be significant. However, data sieving cannot ensure that

its aggregated large requests from multiple clients are serviced at each data server in

an order that minimized disk seeks, which is the objective of resonant I/O.

Datatype I/O [48] and list I/O [47] are the two other techniques that allow users to

access multiple non-contiguous data using a single I/O routine. Datatype I/O is used

to access data with certain regularity, while list I/O is designed to handle more general

cases. Considering the data accesses across processes, ROMIO collective I/O [100] was

proposed to enable optimization in a greater scope in comparison to those techniques

applied individually in each process. It rearranges the data accesses collectively among
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a group of processes of a parallel program so that each process has a larger contiguous

request. While collective I/O can incur communication overhead because of data

exchange among processes, its performance advantage is well recognized, making

it one of most popular I/O optimization techniques for MPI programs. However,

collective I/O may adversely cause requests to arrive at each data server in an order

inconsistent with data placement. In other work [63], an optimization is made to

improve the ROMIO collective-I/O efficiency in a cluster where data is striped on

the disks local to each compute node. The efficiency is achieved by making each

agent process access only data on its local disks. In contrast, resonant I/O addresses

I/O efficiency in a cluster with dedicated data servers that may service requests from

multiple compute nodes.

Because the configuration of the storage subsystem of a cluster may be modified

independently of the computing subsystem, it is desirable to implement I/O opti-

mization techniques on the client side to keep them independent of configuration

of storage subsystem. Collective I/O, as well as other commonly used techniques,

are usually implemented on the client side. In contrast, server-side implementations

such as server-directed collective I/O [93] are less adopted. Server-directed collective

I/O was developed as a component of Panda, an I/O library for accessing multi-

dimensional arrays, on the IBM SP2 supercomputer [93]. In this system I/O nodes

are heavily involved in the re-arrangement of I/O requests by collecting request in-

formation from compute nodes and then directing them for sending/receiving data.

Disk-directed I/O [69] is a strategy similar to server-directed collective I/O, with the

addition of explicit scheduling of requests according to the data layout on disk. While

these two techniques can provide performance benefits similar to resonant I/O, both

of them compromise the independence of middleware on compute-side I/O, such as

MPI-IO, from configuration changes on the data server side.
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While these techniques can be effective in enhancing spatial locality, the locality

may not be translated into high I/O performance when shared I/O systems are con-

currently serving requests from multiple programs. By orchestrating requests’ service

on different data servers IOrchestrator can better exploit the locality, resulting in

higher I/O throughput.

2.3 I/O Request Scheduling

The weakened or even lost spatial locality with concurrent servicing requests can

be recovered by disk schedulers [8, 82, 7]. However, in a multi-disk storage system, a

higher-level coordination of I/O requests issued from different programs is needed in

order to alleviate the disk head thrashing, leading to improvement in I/O performance.

Early work [9] on I/O request scheduling does no optimization. The scheduler

is best used with devices that do not depend on mechanical movement like solid

state devices, but not hard disks. Work-conserving disk schedulers, like the deadline

scheduler [8] sorts incoming I/O requests in queues according to their logical block

addresses(LBAs) and implements request merging for minimized hard disk seeks.

Recently, non-work-conserving disk schedulers, such as the AS [64] and CFQ sched-

uler [7, 102], were designed to save the spatial locality with concurrent servicing of

interleaved requests issued by multiple processes. Here the disk head is kept idle after

serving a request of a process until either the next request from the same process ar-

rives or the wait threshold expires. Anticipatory scheduling is implemented in some

popular Linux disk schedulers [82]. However, a disk on a data server is not likely to

see the next request soon when file data are striped over multiple data servers. Con-

sequently, the disk scheduler on the data server would choose to serve requests from

other processes and precipitate disk head thrashing. This problem may be replicated
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on all the data servers in the system. In this sense, IOrchestrator may be viewed as

a non-work-conserving request scheduler for an array of data servers.

By coordinating the servicing of requests from different programs it is possible to

reduce the time gap between two requests from the same program to the extent that

spatial locality of a program is worth exploiting. IOrchestrator is designed to exploit

such spatial locality for eligible programs by coordinating scheduling at different data

servers. A technique known as co-scheduling was first applied to synchronize CPU

scheduling of processes of a parallel program on multiple nodes of an HPC cluster so

that the overhead of CPU context switching could be reduced [84, 55]. A similar idea

was used for disk spindle synchronization in a disk array to reduce platter rotation

time in serving small requests [68]. Researchers also found that the communication

latency among cluster-based webservers can be reduced by co-scheduling accesses to

remote caches rather than mixing the accesses to cache and the disk together when

there is a sufficient time difference between these two kinds of accesses [51]. Wachs

et al. proposed timeslice co-scheduling for cluster-based storage [103]. The objective

of this latter work is better performance insulation quantified by R-value [102] while

meeting user-specified QoS requirements. Though their work is similar to ours in the

coordination of some or all disks and dedication of them to one process at a time, it

cannot be effectively used as a solution in the context of the data servers managed

by parallel file systems. One reason is that their work requires an offline-calculated

scheduling plan according to QoS specifications that does not adapt to the workload

dynamics. Another reason is that it does not evaluate the benefits of dedicated service

to a program relative to the cost of disk synchronization, and indiscriminately applies

the synchronization to all programs. In contrast, IOrchestrator dynamically evaluates

the cost-effectiveness of synchronization and opportunistically allows the data servers

to provide dedicated service to one program at a time.
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2.4 SSD-based Memory and Storage Systems

Because hard disk performance is severely degraded by non-sequential accesses,

SSD has a clear performance advantage [113, 21]. As a consequence it is widely

used as cache between main memory and hard-disk-based storage in various systems.

Flashcache [97], developed by Srinivasan et al. as a write-back block-level cache, is

available in the latest Linux distributions. Any requests larger than 4KB are passed

through the cache, which is managed using either FIFO or LRU-based cache replace-

ment policies. There are similar tools in Sun Solaris [73] and Microsoft Windows [20]

to reduce the perceived time to power up the disk, launch programs, and write data to

the disk. To take account of relatively small SSD capacity, some systems selectively

cache small files, metadata, executables, and shared libraries at the file level, such

as Conquest [104], or at the data block level as does SieveStore [89]. In contrast,

iTransformer uses a small SSD space only as the extension of the scheduling queue to

more effectively exploit spatial locality. iTransformer does not rely on caching a large

amount of data, or strong temporal locality in the workload, for high-performance.

Instead, it leverages a relatively small cache space for improving spatial locality. This

can be especially meaningful in the HPC environment, where strong temporal locality

in storage access is not common.

SSD-based hybrid storage systems integrate a SSD and a hard disk as one block

device. Users can partition the device and access data on it as an ordinary block-

level storage device. Combo Drive uses a hardware-based solution to concatenate

an SSD and a hard disk via a SATA-to-2xSATA chip [87]. Bisson et al. proposed

to issue flash-backed I/O requests to reduce the number of I/O writes to the hard

disk by maintaining two duplicated request queues in both main memory and SSD

devices [38]. However, the large amount of memory required for maintaining the queue
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is usually undesirable for HPC systems. In the I-CASH work, the authors proposed a

new hybrid storage architecture based on data-delta pairs to improve I/O performance

for I/O-intensive workloads [90]. Chen et al. designed the Hystor kernel module, which

provides a software-based solution to implement a hybrid storage device [46]. Hystor

identifies performance-critical data blocks on the hard disk and stores them on SSD

for future accesses. Unlike these works, iTransformer does not seek to use the SSD

as fast storage for holding data. Instead, it buffers the data transferred between the

memory and disk only for improving locality in the live request streams dispatched

to the disk. For applications working with large data sets, the approach taken by

iTransformer allows the SSD space to be used more cost-effectively.

2.5 QoS Support in Shared Storage Systems

I/O-intensive applications are becoming increasingly common on today’s high-

performance computing systems. And provision of QoS guarantees to high-performance

applications, such as climate and weather forecasting [60] and modeling financial

data [36], can be critical to the success of the services provided to their users. While

the performance of compute-bound applications can be effectively guaranteed with

techniques such as space sharing or QoS-aware process scheduling, it remains a chal-

lenge to meet QoS requirements for end users of I/O-intensive applications using

shared storage systems because of the difficulty of differentiating I/O services for dif-

ferent applications with individual quality requirements. Furthermore, it is difficult

for end users to accurately specify performance goals to the storage system using

I/O-related metrics such as request latency or throughput [62, 57, 58]. As access

patterns, request rates, and the system workload change in time, a fixed I/O perfor-

mance goal, such as bounds on throughput or latency, can be expensive to achieve
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and may not provide performance guarantees such as bounded program execution

time. Zhang et al. [115, 120] proposed a machine-learning based scheduling scheme

for shared storage clusters to automatically guarantee end-uses’s QoS goals, specified

in terms of program execution time. QBox [95] was recently proposed to guarantee

I/O performance for black box storage system using a utilization-based approach.
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Chapter 3

Opportunistic Data-driven

Execution of Parallel Programs

3.1 Introduction

The trend for high-performance computation to be increasingly data-intensive

makes the storage system the performance bottleneck in important application areas

such as astrophysics, climate, and earthquake simulations. In general, when a system

resource becomes a parallel program’s performance bottleneck a better scheduling

policy is sought to alleviate it. If the resource is the processors this can be a process

scheduling strategy for load balancing or co-scheduling [84]. If the resource is storage

this could be an optimized I/O scheduler [64, 114]. In today’s systems, when I/O

service on the storage system becomes a program’s bottleneck the process scheduler

becomes less relevant. This is especially true when I/O requests are mostly syn-

chronous because most of the time processes are idle waiting for the completion of

their I/O requests and their scheduling is essentially a passive reaction to the progress

of I/O operations.
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Over decades the I/O stack, through which I/O requests pass and are serviced,

has been significantly optimized, such as by forming larger sequential requests [100],

hiding I/O time behind compute time with conservative I/O prefetching [108, 39], or

increasing the parallelism of data access with parallel file systems [17, 19]. However,

in these efforts the way in which processes are scheduled for execution is not examined

for its effect on I/O efficiency. I/O requests are issued by processes and the requested

data are consumed by processes. Therefore, the order in which the requests are issued

and served can be significantly influenced by process scheduling. When a process is

driven by its computation, the computation determines the request issuance order,

which can directly affect the request service order and I/O efficiency. The throughput

of a hard disk for serving sequential requests can be more than an order of magnitude

greater than that for serving random requests. When I/O is the bottleneck the process

scheduler is essentially in standby status and I/O request issuance order is a critical

factor for improving I/O efficiency and alleviating the bottleneck.

We propose a data-driven execution mode for parallel programs that is enabled

when I/O becomes the bottleneck and I/O efficiency is being compromised by request

issuance order. In this mode a process is scheduled to resume its execution not when

the request it is currently blocked on is completed, but when the data that it and its

peer processes are anticipated to read has also been prefetched into the buffer cache,

or the data to write are buffered in the cache. This allows the processes to run longer

before they block on a new I/O request. In the data-driven mode we not only require

requests of a process be served in a batch, but also coordinate the serving of requests

from different processes, because requests from different processes may disruptively

compete for disk service and degrade disk efficiency [76, 118]. Furthermore, this

coordination creates an opportunity to further improve the request issuance order to

increase access sequentiality and to reduce the number of requests.
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In summary, we make the following contributions.

• We propose a new program execution mode in which the scheduling of processes

can be explicitly adapted for I/O efficiency. To this end, we use pre-execution

to predict data to be requested for prefetching and a client-side buffer to hold

written data for efficient writeback. Thus the computation of the program

can be decoupled from the issuance of requests for its needed data and the

I/O bottleneck can be alleviated by having a large space for optimizing request

issuance order for high disk efficiency, which cannot be achieved by conventional

disk schedulers.

• We design algorithms, comprising DualPar, to detect the condition for enabling

and disabling the data-driven mode and to coordinate data access and process

executions.

• We implement these algorithms in the MPICH2 MPI-IO library for MPI pro-

grams. We evaluate it with representative benchmarks, including mpi-io-test,

ior-mpi-io, BTIO, and S3asim. Experimental measurements on a large-scale

cluster show that I/O efficiency can be significantly improved.

The rest of this paper is organized as follows. Section 3.2 provides a motivating

example to reveal the potential and design issues of DualPar. Section 3.3 describes

the design and implementation of DualPar. Section 3.4 describes and analyzes exper-

imental results.

3.2 A Motivating Example

To investigate the potential performance benefit of data-driven execution, we ex-

periment with three strategies imposing different relationships between data access
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Figure 3.1: (a) Throughputs of the demo program with different I/O ratios. (b)
Throughputs with different segment sizes (or request sizes). (c) Disk addresses (LBNs)
of data access on the disk of data server 1 in the execution period 5.2 s to 5.4 s with
Strategy 2; (d) Disk addresses of data access on the same data server with Strategy
3.
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(using read access as example in this discussion) and process scheduling for an MPI

program on a cluster. The first strategy is conventional computation-driven execu-

tion wherein process execution is fully coupled with data access. Without system-level

prefetching triggered by fully sequential data access, a process issues its synchronous

read requests one at a time and there is no overlap between computation and data

access. This strategy serves as a baseline for evaluation of other strategies. The

second strategy is application-level prefetching, which uses pre-execution to gener-

ate I/O requests ahead of those produced by the actual computation [108, 43]. A

prefetch request is issued to the data servers immediately after it is generated. The

objective of this strategy is to hide the I/O time behind the computation through

data prefetching. If the computation time is large enough to cover the I/O time, the

process can run without being blocked by its requests. However, when the process is

highly I/O intensive, the I/O time cannot be hidden and the process must block at

some point. The third strategy entails suspending all processes of a parallel program.

Pre-executing the processes will generate a batch of I/O requests, which are collected

and then sorted to issue to the data servers to prefetch. When the data is available

in the buffer cache of the compute nodes where the program runs, the processes are

released to consume the data. This comprises one cycle of data-driven execution of

the program. In this strategy overlap of computation and I/O service times is not

sought and the objective is to improve I/O efficiency through application-level request

ordering. In this way the order of I/O request issuance is minimally affected by com-

putation order and process scheduling is driven by the availability of the requested

data in a cycle-by-cycle fashion. Table 3.1 summarizes the features and objectives

of the three strategies.
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Strategy 1 Strategy 2 Strategy 3
Computation & I/O
overlapped?

No Yes No

Correlation between
Computation and
I/O service order

Strong Strong w/high
I/O intensity

Minimal

Advantage to I/O Baseline Hides I/O time Improves I/O
efficiency

Table 3.1: Comparison of three strategies on how I/O request service is correlated to
process scheduling.

To examine their I/O performance disparity, we designed an experiment in which we

ran a synthetic MPI program demo. The program ran on a cluster of 120 nodes,

nine of which are configured as data servers and managed by the PVFS2 parallel file

system (More details of the platform are given in Section 3.4). In demo each process

reads a number of noncontiguous data segments of a file in each MPI-IO function call.

Specifically, we ran N = 8 processes to read a file of 10 GB from its beginning to its

end. Each process, identified by its rank myrank, reads 16 data segments at offset k ∗

N+myrank (0 ≤ k < 16), respectively, in each call using the derived Vector datatype.

The size of the segment varies from 4 KB to 128 KB. The compute time in each process

between consecutive I/O operations is adjustable to generate workloads of different

I/O intensity, which is quantified as an I/O ratio, the ratio between a program’s I/O

time and its total execution time in the vanilla system. We compare the program’s

execution times with the three strategies as a function of I/O ratio and segment size.

In the simulation of Strategy 2 we use the approach suggested by Chen et al. [108]

for excluding unnecessary computation in the pre-execution. Accordingly we remove

all the computation from the pre-execution for Strategy 2. Strategy 3 is employed

to suggest the performance potential of DualPar, which performs computation in

pre-execution for faithful emulation of normal execution for prediction accuracy and
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tolerance of unavailability of the program’s source code. Therefore Strategy 3 also

performs the computation in the pre-execution.

Figure 3.1(a) shows the execution times of demo with the I/O ratio varying from

around 20% to nearly 100% with the segment size fixed at 4 KB. When the I/O

ratio is small the I/O time with Strategy 2 is the shortest because it can nearly

or completely hide I/O times. Strategy 3 increases the execution time because it

blocks the main processes and runs the computation in pre-execution; the time saved

by improved I/O efficiency cannot offset the loss due to redundant computation.

However, when the I/O ratio increases beyond a certain value (around 70% in this

example), the performance advantage of Strategy 2 diminishes and the advantage of

Strategy 3 becomes significant. When the ratio is close to 100%, the execution time

with Strategy 3 is 36% less than the others. The more I/O-intensive a program, the

more critical I/O efficiency is and the more potential for this strategy to improve

performance, as evidenced in Figure 3.1(a).

Figure 3.1(b) shows the execution times of the program with different segment

sizes and a fixed I/O ratio of 90%. The smaller the segment is, the larger the program’s

execution time. When the segment size is 4 KB, throughput of the program with

Strategy 2 is 16 MB/s, which is 64% of that with Strategy 3 at 25 MB/s. When the

segment size is sufficiently large (beyond 32 KB), the advantage of Strategy 3 is less

impressive. As we know, for workloads consisting of large requests, a disk’s efficiency

can be maintained even if these requests are not contiguous on the disk. However,

when requests are small the disk scheduler plays a critical role in exploiting spatial

locality among them by creating an efficient service order. An interesting observation

is that the disk scheduler in the kernel is not effective in creating such an order, even

though requests are issued to the scheduler as soon as they are generated by the

pre-execution, as shown in Figure 3.1(b).
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To reveal the actual service order generated by the disk scheduler, CFQ, un-

der Strategies 2 and 3, we tracked the accessed disk addresses using the Blktrace

tool [6]. Figure 3.1(c) and Figure 3.1(d) show sample access sequences reported by

Blktrace on a particular data server during the execution period from 5.2s to 5.4s

under Strategies 2 and 3, respectively. Strategy 2 produces more short sequences

growing in opposite directions, implying back-and-forth movements of the disk head.

In contrast, with Strategy 3 the disk scheduler does a much better job by efficiently

moving the disk head mostly in one direction. The difference is due to the action

taken in Strategy 3 to enable the disk scheduler to better exploit the spatial locality

in the request stream.

