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CHAPTER 1
INTRODUCTION
Newborn Hearing Screening

Universal newborn hearing screening refers to screening of all infants for hearing
loss shortly following birth. Universal newborn hearing screening was first mandated in
1990 in the state of Hawaii. Since that time, all states in the United States have enacted
legislation on universal newborn hearing screening. The mandate is due to the known
speech, language, and educational consequences of significant hearing loss in children
and the technological means to make screening of infants a reasonable task.

The goal of newborn hearing screening is to identify children with sensorineural
hearing loss, permanent conductive hearing loss, and auditory neuropathy. The
rationale for screening of newborns is that earlier identification of hearing loss leads to
earlier intervention and that earlier intervention leads to better outcomes for children.
Research has demonstrated that universal screening does lead to earlier identification
and earlier intervention (Dalzell, et al, 2000; Durieux-Smith, et al, 2008; Sininger et al,
2009; and Halpin, et al, 2010). Research has also demonstrated that earlier intervention
does lead to better outcomes for language development for children with hearing loss
(Yoshinaga-Itano, et al, 1998; Moeller, 2000, and Kennedy et al, 2006).

The Joint Committee on Infant Hearing (JCIH) is a multidisciplinary committee
whose purpose is to make recommendations to support the identification of children
with hearing loss. The administration of newborn hearing screening programs is carried
out by Early Hearing Detection and Intervention (EHDI) programs at the state level. The

implementation of newborn hearing screening protocols generally follows the



recommendations put forth by the JCIH. The recommendations for screening protocols
stem from a timeline for milestones in the process of detection of hearing loss and
initiation of intervention. The timeline recommended by the JCIH includes identification
of hearing loss (a screening that results in a pass or referral to evaluation) by one month
of age, evaluation and diagnosis of hearing loss by three months of age, and initiation of
intervention by six months of age (Joint Committee on Infant Hearing, 2007).

Newborn hearing screening typically occurs just following birth, prior to discharge
from the hospital. This time frame is due to the availability of nearly all infants following
birth, to ensure the highest number of children screened (Joint Committee on Infant
Hearing, 2007). Auditory brainstem response (ABR), automated auditory brainstem
response (AABR), otoacoustic emissions (OAE), or automated OAE testing are used to
screen infants. When infants fail the screening, a follow-up screening or audiologic
evaluation is instituted. Other measures of auditory system function, such as immittance
or wideband reflectance (WBR), which are used to infer information about the status of
the middle ear system, are not typically utilized in screening protocols.

Conductive Hearing Loss in Infants

While the purpose of newborn hearing screening is to identify the presence of
sensorineural hearing loss, permanent conductive hearing loss, or auditory neuropathy,
some infants who fail a newborn hearing screening do so because of what appears to
be a temporary conductive hearing loss.

Permanent conductive hearing loss is due to structural or physiologic
abnormalities that will continue to persist indefinitely without intervention. This type of

hearing loss has the potential to detrimentally impact speech and language



development. As such, it is a hearing loss of interest for identification with newborn
hearing screening. However, in most cases of apparent conductive hearing loss, the
circumstances causing the screening failure are temporary in nature, meaning that the
indications of conductive hearing loss resolve, without intervention, at some point
following the initial screening failure. Because it will resolve independently, temporary
conductive hearing loss (TCHL) is not a hearing loss of interest for identification in
newborn hearing screening paradigms.

Several potential etiologies have been hypothesized to cause temporary
conductive hearing loss in infants. Vernix, (the waxy substance which coats the skin of
newborn infants), in the ear canal may be present immediately following birth (McLellan
and Webb, 1959). Mesenchyme (loose connective tissue that arises from the mesoderm
during embryonic development) and fluids in the middle ear space may be present
immediately following birth (deSa, 1973). In addition to actual structural components
that attenuate sound energy, immaturity of the ear canal and middle ear structures and
function could potentially result in artifactual outcomes due to testing methodology.
Systematic investigation into the causes of apparent conductive hearing loss in infants
is lacking.

Temporary conductive loss has the potential to cause disruption to the otherwise
straightforward process of newborn hearing screening. Conductive loss may cause an
attenuation of stimulus intensity, sometimes resulting in a fail on ABR screening.
Conductive loss also causes an attenuation of the forward transmission of stimuli for
OAE testing and/or the backward transmission of the evoked response, often resulting

in a fail on OAE screening. The impact of conductive loss is more pronounced for OAE



testing than for ABR testing. Unfortunately, the same screening and evaluation
outcomes that are suggestive of a permanent conductive hearing loss are also those
that occur in cases of temporary conductive hearing loss.

Because TCHL is not a hearing loss of interest for identification, a failed
screening due to TCHL is considered to be a false positive. On the other hand,
consideration of TCHL as a true hit may be valid when considering the guidelines
provided for intervention of hearing loss. It is generally assumed that intervention for
TCHL is not necessary. However, due to the time course of TCHL, many infants
progress beyond re-screening measures and into diagnostic evaluation, during which
time the conductive nature of the loss is typically determined. The JCIH guidelines
remain silent as to how conductive hearing loss should be handled with regard to
differentiating between permanent conductive hearing loss and temporary conductive
hearing loss for planning intervention. Research has demonstrated that as much as
34% of infants with sensorineural hearing loss also have abnormal tympanometry
consistent with middle ear dysfunction during the first year of life, which would cause
outcomes consistent with conductive or mixed hearing loss (Brookhouser, et al, 1993).
Purpose

Temporary conductive hearing loss causes difficulty in identification of hearing
loss that is of interest for newborn hearing screening. Due to the problems surrounding
temporary conductive hearing loss, it would be of benefit to the clinician to be able to
more accurately identify conductive hearing loss in infants and to predict the natural

course of conductive hearing loss for the purpose of evaluation and treatment planning.