However, why does the disk scheduler not create an efficient request dispatch or-

der for Strategy 2? This is because there can still be time gaps between consecutive

requests issued during the pre-execution of Strategy 2. Furthermore, requests from

different processes can arrive at a data server in an essentially random order. Conse-

quently the disk scheduler sees a limited number of outstanding requests to schedule

and has difficulty identifying a long access sequence from them. In Strategy 3 a large

number of requests from different processes is collected. They are then sorted and

merged at the file-abstraction level and issued to the data servers together. In the

experiment the average request size is 128KB for Strategy 3 and 12KB for Strategy 2.

Usually there is a good correspondence between file-level and disk-level addresses,

so the disk scheduler is more likely to identify strong locality in the large pre-sorted

file-level requests.
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3.3 The Design of DualPar

The objective of DualPar is to opportunistically change programs’ execution to

the data-driven mode when they are I/O bottlenecked and their performance is com-

promised by low I/O efficiency. In this section we describe DualPar’s architecture as

well as how it determines the execution mode, performs pre-execution, manages the

cache for I/O data, and generates read or write requests to the data servers. In the

design we target MPI programs [12].

3.3.1 Overview of the System Architecture

A cluster consists a number of compute nodes running MPI programs, and data

servers providing I/O services to the programs. In addition, parallel file systems such

as PVFS2 and Lustre [17, 19] have a metadata server to provide metadata service

for data access. DualPar has three major system modules, Execution Mode Control

(EMC), Process Execution Control (PEC), and Cache and Request Management

(CRM). EMC resides on the metadata server and dictates the current execution

mode for any programs that have registered for dual-mode execution. PEC is built

into the MPI-IO library and runs with each MPI program to track the processes’

I/O activities and enforce the data-driven mode, e.g. blocking/resuming the (main)

process and creating pre-execution processes for generating prefetch requests. CRM

is on each compute node for collecting, sorting, and dispatching prefetch requests as

well as caching requested data. Figure 5.1 depicts DualPar’s architecture. When it

is in the normal computation-driven mode, PEC and CRM are in standby status and

only EMC is actively monitoring the programs’ execution and I/O efficiency on the

data servers.
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Figure 3.2: DualPar’s architecture, in which EMC takes inputs from both the data
servers and compute nodes to choose the execution mode for each program. If the
mode is data-driven PEC is activated to implement the mode at each process of
the program through coordination of process execution and request service. CRM
manages the global cache to support application-level request scheduling and buffering
requested data.

3.3.2 Determining Program Execution Mode

Whether a program should switch into the data-driven mode depends on its I/O

intensity and current I/O efficiency. Only when the intensity is high and the effi-

ciency is low can the data-driven mode help, rather than hinder, performance. As the

decision is made for a parallel program rather than for its individual processes, we

place the decision maker, the execution mode control daemon (EMC) at the metadata

server, which constantly interacts with the compute nodes. To allow the processes

to track I/O intensity and report to the EMC daemon, we instrument the ADIO
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functions in the MPI-IO library of MPICH2 [12], such as ADIOI PVFS2 Open,

ADIOI PVFS2 Close, ADIOI PVFS2 ReadContig,

ADIOI PVFS2 ReadStrided, ADIOI PVFS2 WriteContig,

and ADIOI PVFS2 WriteStrided, enabling measurement of I/O times and computa-

tion times to calculate the I/O ratio. We treat the time between any two consecutive

I/O-related function calls as computation time. Though the computation time may

include the time a process is de-scheduled for running other processes, and commu-

nication time, the measurement serves the purpose for evaluating I/O intensity well

by precisely measuring the I/O component of user-observed program execution time.

Because the measurements are taken with the occurrence of expensive I/O operations,

their overhead is negligible.

Another input to the EMC daemon is the current I/O efficiency. As data servers

are shared to serve I/O requests from different programs, analysis of individual pro-

grams’ access patterns to estimate I/O efficient is not accurate. In addition, analysis

conducted only at the compute node cannot faithfully capture the interaction among

requests served at data servers, especially the interference between requests from dif-

ferent programs. Therefore, we set up a locality daemon at each data server that tracks

disk head seek distance, SeekDist , a parameter maintained in the Linux kernel for

I/O request scheduling [82], and use it as a metric for quantifying I/O efficiency—the

smaller SeekDist , the higher the I/O efficiency. At the same time we record requests

observed at each of the compute nodes running programs in constant time slots, sort

requests for data from the same file according to their file offsets, and calculate the

average distance (ReqDist) between adjacent requests. ReqDist represents the high-

est I/O efficiency that a data-driven execution can possibly achieve. When the EMC

daemon receives these two types of distance values from compute nodes and storage

nodes, it uses the ratio of their respective averages (aveSeekDist/aveReqDist) as po-
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tential I/O efficiency improvement to determine whether it is larger than a predefined

threshold Timprovement . I/O efficiency improvement is a system-wide metric. Once it

is larger than the threshold, EMC will instruct the programs whose I/O intensities

are sufficiently large (larger than 80% in our prototype) to switch to the data-driven

mode. When the condition no longer holds, EMC reverts the program to the normal

mode. The default Timprovement value is 3 in our prototype system. Our experimental

results show that system performance is not sensitive to this threshold.

3.3.3 Pre-execution for Predicting Future Requests

The key idea of data-driven execution is to decouple computation and I/O service

into alternating time phases (computation phase and I/O phase) so that a batch of

requests can be served in an optimized order and the computation is driven by the

completion of the data service. We set up a buffer cache for each process on its

compute node, and data service is either for the processes to write data to the cache

or for the prefetcher to read data from the data servers into the cache. When caches

assigned to every process of a program are filled, any dirty data will be first written

back and then the program will be allowed to resume execution using the prefetched

data, if any.

It is straightforward for write requests to leave dirty data in the buffer cache.

For read requests DualPar must use pre-execution to predict a process’s future read

requests and prefetch them into the cache. When a program has been instructed to

enter the data-driven mode and any of its processes calls a synchronous read function,

the process’s control passes to the MPI-IO library that we have instrumented. Du-

alPar does not issue the corresponding read request to the data server if the request

cannot be served by the local cache. Instead it suspends the function call and forks a
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ghost process to keep running on behalf the normal process. As DualPar knows the

identity of the ghost process, the instrumented library can distinguish I/O calls issued

by a ghost process from normal calls. DualPar records these calls without immedi-

ately turning them into requests to issue. It also tracks the total space that would

be consumed by the calls if their corresponding requests were served. If the space

reaches the reserved cache size for the process, pre-execution pauses. When the pre-

execution of every process is paused, DualPar resumes the execution of the program’s

processes. In case that the I/O demands of different processes are different and some

processes may take relatively longer to fill their caches, we use the processes’ recent

average I/O throughput and reserved cache size to calculate the expected time to fill

the cache. When the time period expires, all unfinished pre-executions are stopped.

In DualPar a ghost process carries out all of the computations encountered in

its execution, so DualPar does not require a modification to the program, which in

most cases is practical only when its source code is available. Because a program

in the data-driven mode has a high I/O ratio the overhead for the computation is

limited. Though normal processes’ communications and computations are retained,

the requests generated by the pre-executions can still be wrong if their data locations

depend on the values of data requested in the previous function calls, because requests

in the pre-execution are not immediately served. This inaccuracy does not affect the

correctness of the original program: the only consequence is mis-prefetching that

will be detected when the processes are resumed to access the prefetched data. We

define the mis-prefetch ratio as the fraction of prefetched but not used data in a

cache when the next pre-execution begins. We pass this ratio to the EMC daemon.

The daemon calculates the average value of the ratios reported by each program’s

processes and disables the data-driven mode if its average mis-prefetch ratio is larger

than a threshold, 20% by default in the prototype.
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3.3.4 Global I/O Cache for Serving Requests

DualPar maintains a cache for each process in data-driven mode. To make efficient

use of the caches they must be shared to avoid redundancy and consistency issues. To

achieve this all the caches form a global cache and are managed by Memcached [11].

Memcached provides a high-performance distributed cache infrastructure as an in-

memory key-value store. A file is partitioned into chunks of equal size. Every data

chunk is indexed by a unique key generated from the name of the file that stores the

chunk and chunk address in the file. The caches assigned to individual processes on

each compute node are actually managed by Memcached. A file’s chunks are stored

in the caches of different compute nodes in a round-robin fashion. In DualPar we set

the chunk size to be the unit size used in the PVFS2 parallel file system for striping

files across data servers, 64KB by default, so that a chunk can be efficiently accessed

by touching only one server. Each chunk in the global cache has a tag to record the

time of its most recent reference. A chunk will be evicted if it is not used for a certain

period of time. For the I/O calls from normal processes in the data-driven mode, the

instrumented I/O library will direct the requests to the global cache. A read miss on

the cache will block the process and a pre-execution for the process will be initialized.

As mentioned, DualPar records read and write requests in its pre-execution phase

without immediately serving them. Reads will be collectively served at the end of

the pre-execution phase and writes will be collectively served at the end of normal

execution. In the service of either read or write requests, requests from different

processes belonging to the same program are sorted, and adjacent requests are merged.

If there are small numbers of holes between the requests, which are not accessed by

any of the current requests, for writes the data in the holes will be filled by additional

reads before writing to disks, and for reads the data in the holes are added to the
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requests. This further helps form larger requests. In addition, we use list I/O [47] to

pack small requests and issue them in ascending order of the requested data’s offsets

in the files to improve disk efficiency.

3.4 Performance Evaluation and Analysis

Most of the DualPar implementation is in the MPI-IO library of MPICH2 soft-

ware [12] as instrumentation of ADIO functions. We place daemons on the data

servers for measuring disk efficiency and on the metadata server for determining pro-

gram execution mode. We evaluated the performance of DualPar on the Darwin

cluster at Los Alamos National Laboratory. The cluster consists of 120 nodes, nine of

which were configured as data servers, one of which was also configured as a metadata

server of the PVFS2 parallel system (version 2.8.2) [17]. Of the 120 nodes, 116 are

48-core (12 core by 4 socket) 2GHz AMD Opteron 6168, and are the nodes on which

our experiments were performed. Each node has 64 GB memory, a hardware-based

RAID 0 consisting of two 7200-RPM disk drives (HP model MM0500FAMYT). Each

server ran Fedora Linux, kernel-2.6.35.10, with CFQ (the default Linux disk sched-

uler). We used MPICH2-1.4 with ROMIO to generate executables of MPI programs.

All nodes were interconnected with a switched Gigabit Ethernet network. Files were

striped over data servers with a 64 KB unit in the PVFS2 file system. To ensure that

all data were accessed from the disk, the system buffer cache of each compute node

and data server was flushed prior to each test run. For write tests we forced dirty

pages to be written back every second on each data server. PVFS2 does not maintain

a client-side data cache. As the benchmarks used in the evaluation have no or little

data reuse, selection of a different file system with client-side caching does not reduce

the performance advantage of DualPar presented here. For the cache infrastructure
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the latest stable Memcached release v1.4.7 was used [11]. Unless otherwise specified,

each process has 1MB quota in the cache.

3.4.1 Benchmarks

We use six benchmarks with distinct data access patterns.

mpi-io-test is an MPI-IO benchmark from the PVFS2 software package [17]. In

our experiments we ran the benchmark to read or write a 20 GB file with request

size of 16 KB. Process pi accesses the (i+ 64j)th 16 KB segment at call j (j ≥ 0), for

0 ≤ i < 64. The benchmark generates a fully sequential access pattern.

hpio is a program designed by Northwestern University and Sandia National Lab-

oratories to systematically evaluate I/O performance using a diverse set of access

patterns [50]. We used it to generate contiguous data accesses by changing param-

eters such as region count, region spacing, and region size. We set region count to

4096 B, region spacing to 1024 B, and region size to 32 KB.

ior-mpi-io is a program in the ASCI Purple Benchmark Suite developed at Lawrence

Livermore National Laboratory [4]. In this benchmark each MPI process is responsible

for reading its own 1/64 of a 16 GB file. Each process continuously issues sequential

requests, each for a 32 KB segment. The processes’ requests for the data are at the

same relative offset in each process’s access scope of 256 MB. The program’s access

pattern as presented to the storage system is random.

noncontig is a benchmark developed at Argonne National Laboratory and included

in Parallel I/O Benchmarking Consortium [15]. This benchmark uses MPI processes

to access a large file with a vector-derived MPI data type. If we consider the file to

be a two-dimensional array, there are 64 columns in the array. Each process reads

a column of the array, starting at row 0 of its designated column. In each row of a
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column there are elmtcount elements of the MPI INT type, so the width of a column is

elmtcount × sizeof (MPI INT). If collective I/O is used, in each call the total amount

of data read by the processes is fixed, which is 4 MB in our experiments. We also set

the data access pattern of noncontig to be non-contiguous for both memory access

and file access.

S3asim is a program designed to simulate sequence similarity search in compu-

tational biology [18]. In the experiments, the sequences in the database are divided

into 16 fragments. We set the minimal size of each query and database sequence to

100 B and the maximal size to 10,000 B. The amount of data accessed depends on

the counts of queries. In the experiments the amount of data that is written during

execution is up to 6.4 GB.

BTIO is an MPI program from the NAS parallel benchmark suite [14] designed to

solve the 3D compressible Navier-Stokes equations using the MPI-IO library for its

on-disk data access. We choose to run the program with an input size coded as C in

the benchmark, which generates a data set of 6.8 GB. The program can be configured

to use either non-collective or collective I/O functions for its I/O operations.

Each of the benchmarks was run with 64 MPI processes unless otherwise specified.

These benchmarks cover a large spectrum of access behaviors, from sequential access

among processes (e.g. mpi-io-test and hpio) to non-sequential access among processes

(e.g. noncontig and BTIO), from read access to write access, from requests that are

well-aligned with the 64 KB striping unit size (e.g. mpi-io-test and ior-mpi-io) to

requests of different sizes (e.g. S3asim and BTIO).
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3.4.2 Performance with a Single Application

We first evaluate how DualPar can improve I/O performance when only one MPI

program is running so that the I/O resource is not competed among multiple pro-

grams. In this experiment we use one program with sequential access, mpi-io-test,

and two programs with non-sequential access, noncontig and ior-mpi-io, to benchmark

performance of vanilla MPI-IO, collective IO, and DualPar. We choose collective IO

for comparison as it shares a similar principle with DualPar by holding processes and

re-arranging requests at the application level. For execution with DualPar, programs

stay in the data-driven mode. As the programs can be configured to issue either read

or write requests, both of read and write accesses are tested. Because DualPar aims

to increase a program’s performance by improving I/O efficiency, we use the system’s

I/O throughput as the metric to demonstrate the differences among the schemes. The

experiment results are shown in Figure 3.3.

The sequential access pattern of mpi-io-test can potentially make efficient use of

the disks if many I/O requests arrive at the disks together. However, because a

barrier routine is frequently called in its execution, and each barrier operation takes

a relatively long time with a large number of processes, the I/O requests cannot

reach the disk scheduler at data servers in large numbers for it to effectively schedule.

When DualPar is enabled, requests from prefetch threads quickly saturate the storage

device, resulting in a 263 MB/s throughput, which nearly doubles the 115 MB/s

throughput with vanilla MPI-IO and the 117 MB/s throughput with collective IO.

For the program using write requests, DualPar significantly increases the throughput

by having many writeback requests issued from the cache together for which the disk

scheduler can effectively exploit access locality.

For program noncontig, which accesses noncontiguous data, both DualPar and
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Figure 3.3: System I/O throughput when a single program instance is executed with
vanilla MPI-IO, collective IO, and DualPar, respectively. In (a) the programs issue
read requests, and in (b) they issue write requests.

collective IO achieve significantly higher throughput than vanilla MPI-IO, as both

can transform overlapped noncontiguous accesses into larger contiguous accesses for

efficient disk access. Furthermore, DualPar sorts requests and forms large requests

among data in the buffer cache, while collective IO does its optimization in the data

domain covered by the requests in a single collective IO routine. As the data domains

are usually much smaller than the buffer cache, DualPar can be more effective in

producing requests of strong locality. As such, the benchmark with DualPar achieves

39 MB/s read throughput, a 57% improvement over that with collective IO.

For program ior-mpi-io, the advantage of collective IO is lost even though the

program issues random requests. This is because of a mismatch between the data

request pattern and the file striping pattern, which keeps only one or two data servers

busy serving requests in each collective call [119]. While collective IO synchronizes

processes at every collective call, the number of outstanding requests is very limited

and the load imbalance on the data servers cannot be corrected. In comparison,

DualPar achieves a much higher throughput as it actually carries out the service of a
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large number of requests accumulated at each process’s cache together. By collectively

serving the requests at the end of a pre-execution phase (for read) or at the end of

a normal execution phase (for write), a large number of requests spread over all of

the data servers keeping every disk well utilized. The improvement of DualPar over

vanilla MPI-IO is 105% for reads and 35% for writes because disk efficiency is greatly

improved with workloads with sequential accesses and larger requests.

3.4.3 Performance with Concurrent Applications

The I/O efficiency of a program changes when it runs with other I/O-intensive pro-

grams sharing the same data servers because the interference caused by concurrently

serving their requests can reduce disk efficiency. In this section we evaluate system

performance with DualPar in such scenarios with BTIO, S3asim, and mpi-io-test.

We first concurrently run three BTIO programs, each accessing its own 6.8 GB

file on the data servers. Figure 3.4 shows system throughput when the number

of processes increases from 16 to 256. As shown in Figure 3.4, throughput with

collective IO and DualPar outperforms that with vanilla MPI-IO by up to 24X and

35X, respectively. This is because without using techniques for I/O optimization, the

request size of the benchmark is only 400 B when 256 processes are used, which is too

small for the disks to be efficiently used. Both DualPar and collective IO can help

transform noncontiguous requests into much larger ones. The figure shows that the

performance advantage of collective IO gradually decreases when more processes are

used. This is because the size of data domain accessed by one collective I/O routine

does not increase with more processes, making collective I/O increasingly expensive

because more data exchanges are needed among the processes. DualPar has better

scalability than collective IO as more requests from a larger number of processes can
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Figure 3.4: System I/O throughput with three concurrent instances of BTIO. We
compare throughput with DualPar to those with vanilla MPI-IO and collective IO as
we increase process parallelism from 16, 64, to 256.

quickly fill up the buffer cache in the data-driven mode, resulting in a better use of

the storage system.

Next we executed three concurrent instances of S3asim to benchmark the system

with vanilla MPI-IO, collective IO, and DualPar, with different numbers of queries.

As shown in the Figure 3.5, the total I/O times with DualPar reported by the

program are smaller by up to 25%, and by 17% on average, than those of the other

two schemes. DualPar’s performance advantage for this benchmark is much smaller

than that for BTIO because S3asim’s requests are much larger than BTIO’s requests.

Finally, we ran two instances of mpi-io-test with 16 KB segment size. Each in-

stance accesses its own 20 GB file. Both read and write tests were carried out with

vanilla MPI-IO, collective IO, and DualPar. Table 3.2 shows system I/O throughput

under different scenarios. The measurements demonstrate consistent performance

advantages of DualPar over the other two schemes. This is because of its ability to
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Figure 3.5: I/O times with three concurrent instances of S3asim. We compare I/O
times with DualPar to those with vanilla MPI-IO and collective IO as we increase
number of queries from 16 to 32.

Vanilla MPI-IO Collective IO DualPar
Throughput (Read) 160 MB/s 168 MB/s 284 MB/s
Throughput (Write) 54 MB/s 67 MB/s 127 MB/s

Table 3.2: Aggregate I/O throughput when two mpi-io-test program instances are
concurrently executed with vanilla MPI-IO, collective IO, and DualPar, respectively.

accumulate, sort, and merge requests at the application level so that requests can ar-

rive at data servers in a bursty manner and with an optimized order for efficient disk

access. To confirm this analysis, we profile disk addresses in terms of logical block

numbers in the order that they are accessed at a particular data server (Server 1) in

a randomly selected 1 s execution period with 16 KB requests. The result is shown

in Figure 3.6 for vanilla MPI-IO and DualPar. With vanilla MPI-IO, the disk head

must frequently move between regions of data of the two files, frequently and at long
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Figure 3.6: Disk addresses (LBNs) of data access on the disk of Server 1 in a 1 s
sampled execution period. (a) Two mpi-io-test instances are executed using vanilla
MPI-IO reads in the vanilla system; (b) Two mpi-io-test instances are executed with
DualPar. Note that because the instances ran faster in DualPar, the disk positions
shown in the two figures can be different during the same execution period.

distance, significantly reducing disk efficiency. The disk scheduler does not help in

this case because the number of requests outstanding in its I/O queue is usually not

large enough for it to effectively sort and merge requests. DualPar helps reduce the

average disk seek distance by up to 10X.

3.4.4 Performance with Varying Workload

DualPar is designed to opportunistically take advantage of the data-driven mode

according to current I/O efficiency and intensity. In this experiment we change the

workload to evaluate how DualPar responds to the dynamic changes as well as its

impact on the system performance. We first run mpi-io-test at time 0s to read a

20 GB file with 16 KB requests, and at time 5 s hpio joins to read a 2GB file with the

same request size. We run the experiment with either vanilla MPI-IO or DualPar.

Figure 3.7(a) shows the I/O throughput during the execution. When mpi-io-test is
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Figure 3.7: (a) System throughputs measured on an execution window of 1 s. (b)
Average distances of diskhead seeks on Server 1 when both mpi-io-test and hpio run
concurrently.

the sole workload on the system, the average throughput is 178 MB/s and there is

no I/O interference among programs. Since mpi-io-test issues sequential requests and

I/O efficiency is not an issue before the fifth second, DualPar keeps the program in

computation-driven mode. When hpio starts to issue requests, the system throughput

is reduced with vanilla MPI-IO, even though the I/O demand is increased and both

programs issue sequential requests, because of the interference between requests from

different programs. When DualPar is applied it detects the interference-induced I/O

efficiency degradation and instructs both programs to enter data-driven execution

mode, which improves the throughput by 46% until hpio completes its execution.

DualPar measures the I/O efficiency by tracking average disk seek distance. Fig-

ure 3.7(b) shows a sample of the distances (in the unit of disk sectors) that are

collected on Server 1—seek distances are reduced by DualPar.
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3.4.5 Performance with Varying Cache Size

In DualPar each process in data-driven mode is assigned a cache for holding

prefetched data and write-back data. To evaluate the effect of cache size on Dual-

Par’s performance we ran benchmark BTIO, which stays in the data-driven mode in

its execution with its non-sequential access pattern. We ran BTIO with 64 processes

and varied the cache size from 0 KB to 1024 KB. The measured I/O throughputs are

shown in Figure 5.9. When the cache size is 0 KB DualPar is effectively disabled

and the throughput (2.7 MB/s) is almost the same as that of vanilla MPI-IO. When

we increase the cache size to 64 KB the throughput is increased by almost 43X. The

reason that such a small cache gives such large improvement is that BTIO’s original

request size is very small at 800 B. Further increasing the cache size brings dimin-

ishing returns. While it is true that the larger the cache the larger the requests that

can be formed, a too-large cache could consume excessively memory. Fortunately,

for most programs a cache of several MB for each process should be sufficient. By

default, the size is set to 1 MB in DualPar.

3.4.6 Overhead Analysis

There are two major sources of overhead in DualPar. One is the redundant com-

putation conducted in the pre-execution, and the other is the miss-prefetched data.

As the data-driven mode is enabled only for highly I/O-intensive activity the com-

putation overhead is limited. Because of the possibility of data dependency, in the

extreme case all prefetched data would be useless, and this would not be detected

until normal processing has misses in the cache. To investigate performance effects of

the possible overhead, we wrote an MPI program that reads 20 GB data, with the re-

quested data addresses depending on the data read in the previous I/O call. Because
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Cache Size (KB) No DualPar 1024 2048 4096
Execution Time (s) 138 140 142 148

Table 3.3: The execution times of a program whose future requests cannot be pre-
dicted by pre-execution. The times with DualPar and without DualPar are presented.

of this dependency all data loaded into the cache are mis-prefetched. We measured

the program’s execution times without and with DualPar with varying cache size.

The results are shown in Table 3.3. Even in the worst scenario the increase of the

execution time is very limited: when the cache size is 4 MB, which represents a sub-

stantial amount of mis-prefetching, the performance is decreased by only 7.2%. The

reason is that a large mis-prefetching miss ratio will turn off the data-driven mode,

so this is a one-time overhead.
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Chapter 4

Collective I/O with Data Layout

Awareness

4.1 Limitations of Current Implementation of Col-

lective I/O

As large-scale scientific applications running on clusters become increasingly I/O

intensive, it is important to have effective system support for efficient I/O between

the processes on the compute nodes issuing I/O requests, and the disks on the data

servers servicing the requests [37, 52, 83]. A problematic situation in I/O performance

is the issuance of requests for many small non-contiguous I/O accesses, because un-

optimized servicing of these requests results in low disk efficiency and high request

processing cost. Many techniques have been proposed to address this problem, includ-

ing data sieving [100], list I/O [47], datatype I/O [48], and collective I/O [100]. Of

these, collective I/O is one of the more commonly used techniques and usually yields

the greatest improvement in I/O performance. This is because collective I/O rear-
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Figure 4.1: Illustration of the ROMIO implementation of two-phase collective I/O. Data is read
by each process (the aggregator), P0, P1, P2, or P3, which is assigned a contiguous file domain in
the logical file space, first into its temporary buffer in phase I and then to the user buffer of the
process that actually requested them in phase II.

ranges requests from multiple processes (global optimization), rather than optimizing

requests from each individual process (local optimization).

4.1.1 Transforming Non-contiguous Access into Contiguous

Access

A common technique used in the aforementioned schemes for optimizing I/O per-

formance is to transform small requests of non-contiguous access into large requests of

contiguous access. Let us first see how the read operation can benefit from collective

I/O. As depicted in Figure 4.1, four processes, P0, P1, P2, and P3, each requests four

segments that are not adjacent in the logical file space. Because an I/O request must

be issued for logically contiguous data, each process issues four requests. Without
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collective I/O there would be 16 small requests from the compute nodes to the data

servers, with each data server receiving and servicing four requests in a random order.

With collective I/O, all the requested data is divided into four file domains, each

consisting of four contiguous segments, and each process issues a single request to read

data belonging to a single file domain into its buffer. After the reads complete, each

process retrieves its respective data from the others’ buffers via inter-node message

passing. As an example of a widely used collective-I/O implementation, ROMIO [100]

adopts a two-phase strategy. In the first phase, each process serves as an aggregator,

with process Pk (k ≥ 0) responsible for reading the kth file domain into its buffer.

In the second phase, data is exchanged among the processes to satisfy their actual

requests. The rationale for this implementation of collective I/O is two-fold. First,

both the number of requests issued to the data servers, and the request processing

overhead, are reduced. Second, contiguous access is expected to be more efficiently

serviced on the disk-based I/O servers than non-contiguous access because contiguous

access requires fewer disk head movements, which can account for more than an or-

der of magnitude disparity in disk throughput. Clearly, for collective I/O to improve

rather than degrade performance, the gains must outweigh the communication over-

head incurred in this second phase that does not exist in the traditional non-collective

I/O scheme.

4.1.2 The Resonance Phenomenon

To analyze how collective I/O performs in a typical cluster computing environ-

ment, we set up an experimental platform consisting of eight nodes, four configured

as compute nodes, and the other four as data servers, managed by a PVFS2 parallel

file system [17]. File data was striped over the data servers. We used the default
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Figure 4.2: Throughput of data servers when running a demonstration MPI program with two and
four processes, varying the segment size from 32KB to 1024KB, with and without collective I/O.
Throughput peaks at 64KB with non-collective-4, and at 128KB with non-collective-2, exhibiting
resonance between the data request pattern and the striping pattern.

PVFS2 striping unit size of 64KB. (More details of the experimental platforms are

given in Section 4.3.)

In our experiment we ran N -process MPI programs, where N was 2 or 4, one

process per compute node, that read data from a 10GB file striped over the four data

servers. The access pattern was generally the same as that illustrated in Figure 4.1.

Specifically, the processes repeatedly call collective I/O to read the entire file from

beginning to end. In each call, process i, i ∈ {0, 1, . . . , N−1}, reads segments k∗N+i,

k ∈ {0, 1, 2, 3}, in the file range specified by the call. The size of the segment was

varied from 32KB to 1024KB (powers of two times 32KB) over different runs of the

program. Figure 4.2 shows the I/O throughput of the system using collective I/O

with N processes and the various segment sizes, denoted as collective-I/O-N, where N

is 2 or 4. The graph also shows the throughput with N processes when each process

makes four distinct I/O calls for each of its four segments of contiguous data, denoted

as non-collective-I/O-N. As we expect, with collective-I/O-N, increasing segment size
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(amount of requested data) gives increasing throughput. This is consistent with the

fact that the disk is more efficient with large contiguous data access because of better

amortized disk seek time. Surprisingly, however, we see that the throughput for non-

collective-I/O-4 reaches a peak value of 175MB/s at 64KB segment size, which is

much higher than the 42MB/s throughput for collective-I/O-4 at the same segment

size. Similarly, for non-collective-I/O-2 there is a peak of 149MB/s at 128KB, versus

48MB/s for collective-I/O-2. This appears to be inconsistent with the assumption

that requests for larger contiguous data would be more efficiently serviced.

The reason for these throughput peaks lies in the order in which the requests

arrive at each data server. Figure 4.3 illustrates the different orders when collective

I/O is used ( Figure 4.3(a)) and is not used ( Figure 4.3(b)) in the case of four

processes. When collective I/O is used, four contiguous segments are assigned to

a process as a file domain. Because both segment size and striping unit size are

64KB, the four requests to a particular data server, each for 64KB data, come from

four concurrent processes and arrive in an order determined by the relative progress

of the processes, which is unpredictable. In an operation manual for the Lustre

cluster file system this issue is raised as a disadvantage of striping a file into multiple

objects (the portion of file data on one I/O server). Consider a cluster with 100

clients and 100 I/O servers. Each client has its own file to access. The manual [19]

states: “If each file has 100 objects, then the clients all compete with one another

for the attention of the servers, and the disks on each node seek in 100 different

directions. In this case, there is needless contention.” This exactly describes the

situation with collective I/O when multiple processes access the same file on multiple

data servers simultaneously. We note that while the I/O scheduler at the data server

can re-order the requests for a sequential dispatching order, this re-ordering operation

will rarely occur unless the I/O system is saturated and many requests are pending.
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four non-contiguous segments to one I/O node, making the service order of the requests at the node
consistent with the offsets of the requested data in the file domain.
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Therefore, a data server usually serves requests in the order that they are received—in

random order from the viewpoint of data server— which degrades disk performance.

In contrast, when collective I/O is not used, all four requests to a data server are

from the same process, which sends them one by one in the order of their offsets in

the logical file space. Because the file system generally allocates data on the disk in

an order consistent with their offsets in the file domain, the consequent sequential

service order at a data server leads to an effective prefetching at the data server [74].

We name this scenario, in which an accidental match between data request pattern

and data striping pattern produces sequential disk access and peak disk performance,

resonance in the distributed I/O service, a term borrowed from the physics field. A

similar resonance exists with non-collective-I/O-2 with 128KB segment size, in which

two data servers are dedicated to service requests from one process (one segment is

striped on two nodes), and no data server receives requests from multiple processes

that cause random disk accesses. We also observe that non-collective-I/O-2 with

64KB segment size generates a resonance, though with a throughput (125MB/s)

lower than the one (149MB/s) at 128KB segment size. The lower throughput is a

result of under-utilized data servers, because at any time only two of the four data

servers are servicing requests from the two processes.

Analyzing the conditions for resonance to occur, we see that the key factor for

high I/O throughput is not simply accessing a contiguous file domain, rather, it

is ensuring sequential access of data on a data server. When data is striped over

multiple data servers, collective I/O, which designates one contiguous file domain to

a process, allows requests for data on a data server to be from multiple processes,

which introduces the indeterminacy that leads to non-sequential access. If we can

rearrange requests involved in collective I/O such that all the requests for data on a

data server come from one process, then resonance would be a common case when
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each process requests its data in ascending order of file offset. This is one of the

techniques used in our proposed implementation of collective I/O, called resonant

I/O.

4.2 The Design of Resonant I/O

The design objective of resonant I/O is to ensure that requests arrive at each data

server in ascending order of file offsets for requested data from the same file. While

data layout on disk usually matches offsets in the logical file space, the design allows

the disk to service the requests in its preferred order, i.e., from small disk addresses

to high addresses (possibly sequential), to achieve high disk throughput.

4.2.1 Making Collective I/O Aware of Data Layout

To induce resonance the compute node must know on which data server requested

data is stored. Because an important design goal for the compute-node-side middle-

ware is keeping the middleware independent of the data server side’s configuration to

ensure portability and system flexibility, explicitly requesting this information from

the data servers is undesirable.

Fortunately, the configuration information that is needed in resonant I/O is readily

available on the compute node side in many commonly used parallel file systems,

including PVFS2 [17, 71], Lustre [2, 10], and GPFS [92]. In these systems meta-data

service is separate from data service to avoid bottlenecks in data transfer. As such,

a compute node needs to first communicate with the meta-data server to acquire

the locations of its requested data on the data servers before it can access data on

data servers. In fact, we only need to know the striping unit size and number of

data servers, from which we can determine which requested data is on the same data
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server. We are aware that these two parameters may be set by users when the file

is created in some file systems such as Lustre. However, to keep the design general

and the interfaces of collective I/O unchanged, we do not assume that users would

provide these parameters when they call collective I/O functions.

4.2.2 Process Access Set and data server Access Set

Because resonant I/O is an implementation of collective I/O, it does not make any

changes to the function interfaces seen by programmers. As usual, each participant

in a resonant-I/O operation needs to call the same collective-I/O function to specify

one file segment or multiple non-adjacent file segments in a request. To execute

the function call the processes are first synchronized to exchange information on the

requested file segments so that every process knows all the file data requested in the

collective I/O. After that, a collective-I/O implementation strategy needs to decide,

for each process, which data the process is responsible for accessing. We call the

set of data that is assigned to a process its access set. Once a process knows its

access set it generates one or multiple requests to the data servers to access the data

specified by the access set. In ROMIO collective I/O all file data to be requested are

evenly partitioned into contiguous file domains. Each file domain is the access set of a

process, which then uses only one request to access the data. Because this method of

forming access sets based on contiguity in the logical file seeks to reduce the number

of requests as well as their processing overhead, the resulting pattern of requests does

not necessarily help improve disk efficiency, as described in Section 4.1.

To achieve disk efficiency in the implementation of collective I/O, we define a

data server’s access set as the set of data that is requested in a collective I/O and

is stored on the data server. One of the objectives of resonant I/O is to ensure that
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a data server’s access set is accessed by requests arriving in the ascending order of

the offsets of the data in the logical file domain. Note that it is the LBNs (logical

block numbers)∗ of the data that represent the on-disk locations of the data and

directly determine the disk efficiency, and there is a mapping from the logical file

offsets to on-disk LBNs by file systems. Therefore, in theory, ascending file offsets

do not necessarily correspond to ascending LBNs, but in practice the correspondence

generally holds, especially for file systems managing large files. Furthermore, our

objective is that client-side optimization, such as resonant I/O, not require detailed

configuration information on the server side. Using file offsets for this purpose fulfills

this objective. Because the striping unit size and the number of data servers are

available, processes on the compute nodes can easily calculate the access set of each

data server.

The reasons that a data server’s access set might be requested in a random order

are that (1) data in the data server’s access set belongs to multiple processes’ access

sets; and, (2) these processes send their requests in random order because of their

unpredictable relative progress. To produce an ascending access order at a data server,

resonant I/O can take either of two actions: (1) make one process’ access set be a

data server’s access set; or, (2) make multiple processes send their requests in a pre-

defined order. In the following we describe how resonant I/O takes the first action as

its basic approach to produce an ascending access order, and takes the second action

to make an optimization for a particular request pattern.

∗If the data server is attached to a disk array the LBN refers to the address in the array.
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4.2.3 Designating Agent Processes According to the Data

Server’s Access Set

If a process’ access set is the same as a data server’s access set, and the process

sends its requests to the data server in ascending order of offset, then the data server

will receive all of its requests in the preferred order. We call such a process the data

server’s agent process. Assuming each data server needs one agent process, for a given

data server we select the process that requests the largest amount of data from the

data server and has not been selected as another data server’s agent process. If more

than one such process exists, we arbitrarily choose the one with the lowest rank in the

MPI process group as the agent process. As some data requested by an agent process

may belong to other processes and need to be transferred between the agent process

and their owner processes, this strategy minimizes the data to be transferred. The

data transfer takes place before access to the data servers in the write operation, and

after access to the data servers in the read operation. This data transfer is similar to

the inter-process communication phase in ROMIO collective I/O. However, we make

a special optimization for the read operation in this phase to minimize the transfer

cost, as follows.