Measures used to predict middle ear function, such as wideband reflectance have
potential to be used for these purposes.

The purpose of this longitudinal descriptive study is to better understand the
natural course of screening outcomes in infants, to better understand the use of
reflectance measures as they relate to screening outcomes, and to determine whether
reflectance measures may be used to predict screening outcomes for the purpose of
refining newborn hearing screening programs.

Research Questions

1) Do patient factors at birth, including birth weight, head circumference, and
gender, correlate with initial distortion product otoacoustic emissions (DPOAE) testing
outcomes? DPOAE outcomes have been evaluated very little according to the criteria of
gender or birth weight and head circumference at the time point following birth.
DPOAEs have been shown to be larger in female than in male infants (Gordts, et al,
2000), but it is unknown whether this difference would impact hearing screening
outcomes immediately following birth. Otoacoustic emissions have also been shown to
be poorer in infants in a neonatal intensive care population compared to a regular care
population (Chiong et al, 2003), but it is unknown whether this effect is due to size at
time of birth, gestational age, or some other confounding factors.

2) What is the longitudinal time course of DPOAE outcomes in infants? DPOAEs
are used to evaluate outer hair cell function in the inner ear. However, minimal
conductive dysfunction contributes substantially to failing outcomes when DPOAEs are
used to screen for hearing loss. Once sensorineural hearing loss has been ruled out,

DPOAE testing can be used to infer status of the middle ear in an infant. DPOAE testing



can also be used to provide a means for determining whether a temporary conductive
loss in an infant has resolved. Currently, it is unknown how DPOAE outcomes change
over time in infants with temporary conductive hearing loss. Longitudinal DPOAE
outcomes can be utilized to better understand the timeline of natural resolution of
temporary conductive hearing loss in infants for the purpose of creating evidence-based
protocols for the follow-up screening and/or evaluation of hearing in infants. In this
study, DPOAE screening outcomes will be used to understand the natural time course
of resolution of temporary conductive hearing loss in infants over the first three months
of life.

3) What frequencies on wideband reflectance testing are best predictive of
DPOAE testing outcomes at different ages? Wideband reflectance (WBR) measures are
used to describe function of the middle ear system. In cases of conductive hearing loss,
measures of reflectance are elevated, as sound energy is reflected from, rather than
absorbed by, the middle ear system. WBR measures are generally predictive of DPOAE
outcomes in infants and adults, which is important, as both measures can be used to
infer function of the middle ear system. The WBR measure uses a range of frequencies
to evaluate reflectance. It is known that some frequencies are more useful for predicting
middle ear dysfunction than others, and that the optimal frequency depends on the size
and other physical characteristics of the ear canal. Currently, it is unknown how the
optimal frequency for prediction of DPOAE outcomes changes over time in infants.
Cross-sectional studies have investigated WBR measures across groups of infants
(Hunter et al, 2008; Keefe et al, 1993; Merchant et al, 2010; Sanford and Feeney, 2008;

Vander Werff et al, 2007; Werner et al, 2010) but this type of information has not been



obtained longitudinally in the same group of infants. In this study, WBR measures will
be compared to DPOAE outcomes to understand the natural evolution of optimal
frequency for predicting DPOAE outcomes in infants over the first three months of life.
4) How useful are WBR measures for predicting DPOAE testing outcomes at
later time points? WBR is well correlated with DPOAE outcomes when both are
measured at the same time point. However, it is currently unknown whether WBR
measures may be used to predict DPOAE outcomes at later time points. Because
reflectance is measured at various frequencies, WBR has the potential to be sensitive to
various pathologies underlying temporary conductive hearing loss. For example, it may
be the case that WBR values would be higher or have a different pattern in the case of
resistant "glue ear" compared to the presence of unabsorbed mesenchyme in the
middle ear space. It would be of clinical value if WBR measures could be utilized by
clinicians to predict which infants with DPOAE refer outcomes are likely to have
spontaneous resolution of temporary conductive hearing loss and which are likely to
require intervention. In this study, WBR measures will be compared to later DPOAE
outcomes to determine the value of WBR measures for predicting the course of

temporary conductive hearing loss as characterized by DPOAE outcomes.



CHAPTER 2
LITERATURE REVIEW
Power Reflectance

In 1984, Teele and Teele reported on the development of a device to measure
the reflected power of sound presented to the external auditory canal using a
broadband (1800 — 7000 Hz) swept signal. In the normal ear, acoustic power is
absorbed into the cochlea. Reflectance measurements refer to the measurement of
energy reflected from the tympanic membrane into the external ear canal. Power
reflectance is a measure of middle ear inefficiency. Reflectance is equal to reflected
power/incident power (expressed as percentage 0-100%). Higher reflectance is
indicative of less transmittance of power. Lower reflectance is indicative of greater
transmittance of power. The transmittance measure is indicative of absorbed power.
Function of the structures of the ear canal and middle ear space can be inferred from
measures of energy reflectance.