Synchronization is usually required after each agent has read data from data

servers into its buffer and before the inter-process data transfer starts. This synchro-

nization can degrade I/O performance by forcing all processes to wait for the slowest

process to read its data; moving the synchronization ahead of the read operation

would obviate this. To this end, we let all agent processes send their requests for

their access sets in a non-blocking fashion in the first phase of the read operation,

assuming non-blocking I/O is supported, and synchronize their progress immediately

after sending requests instead of after the data has been read. Then each process
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proceeds to read directly from the data servers the data that it needs but has not

requested in the first phase. If the process is not an agent, the data is actually all

that it needs to access. This step replaces inter-process data transfer to eliminate

synchronization immediately before the second phase. In this arrangement, we actu-

ally make many requests issued in the first phase serve as prefetching hints for the

requests issued in the second phase. By performing the synchronization we ensure

that requests in the second phase arrive after the data servers receive requests from

the agents in the first phase. Thus the request service order at a data server is de-

termined by the arrival order of requests in the first phase. When data is read from

the disk, the requests of the second phase would be satisfied in the buffer cache of

the data server. Usually the buffer cache is large enough to hold the data when the

requests in the second phase arrive. By using the prefetching-like method, the two

phases in resonant I/O can be overlapped to achieve higher efficiency.

Because an agent process may send many requests to a data server in resonant

I/O, compared with one request in the ROMIO collective I/O, the request processing

cost can be substantially higher. To reduce this cost resonant I/O uses list I/O to pack

small requests for non-contiguous data segments into one or a few large requests to

minimize request processing overhead. For the ROMIO implementation in MPICH2,

one list I/O can accommodate up to MAX ARRAY SIZE (64) non-contiguous data

segments, which can significantly reduce the cost.

4.2.4 Timing Requests from Different Processes

Because the second phase in the conventional implementation of collective I/O is

the additional cost that does not exist in the non-collective I/O scheme, we seek to

eliminate it subject to the condition that the access pattern satisfies a non-overlapping
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condition. This condition requires that in a collective I/O call the file offsets of the

data requested by process i are smaller than those of data requested by process i+ 1

(i = 0, 1, · · · , N − 2; N is the number of processes). If a collective I/O call satisfies

the condition for all the requests in the call to a given data server, those from process

i will be for data with offsets smaller than those from process j (i < j). If we

place the processes into sets according to the data servers to which they send their

requests such that processes in different sets do not share data servers, and ensure

that for all processes in a set, a process with lower rank always sends its request

earlier than a process of higher rank, then the data servers will receive the requests

in the preferred order. For this particular request pattern, by timing the sending of

requests in different processes, we can produce the same effect on request arrival order

as by using process agents. Then we can eliminate the second phase in which data is

transferred to their owner processes, because each process requests its own data.

When the non-overlapping condition is satisfied, in each process set the process

with lowest rank sends its request(s) first, and after a short delay it sends a syn-

chronous message to the process with the next higher rank in the set, which then

repeats the procedure. The delay is introduced to ensure that requests arrive at data

servers in the preferred order. Our study has shown that because disk access time is

usually much higher than message passing time, this delay can be chosen from a rel-

atively large range, such as from 0.1ms to 1ms, with little effect on I/O performance,

especially in a system supporting non-blocking I/O where a process can send its mes-

sage without waiting to receive its requested data. (We note that the choice of delay

does not affect the correctness of the protocol, only performance.) If non-blocking

I/O is not supported no delay would be imposed and I/O access among processes

would be fully serialized.

Because we coordinate request sending among processes, the benefits of improved
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disk efficiency will outweigh the penalty of reduced concurrency of I/O operations if

the number of processes is comparable to the number of data servers. Otherwise, the

serialization could become a performance bottleneck. To maintain balance, we set up

n process groups in each process set sharing a common set of data servers, where n

is the number of the data servers. We place the ith process in a set, sorted by rank,

into group k, where k = i/n. Then processes in the same group send their requests

without coordination, and the timing (or serialization) is carried out between process

groups.

This timing technique can also be applied to make the approach using agent

processes more scalable. When the number of processes in a collective I/O is much

larger than the number of data servers, and the amount of data to be requested is

very large, resonant I/O can designate more than one process agent for each data

server for higher network bandwidth. This is made possible by timing the request

sending in these multiple agent processes.

4.2.5 Putting it All Together

Figure 4.4 summarizes the design of resonant I/O. The objective in the design is to

make requests served at each data server arrive in the preferred order. This is achieved

by either allowing requests to one data server to be from the same agent process or

by coordinating the issuance of requests from multiple processes. In achieving this

objective, several optimizations were applied, including minimization of the cost of

synchronization and elimination of the second phase of a conventional implementation

of collective I/O.
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Figure 4.4: Algorithmic Description of Resonant I/O

4.3 Effectiveness of Resonant I/O

To evaluate the performance of resonant I/O and compare it with the widely

used collective I/O implementation in ROMIO, we used two different experimental

platforms. The first is our own dedicated system, an eight-node cluster. All nodes are

of identical configuration, each with dual 1.6GHz Pentium processors, 1GB memory,

and an 80GB SATA hard disk. The cluster uses the PVFS2 parallel virtual file system

(version 2.6.3), in which four nodes were configured as compute nodes and the other

four as data servers. Each node runs Linux 2.6.21 and uses GNU libc 2.6. One of the

data servers is also configured as the meta-data server of the file system. We used

MPICH2-1.0.6 with ROMIO for our MPI programs. All nodes are connected through

a switched Gigabit Ethernet network. The default striping unit size, 64KB, is used to

stripe file data over the data servers. The second platform, used to evaluate how the

performance of resonant I/O scales in a shared production environment, is described

in the section on scaling.

Our resonant I/O is implemented in ADIO on top of PVFS2. The current version
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of ADIO does not provide genuine support for non-blocking I/O functions [72]. Be-

cause of this limitation our implementation of resonant I/O makes some compromises:

(1) for the read operation, the second phase is not initiated until the data requested

in the first phase has been received by the agent processes, which nullifies much of

the benefit of using prefetching-like data access in the second phase; and, (2) the I/O

operations among process groups are serialized. The consequence of these compro-

mises is that experimental results for resonant I/O presented here are conservative,

and potential performance advantages may not be fully revealed.

In addition to the demonstration program we used in Section 4.1 to exhibit the

resonance scenario, we used five well-known benchmark programs for the evaluation:

coll perf from the MPICH2 software package [12], mpi-io-test from the PVFS2 soft-

ware package [17], ior-mpi-io from the ASCI Purple benchmark suite developed at

Lawrence Livermore National Laboratory [4], noncontig from the Parallel I/O Bench-

marking Consortium at Argonne National Laboratory to test I/O characteristics with

noncontiguous file access [15, 16], and hpio, designed by Northwestern University and

Sandia National Laboratories, to systematically evaluate performance with a diverse

set of I/O access patterns [49, 3].

All presented measurements represent arithmetic means of three runs. The varia-

tion coefficients—the ratio of the standard deviation to the mean—are less than 5%

for the experiments on the dedicated cluster and less than 20% on the production

system. To ensure that all data was accessed from the disk, we flushed the system

buffer caches of the compute nodes and data servers before each test run.
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4.3.1 Revisiting the Demonstration Program

We first revisit the demonstration program presented in Section 4.1. Figure 4.5

shows the I/O throughput observed when running the program with ROMIO col-

lective I/O and resonant I/O with two and four MPI processes. The figure shows

that resonant I/O can significantly improve I/O performance. It produces its peak

throughput for segment size of 64KB with four processes and for segment size of

128KB with two processes, the two scenarios where resonance takes place when I/O

requests are not collectively issued (c.f. Figure 4.2). In these two scenarios, resonant

I/O increases I/O throughput by 151% and 75% over their counterparts in ROMIO

collective I/O, respectively. However, the throughput of resonant I/O in these two

scenarios is less than those of non-collective I/O shown in Figure 4.2. This is because

resonant I/O needs synchronization in each call, which slows the faster processes. In

fact a collective call is not necessary when a data server is dedicated to a process.

For a segment size of 32KB and with two processes, ROMIO collective I/O coinci-

dentally requests data in the same pattern as resonant I/O, so it has almost the same

throughput as that of resonant I/O.

4.3.2 Results on the Dedicated Cluster

We ran benchmarks coll perf, mpi-io-test, ior-mpi-io, noncontig, and HPIO on the

dedicated cluster to measure their achieved aggregate I/O throughput when resonant

I/O, and ROMIO collective I/O, were used. Because the I/O operation in all but

coll perf can be set as either file read or file write, and coll perf can be divided into

read and write phases, we measured the read and write throughputs separately.
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Figure 4.7: I/O throughput of benchmark mpi-io-test with varying segment sizes.

Benchmark coll perf

The benchmark coll perf comes from the MPI source package. Using collective

I/O, this benchmark first writes a 3D block-distributed array to a file which resides on

the parallel file system corresponding to the global array in row-major order and then

reads it back, and checks if the data is consistent with the written data [12]. We scaled

the array size from 643 to 10243 elements to test the effect of storage throughput. We

isolated read and write phases with memory flushing instead of read-after-write used

in the original implementation. Figure 4.6 shows the read and write throughput

for both resonant I/O and ROMIO collective I/O. Because the I/O request size is

proportional to the array size, as the array size increases the disk becomes very

efficient in servicing individual requests, and the benchmark quickly achieves its peak

throughput in the system (around 80MB/s). Therefore, while resonant I/O produces

higher throughput, the improvements over ROMIO collective I/O are modest.
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Benchmark mpi-io-test

In the mpi-io-test benchmark we used four MPI processes, one on each compute

node, to read a 10GB file. Each process reads one segment of contiguous data at a

time. In each collective call, four processes read four segments in a row, respectively.

In the next call, the next four segments are read. Figure 4.7 shows the throughput of

the benchmark when resonant I/O and ROMIO collective I/O are used. As expected

for this benchmark we see an I/O resonance (a spike in I/O throughput) at segment

size 64KB. This resonance occurs with resonant I/O for both the read and write

versions of the benchmark. Interestingly, we found that the ROMIO collective I/O

also exhibits these resonances. Because there is no overlapping of processes’ access

ranges, ROMIO collective I/O does not re-arrange requests, and executes its I/O as

non-collective I/O does. However, for other segment sizes, ROMIO collective I/O

allows each data server to receive requests from multiple processes, and resonant I/O

is able to order request arrivals and substantially increases the throughput by up to

61%. The figures also show that the write throughput is higher than read throughput

when the segment size is larger than 64KB; this is mainly due to delayed write-back.

Benchmark ior-mpi-io

In benchmark ior-mpi-io each of the four MPI processes reads one quarter of a

1GB file: process 0 reads the first quarter, process 1 reads the second quarter, and

so on. The reads are executed as a sequence of collective calls. In a call, each of

the four processes reads a segment with the same relative offset in their respective

access scope, starting at offset 0. Figure 4.8 shows the throughput with different

segment sizes. When the segment size is less than 64KB only one data server is

involved in servicing requests in each call, so the throughput is low. The difference
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Figure 4.8: I/O throughput of benchmark ior-mpi-io with varying segment sizes.

is that requests are from one agent process in resonant I/O and from four processes

in ROMIO collective I/O, which explains their performance difference in the read

version of the benchmark. The performance advantage of resonant I/O diminishes

with increasing segment size because increasingly amortized disk seek time reduces

the penalty of non-sequential disk access in collective I/O.

Benchmark noncontig

Benchmark noncontig uses four MPI processes to read a 10GB file using the vector

derived MPI datatype. If the file is considered to be a two-dimensional array, there

are four columns in the array. Each process reads a column of the array, starting at

row 0 of its designated column. In each row of a column there are elmtcount elements

of the MPI INT type, so the width of a column is elmtcount*sizeof(MPI INT). In each

collective call, the total amount of data read by the processes is fixed, determined

by the buffer size, which is 16MB in our experiment. Thus the larger elmtcount the

more small pieces of non-contiguous data are accessed by each process.

When elmtcount is small, such as 4096, resonant I/O would need to send requests
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Figure 4.9: I/O throughput of benchmark noncontig with varying segment sizes.

for a large number of non-contiguous data segments. Because each list I/O can contain

at most 64 non-contiguous segments using the default list I/O parameter, multiple

list-I/O requests must be made by each agent process. This creates extra overhead for

resonant I/O as ROMIO collective I/O uses only four requests. Figure 4.9 shows that

the I/O throughput of resonant I/O is a little lower than that of ROMIO collective

I/O when elmtcount is 4096. However, when elmtcount is increased, resonant I/O

yields higher throughput. Both read and write throughput peaks at elmtcount of 16K

when the segment size equals the striping unit size and all the data requested by an

agent process is for itself. For read the peak throughput is 101MB/s, an improvement

of 157% over that of ROMIO collective I/O, and for write the peak throughput is

96MB/s, an improvement of 97% over that of ROMIO collective I/O.

Benchmark HPIO

The benchmark HPIO can generate various data access patterns by changing three

parameters: region count, region spacing, and region size [49]. In our experiment,

we set region count to 4096, region spacing to 0, and vary region size from 2KB to
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Figure 4.10: I/O throughput of benchmark HPIO with varying segment sizes.

64KB. Using four MPI processes, the access pattern is similar to the one described

for benchmark noncontig. Here the length of a column is fixed as region count (4096)

and the width of a column varies from 2KB to 64KB (powers of two times 2KB).

Each process reads its designated column with a collective call. Only one collective

call is made in the benchmark.

Compared with the 16MB data requested in one collective call in noncontig, HPIO

accesses much more data in one collective call, from 32MB to 1GB. This helps the

benchmark to achieve a higher throughput and the high throughput is consistent

across different region sizes, as we compare Figure 4.9 and Figure 4.10. Resonant

I/O provides even higher throughput by rearranging requests to a data server, and

produces a resonance peak at a region size of 64KB.

4.3.3 Resonant I/O Under Interference

In this section we study the impact of interference due to external competing I/O

requests on the performance of resonant I/O. For comparison we also show the impact

of interference on ROMIO collective I/O. We run two programs, the demonstration
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program, denoted by demo, and mpi-io-test, which concurrently access their respective

files that are striped over the same set of data servers. We use four parallel processes

for each program with 64KB segment size. In this experiment we consider mpi-io-

test to be the source of interference with demo. To control intensity of interference

we insert a period of compute time between two consecutive I/O requests in mpi-io-

test. Thus the interference intensity is quantitatively represented by the magnitude

of the compute time—the smaller the compute time the higher the interference. We

also define a metric called relative throughput as the ratio of the throughput of the

program under interference and the throughput of the program with exclusive access

to the same storage system. We measure both absolute throughput and relative

throughput of demo and mpi-io-test with inter-call compute time ranging from 1

second to 0 seconds using resonant I/O and ROMIO collective I/O, respectively (see

Figure 4.11).

For the demo program, the relative throughput of resonant I/O drops from 0.90

to 0.43 as the compute time decreases from 1 second to 0. In contrast, the relative

throughput of ROMIO collective I/O drops from 0.98 to 0.47. The relative throughput

of resonant I/O drops at a greater relative rate, which demonstrates that resonant

I/O is more sensitive to interference because sequential request-service order is more

difficult to retain with increasingly high interference from concurrently I/O requests.

However, even when there is no compute time between two consecutive I/O calls

(and so the highest interference intensity) in mpi-io-test, resonant I/O still achieves

an absolute throughput of 48MB/s for demo, which is more than twice the throughput

of ROMIO collective I/O (22MB/s). Meanwhile, when the interference intensity is

the highest, mpi-io-test could potentially reduce the throughput of demo by at least

half. From this perspective, the relative throughput of resonant I/O for demo, which

is 0.43, can be deemed quite acceptable. This result shows that the effort at the
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Figure 4.12: I/O throughput as a function of the number of compute nodes, relative to a single
node, for benchmark mpi-io-test.

application/run-time level to maintain preferred request arrival order still helps to

improve disk scheduling efficiency even when the competing load on the disk system

is high and there are many pending requests for the disk scheduler to reorder.

For mpi-io-test, the relative throughput also drops but at a relatively moderate

rate with the increase in interference intensity. Higher interference intensity means

more I/O time in the program’s run time, and the I/O time could be at least doubled

when mpi-io-test runs concurrently with demo in comparison to when it has exclusive

use of the I/O subsystem. Here the relative throughput of resonant I/O is slightly

higher than that of ROMIO collective I/O. The rising curves representing absolute

throughput of mpi-io-test are due to its increasing I/O demand as its compute time

is reduced.

4.3.4 Scalability of Resonant I/O

In this section we study the scalability of resonant I/O in a production system

environment, the Itanium 2 Cluster at Ohio Supercomputer Center, which has 110
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compute nodes and 16 storage nodes, each with 4 GB of memory, running the PVFS2

file system. We ran benchmark mpi-io-test with 10GB file size and 1MB segment size

with different numbers of processes, each on a different processor, to a maximum of

64. Figure 4.12 shows I/O throughput as a function of the number of compute nodes,

relative to the throughput achieved on a single node, for benchmark mpi-io-test, for

both resonant I/O and ROMIO collective I/O. As shown, resonant I/O is as scalable

as ROMIO collective I/O. Because the quantity of data requested in a collective-I/O

call is proportional to the number of processes, the I/O throughput increases with

the number of processes to the limit of the storage system at 32 processes. When

the performance of the storage system becomes a bottleneck, efficient use of the disk-

based system becomes critical, which explains the performance advantage of resonant

I/O over the ROMIO collective I/O when the number of processes is larger than 32.

In general, both resonant I/O and ROMIO collective I/O scale well in the experiment.

In addition, we note that the program shared the data servers with other concurrently

running programs during its execution. As the measurements show, the concurrent

I/O requests from other programs do not negate the effects of resonant I/O arranging

a preferred access order for a higher I/O throughput. This is because the requests

belonging to a collective I/O, implemented as resonant I/O, still arrive at the I/O

system in a bursty fashion and so retain their preferred order.
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Chapter 5

Inter-Server Coordination in a

Storage Cluster

5.1 Lost of Spatial Locality

To provide adequate I/O support parallel file systems such as PVFS2 [17, 71],

Lustre [2], and GPFS [92] exploit the natural parallelism provided by a shared cluster

of data servers by striping file data over them. A parallel file system allows requests

from a program running on the compute nodes to be served by multiple data servers

in parallel. However, when the server cluster is a shared resource—the usual case—

it must concurrently serve requests from multiple programs. While requests from

multiple programs help increase workload concurrency and keep data servers busy, it

can also reduce hard disk efficiency by compromising programs’ spatial locality.

5.1.1 Spatial Locality and Hard Disk Performance

The hard disk is still the most cost-effective mainstream storage device, but the

spatial locality of its accesses dramatically affects its performance. Spatial locality is
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the property of a sequence of accesses (or requests for those accesses, or of a program

that generates those requests) to a particular storage medium for data that are close

to each other. Data on a hard disk are accessed using moving disk heads and rotating

disk platters, and sequential access can be more than an order of magnitude faster

than random access.

A challenge in exploiting spatial locality is that many requests with good spa-

tial locality are synchronous. For synchronous requests, a process will not issue its

next request until its last request is served. Programmers generally prefer to use syn-

chronous requests over asynchronous ones because it is simpler to manage control flow

with synchronous function calls. However, when multiple programs, each with good

spatial locality, concurrently issue synchronous requests to the same disk, the result

can be severe disk head thrashing that cripples performance. To preserve the spatial

locality of synchronous requests from one process when multiple processes are simul-

taneously issuing requests, schedulers such as the Anticipatory Scheduler (AS) [64]

and Completely Fair Queuing (CFQ) [7] are used in many high-performance com-

puting installations. These schedulers are predicated on the assumption that there

will be no more than a small time interval (think time) between synchronous requests

from a given process, that these requests are likely to have good spatial locality,

and data requested by other processes will be remote on the disk. For this to be

advantageous the think time must be short enough and the locality of the process

must be strong enough that the benefit of serving next request from the process in a

non-work-conserving fashion is greater than the cost paid for idle waiting.
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5.1.2 Spatial Locality with Multi-node I/O Systems

The AS and CFQ schedulers have proven effective at preserving the spatial locality

exhibited by individual processes, but their effectiveness is limited to the case where

the process’s requested data reside on a single disk. When file data are striped over

multiple disks or multiple data servers, these schedulers are often unable to exploit

individual processes’ spatial locality. The key reason is that in a multi-disk system

it’s not solely the process’s think time that determines how soon the process’s next

request to a given disk will arrive. We refer to the time period between two requests

from a process that hit a given disk as the reuse distance of the disk by the process.

When file data are striped in a multi-disk system the reuse distance can become so

large that it is not profitable for the disk to wait for a process’s subsequent request.

This is a direct consequence of striping—sequential contiguous requests wrap around

the disks or data servers. Even if the disks, or data servers, whose service times

contribute to the reuse distance, are synchronized to provide dedicated service to

the process, the distance can be still too long for the disk head to wait, instead

of leaving for requests from other processes. Consequently, each disk may end up

thrashing its disk head among processes, breaking spatial locality in the processes.

The potential I/O performance advantage from spatial locality thus gets lost in the

larger-I/O-system behavior.

5.1.3 Preserving Spatial Locality for Parallel Programs

Schedulers’ inability to exploit spatial locality poses an especially serious problem

for I/O-intensive parallel programs. These programs usually rely on strong spatial

locality to ensure high I/O performance. To this end, techniques such as collective

I/O [100] and data sieving [100], have been widely used to help form large contiguous
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accesses. In addition, a common practice for coordinating computation and I/O is

to use synchronization, such as barrier, between I/O requests in a parallel program.

Thus, the synchronization separates the I/O operations into distinct time regions

and makes the requests issued in the same time slot related to the same computation,

which helps improve spatial locality. However, the locality created by these techniques

is usually only from the perspective of the program. I/O requests are still sent

simultaneously from a number of processes of the running program (e.g., collective

I/O for MPI programs). It would still be hard for a data server to exploit the spatial

locality of individual processes because the reuse distance of any data server by a

process could still be too large.

To more effectively discuss spatial locality as observed by such techniques as col-

lective I/O and barrier, we introduce the notion of reuse distance at each data server

by a parallel program, which is the time period between two requests from the same

running program that hit a data server. Because the parallel program consists of

multiple processes, the reuse distance by a program may be much shorter than the

reuse distance by an individual process, so it may be profitable for disk head to wait

for next request from the same program.

In this work we propose a scheme, IOrchestrator, that orchestrates the serving of

requests from multiple programs over a set of data servers so that the reuse distance of

programs can be minimized individually to exploit the spatial locality of each, when

sufficient spatial locality exists.

5.2 Design and Implementation of IOrchestrator

The design objective of IOrchestrator is to selectively recover spatial locality, in a

parallel program, that is lost when the program runs together with other programs,
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all sharing a multi-node storage system. This is achieved by synchronizing data

servers and dedicating them to one program at a time under the conditions that (1)

adequate spatial locality exists in the program but gets lost due to co-running pro-

grams; and, (2) the data servers can be sufficiently well utilized to justify dedicated

service. In dedicated service for a selected program, each data server would only

serve requests from that program, keeping its disk head(s) idle even in the presence

of pending requests from other programs. This approach could disrupt system per-

formance if it were indiscriminately applied. To be effective, IOrchestrator tracks the

spatial locality and reuse distances within each program, and that across programs,

and continuously evaluates the cost-effectiveness of dedicated service. A program is

selected for dedicated service only when it is expected to improve the system’s I/O

performance.

5.2.1 The IOrchestrator Architecture

We implemented IOrchestrator in the PVFS2 parallel file system. PVFS2 seeks to

provide scalable, high-performance I/O service for parallel programs using a cluster

of data servers [17]. It has a metadata server for managing all file metadata for PVFS

files, and a number of data servers on which PVFS files are striped. The PVFS file

system is built on top of local file systems. That is, a PVFS file actually consists of

a number of local files that are managed by local file systems. The metadata server

records how a PVFS file is laid out on the data servers. A process running on a

compute node first contacts the metadata server before it issues requests for data

directly to the data servers.

One of our design objectives is to enable program-level I/O scheduling so that

eligible programs can receive dedicated I/O service. To this end, we need to correlate
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the spatial locality and reuse distance detected at the data servers to the programs

running at the compute nodes. However, this cannot be achieved within data servers.

As we know, PVFS uses a iod daemon at each data server to receive I/O requests

from processes on the client side and issue the requests to the kernel on behalf of the

processes. Therefore, the local file system, which actually schedules requests to the

disk, does not know which process or running program at the client side issued the

requests. To evaluate spatial locality exhibited within a program and among programs

on a data server, IOrchestrator needs this information. To achieve this IOrchestrator

uses a daemon at the metadata server that is responsible for collecting information

about which files have been opened by each program. This daemon, the program-files

daemon (pf daemon), maintains the map between program names and file names. At

the compute nodes, when a new MPI program is created and its member processes

are spawned, IOrchestrator sends unique identifiers for the running program (job in

MPI) and its processes to the pf daemon.∗ We also instrument the MPI file-opening

functions in the ROMIO library to report to the pf daemon when a file is opened by

a particular process. Using the information from the compute nodes the pf daemon

knows which files are opened by each program.

Because the metadata server knows how a PVFS file is striped over the data

servers, the pf daemon at the server knows what local files at each data server are

accessed by a particular running program and passes the information to a locality

daemon at each relevant data server. The locality daemons are responsible for mea-

suring the spatial locality among local files. Once the locality daemon knows the

relationship between local files and programs, it can derive the spatial locality ex-

hibited within and among PVFS files (detailed later) and passes the information

∗In MPI, the information on the processes that are spawned in a job is recorded in file
“mpdlistjobs”.



80

1

Metadata server

Compute Nodes (with instrumented MPI library)

"mpdlistjobs"

Ids of open files

Ids of open files

Data Servers

… …

……
Disk I/O Scheduler

iScheduler (Iod)

Hard Disk
Disk I/O Scheduler

3

1

2

3
locality

program-files 

orchestrator
locality

iScheduler (Iod)

2

Hard Disk

Figure 5.1: The IOrchestrator software architecture: the pf daemon collects the
program-to-files mapping information from the compute nodes, and uses it to deter-
mine the program-to-local-file mapping information, which is passed to the locality
daemons at the data servers (Step 1); the locality daemons collect locality and reuse
distance statistics and pass them to the orchestrator daemon (Step 2); and the or-
chestrator daemon makes the scheduling plan and sends it to the iScheduler daemons
at data servers to execute (Step 3).

to another daemon of IOrchestrator, the orchestrator, at the metadata server, that

collects the information about spatial locality sent by each data-server’s locality dae-

mon. The orchestrator daemon identifies programs for dedicated service and creates

the program-level scheduling plan. This plan is executed by the iScheduler daemon,

a component added to the PVFS2 iod daemon at each data server. The iScheduler

daemon at each data server sits above the local disk scheduler, to which it relays

requests. Figure 5.1 illustrates the architecture of IOrchestrator.
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5.2.2 Measuring Spatial Locality and Programs’ Reuse Dis-

tance

While the spatial locality of a sequential program is solely a property of the

program, reflecting its intrinsic access patterns, the spatial locality observed at each

data server for a parallel program with a multi-node storage system is additionally

determined by how processes run on the compute node and how file data are striped

over data servers. In addition, it is the spatial locality of all the programs in the

system that collectively determines the I/O efficiency of a data server. We denote

the spatial locality observed at data server i for program j as SLij and the spatial

locality observed at data server i for all programs as SLi. For a particular program

j running together with other programs, SLij may not be significant in determining

the I/O efficiency unless it is given a dedicated time slice to access the data server.

There are two conditions for a time slice to be dedicated to a program j at data

server i to be cost effective. The first condition is that SLij be substantially stronger

than SLi (a smaller value indicates a stronger locality; quantitative definitions are

given below). The second condition is that the reuse distance of program j at data

server i, denoted by RD ij, is sufficiently small relative to a given SLi. The first

condition ensures that efficiency can be improved by dedicating a time slice of the data

server to the program. The second condition ensures that the cost paid for providing

dedicated service to the program is justified. During a dedicated service period for

one program, the concurrency of the workload on the storage system is reduced, and

thus there is a higher probability for some disks to stay idle while requests from other

programs are pending. To answer the question on whether a disk head should wait

for the next request from the same program within an expected period RD ij or take

a time period SeekTime i, determined by SLi, to serve other programs, we adopt the
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approach described by Huang et al. [61], Section 4.2, to derive SeekTime i from SLi.

To statistically quantify the locality (SLi and SLij) and reuse distance (RD ij),

we use an approach that is similar to the one developed in Linux on anticipatory

scheduling [1] for a similar purpose:

SLi(k) =
1

8
∗ SLi(k − 1) +

7

8
∗ LBA Gapi(k) (5.1)

SLij(k) =
1

8
∗ SLij(k − 1) +

7

8
∗ LBA Gapij(k) (5.2)

RD ij(k) =
1

8
∗ RD ij(k − 1) +

7

8
∗ ReuseDistance ij(k) (5.3)

where SLi(k) is SLi when the kth request to data server i is served, SLij(k) is SLij

when the kth request from program j to data server i is served, and RD ij(k) is RD ij

when the kth request from program j to data server i is served. LBA Gapi(k) is the

LBA gap between the (k− 1)th and kth requests to data server i, and LBA Gapij(k)

is the LBA gap between the (k−1)th and kth requests from program j to data server

i. The LBA of a request is the logical block address of the requested data, reflecting

location of the data on the disk. ReuseDistance ij(k) is the time gap between the

(k − 1)th and kth requests from program j to data server i. In these formulas we

consider both recent and historical statistics to smooth out short-term dynamics, and

phase out historical statistics by giving recent statistics greater weight.

The locality daemon at each data server, obtaining request LBAs from the in-

strumented kernel, collects the various measurements and calculates these statistics.
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Among them, SLi(k), SeekTime i(k), and SLij(k) for any program j are periodically

sent to the orchestrator daemon at the metadata server. RD ij(k) is only reported for

the program that is receiving dedicated service. At other times RD ij(k) should be

significantly larger as it could include the time periods when the program’s requests to

other data servers are not scheduled. As mentioned, the locality daemon uses the in-

formation on the relationship between running program and local files, received from

the pf daemon, to determine which requests belong to the same program, assuming

files are not shared among different programs.

5.2.3 Scheduling of Eligible Programs

When the orchestrator daemon at the metadata server receives the statistics from

the locality daemons, it uses the latest values of SLi, SeekTime i, SLij, and RD ij

to check three conditions to determine whether program j is eligible for a dedi-

cated service, or whether it is an eligible program: (1) the standard deviations of

SLi and SLij (i = 0, 1, ..., n − 1), where n is the number of data servers, are less

than 20% of their respective mean values; (2) (
∑n

i=0 SLi)/
∑n

i=0 SLij ≥ 1.5; and (3),

(
∑n

i=0 RD ij)/n ≤ SeekTime i. The first two conditions are used to ensure that the

benefit to the program from a dedicated service is potentially substantial and consis-

tent across the data servers. The threshold values (20% and 1.5) are set empirically

and our measurements show that performance is not sensitive to them in a relatively

large range in our experiments. (We leave a comprehensive study of their impact as

future work.) The third condition is to ensure that the benefit of dedicated service

is greater than its cost, and is only checked when dedicated service is granted to the

program so that RD ij can be reported.

If there are m running programs in the system that are identified as eligible pro-
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grams, there are m + 1 scheduling objects for the orchestrator daemon. Each eligible

program is a scheduling object and the remaining programs (the ineligible ones)

constitute object m + 1. While each eligible program would receive a time-slice of

dedicated service and obtain its reuse distance from the locality daemon at each data

server, we enhance the daemon to collect the reuse distance for scheduling object

m + 1 and pass it to the orchestrator daemon. Because the daemon knows the reuse

distance of each of its scheduling objects, averaged over all data servers, it decides

the scheduling time slice size for each object. With a fixed scheduling window, set

to 500ms by default in our prototype, each object receives a portion of it as the time

slice for its dedicated service, whose size is inversely proportional to the percentage of

its average reuse distance over the sum of average reuse distances of all objects. The

scheduling plan is then to schedule the programs in a window-by-window manner. In

a window, each object receives its dedicated service slice. To schedule an object the

orchestrator daemon broadcasts the object identifier to all iScheduler daemons. Each

iScheduler daemon then releases the requests from program(s) matching the object

identifier to the kernel until another object identifier is received. These requests are

scheduled by the local disk scheduler for further optimization. As such, all of the

ineligible programs have their requests scheduled together in the same time slice.

In the design of the scheduling, we take both efficiency and fairness into account.

Smaller reuse distance indicates a higher request arrival rate, or higher I/O demand

from one or multiple programs. Giving a larger service time slice to a program, or

programs, of higher I/O demand is fair for all programs. At the same time, dedicated

service to eligible programs allows their performance potential to be fully realized,

rather than getting lost in the multiplexed use of data servers. A program with weak

spatial locality, or large SLij, should get a small time slice in the interests of disk

efficiency. However, we do not have to explicitly use this statistic in the allocation
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of time slices to induce this effect. This is because large SLij would usually imply a

large reuse distance, which automatically leads to a small scheduling time slice.

5.3 Effectiveness of IOrchestrator

To evaluate the performance of IOrchestrator, we set up a cluster consisting of six

compute nodes, six data servers, and one dedicated metadata server for the PVFS2 file

system. All nodes were of identical configuration, each with dual 1.6GHz Pentium

processors, 1GB memory, and a SATA disk (Seagate Barracuda 7200.10, 150GB)

with NCQ enabled. Each node ran Linux 2.6.21 with CFQ (the default Linux disk

scheduler), and used GNU libc 2.6. The PVFS2 parallel file system version 2.8.1 was

installed. We used MPICH2-1.1.1, compiled with ROMIO, to generate executables

for MPI programs. All nodes were interconnected with a switched Gigabit Ethernet

network. A striping unit size of 64KB was used to stripe files over the six data servers

in the PVFS2 file system. To ensure that all data were accessed from disk the system

buffer caches of each compute node and data server were flushed prior to each test

run.

5.3.1 The Benchmarks

We selected five MPI-IO applications of different and representative I/O access

patterns to benchmark the PVFS2 parallel file system enhanced with IOrchestrator:

mpi-io-test, ior-mpi-io, noncontig, hpio, and mpi-tile-io, which are briefly described

following.

mpi-io-test is an MPI-IO benchmark from the PVFS2 software package [17]. In

our experiments, we ran the benchmark with five MPI processes spawned, each on one

compute node, to read or write one 10GB file. Each process accessed one segment
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of contiguous data at a time. If collective I/O is used, in each collective call five

processes access five segments in a row, respectively. In the next call, the next five

segments are accessed. The size of a request from each process was 64KB.

ior-mpi-io is a program in the ASCI Purple Benchmark Suite developed at Lawrence

Livermore National Laboratory [4]. In this benchmark each of the five MPI processes

is responsible for reading or writing its own 1/5 of a file whose size is 10GB. Each

process continuously issues sequential requests, each for a 64KB segment. If collective

I/O is used, the processes’ requests for the data are at the same relative offset in each

process’s access scope and are organized into one collective-I/O function call.

noncontig is a program from the Parallel I/O Benchmarking Consortium [15] de-

veloped at Argonne National Laboratory. This benchmark uses five MPI processes

to read a 10GB file with a vector-derived MPI data type. If we consider the file to

be a two-dimensional array, there are five columns in the array. Each process reads a

column of the array, starting at row 0 of its designated column. In each row of a col-

umn there are elmtcount elements of the MPI INT type, so the width of a column is

elmtcount × sizeof (MPI INT). If collective I/O is used, in each call the total amount

of data read by the processes is fixed, determined by the buffer size, which is 8MB in

our experiment.

hpio is a program designed by Northwestern University and Sandia National Lab-

oratories to systematically evaluate I/O performance using a diverse set access pat-

terns [3]. This benchmark program can generate differing data access patterns by

changing three parameters: region count, region spacing, and region size. In our ex-

periment we set region count to 4096, region spacing to 10, region size to 64KB. Using

five MPI processes, the access pattern is similar to the one described for benchmark

noncontig. The length of a column is 4096 and the width of a column is 64KB. When

collective I/O is used, each process accesses its designated column.
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mpi-tile-io is also from the Parallel I/O Benchmarking Consortium [13]. It uses

MPI processes to read or write a file in a tile-by-tile manner, with two adjacent tiles

partially overlapped. Each process accesses 8KB, with 64B of overlapping between

two consecutive accesses.