Reflectance (R(f)) is dependent on frequency, so a broadband stimulus (62 —
10,000 Hz) may be used to examine the reflectance across the frequency range. This is
known as wideband reflectance. Tone-burst stimuli can also be used. Unlike traditional
immittance measures, power reflectance measurements are made at ambient static
pressure. In adults and infants transmittance is greatest for the 1000 Hz to 4000 Hz
range (Keefe, et al, 1993). Compared to adults, newborns (Shahnaz, 2008) and one-
and six-month-old infants (Keefe and Levi, 1996) have been shown to have less
reflectance at lower frequencies and greater reflectance at the highest frequencies

tested. These effects are hypothesized to be due to amniotic fluid and mesenchyme that



may be present in the middle ear space following birth, causing a mass effect that
reduces the conduction of high-frequency energy (Shahnaz, 2010). Age-related effects
continue to be seen in older infants of 2-9 months of age (Werner, et al, 2010). Right
ears and male ears have been shown to demonstrate lower reflectance than left and
female ears in some studies (Keefe, et al, 2000), but not others (Hunter, Tubaugh, et al,
2008). Reflectance has been shown to be increased in infants with cleft palate. This is
hypothesized to occur due to reduction in the forward transmission of sound energy due
to fluid in the middle ear space, common in children with cleft palate (Hunter, Bagger-
Sjobéck, and Lundberg, 2008). Reflectance has also been shown to be increased in
some infants within the first 24 hours after birth. It has been hypothesized that this may
be due to vernix in the ear canal following birth (Keefe et al, 2000; and Hunter et al,
2010). Hunter, Tubaugh, and colleagues (2008) and Merchant, Horton, and Voss (2010)
have summarized the use of power reflectance measurement in infants and children
and have provided data for these populations.

Power reflectance measures have been shown to be sensitive to middle ear
status (Hunter, Tubaugh, et al, 2008), and have been used as a test of middle ear
dysfunction (Keefe, et al, 2000) and as a test predictive of conductive hearing loss
(Keefe and Simmons, 2003). Some studies have found reflectance measures to be
more sensitive for detection of presumed middle-ear effusion in infants than high-
frequency tympanometry (Hunter, et al, 2008; Sanford, et al, 2009; and Keefe, et al,

2010).
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Clinical Application of Power Reflectance

Because the primary goal of newborn infant hearing screening is identification of
sensorineural hearing loss and permanent conductive hearing loss, power reflectance
measurements, in and of themselves, are inappropriate for screening in the newborn
population. However, reflectance measures may provide some additional information
which could theoretically assist in more appropriate follow-up strategies. Measurement
of middle ear function can be useful in helping to distinguish the presence of conductive
hearing loss in infants and therefore may be helpful in interpreting screening outcomes.
The inclusion of middle-ear measures greatly assists in targeting potential sensorineural
hearing loss for those cases in which middle ear function is determined to be normal,
while referral occurs on other tests. Keefe, Gorga, et al. (2003) demonstrated that the
inclusion of WBR data into a universal newborn hearing screening two-stage OAE/ABR
protocol improved the ability to detect sensorineural hearing loss. Unfortunately, the
presence of abnormal middle ear function does not rule out the possibility of
sensorineural hearing loss in an infant. Due to the potential for mixed hearing loss, the
presence of abnormal power reflectance measurements in a neonate does not exclude
the possibility that the child also has a sensorineural hearing loss.
Otoacoustic Emissions

Otoacoustic emissions are sounds generated by the cochlea as a by-product of
function of the outer hair cells. Otoacoustic emissions are evoked using stimulus
presentations of either transient clicks (transient evoked otoacoustic emissions) or
primary tones whose interaction results in distortion products (distortion product

otoacoustic emissions). The presence of normal otoacoustic emissions is thought to
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reflect normal cochlear function, inferred through the function of outer hair cells.
TEOAEs and DPOAEs are typically absent in ears with hearing loss of 30 dB HL or
greater (Kemp and Ryan, 1991).

Otoacoustic emissions (both TEOAEs and DPOAES) are larger in infants than
adults, possibly due in part to the smaller ear canal volume of infants and the higher
noise floor in infants than adults. DPOAEs have been shown to be larger in female than
in male infants (Gordts, et al, 2000), as is the case with adults. Otoacoustic emissions
have also been shown to be poorer in infants in a neonatal intensive care population
compared to a regular care population (Chiong et al, 2003), but it is unknown whether
this affect is due to size at time of birth, gestational age, or some other confounding
factors.

Screening Application of Otoacoustic Emissions

Demonstrations of TEOAEs and DPOAEs for hearing screening purposes have
shown that both are relatively independent of subject state in reasonably quiet infants,
and are relatively independent of test environment, suggesting that the primary source
of noise in infants is physiologic (Gorga, et al, 2000; and Norton, Gorga, Widen, Vohr et
al, 2000). This is reinforced by the finding that the noise floor is lowest at the highest
frequencies tested, as ambient noise tends to be low-frequency in nature.

For the purpose of screening of otoacoustic emissions, automated systems have
been developed with associated pass or refer criteria. Automated DPOAE systems work
best at higher frequencies, 2000 - 4000 Hz (Gorga et al, 2000), and automated TEOAE
systems can be extended to a slightly lower frequency range of 1500 Hz - 4000 Hz

(Norton, Gorga, Widen, Vohr et al, 2000). Both can be achieved under most reasonably
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quiet states of arousal in infants (Gorga, et al, 2000; and Norton, Gorga, Widen, Vohr, et
al, 2000). Kemp and Ryan (1991) describe the use of otoacoustic emissions for
newborn screening applications. They report difficulty of proper placement of the probe
in the neonate ear canal and ambient room noise as potential barriers to accuracy of
test results.

OAEs are generally absent in cases of obstruction of the ear canal, such as
might occur shortly after birth, and this is the reason most frequently hypothesized as
the cause of higher referral rates in infants with use of OAE screening techniques
versus ABR screening techniques (Chang, et al, 1993; Doyle, et al, 1997; McNellis and
Klein, 1997; and Norton, Gorga, Widen, Folsom, et al, 2000). Shahnaz (2008)
demonstrated a correlation between high reflectance using power reflectance
measures, suggestive of middle ear dysfunction, and failure on TEOAE screening.
However, other data suggest that maturational factors may play a more important role in
increases in TEOAE levels over time. Abdala and Keefe (2006) examined DPOAE
measures in adults and infants. They applied a model for an immature ear canal by
varying forward and reverse transfer function levels relative to adults. It was found that
application of the model for immaturity of the forward transmission system in infants
best fit the measured data. Prieve, et al (2009) tested TEOAESs on infants in a well-baby
nursery and compared these results to otoscopic examination. They found that ear
canal debris was not associated with changes in TEOAE levels over time in infants.
They hypothesized that structural changes due to maturation may explain increases in

TEOAE levels in infants over time and may be one cause of failure of newborn infant
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hearing screening using TEOAEs. OAEs have also been used to estimate severity of
hearing loss, but with less success than ABR measures (Hall and Swanepoel, 2010).
Problems Encountered in the Hearing Screening Proce  ss Due to TCHL

The JCIH suggests a quality indicator of less than 4% for the percentage of
infants who fail initial screening and any subsequent rescreening before comprehensive
evaluation. The most recent data available from the Centers for Disease Control found
the referral rate of infants not passing the final or most recent screening to be 2.1%.
(Centers for Disease Control, 2007). However, the caveat of final or most recent
screening does not take into account the numbers of children who are re-screened due
to temporary conductive hearing loss (TCHL). It is unknown how many infants are re-
screened prior to referral for audiologic evaluation. Re-screening may take place prior to
hospital discharge, or may require follow-up at a later date or in an outpatient facility.

If TCHL is considered to be a false positive for newborn hearing screening, there
are numerous costs associated with the inability to separate TCHL from the population
with hearing loss of interest. The financial cost of re-screening or evaluating the infant,
potentially numerous times over the course of resolution of the TCHL, and the services
needed for attempts to locate infants to minimize loss to follow-up are an issue. An
excessive referral rate may also lead to delay in identification of hearing loss of interest
when resources are burdened. Diminished confidence in screening outcomes, and
consequently diminished emphasis on follow-up, may occur when providers and
patients believe that most hearing screening failures are primarily false positives. The
current rate of lack of follow-up for infants failing an initial newborn hearing screening is

an average of 46%, with individual states having loss to follow-up rates as high as a
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staggering 95.6% (Centers for Disease Control, 2007), making this a substantial
concern, as newborn hearing screening is completely ineffective if follow-up of
screening failure is not pursued. Parent or caregiver distress over a failed screening
result and the time and effort required by parents or caregivers to have the infant re-
screened or evaluated are other issues related to false positive outcomes.

On the other hand, consideration of TCHL as a true hit may be valid when
considering the guidelines provided for intervention of hearing loss. It is generally
assumed that intervention for TCHL is not necessary. However, in clinical practice it has
been noted that due to the time course of TCHL, many infants progress beyond re-
screening measures and into diagnostic evaluation, during which time the conductive
nature of the loss is typically determined. The JCIH guidelines remain quiet on how
conductive hearing loss should be handled with regard to differentiating between
permanent conductive hearing loss and temporary conductive hearing loss. For
instance, should physician referral be instituted immediately, or should the child be
followed for some time to determine whether the hearing loss resolves on its own, as
most do? Should or would a physician pursue diagnostic measures, such as computed
tomography which may require sedation and would subject the infant to radiation
exposure, to differentiate permanent from conductive hearing loss in a three-month old?
If obvious causes of permanent conductive hearing loss are ruled out, at what point is
conductive hearing loss considered permanent? When, if ever, should TCHL become a
hearing loss of interest, requiring medical treatment? The ability to pursue newborn
infant hearing screening has allowed for tremendous improvement in timelines for

identification of hearing loss and improvement in outcomes for children, but the logistical
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problems created by TCHL appear to have been an unexpected source of difficulty in
screening paradigms and questions regarding how to handle TCHL continue to plague
clinicians.
Conductive Hearing Loss in Newborns

There are numerous potential causes that are hypothesized to result in
temporary conductive hearing loss and/or false positive hearing screening failures in
newborns.