In all of these benchmarks file access can be set to either read or write. Addi-

tionally, both hpio and noncontig have the option of configuring their data access

patterns as either contiguous or non-contiguous for memory access and file access. In

summary, these selected benchmarks cover a large spectrum of access behaviors: from

sequential access among processes (e.g., mpi-io-test) to non-sequential access among

processes (e.g., ior-mpi-io), from read access to write access, from requests that are

well-aligned with the 64KB striping unit size (e.g., mpi-io-test and ior-mpi-io) to

requests of different sizes (e.g., noncontig and mpi-tile-io).

5.3.2 Performance of Homogenous Workloads

In this experiment we run two instances of each benchmark on the PVFS2 par-

allel file system and measure the aggregate I/O throughput with and without using

IOrchestrator, respectively. Each running program accesses its own data file, which

is striped over the six data servers.

Performance using only barrier. Figure 5.2 presents the I/O throughput for

the five benchmarks when only barrier is used between I/O operations and collective

I/O optimization is not used. In the experiments their file access is configured either

as read or as write and the access patterns of hpio and noncontig are configured either

as contiguous or as non-contiguous. IOrchestrator improves the I/O throughput of

the entire file system by up to 89% and 43% on average.

For the mpi-io-test benchmark, when IOrchestrator is used the I/O throughput is
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Figure 5.2: Aggregate I/O throughput with running of two instances of the same
program when only barrier is used. For each program, the data access is set as either
read or write. For hpio and noncontig data access pattern is set as either contiguous
(c) or non-contiguous (nc) for memory access and file access. The first symbol in the
parentheses after a program name shows memory access configuration and the second
symbol shows file access configuration. In our experiments only the configuration of
file access (or the second c/nc symbol) directly affects I/O throughput.

increased by 57% for read and 37% for write. The data access pattern of the program,

or that of its process if only one process is created, is sequential. However, when two

running programs, each with five processes, are sending their requests to the data

servers, the disk head at each data server cannot turn this strong spatial locality (se-

quential access) into high disk efficiency. Figure 5.3(a) and Figure 5.3(b) show the

order of accessed disk addresses, or roughly the path of disk head movement at data

servers 2 and 5, respectively, in a 1 second execution sample. When IOrchestrator is

not used, the disk head rapidly alternates between two disk regions, each storing a

data file for one running program. The disk I/O scheduler, CFQ, does not preserve

spatial locality within each program, though it conducts anticipatory scheduling sim-

ilar to the AS disk scheduler. To discover why, we collected the reuse distances of
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Figure 5.3: (a) and (b) show the disk addresses (LBAs) of data access on the disks
of data servers 2 and 5 in a sampled 1-second execution period, when two mpi-io-test
programs ran together with and without using IOrchestrator. Note that because the
programs run much faster with IOrchestrator, they access disk positions somewhat
different from those accessed by the programs without IOrchestrator during the same
execution period.
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Figure 5.4: Reuse distances of requests served at data server 5 measured when two
instances of mpi-io-test benchmark ran together without and with using IOrchestra-
tor.

one running program at data server 5 during certain time period and show them

in Figure 5.4(a) (without IOrchestrator) and Figure 5.4(b) (with IOrchestrator).

Without IOrchestrator, there are many very large reuse distances (between 20ms and
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50ms).† With such large reuse distances, it is impossible for the disk heads to be idly

waiting for the next request from the same program without making the disks less

productive. Thus, we see frequent disk head seeks between two distant disk regions

in Figure 5.3. When detecting the strong locality within each running program,

IOrchestrator provides dedicated service time slices to each. In its dedicated service

period, all disks are coordinated to service one program and its reuse distance can be

significantly reduced ( Figure 5.4(b)). This helps exploit the strong locality inherent

in the program into efficient disk access (see the lines showing access with IOrches-

trator in Figure 5.3). We can make similar observations for other benchmarks with

sequential access patterns, such as hpio(c-c) and noncontig(c-c).
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Figure 5.5: Aggregate I/O throughput running two instances of the same program
when barrier and collective I/O are used. For each program, the data access is set as
either read or write. For hpio and noncontig the data access pattern is configured as
either contiguous (c) or non-contiguous (nc)

For mpi-tile-io I/O throughput increased by 11% for read and 15% for write. The

†Those very small reuse distances shown in Figure 5.4 are mostly produced by requests from
different processes of the running program, and can be exploited by the CFQ scheduler.
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benchmark has a typical random data access pattern. The difference between spatial

locality within each running program and that among running programs is relatively

small, though it is larger than the threshold required for IOrchestrator to enable

dedicated I/O service for them. For this reason, the performance improvement with

IOrchestrator is small compared to the programs with strong intra-program locality.

This explanation for smaller improvements also applies to benchmarks noncontig(nc-

nc) and hpio(nc-nc). The ior-mpi-io benchmark has very weak spatial locality. Re-

quests from its processes access five different disk regions that are distant from each

other (around 2GB). The cost of moving disk heads within one program is comparable

to the cost of moving them between different running programs. Therefore, IOrches-

trator disqualifies both running programs for dedicated services and essentially does

not change the scheduling of the current PVFS2 file system. As we expected, the

experimental results show little difference when using IOrchestrator. These results

also indicate that the overhead introduced by IOrchestrator is trivial compared to

I/O operations.

Performance with using both barrier and collective I/O. Figure 5.5 presents

the I/O throughput for the five benchmarks when both barrier and collective I/O are

applied. IOrchestrator improves the I/O throughput by up to 63%, and 28% on

average.

For benchmarks with non-sequential access patterns such as mpi-tile-io, hpio(nc-

nc), and noncontig(nc-nc), the use of collective I/O effectively improves the I/O

performance because it transforms small random accesses to large sequential accesses

within each program. However, the interference between running programs offsets the

potential benefits of collective I/O. When requests involved in a collective I/O call do

not have dedicated service by the data servers, the local disk I/O scheduler thrashes

the disk head between programs to avoid long idle waiting periods. When IOrchestra-
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tor enables the dedicated service for eligible programs, the improved spatial locality

can be exploited. For benchmarks that already have sequential access patterns, such

as mpi-io-test, collective I/O may introduce overhead without improving locality and

thus reduce I/O throughput. In such cases, the advantage of IOrchestrator is also

apparent.

We also observe that the throughput of benchmark ior-mpi-io is significantly re-

duced when collective I/O is used. After analyzing the data accesses of the bench-

mark, we find that in one collective call only one or two data servers are busy serving

requests while the others are idle because of a mismatch between the data request

pattern and the striping pattern, severely under-utilizing the system. IOrchestra-

tor does not apply dedicated I/O service to the program because of weak spatial

locality within the program, and because the difference between intra-program and

inter-program localities is not consistent across the data servers.
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Performance without barrier or collective I/O. Figure 5.6 presents the I/O

throughput of the five benchmarks in which the barrier routines between parallel

I/O routines are removed and collective I/O is not used. Without barrier and col-

lective I/O, the throughput of the benchmarks is reduced except for hpio(c-c) and

noncontig(c-c). For example, the throughput of mpi-io-test is reduced from 102 MB/s

to 86 MB/s for read, and from 115 MB/s to 108 MB/s for write, and the throughput

of hpio(nc-nc) is reduced from 70 MB/s to 31 MB/s for read, and from 54 MB/s

to 28 MB/s for write ( Figure 5.2 and Figure 5.6). Without barrier and collective

I/O, each process proceeds at its own pace, making the on-disk distances of data

accessed by different processes of the program increasingly larger. For hpio(c-c) and

noncontig(c-c), the size of requests is very large (more than 10MB), which by itself

can make the disk efficient. The overhead paid by barrier and collective I/O does not

pay off, and the throughputs are even higher when these techniques are not used.

When the spatial locality within a program is weakened by not using barrier

and collective I/O, the relative performance advantage of IOrchestrator is usually

reduced, as shown in Figure 5.6. The exception is mpi-io-test, in which 72% and

36% throughput increases for read and write, respectively, are achieved without barrier

and collective I/O, compared with 57% and 37% with only barrier, and 63% and 15%

using both barrier and collective I/O, respectively. This is because dedicated I/O

service enforced by IOrchestrator allows processes of a program of sequential access

pattern to receive equal service in a time slice and forces them to progress at almost

the same speed.
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Figure 5.7: I/O throughputs of three different programs, mpi-io-test, noncontig(nc-
nc), and hpio(nc-nc), when they are running together to read three data files of
10GB, respectively. The entire system’s throughputs are also shown. Three systems
are tested in the experiment: the vanilla PVFS2, PVFS2 with IOrchestrator with
even time slicing, and PVFS2 with IOrchestrator.

5.3.3 Performance of Heterogenous Workloads

Next we study the effectiveness of IOrchestrator when different programs are run-

ning concurrently. We select three programs of different access patterns, mpi-io-test,

noncontig(nc-nc), and hpio(nc-nc), and run one instance of each concurrently to read

three 10GB files, respectively. In addition to running the programs with the vanilla

PVFS2 and with IOrchestrator, we test a version of IOrchestrator restricted to even

time-slicing, wherein the time slice is evenly allocated to each scheduling object in-

stead of proportionally allocated according to reuse distance. Figure 5.7 shows both

the throughput for each running program and the throughput of the entire system.

With just vanilla PVFS2 the throughout of hpio(nc-nc) (with weak locality) has

greater throughput than mpi-io-test (with strong locality). When more disk time is

allocated to serve random, rather than sequential, requests, the disk’s efficiency is
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reduced. Thus the entire system’s throughput is the lowest among the three tested

scenarios. By dedicating one third of system service time to each program, the pro-

gram with stronger locality will produce higher throughput without interference from

programs of weaker locality. Even time-slicing improves the system throughput by

17%. With IOrchestrator, mpi-io-test is identified as being eligible for dedicated

service while the other two programs are not. According to their reuse distances,

mpi-io-test is allocated about half of the disk service time, while noncontig(nc-nc)

and hpio(nc-nc) together receive the other half. Both mpi-io-test and hpio(nc-nc)

enjoy increased throughput while noncontig(nc-nc) is little affected. IOrchestrator

further improves aggregate system throughput by 30%. Though further improving

throughput of mpi-io-test as well as system throughput is possible by allocating more

disk service time to mpi-io-test, it would unduly compromise fairness among the co-

running programs. IOrchestrator, by its design, has addressed this issue.

5.3.4 Effect of File Distances among Programs on IOrches-

trator

The distance between files accessed by different programs has a direct effect on

the spatial locality among programs. The larger the distance, the weaker the local-

ity, and consequently the greater potential for IOrchestrator to improve performance.

To confirm this speculation, we run two instances of mpi-io-test reading two files of

1GB, respectively, at different distances apart. The on-disk distance is the size of

the space (difference in LBA times block size) separating the files. In our exper-

iment we use distances of 0GB, 10GB, 20GB, and 30GB.‡ Figure 5.8 shows the

‡In the previous experiments 0GB between files was used. Thus the performance measurements
reported in those experiments represent lower bounds (on our testbed) on possible performance
improvements made by IOrchestrator.
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system’s I/O throughputs. The results are consistent with our hypothesis: when the

distance is increased from 0GB to 30GB, I/O throughput is reduced by 48% without

using IOrchestrator. This reduction is especially significant when the distance is still

relatively small, such as from 0GB to 10GB, and from 10GB to 20GB. When IOrches-

trator is used both running programs are identified as eligible for dedicated service.

With a 30GB distance IOrchestrator improves the system throughout by 2.5 times.

As the file distance increases, we only observe minor reductions of throughput (5%

from 0MB to 30GB). When dedicated service time slices are alternated between these

two running programs, the frequency of disk head seeks between programs becomes

much lower, and the cost for the seeks becomes less significant to the I/O efficiency.
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Figure 5.8: Aggregate I/O throughputs measured when we increase on-disk file dis-
tances from 0GB to 30GB.

5.3.5 Impact of Scheduling Window Size

Each scheduling object receives a portion of each scheduling window as its time

slice for dedicated service. In the experiments we have so far described the 500ms

default scheduling window size was used. Next we study the impact of scheduling
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window size on the effectiveness of IOrchestrator. To this end we run two instances

of the mpi-io-test program concurrently, each reading one 10GB files, with window

varying among 125ms, 250ms, 500ms, and 1000ms. Figure 5.9 shows the system I/O

throughputs with different window sizes. Compared to the vanilla system, the I/O

throughput is increased by 40.2%, 48.5%, 58.6%, and 59.6% with the selected window

sizes, respectively. Apparently a larger window allows a scheduling object to stay with

its dedicated I/O service for a longer time period and reduces the frequency of disk

head switches among scheduling objects, consequently improving I/O performance.

This is consistent with our observation on the experiment results. The improvement

is substantial when the window size is relatively small. However, when the window is

sufficiently large, such as 500ms, further increasing the window size, such as 1000ms,

receives diminishing return on I/O performance. In the meantime, a too-large window

can allow one scheduling object to exclusively hold disk service for a very long time

period at a time and make programs less responsive. For this reason we select a

modest time period as the default window size for IOrchestrator.
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Chapter 6

Using SSD to Improve Disk

Scheduling for High-Performance

I/O

6.1 Introduction

Data-intensive scientific computing applications are producing increasingly high

I/O demands on the storage devices of high-performance computing systems. Re-

quest concurrency, or the number of processes concurrently issuing requests, can be

very high at data servers serving requests from applications running on a large-scale

cluster. Besides the potentially large volume of requested data, this concurrency can

significantly compromise the efficiency of a hard-disk-based storage system: data on

a disk that are requested by different processes or programs are usually separated

on the disk, and concurrently accessing them can cause the disk head to frequently

seek from track to track, potentially delivering I/O throughput an order of magnitude

lower (or worse) than that for sequential disk access.
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6.1.1 Limitations of Existing SSD Solutions

The emerging solid-state-drive (SSD) is largely unaffected by random access be-

cause it does not contain any moving parts—it is basically a uniform memory access

device. However, it is currently not an economical option in high-performance com-

puting (HPC) to use it as the main storage in a large-scale installation, the existence

of Gordon, a SSD-based cluster made possible through $20 million funding from

the US government (National Science Foundation), notwithstanding [41, 86]. More

cost-effective and practical options are either to use an SSD as buffer cache between

main (DRAM) memory and the hard disk and exploit workloads’ locality for data

caching [97, 89], or use it with the hard disk to form a hybrid storage device such

that frequently accessed data is stored on the SSD [87, 46].

These schemes for SSD usage, however, do not effectively address the problem of

concurrent requests. Unlike the consumer or enterprise workloads that have relatively

small working data sets and exhibit relatively strong locality, the characteristics of

workloads from data-intensive parallel programs are not accommodated well. First,

the data accessed in a single run of a data-intensive parallel program can be larger

than the capacity of the SSD. When a program processes a large data set, data are

rarely accessed multiple times from the disk and the accesses therefore exhibit weak

temporal locality, which is hard to exploit by a relatively small SSD for effective

caching. Second, requests to a disk are usually interleaved from different processes of

one or multiple programs. Most existing SSD-based schemes exploit spatial locality,

i.e., attempt placement of randomly accessed data on the SSD such that the hard

disk serves requests of sequential, or at least well-ordered, data. However, when

the request concurrency is high, it is highly likely that most requests from different

processes are presented to the disk as random access and have to be handled by the
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SSD. This would overwhelm SSD as a cache, or as a small storage device for random

data, and make these schemes ineffective.

6.1.2 Limitations of Existing Software Strategies

Traditionally the problem of concurrent requests is addressed in middleware using

techniques such as collective I/O and data sieving [100], or in the system using buffer

cache and the I/O scheduler. The middleware approach is more concerned with

reducing the number of requests than request concurrency. To use it I/O requests in

a parallel program must be presented via specific interfaces such as MPI collective-

I/O function calls or MPI derived data types. Moreover, the high request concurrency

due to processes belonging to different programs cannot be reduced by this approach.

The system buffer cache is usually even smaller than the SSD, and therefore shares its

concerns when handling requests of high concurrency in a large-scale system. In the

operating system, the I/O scheduler is the last opportunity to exploit spatial locality

in the presence of high request concurrency. For example, CFQ, the default Linux disk

scheduler, reduces random data accesses by merging and sorting outstanding requests

according to their logical block addresses (LBAs) [7]. The outstanding requests are

usually placed in a data structure called a dispatch queue. The larger the queue,

the more requests can be collected for sorting and the greater the chance to exploit

spatial locality. The default queue depth in Linux’s CFQ is 128, i.e., the queue can

hold at most 128 outstanding requests.

To investigate the effect of queue size on I/O performance in the presence of

request concurrency, we ran IOzone [5], a commonly used filesystem benchmark gen-

erating and measuring a variety of file operations, with a varying queue size on a data

server running Linux with CFQ to access data on a hard disk (details of the server’s
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configuration are given in Section 6.3). The benchmark ran in its throughput mode,

in which we can vary the number of threads to control request concurrency. Each

thread generates POSIX asyn I/O requests with at most 32 outstanding requests.

Each thread accesses its own file, and the total amount of accessed data is 8GB in

the experiments. Figure 6.1 shows I/O throughputs reported by the benchmark for

access patterns Sequential Read/Write, Reverse Read, and Random Read/Write, and

queue sizes 128 and 8192, with either 128 threads ( Figure 6.1(a)) or 256 threads

( Figure 6.1(b)). Reverse Read sequentially reads a file from its end to its beginning.

As demonstrated, increasing queue size can significantly improve performance for

Sequential Read/Write and Reverse Read. In the original configuration even for the

case where each thread issues sequential requests (Sequential Read/Write), the I/O

throughputs are consistently low. In particular, the throughputs with 256 threads,

2.3MB/s for Sequential Read and 1.8MB/s for Sequential Write, are substantially

lower than those with 128 threads, 5.1MB/s for Sequential Read and 26.2MB/s for

Sequential Write. This indicates that it is concurrently serving multiple requests

from different threads that weakens spatial locality and hurts performance. When

the queue size is increased to 8192 the throughputs are significantly increased (by

42% to 650%), and the improvements are especially dramatic in the case of 256

threads. This demonstrates that a large queue can effectively recover spatial locality

if it exists in requests from the same thread. However, when individual threads issue

fully random requests, the I/O throughputs are very low and the improvements made

by the increased queue size are also small. This clearly demonstrates that random

requests are at best difficult to schedule for efficient service by hard disk.