Debris in the Ear Canal

In a study of the ear canal and tympanic membrane of neonates, McLellan and
Webb (1959) found at least some vernix in the ear canals of all ears of 102 infants
within the first 24 hours of life. In a separate study following infants for the first week of
life, repeated otoscopic examination showed approximately half of infants had clear ear
canals by day six of life, compared to 10.5% in the first three days of life (McLellan and
Webb, 1961). Cavanaugh (1987) found vernix obscuring the tympanic membrane in
56% of ears on the first day after birth. This decreased to 19% on the third day, and 2%
at two weeks. McNellis and Klein (1997) found that otoacoustic emission screening
failures correlated with the partial or complete presence of vernix occluding the ear
canals of neonates. Doyle and colleagues (1997) found that removal of vernix from the
ear canal reduced the referral rate of infants re-screened using OAEs and ABR. Chang
and colleagues (1993) found vernix in the ear canals of 43% of 82 ears of infants 22-64
hours following birth. They found that the rate of ears passing the OAE screening

increased from 76% of 91% after removal of the vernix from the ear canals.
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Middle Ear Pathology in Intensive Care Infants

Middle ear pathology, which could result in conductive hearing loss, has been
found in samples of infants who died shortly after birth. Temporal bone studies of infants
by deSa (1973) showed evidence of amniotic fluid in the middle ear space of 55 of 130
infants. Piza and colleagues (1989) demonstrated that infants who were born with
meconium contamination had a higher volume of cellular content in the middle ear and
mastoid cavities. The origin or type of cellular material was unspecified in the study,
presumably because it was not evaluated, although this is not specified. Instead the
volume of cellular material was evaluated and correlated with the presence of
meconium-stained fluid. They speculate that the presence of this cellular content could
provoke a foreign-body inflammatory reaction, causing a true otitis media in neonates.
Similarly, deSa (1977) found evidence of amniotic squamous debris in the wall of the
middle-ear cavity in a series of a total of three infants upon histopathological
examination. In 1983, deSa reported on a series of 72 infants postmortem. Abnormal
histopathological findings were present in all but five of the infants and included
metaplastic epithelial lesions, inflammatory lesions, otitis media, and destruction of
ossicles. Reasons for abnormal findings were hypothesized to include infections,
aspirated amniotic squamous debris, effects of oxygen therapy, and obstruction of the
eustachian tube by a nasal airway. Balkany and colleagues (1978) reported on the
presence of suppurative middle ear effusions in 30% of 125 consecutive infants from a
neonatal intensive care unit. Hemsath (1936) reported histopathological results

indicating either foreign body reaction to amniotic fluid constituents or acute purulent
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otitis media in seven infants. Middle-ear pathology has been shown to be a potential
factor in conductive hearing loss in infants in at least the intensive care population.

Decreased Tympanic Membrane Mobility at Birth

In addition to frank or confirmed cases of pathology of the middle ear, decreased
tympanic membrane mobility has been found in infants from regular care nurseries.
Fluid in the middle ear space is one hypothesized cause of decreased tympanic
membrane mobility in infants. Jaffe and colleagues (1970) found poor tympanic
membrane mobility in 18% of 101 newborns using pneumatic otoscopy within the first
48 hours after birth. Cavanaugh (1987) found poor tympanic membrane mobility in 88%
of 18 infants on the first day following birth and in 57% of 29 infants on the third day
following birth. Roberts and colleagues (1995) used a battery of pneumatic otoscopy,
tympanometry, and acoustic reflex measures to determine presence of effusion in the
middle ear space in neonates. It was found that all of 68 infants exhibited effusion when
tested in the first three hours after birth. Effusion resolved within 72 hours in 73% of 24
full-term neonates. Decreased tympanic membrane mobility, evaluated using
pneumotoscopy, was found in 9% of 214 infants able to be evaluated by Doyle and
colleagues (1997), and the decreased mobility correlated with screening pass rates for
both ABR and OAEs.

Otitis Media Following Birth

While some infants may present with conductive hearing loss at birth, other
infants may develop conductive hearing loss over time, and this may manifest during
hearing screenings which occur at later time points in the infant's development. In some

cases, infants are screened later than the recommended pre-hospital discharge
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timeframe for various reasons. In other cases, infants may refer on a single ear and, per
JCIH recommendations (2007), will be re-screened in both ears. In these cases, infants
may develop otitis media over time, and this finding would be reflected in the later-
occurring screening or re-screening results.

The finding of otitis media in young infants is not an uncommon occurrence.
Marchant and colleagues (1984) found onset of otitis media in 33% of 24 infants before
two months of age. Roberts and colleagues (1995) found that at two weeks and at two
months following birth, new cases of effusion (not present at birth) had appeared in their
sample of infants, at a rate of 9%. The finding of new cases of effusion is consistent with
that of Teele and colleagues (1989) who found effusion in 9% of 877 infants by three
months of age in a longitudinal study. Similarly, Sipila and colleagues (1987) found
evidence of effusion using otoscopy in 17% of 284 infants during the first seven months
of life.

Relationships of Testing Outcomes to Conductive Hea ring Loss

Complicating the issue of understanding auditory function in infants is that almost
no studies utilize a gold standard of tympanocentesis for determining presence of
middle ear effusion as the reason for absence of otoacoustic emissions or abnormal
immittance or reflectance measures. This is due to ethical concerns of performing such
procedures in infants when other courses of treatment may be effective, such as
medications, or when the condition is expected to be time-limited or self-resolving in
nature, as is commonly the case with conductive hearing loss in infants.