While increasing the size of the dispatch queue in memory can improve access

locality for higher disk efficiency, the approach has limitations. First, having a large

queue would allow many write requests to be outstanding in volatile DRAM. This
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Figure 6.1: I/O throughput of a data server of the experimental cluster as the IOzone
filesystem benchmark run with (a) 128 threads; and, (b) 256 threads. In each figure
I/O throughputs with differing dispatch queue sizes and differing data access patterns
are shown.

runs the risk of losing a large amount of data as frequent system failures in a large-

scale system can be the norm [96]. Second, although a long queue usually improves

throughput, it can allow requests to remain in the queue for an extended period

of time without being completed, which may result in excessive response times for

those requests; for applications with strict QoS requirements a long queue can be

problematic. Third, as we showed in the experiments, simply increasing the queue

size may not be sufficient, especially for addressing the issue of concurrency among

streams of random requests.

6.1.3 Our Solution: Use SSD for Disk Scheduling

We propose to extend the scheduler’s dispatch queue and place the extension on

SSD. In our design the in-memory queue is only responsible for dispatching requests to

disk if relatively strong locality can be identified in the queue. Otherwise the requests

are sent to the queue extension on the SSD for further scheduling. As the SSD is
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less expensive than DRAM in terms of both capacity and energy consumption, the

trade-off for greater capacity is justifiable. In addition, because SSD is non-volatile,

dirty data in the queue extension need not be lost because of system failure. For

the same reason, a write request can be considered complete once it is sent to the

queue extension. As such a large queue extension does not cause excessive response

times. Because SSD performance is not sensitive to random access, random write

requests can be quickly serviced. For the data transfer between SSD and the disk, we

schedule large-sized and well-sorted write-back requests and prefetch requests, and in

the background of serving process request if possible. Leveraging the non-volatility

and large size (relative to DRAM) of SSD, our design enables the decoupling of serving

process requests and disk operation in request scheduling.

In summary, we make the following contributions.

• We propose a new disk scheduling architecture that uses SSD to facilitate ex-

ploitation of spatial locality in I/O requests and to hide random access latencies

on the hard disk resulting from serving process requests.

• We design an algorithm for intelligently using the in-memory queue and an in-

SSD queue extension, and for effectively scheduling background write-back and

prefetch requests to minimize the negative effects of concurrent requests.

• We implement the scheduling architecture and the scheduling algorithm, col-

lectively called iTransformer, as a stand-alone Linux kernel module. The im-

plementation is transparent to the software above the generic block layer in the

kernel memory hierarchy and is therefore portable across different parallel file

systems.

• We evaluate iTransformer with representative benchmarks, including ior-mpi-



104

io, Hpio, BTIO, and S3aSim on a large cluster. Experimental measurements

show that it significantly reduces random access on the hard disk and increases

I/O throughput of storage system by up to 3X, and 35% on average, compared

to the stock system, for these benchmarks.

The rest of this paper is organized as follows. Section 6.2 describes the design of

iTransformer. Section 6.3 describes and analyzes experiment results.

6.2 The Design of iTransformer

iTransformer is designed to exploit characteristics of SSD, including non-volatility

and large size (compared to DRAM memory of similar cost or power consumption)

and insensitivity to random access (compared to hard disk) to make the I/O scheduler

function more effectively. As existing I/O schedulers such as CFQ and Deadline have

received years of design, implementation, evaluation, and tuning, iTransformer is not

intended to be a new scheduler for hard disk or SSD. Instead, it acts as a scheduling

framework to direct requests into dispatch queues and relies on the existing scheduler

to decide their actual service order on disk.

6.2.1 Scheduling Architecture

In iTransformer the role of the SSD is to enhance locality. Without changing the

existing disk scheduler, iTransformer monitors the locality exploited by the scheduler

over its regular in-memory request dispatch queue, and evaluates how much improve-

ment it could make if the requests were further scheduled by the scheduler over the

extended dispatch queue in the SSD. To justify the cost associated with SSD opera-

tions, only if the improvement is predicted to be sufficiently large are requests sent
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to the in-SSD queue extension for further processing. Otherwise the requests are

directly issued to the disk as current systems do. Note that by the queue extension

in the SSD, we refer to the data for reading or writing that are in the SSD. Their

metadata, or data structures describing the requests, are resident in memory and are

managed by the standard disk scheduler operating on the regular dispatch queue.

The size of the queue, or the number of requests the queue can hold, is determined

by the amount of data accessed by the requests, which is bounded by the SSD space

allocated for iTransformer.

To determine the potential locality improvement the SSD queue extension could

achieve even if the SSD scheduling is not in use, we maintain a separate ghost queue

to hold the metadata of any requests dispatched out of the regular queue. The size

of this ghost queue is the same as that of the SSD queue extension. We run the

standard disk scheduler over the requests in the ghost queue and monitor the locality

of requests released from the queue. The purpose of the ghost queue is solely to

evaluate potential locality improvement, so the requests out of the queue are never

actually dispatched.

6.2.2 Determining the Use of SSD

To quantify the locality of a stream of requests we use an approach similar to

the one adopted in the Linux kernel for a similar purpose [82, 7]. The locality of

the stream of requests {R0, R1, ..., Rn} is defined by a function L(n). The size of

data requested by Rk is denoted by Sk, and the distance between two consecutive

requests Rk and Rk+1, is denoted by Dk, 0 ≤ k < n, and is the absolute value of

difference between logical block address (LBA) of Rk’s last data block and LBA of

Rk+1’s first data block. Initially, L(0) = 1/S0. When L(n) is obtained for request
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stream {R0, R1, ..., Rn} and Rn+1 arrives, L(n + 1) is defined by

L(n + 1) = L(n)/8 + (7/8) ∗ (D(n)/Sn+1). (6.1)

The weights 1/8 and 7/8 for the last locality value and the new locality value,

respectively, are used to produce a decay effect so that more recent requests are better

represented. These two weight values are chosen according to the formula used in the

Linux kernel for a similar purpose in its implementation of anticipatory scheduling [7].

Here a smaller locality value (L) indicates stronger locality. We continuously measure

the locality of the requests dispatched out of the regular in-memory queue (Lin mem).

When SSD is not in use for scheduling, the ghost queue is receiving requests and we

measure the locality for the requests out of the queue (Lghost). The potential locality

improvement is calculated as H = Lin mem/Lghost .

When H is larger than a threshold, SSD scheduling is enabled and the requests

dispatched from the in-memory queue enter the in-SSD queue for scheduling instead of

going to disk. When the in-SSD queue is in use, iTransformer monitors its dispatched

requests and calculates their locality (Lin ssd) as well as H = Lin mem/Lin ssd . If

H becomes smaller than a threshold, SSD scheduling is disabled. The two default

thresholds are 4 and 2, respectively, in our implementation.

6.2.3 Dispatching Random Write Requests via Out-of-band

Writeback

One of the advantages of incorporating SSD into request scheduling is decoupling

the dispatching of write requests from processes’ progress: we may delay the service
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of write requests as long as the SSD queue is not full and schedule them when the

hard disk is not busy. In such a scenario even random write requests whose locality

cannot be effectively exploited in the SSD queue, such as the random requests shown

in Figure 6.1, can benefit from rerouting requests to the SSD. However, the H value

calculated as before does not take this effect into account and so can be too pessimistic

to trigger the use of the SSD. To take advantage of behind-the-scenes request service

opportunities we modify the calculation of Lin ssd and Lghost . In the case that the

SSD queue is in use, when a write request is dispatched to the disk and during its

service time period no new requests arrive in the SSD queue, the distance gap D

between this request and the request dispatched immediately before it is set to 0 in

the updating of Lin ssd . In the case that the SSD queue is not in use, we need to

modify the calculation of Lghost . However, the requests dispatched from the queue

are not sent to the disk for actual service. Therefore, we cannot use the queue to

estimate the disk idle period. Instead we conservatively use the in-memory queue

for this purpose. When a write request is dispatched from the queue and the queue

does not receive new requests in the request’s service period, we treat the distance D

between the request and the one before it in the scheduling of the ghost queue as 0

to calculate Lghost . In both cases a less-occupied disk will help produce larger H and

encourage the use of SSD for scheduling random write requests.

6.2.4 Servicing Read Requests via Data Prefetching

Compared with write requests, the service of read requests is harder to speed up

if they are random, and even the SSD queue cannot effectively exploit their locality.

This can be a serious concern because their servicing can be on the critical path

of process execution, especially if they are synchronous requests. Furthermore, for
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synchronous requests at most one request can be outstanding for scheduling so the

locality in individual process’s requests is not visible to the scheduler. Even non-work-

conserving schedulers such as anticipatory [64] and CFQ [7] cannot help because the

schedulers at the servers do not know from which process a request is issued [106].

This can make in-SSD scheduling ineffective.

To address this problem we monitor the read requests to identify data worth

prefetching and set up a prefetch area on the SSD for caching prefetched data. This

monitoring is performed whether or not in-SSD scheduling is enabled. Read requests

are checked against the SSD prefetch area and dispatched only for data that is not

present. Prefetch candidates are only dispatched when the disk is idle or their disk

locations are close to the location accessed by the most recently dispatched request.

Prefetching thereby does not consume memory space, nor does it aggressively compete

for disk service time with process requests. The only concern is to determine the data

of maximum value to prefetch. To this end we fix a prefetch unit size and partition

the disk address space into slots of unit size. The prefetching scheme identifies slots

that read requests have moved into and out of multiple times. When such patterns

repeat there would be high value in having prefetched these slots, thereby avoiding

the long service times of random reads.

We have developed an efficient algorithm for this purpose. We maintain an LRU

stack to hold the metadata of slots, including slot number, access counter, and a flag

recording whether a slot is prefetched. When a read request is dispatched, we place

the metadata of the slot that the request accesses at the top of the stack. If the slot

was not already in the stack, its access counter is set to one; if the slot was already in

the stack, but not at the top, it is removed from its previous position and its access

counter incremented; if the slot was already at the top then the current request is

not considered a random request, so its counter is not incremented. Thus the counter
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tracks number of notional random accesses to a slot. When a slot’s counter value is

greater than a threshold (default 2), the slot becomes a prefetchable slot. When the

disk is idle iTransformer searches the stack from the top to find the first prefetchable

but not-yet-prefetched slot and issues a read request to load it into the SSD prefetch

area. When the prefetch area becomes full, the data in the bottom-most prefetched

slot in the stack is removed. The size of the stack is twice the number of slots the

prefetch area can hold. When a slot is not accessed for a long time it will be removed

from the bottom of the stack and lose its history access information, as well as the

prefetched data if it had been prefetched. For every prefetched slot whose data is

removed, we calculate the percentage of its data that was prefetched but not yet

actually requested. If average of the percentages for recently replaced slots is below a

threshold (default 40%) the loading of data into prefetchable slots is suspended until

the average is above a second threshold (default 60%). In this way the accuracy of

prefetching is maintained.

6.3 Performance Evaluation

6.3.1 Implementation of iTransformer

We have prototyped iTransformer with Linux kernel 2.6.35.10 with instrumenta-

tion of the Linux device mapper, a part of the Linux storage infrastructure software

stack. iTransformer is implemented as a stand-alone kernel module in the generic

block layer for request monitoring and rerouting, and data prefetching. To activate

iTransformer in a cluster system, one need only load the module into the Linux ker-

nel on each of the data servers. To maintain data consistency iTransformer writes

dirty data on the SSD back to disk on unloading of the module. During initialization
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iTransformer checks if there are any dirty data left in the SSD because of system fail-

ure, and rebuilds a mapping table for describing the contents of the SSD. Whenever

requested data is found in the SSD via the mapping table, whether written dirty data

or prefetched data, the requests are rerouted to the SSD so that up-to-date data is

efficiently accessed. Because the SSD cannot directly write to or read from the hard

disk, we use via-memory read and write to simulate data transfer between SSD and

hard disk. These requests to the disk bypass the in-memory dispatch queue and are

sent directly to the disk to avoid affecting the behavior of the standard scheduler.

6.3.2 Experimental Setting

We conducted an extensive experimental evaluation of iTransformer on the Darwin

cluster at Los Alamos National Laboratory. Darwin consists of 120 compute nodes,

a head node, and two admin nodes. Of the 120 nodes, 116 are 48-core (12-core by 4

socket) 2GHz AMD Opteron 6168, and are the nodes on which our experiments were

performed. Each node has 64GB memory, a hardware-based RAID 0 consisting of two

500GB 7200rpm disk drives (HP model MM0500FAMYT), and a 120GB SSD drive

(HP model MK0120EAVDT). The nodes are connected by both 1GB Ethernet and

Infiniband networks. Each node runs Fedora Linux with kernel 2.6.35.10. CFQ [7]

and NOOP [9] were used as the disk I/O scheduler for the HDD and SSD devices,

respectively. NOOP simply dispatches a request as soon as it is received and does

nothing beyond merging contiguous requests. Its performance is usually better than

other schedulers for SSD devices [45]. We configured nine of 116 AMD nodes as data

servers using PVFS2 parallel file system [17], one of which was also configured as the

meta-data server. We used MPICH2-1.4 [12], compiled with ROMIO, to generate

executables of MPI programs. The iTransformer kernel module was installed on
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every data server. To provide fair and reproducible throughput measurements we

removed any cached data from system buffers at each data server before each test,

and periodically (every second) flushed dirty pages in the system buffers to their

respective disks. In the experiments, unless otherwise specified, the SSD allocation

for holding data accessed by requests in the SSD queue extension was 8GB, the size

of the SSD prefetch area was 8GB, and the prefetch unit size was 4MB.

Table 6.1 shows the basic throughput measurements of the HDD and SSD devices

on a data server with fully sequential and fully random requests and with a uniform

request size of 4KB. For random requests the SSD’s throughput is much higher than

that of the hard disk. For sequential requests the disk device provides slightly higher

throughput than the SSD, as a 2-disk RAID 0 is used. We selected four benchmarks,

chosen from different application fields and representing different access patterns, for

the evaluation. Following we present and analyze the experiment results of running

the benchmarks individually and concurrently. The throughputs of the system with

iTransformer module are compared against those on the stock Linux system.

SSD Hard-disk RAID
Capacity 120GB 1TB
Interface SATA SAS

Sequential Read 160MB/s 170MB/s
Random Read 60MB/s 15MB/s

Sequential Write 140MB/s 160MB/s
Random Write 30MB/s 5MB/s

Table 6.1: Comparison of basic performance of the SSD and HDD devices used in the
experiments, 4KB request size.

6.3.3 The ior-mpi-io Benchmark

Ior-mpi-io is a program in the ASCI Purple Benchmark Suite developed at Lawrence
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Livermore National Laboratory [4]. In this benchmark each of n MPI processes is

responsible for reading its own 1/n of a 20 GB file. Each process continuously issues

requests of fixed segment size with random offsets. The program’s access pattern

as presented to the storage system is effectively random. We ran three concurrent

instances of the program in the system, each with 64 processes and accessing its own

file. The requests are concurrently sent to the data servers. Figure 6.2(a) shows the

aggregate I/O throughput produced by the system with and without iTransformer

with segment sizes ranging from 4KB to 32KB. The figure shows that iTransformer

can dramatically increase I/O throughput up to 2.4X that of the stock system. With

increasing segment size the improvement becomes smaller because the spatial locality

within each request becomes stronger and disk access efficiency correspondingly im-

proves. Changing each read request to the corresponding write request yields results

shown in Figure 6.2(b). The improvements with iTransformer are not as great as

those for reads, but are still substantial, from 47% to 56%. For reads the enabled

prefetching allows data to be retrieved from the disk in large chunks (4MB) while for

writes the SSD scheduling only produces better-sorted random write sequences.

To better characterize the reasons for the performance improvement we tracked the

accessed addresses on the HDD and SSD using Blktrace [6] and show in Figure 6.3 the

accesses at a particular data server during the one-second execution period starting

from the 100th second of execution using a 4KB-segment read requests. The addresses

are presented as logical block addresses (LBAs). Figure 6.3(a) shows that the accessed

locations with the stock system are random over a large disk region and that the

disk I/O scheduler, CFQ, does not effectively exploit spatial locality among them.

Figure 6.3(b) and Figure 6.3(c) show the accessed locations on the HDD and SSD,

respectively, using iTransformer. The hard disk mostly sees sequential or well-sorted

accesses while random accesses mostly take place on the SSD. This is because random
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Figure 6.2: System I/O throughputs for the ior-mpi-io benchmark using read requests
(a), and using write requests (b), for the stock system and system using iTransformer.

read requests triggered prefetching of 4MB data chunks into the SSD, resulting in

many random read requests being hits on the SSD.

There are two important factors that affect iTransformer’s effectiveness in handling

read requests: prefetch area size and prefetch unit size. To study their effects on

I/O performance we re-ran the ior-mpi-io experiment with 4KB segment size using

different prefetch area and unit sizes. Figure 6.4 shows the system I/O throughputs

with prefetch area size ranging from 0GB to 8GB. With a area size of 0GB the

prefetching function is effectively disabled. As shown in the figure, even with a

relatively small prefetch area of 1GB, the throughput can be improved by 117%.

Increasing the size increases the throughput because it allows prefetched data to stay

cached longer and so increases the likelihood of serving read requests from the SSD.

Table 6.2 shows the I/O throughputs with different prefetch unit sizes and their

improvement ratios over the throughput in a system without prefetching enabled.

When the unit size is 64KB, prefetch requests are too small and cannot be efficiently

served. This shows that the performance benefit of prefetching can be outweighed by
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Figure 6.3: Accessed locations when running ior-mpi-io using read requests in a
sampled one-second execution period. (a) The locations are on the hard disk and
the stock system is used. (b) The locations are on the hard disk and the system
with iTransformer is used. (c) The locations are on the SSD and the system with
iTransformer is used.
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Figure 6.4: I/O throughput of system running ior-mpi-io with different prefetch area
sizes. With a prefetch area of 0GB prefetching is effectively disabled.

its cost, here resulting in a 10% reduction in throughput. As the size of the prefetch

unit increases, the benefit of prefetching increases while the cost of prefetching can be

well amortized by the data in a large request. However, once the prefetch unit size is

sufficiently large (such as 4MB in this experiment), further increasing it may lead to

over-prefetching, in which excessive prefetched data may not be actually requested,

thus diminishing the performance return.

Prefetch Unit Throughput (MB/s) Speedup (%)
0KB 26.7 0
64KB 23.9 -10
256KB 47.2 76
1MB 53.0 98
4MB 90.8 239
16MB 92.4 245

Table 6.2: I/O throughputs and their improvement ratios in the system running ior-
mpi-io with different prefetch unit sizes. The ratios are calculated against the case of
prefetch unit size 0KB wherein prefetching is effectively disabled.
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Figure 6.5: System I/O throughput with the Hpio benchmark for I/O reads (a) and
I/O writes (b).