It is currently unknown whether WBR measures can be used to predict middle

ear function in infants in a longitudinal fashion. Cross-sectional studies involving WBR
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measures have typically involved comparison to OAE outcomes that are thought to
indicate middle ear dysfunction. Wideband reflectance measures have been shown to
be useful in predicting OAE outcomes in infants (Hunter, et al, 2010; Keefe, Zhao, et al,
2003; Merchant et al, 2010; Sanford, et al, 2009; Shahnaz, 2008; Vander Werff, et al,
2007) and adults (Ellison and Keefe, 2005). WBR measures have been shown to be
superior to 1000 Hz tympanometry at predicting OAE outcomes in infants (Hunter, et al,
2008; Hunter, et al, 2010; Keefe, et al, 2010; Sanford, et al, 2009). WBR has also been
shown to be predictive of otherwise known conductive disorder in school-aged children
(Beers, et al, 2010; Hunter, et al, 2008; Kaf, 2011) and adults (Feeney, et al, 2003;
Feeney, et al, 2009; Keefe and Simmons, 2003; Shahnaz, et al, 2009). WBR may
therefore be useful as a cross-sectional adjunct to other screening methods for the

purpose of understanding the conductive component of hearing loss in infants.
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CHAPTER 3
METHODS

This longitudinal, descriptive study characterizes auditory function in infants prior
to time of discharge following birth, and one, four, eight, and twelve weeks following
birth. The testing process is depicted in Figure 1. During the initial testing period, infants
were screened using various measures to determine potential for, or presence of,
sensorineural hearing loss, for the purpose of determining study candidacy. Infants
were then tested using DPOAE and WBR measures at each time point to answer the
research questions. At the final time point, infants still at risk for progressive
sensorineural hearing loss were screened to rule out this occurrence for the purpose of
re-evaluating study candidacy.

Subjects

Subjects were recruited from the infants in the well-infant nursery, born at Henry
Ford Hospital in Detroit, Michigan and from the West Bloomfield Henry Ford Hospital in
West Bloomfield, Michigan.

The total subject sample size was 54, with four subjects being removed from the
study by the investigator when they were unable to be contacted for the purpose of
continued participation. It is unknown why subjects became unavailable. Subjects were
removed at various points, and replaced with new, for a total of 54 subjects at birth, 52
subjects at week one, 52 subjects at week 4, 50 subjects at week 8, and 50 at week 12.
Both ears were tested for a total sample size of 108 ears at birth, 104 at week one, 104
at week four, 100 at week eight, and 100 at week 12. Subjects were recruited so that

there were an equal numbers of passing and referring ears at birth. The calculation of
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subject sample size of 50 was based on the findings of Hunter et al. (2010). In this
study, the area under the curve for the WBR frequency which best predicts DP outcome
is 0.90. Using the analyses provided by Hanley and McNeil (1982) for determining
standard error which would accompany such an area under the curve, a standard error
of .06 is estimated for a sample size of 50. Given an area under the curve outcome of
0.90, such as that found by Hunter et al. (2010), a sample size of 50 would provide a
95% confidence interval of 0.11, for a range of 0.79-1. Based on the calculation of
Hanley and McNelil, this would provide 99% power to determine whether the test is
different from chance (Ho: Area under the curve <0.5; H;: Area under the curve > 0.5).
Subject Recruitment Procedures

The process of subject recruitment followed the process depicted in Figure 1.
Following the automated auditory brainstem response test (AABR), a risk factor
guestionnaire was verbally administered to determine whether the infant had risk factors
for sensorineural hearing loss. Although a risk factor questionnaire is administered as a
standard component of the hospital's infant hearing screening program, the specific
guestionnaire used in this study (Appendix) differed slightly from the standard
completed by the hospital. Subjects who had any of the following risk factors were

excluded from the study:

. family history of permanent childhood hearing loss

. time spent in the neonatal intensive care unit

. history of in utero infections

. craniofacial anomalies, including those that involve the pinna, ear canal,

ear tags, ear pits, and temporal bone anomalies
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. physical findings that may be associated with syndromes know to include
hearing loss
. postnatal infections associated with sensorineural hearing loss, including

confirmed bacterial and viral meningitis, or head trauma.

In addition, it was the intent that subjects who were suspected of or were found
to have sensorineural hearing loss based on ABR bone-conduction screening at the
initial or final time points (as described below) would also be excluded from the study,
although no such infants were encountered in the recruitment or follow-up process.
Infants who failed the risk factor screening were instructed to continue with the
hospital's standard process for infant evaluation and treatment.

Infants who passed the risk factor screening and whose parents consented were
screened during their stay in the well-infant nursery using DPOAE to determine pass or
refer status. The DPOAE screening was an extra, but not experimental, step in the
screening process which allowed determination of pass or refer status for the purposes
of the study. Infants were recruited for the study as needed based on DPOAE outcomes
to obtain 50% passing and 50% referring ears.

Study objectives and methods were explained to parents. Caregivers were paid a
minimal amount ($7.20 per testing session) for their participation. Beyond the initial
assessment, caregivers of all subjects chose to have further testing completed in the
home.

Gender of infants, birth weight, and head circumference were recorded as

described in the infants’ inpatient medical record chart.
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Figure 1. Depiction of process from initial screening through study end.
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The protocol of the study was discussed with caregivers of subjects prior to
obtaining consent. Following the consent process, testing continued while infants were

still admitted to the hospital. In addition to the initial DPOAE screening outcome, testing
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for “Time point: Birth” included WBR in all cases and ABR bone-conduction screening in
infants who failed the initial AABR screening, which occurred in five cases.

For infants who did not pass the initial AABR screening, ABR bone-conduction
screening was performed to rule out congenital sensorineural hearing loss on those
infants who were eligible for the study (i.e. those who had passed the risk factor
guestionnaire, had DPOAE testing resulting in a pass or refer, and had parental
consent). All five infants who did not pass the AABR screening did pass the ABR bone-
conduction screening at the initial time point. Infants who passed the initial AABR
screening were assumed to have no worse than a mild sensorineural hearing loss
(screening intensity level of 35 dB nHL which correlates to behavioral thresholds in
older children of 25 dB HL in the 1000-4000 Hz range).