6.3.4 The Hpio Benchmark

Hpio is a program designed by Northwestern University and Sandia National Lab-

oratories to systematically evaluate I/O performance using a diverse set of access

patterns [49]. This benchmark generates different data access patterns according to

three parameters: region count, region spacing, and region size. In the experiment

we set region count to 4096B, region spacing to 8192B, and vary region size, or ac-

cess segment size, between 512B and 4096B. Access can be configured to be either

read or write. We ran the benchmark to measure the throughput of the storage

system for noncontiguous data accesses on disk. Three instances of the benchmark

were concurrently executed in the experiment, each with 64 processes. Figure 6.5(a)

and Figure 6.5(b) show the aggregate I/O throughputs for read and write requests,

respectively.

In the experiment with read requests iTransformer increases system I/O through-

put by 85%, 22%, 5.1%, and 2.2% for segment sizes 512B, 1024B, 2048B, and 4096B,

respectively. The I/O pattern within each process is strided access, with a re-
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gion spacing between two consecutive requests. Though its access is noncontiguous,

it is not as random as the pattern exhibited by the ior-mpi-io benchmark. This

helps with throughputs in the stock system. On the other hand the space gaps be-

tween requests results in prefetched data not being fully used. This explains why

the improvements for read requests with iTransformer are not as significant as those

for ior-mpi-io. When the benchmark uses write requests the throughputs are much

lower than those for the corresponding read requests and the throughput improve-

ments made by iTransformer are 9X, 4X, 3X, and 30%, respectively, for segment sizes

from 512B to 4096B. In the execution of the benchmark with write requests, we is-

sued a sync command every second to flush dirty data in the system buffer cache to

the disk and free filesystem data structures such as pagecache, dentries and inodes

(echo 3 > /proc/sys/vm/drop caches). This creates a large number of small writes

as well as small reads for recovering system metadata in the memory, significantly

increasing randomness in the workload presented to the storage system and causing

the throughput to plummet, especially when the segment is small. Leveraging SSD

as a buffer, iTransformer absorbs small writes, and its prefetching also helps reads

because the system metadata are usually co-located on the disk.

6.3.5 The BTIO Benchmark

BTIO is a Fortran MPI program designed to solve the 3D compressible Navier-

Stokes equations using the MPI-IO library for its on-disk data access [14]. We ran

the program using various numbers of processes with the input size coded as C in

the benchmark, which generates a data set of about 6.8GB using non-collective I/O

operations. We ran the program with the number of processes ranging from 64 to

1024. Three instances of the program were executed concurrently, each accessing its
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Figure 6.6: (a) I/O times, and (b) system I/O throughput, when running the BTIO
benchmark with varying numbers of processes.

own 6.8GB file. Most I/O operations of the program are small random writes. The

total I/O times reported by the program are shown in Figure 6.6(a), and the system

I/O throughputs are shown in Figure 6.6(b).

When each instance used 64 processes I/O time was reduced by 41% and through-

put was increased by 70% with iTransformer. However, when increasingly more pro-

cesses are used, request sizes become smaller and iTransformer’s performance advan-

tage becomes smaller. For example, when the number of processes is 1024 for each

instance, the request size is reduced to 200B and the total number of processes in-

creases to 3072. With very small requests and very high access concurrency, the ability

of iTransformer to form high-efficiency request streams is increasingly constrained.

We also used the BTIO benchmark to study the impact of the size of the in-

SSD queue extension on the I/O throughput. In the experiment we ran one instance

of the benchmark with 64 processes and varied the queue size between 1GB and

8GB. As shown in Figure 6.7, the I/O throughput is accordingly increased by 32%,

35%, 38%, and 40%, respectively, compared to that the stock system. Because the
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Figure 6.7: I/O throughput of BTIO using iTransformer with different SSD queue
extension sizes. A queue of 0GB refers to the stock system.

data set of the program is only 6.8GB, having a 8GB queue size is sufficient to

buffer the entire written data set. In addition, because of detected random access

iTransformer reroutes write requests to the SSD. Therefore, the I/O throughput with

the 8GB queue reflects SSD access speed. Interestingly, with a queue size as small

as 1GB the throughput is only 8% lower than the optimal value. In the program

there is substantial computation time (around 50% depending on I/O speed) between

I/O activities. This results in periodic disk idle times, which gives iTransformer

opportunities to write back its in-SSD dirty data to the disk during the idle periods,

thereby hiding the disk operations behind the program’s execution.

6.3.6 The S3aSim Benchmark

S3aSim is a computational biology program designed to simulate sequence simi-

larity search [18]. In the program query sequences are compared against a sequence

database. In this experiment each sequence in the database is divided into 16 frag-
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Figure 6.8: I/O times of the S3aSim benchmark with varying numbers of queries.

ments. For the parameters of the program, we set the minimum size of each query

and database sequence to 100B, and set the maximum size to 10,000B. We ran three

concurrent instances of the program, each with 64 processes. The amount of accessed

data depends on the number of queries, up to 6.4GB for each instance in our exper-

iments. Figure 6.8 shows the I/O times reported by the program when we ran it

with the number of queries ranging from 32 to 128. Major accesses of the program

are random writes of search results with various request sizes. Compared to the stock

system, iTransformer reduces I/O times by up to 66%. The improvement is greater

with larger query count. With more queries, write requests are scattered into a large

disk space and the access locality becomes weak, which gives iTransformer greater

opportunity to improve throughput.
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Figure 6.9: I/O throughput of ior-mpi-io, BTIO, and S3aSim as well as aggregate
system throughput, when run concurrently.

6.3.7 Heterogeneous Workloads

Next we study the performance of iTransformer with different programs running

concurrently. We select three programs with different access patterns, ior-mpi-io,

BTIO, and S3aSim, and run one instance of each concurrently to read from (ior-mpi-

io) or write to (BTIO and S3aSim) three different files. Each program runs with 64

processes.

Figure 6.9 shows the I/O throughput of each program as well as the aggregate

system throughput with and without iTransformer. Because of the random access

pattern that makes ior-mpi-io scatter its reads among several disk regions, iTrans-

former enables prefetching to serve its requests from SSDs. However, because of the

concurrent random write requests from the other two benchmarks, the hit ratio of

reads of ior-mpi-io in the prefetch area is 16% lower than when the system only serves

read requests from one ior-mpi-io instance, with the I/O throughput of the program

increasing by only 30% compared to the stock system. For BTIO I/O throughput
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is increased by 33% to 2MB/s, which is still very low because of its small request

size (about 800B). S3aSim greatly benefits from the buffering effect of the in-SSD

queue, and its I/O throughput is increased by 68%. Compared with the aggregate

I/O throughput of the stock system, iTransformer improves the system’s I/O perfor-

mance by 42%.
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Chapter 7

Conclusions and Future Work

In this chapter we first conclude this dissertation with a summary of our major

contributions in four layers of the software stacks for parallel I/O. Then we discuss

the limitations in the implementation and evaluation of the proposed solutions. In

the end, we suggest several directions for future work.

7.1 Contributions

Leveraging operating system process management, we proposed a scheme, Dual-

Par, to allow a parallel program to alternate between two execution modes, the normal

computation-driven mode, and when justified by performance considerations, a data-

driven mode in which process execution and I/O service are coordinated to improve

I/O efficiency. As such the processes’ execution is determined by data availability.

While the timing of data access is no longer constrained by the timing of individ-

ual I/O function calls, access locality can be well exploited for optimal disk efficiency.

DualPar has been implemented in the MPICH2 MPI-IO library to support dual-mode

execution of MPI programs. Our experimental evaluation using representative bench-
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marks on the PVFS2 file system with various access locality and I/O intensity shows

that DualPar can significantly improve I/O efficiency in various scenarios, whether

or not collective I/O is used.

In MPI/IO middleware layer, we proposed, designed, and implemented a new col-

lective I/O scheme, resonant I/O, that makes resonance—a phenomenon describing

the increase in performance when there is a match between request patterns and data

striping patterns—a common case. Resonant I/O makes the client-side implementa-

tion of collective I/O aware of the I/O configuration in its rearrangement of requests

without compromising the portability of client-side middleware and the flexibility of

server-side configuration. Our experimental results show significant increases—up to

157%—in I/O throughput for commonly used parallel I/O benchmarks. Resonant

I/O demonstrated advantages both at scale, and in the presence of competition for

I/O services. Finally, resonant I/O has not been observed to substantially degrade

performance (relative to ROMIO collective I/O) in any test scenario.

For parallel file system layer, we described the design and implementation of

IOrchestrator, a technique for identifying and exploiting spatial locality that is in-

herent in individual parallel programs but gets lost with the use of a shared multi-

node I/O system. With careful, dynamic analysis of cost-effectiveness, IOrchestrator

gives programs with strong locality dedicated I/O service time by coordinating data

servers. IOrchestrator is implemented in the PVFS2 parallel file system with modest

instrumentation in the Linux kernel and the ROMIO MPI library. Our experimental

evaluation of the scheme with representative I/O-intensive parallel benchmarks, such

as mpi-io-test and mpi-tile-io, shows that it can improve system I/O performance by

up to 2.5 times, and 39% on average, without compromising fairness of I/O service.

Furthermore, the implementation of IOrchestrator does not rely on specific function-

alities or features of PVFS2 and MPICH2. We expect the principle and design of
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IOrchestrator can be effectively applied to high-performance computing platforms

with other parallel file systems or parallel libraries.

In disk I/O scheduling layer, we proposed the iTransformer scheme to use a rel-

atively small SSD space to facilitate the scheduling of disk requests in response to

the increasingly large I/O-request concurrency and its correspondingly serious chal-

lenge to hard-disk-based storage systems. In the design we exploit SSD’s large size

and low power consumption, relative to DRAM, to more thoroughly exploit spatial

locality in the requests for high storage system performance. Taking advantage of

SSD’s non-volatility, we decouple data servicing by the hard disk from process exe-

cution by squeezing the data write-back to the disk, and prefetching from the disk,

into the background, or when the disk is idle. In addition, iTransformer takes effect

in an opportunistic fashion, enabling the SSD’s involvement only it is expected to

enhance the locality and its cost is justified. We have implemented iTransformer in

the Linux kernel as a module and extensively evaluated it on a large PVFS2 cluster

of 120 nodes/5860 cores. The experimental measurements from running representa-

tive benchmarks with greatly varying access patterns, such as BTIO and S3aSim,

demonstrate significant I/O performance improvements by up to 3X, and 35% on

average.

7.2 Limitations

While our experiments have shown that the proposed approaches are promising

techniques for alleviation of increasingly serious I/O bottleneck in high-performance

computing, there are some limitations in their implementation and evaluation that

will be addressed in future work. First, we will use asynchronous I/O to fully exploit

the performance potential of resonant I/O. As current ADIO does not support real
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asynchronous I/O, we will use additional threads to implement asynchronous I/O.

Second, the dedicated cluster used for the evaluation of IOrchestrator is of relatively

small scale, and the larger cluster at OSC was not available for dedicated use for

the evaluation of resonant I/O. Our plan includes evaluating both of them on the

Darwin cluster at Los Alamos National Laboratory to obtain more insights into its

performance characteristics. Third, for evaluation of this thesis work only the PVFS2

parallel file system is used. Not to lose the generality, we plan to benchmark the

modified system on top of other state-of-the-art parallel file systems, such as Lustre,

to further evaluate their potential.

7.3 Future Work

In this section, we present research directions for future work, for which we will

concern both performance improvement and performance guarantee in shared storage

clusters. We identify several difficulties and challenges in high-performance computing

and provide possible solutions in some cases.

7.3.1 Improving Unaligned Parallel File Access

Unaligned data access has been identified as one of the I/O bottlenecks for high-

performance computing [109, 70, 105]. When files are striped over multiple data

servers in a parallel I/O system, requests to the files are decomposed into a number

of sub-requests, each served by one server. If a request is not well aligned with the

striping pattern such decomposition can make the first and last sub-requests much

smaller than the striping unit. Because hard-disk-based servers can be much less effi-

cient in serving small requests than for large ones, the system exhibits heterogeneity

in serving different segments. Furthermore, a request is not considered complete until
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its slowest sub-request is. Thus the throughput of the entire system can be bottle-

necked by the inefficiency of serving the smaller requests, or fragments, especially

when synchronous requests are assumed. To make the situation worse, the larger the

request, or the more data servers the requested data is striped over, the larger the

detrimental performance effect of serving fragments can be. This effect can become

the Achilles heel of a parallel I/O system performance seeking scalability with large

sequential accesses. We believe that a hybrid storage system which uses solid-state

disks to serve the fragments and uses hard disks to serve larger units can help solve the

bottleneck, especially in the environment where unaligned parallel file access accounts

for a significant amount of I/Os.

7.3.2 Design of Collective I/O for Multi-core Clusters

Collective I/O [99] is widely used on compute servers to improve spatial locality of

data access on disks through file domain repartition for I/O aggregators. While the

existing implementation of collective I/O in ROMIO/MPI-IO library only concerns

increasing request size, the communication overhead is underestimated and could be-

come performance bottleneck when large amount of data has to be transferred among

processes in all-to-all communication, after data become ready in main memory of

compute servers. We believe that it is possible to reduce communication overhead for

an HPC cluster installation using multi-core multi-socket processors by partitioning

the file domain according to process affinity. For example, if an aggregator is assigned

to access file domain which is only needed by processes on the same socket, both inter-

node and inter-socket communication can be avoided. If the requested data is only

needed by processes on a node, inter-node communication can be avoided. In fact,

we are trading spatial locality for communication efficiency. And the problem is if
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we can find an optimized partition, using which both communication overhead and

negative impact on spatial locality can be minimized. We argue that this is possible

because file access domain on a single socket or node could be quite large because of

highly increased process parallelism on multi-core HPC clusters. Therefore collective

I/O domain partition algorithm needs to be redesigned to consider the impact of

reduced request size on I/O efficiency. Moreover, we also want to study the impact

of process-core affinity on efficiency of MPI collective I/O [111, 42].

7.3.3 Improving Performance of Parallel Writes

Memory references are usually handled at a much smaller granularity, usually align

with processor cache line size, than the size of disk I/Os. When referenced data do

not present in memory, the entire page (4KB or 8KB), which contains the requested

data, must be fetched into memory by the operating system. This is a blocking

read operation in the current implementation of Linux operating system, which could

potentially cause a performance bottleneck for small synchronous and asynchronous

writes to disks [80, 101, 94], which is an order of magnitude slower than DRAM

memory. We call this read-before-write problem, which can significantly compromise

write performance. We believe because of this issue the write performance in high-

performance computing could be even worse since many scientific and engineering

applications process a large amount of data set with weak temporal locality in the

memory of data servers. Useche et al. [101] proposes to replace the blocking reads

with asynchronous non-blocking reads by constructing temporary memory-buffers for

first-time writes and their updates. However, we argue that using DRAM based

approach can not only cause the risk of losing data during system failure, but also

incurs stiff competition for memory resource with other system components for data
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caching and prefetching. A possible solution is that creating the buffer on solid state

disks to take advantage of its much better read performance, compared to disks. In

addition, we can also consider serve such read requests in batch or collectively to

further improve I/O efficiency by exploring existing device parallelism of solid state

disks and spatial locality of data access.

7.3.4 I/O-intensive Scientific Workflow Streaming and In-

situ Execution

Because of an order of magnitude performance difference between DRAM mem-

ory and disks, even parallel file systems for high-performance computing are not able

to keep up with increased data rates in the future. Thanks to the observation that

scientific applications for computation, simulation, and visualization are frequently

coupled to form scientific workflows, a large body of recent research has focused on

I/O efficiency of scientific workflows [34, 76, 33, 112] during its streaming in compute

servers and I/O staging area. Lofstead et al. proposes ADIOS [75] to facilitate se-

lection of efficient I/O methods for users and maintain an optimized intermediate file

format for workflows. Abbasi et al. [33] showed that manageability of intermediate

results in streaming is performance-critical for high performance computing. Most

recently, Zhang et al. [112] designed and implemented a novel in-situ execution en-

vironment to further reduce the amount of data which are transferred in workflow

streaming in communication networks. However, scientific applications have their

own I/O characteristics, such as request size, I/O burstiness, temporal locality, and

requirements for quality of services. We believe it is still an open question that how to

leverage application-specific knowledge for scheduling multiple concurrent scientific

workflows to achieve optimal utilization of limited system resource, e.g. DRAM size
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and networking bandwidth.
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Current I/O stack for high-performance computing is composed of multiple soft-

ware layers in order to hide users from complexity of I/O performance optimization.

However, the design and implementation of a specific layer is usually carried out sep-

arately with limited consideration of its impact on other layers, which could result

in suboptimal I/O performance because data access locality is weakened, if not lost,

on hard disk, a widely used storage medium in high-end storage systems. In this

dissertation, we experimentally demonstrated such issues in four different layers, in-

cluding operating system process management layer and MPI-IO middleware layer

on compute server side, and parallel file system layer and disk I/O scheduling layer

on data server side.

This dissertation makes four contributions towards solving each of the issues.

First, we propose a data-driven execution model for DualPar to explore opportunity

of effective I/O scheduling to alleviate I/O bottleneck via cooperation between the

I/O and process schedulers. Its novelty is on the ability to obtain a pool of pre-

sorted requests to I/O scheduler in its data-driven execution mode by using process

pre-execution and prefetching techniques.
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Second, realizing that well-formed locality for an MPI program by using collective

I/O can be seriously compromised by non-determinism in process scheduling, we

proposed Resonant I/O, to match the data request pattern with the pattern of file

striping over multiple data servers to improve disk efficiency.

Third, since the conventional practice for I/O parallelism using file striping may

compromise on-disk data access locality, we proposed IOrchestrator scheduling frame-

work which is implemented in PVFS2 parallel file system to improve I/O performance

of multi-node storage systems by orchestrating I/O services among programs when

such inter-data-server coordination is dynamically determined to be cost effective.

Fourth, we developed iTransformer, a scheme that employs a small SSD to sched-

ule requests for the data on disk. Being less space constrained than with more ex-

pensive DRAM, iTransformer can buffer larger amounts of dirty data before writing

it back to the disk, or prefetch a larger volume of data in a batch into the SSD. In

both cases high disk efficiency can be maintained for highly concurrent requests.
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