For time points one, four, and eight weeks, testing included DPOAE screening
and WBR. At the twelve-week time point if an infant did not pass the DPOAE screening
ABR bone-conduction and/or air-conduction screening was performed. Two of these
infants met this criterion and did pass the subsequent ABR screening.

Infants who passed the final DPOAE or ABR screening at the final time point
were considered to have completed the study.

ABR Equipment and Methods

Equipment . ABR screening was completed using the Vivosonic Integrity V500
system (Vivosonic, Inc., Toronto, Ontario). The system was connected to a Lenevo
notebook computer with a 1.19 GHz Intel Core 2 Duo processor, 1.86 GB RAM, run on
Windows XP Professional 2002 SP3 operating system. The Vivosonic system differs

from traditional ABR systems in that it utilizes Bluetooth communication between the
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computer and the data collection module. This wireless feature reduces the antennae
effect of long electrode leads and eliminates line noise in the recording. In addition, the
data collection module utilizes an amplifier on the electrode itself. This allows for filtering
to occur prior to amplification, reducing the addition of electrical artifact. The system
also utilizes a Kalman weighted averaging system that estimates the noise in each raw
response and weights each sweep based on its noise estimate. In this paradigm, noisy
signals are weighted less than cleaner signals. The combined features of the system
allowed for excellent ABR recordings in relatively noisy situations.

Calibration . Output calibration of the bone vibrator was made at periodic
intervals to ensure maintenance of pre-existing calibration parameters. Calibration was
performed by coupling the bone vibrator to a Beltone 5A artificial mastoid system. The
output of the artificial mastoid was recorded using a Bruel & Kjeer Type 2209 precision
sound level meter set with a slow mode linear weighting network to average the output
of transient signals. It was found that bone vibrator output did not result in a change of 5
dB or greater during calibrations.

Subject preparation . To prepare infants for testing, the skin was cleansed with a
standard alcohol pad. Ambu Neuroline 720 disposable self-adhering electrodes (Ambu
A/S, Denmark) were used. A single-channel recording montage was used, with a non-
inverting electrode placed at the high forehead. The inverting electrode was placed on
the mastoid of the test ear. The common electrode was placed on the mastoid of the
non-test ear. Preparation ensured that an interelectrode impedance difference of <3kQ
was obtained for each electrode. Following testing preparation, the tester waited for the

infant to sleep naturally.
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Stimulus parameters . Bone-conduction stimuli were delivered via a Radioear B-
71 bone-conductor (Radioear Corp., New Eagle, PA) positioned anterior and superior to
the mastoid electrode and held in place by a pediatric metal headband and foam
beneath the headband. Wideband masking was presented to the non-test ear at 30 dB
HL. Stimuli consisted of 2-0-2 ramp number of cycles, 12 dB/octave high pass filter roll
off and 24 dB/octave low pass filter roll off, Blackman windowing, 2000 and 500 Hz
tone-bursts presented at a rate of 37.7 Hz. The intensity used was 15 dBnHL.

Recording parameters . High-pass filters were set at 30 Hz. Low-pass filters
were set at 1500 Hz. The recording window was 25 ms. Recordings were replicated
during testing, with alternate sweeps being stored in bin A or bin B. The resulting
waveforms were added to achieve the displayed waveform.

Response analysis . Immediately following recording of the waveforms, using
the Vivosonic Integrity software, the area surrounding the presumed Wave V location
was marked to indicate start and end points for statistical analysis. The A and B
waveforms were then used to determine a correlation coefficient to indicate the degree
to which the collected waveforms in A and B were repeatable in the specified interval.
Correlation coefficient values of at least 0.50 were deemed to be replicable waveforms,
indicating when a replicable Wave V was identified.

DPOAE Equipment and Methods

Equipment . Distortion product otoacoustic emissions testing was performed
using the Mimosa Acoustics Hear ID MEPA 3 + DP Otoacoustic Emissions Module

(Mimosa Acoustics, 2007).
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Calibration . Calibration was performed prior to testing with the probe tip in the
ear canal. A 1000 Hz tone was presented automatically during the calibration to
establish the level of output for the tonal stimuli. In addition, the cavity of the canal was
estimated during calibration to ensure that the probe tip was not occluded and the noise
floor was measured to ensure an appropriate level of ambient noise prior to testing.

Recording parameters . The probe was coupled to the ear using a pediatric
foam tip. The protocol was run following a successful preset calibration trial. Distortion
product stimuli consisted of L1 signal at 65 dB SPL and L2 signal at 55 dB SPL with an
F2/F1 ratio of 1.22. Stopping rules for the protocol were as follows: Minimum DP
amplitude of 0 dB SPL and minimum DP-NF amplitude of 10 dB SPL. The protocol
included distortion products of 2f;-f,, targeting 2000, 3000, 4000, and 6000 Hz.

Response analysis . Distortion product otoacoustic emission data were recorded
as the response - the noise floor in decibels. This value was recorded for 2000, 3000,
4000, and 6000 Hz. Presence or absence of DPOAE was recorded for each response.
"Present” was recorded for DPs of responses with a SNR = 6 dB and a noise level < 0
dB SPL. "Absent" was recorded for responses with a DP <10 dB SPL and a noise level
< 0 dB SPL. The decision of pass or fail was recorded. "Pass" consisted of DPOAE
responses wherein at least 3/4 frequencies were present. Criterion for pass or fail for
most otoacoustic emission screening equipment was originally based on work by Gorga
and colleagues from Boystown Hospital (2000). DPOAE screening is designed to target
those frequencies that are most important for speech and language development and
which can be most accurately measured. Gorga et al (2000) found that measurements

were most reliable in infants for 2000, 3000, and 4000 Hz, but not at 1000 Hz and that
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these frequencies were most important for screening in sensorineural hearing loss. The
criterion of three of four frequencies being present was based on this work. The 6000
Hz DPOAE frequency was included in this protocol because of its potential relationship
to WBR outcomes and 1000 Hz was excluded because of its unreliability in the Gorga et
al (2000) study and because testing occurred in non-acoustically treated environments,
which are more likely to have low-frequency noise present in the room that could mask
low-frequency sounds involved in testing, such as 1000 Hz.

Power Reflectance Equipment and Methods

Power reflectance was performed using the Mimosa Acoustics Hear ID MEPA 3
+ DP Middle Ear Power Analyzer (Mimosa Acoustics, 2007). Calibration was performed
prior to each subject measurement using the calibration cavity set to determine the
acoustic impedance of the sound source prior to measurement in the ear. Three
sources of impedance are possible when measuring impedance in the ear canal: the
middle ear, the ear canal wall, and the sound source. The ear canal wall has been
shown to have negligible absorption of sound energy (Voss et al, 2008), leaving the
sound source and middle ear as contributing to impedance mismatches. Calibration of
the sound source allows for the impedance to be determined prior to measurement in
the ear canal, so that the known impedance of the sound source can be used in
calculations to determine the unknown impedance of the remaining load, the middle ear.
The sound source impedance is calculated from measurements of the acoustic
response of the sound source in a set of four cavities.

The probe was coupled to the ear using the same pediatric foam tip used for

DPOAE measures. In-the-ear pressure calibration was made with the probe in the
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subject’s ear. Results of power reflectance were recorded as the value of power
reflectance for each tone-burst frequency tested. This value was recorded for 1000,
1500, 2000, 3000, 4000, and 6000 Hz. Stimuli below 1000 Hz were not utilized due to
findings that reflectance across test sites may differ below 1000 Hz (Hunter et al, 2010).

Measurement of Ambient Noise Levels

Soundfield measurements were made prior to performing tests using a
RadioShack 33-2055 sound level meter set to a fast mode “A” weighting network, which
is appropriate for a 24-55 dB SPL environment (Decker and Carrell, 2004), as well as a
“C” weighting network. Measures were recorded for the purpose of minimizing ambient
noise as much as possible when present. In general, measurements indicated ambient
noise levels to be quieter than the 50 dB SPL noise floor of the instrument. Comparison
of “C” and “A” weighted readings indicated that when noise was present in the

environment, it was typically low-frequency in nature.
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CHAPTER 4
RESULTS

Gender

The subject pool at birth consisted of a total of 54 infants. Of these, 35 (64.8%)
were female and 19 (35.2%) were male. Results are shown in Table 1. For females
54.3% passed while 45.7% failed at birth. For males, 42.1% passed and 57.9% failed at
birth. Chi-square analysis using expected observed passing values of 35 for females
and 19 for males yields a value of 0.731 and two-tailed p=0.3926, suggesting that these
differences are not significant.
Table 1: Initial pass or fail outcome as a function of gender. Numbers shown refer to

ears tested (i.e. two per subject).

Pass Fail Total
Female 38 (54.3%) 32 (45.7%) 70 (64.8%)
Male 16 (42.1%) 22 (57.9%) 38 (35.2%)
Total 54 (50%) 54 (50%) 108 (100%)

Birth Weight

Birth weight of infants was determined by first removing those infants who had
both a failing and passing ear, which resulted in a total of 16 infants being removed.
Mean birth weight was then calculated for bilaterally passing (n=19) and bilaterally
failing (n=19) groups of infants. Results are shown in Table 2. Unpaired t-test analysis
with p=0.9574 suggests that differences between groups are not significant.

Table 2: Initial pass or fail outcome as a function of birth weight

Pass Fail
Mean 3270.00 3279.47
Standard Deviation 449.58 623.09
N 19 19
Two tailed p = .9574
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Head Circumference

Head circumference of infants was determined by first removing those infants
who had both a failing and passing ear as described above. Mean head circumference
was then calculated for bilaterally passing and failing groups of infants. Results are
shown in Table 3. Unpaired t-test analysis with p=0.8292 suggests that differences
between groups are not significant.

Table 3: Initial pass or fail outcome as a function of head circumference

Pass Fail
Mean 34.73 34.69
Standard Deviation 1.46 1.53
Standard Error of the Mean 0.33 0.35
N 19 19
Two tailed p = .8292

Longitudinal DPOAE Screening Outcomes

Per the study design, 50% of ears were passing at birth and 50% failed at birth.
At week one, 72.1% of ears passed. Ears then passed at a rate of 84.6%, 86.0%, and
96.0% at weeks four, eight, and twelve, respectively. The percentages of infants who
failed following any previous pass were 5.8% at week one, 7.7% at week four, 9.0% at

week eight, and 0 at week twelve. Results are shown in Table 4 and Figure 2.
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Table 4. Percentages of DPOAE pass and fail outcomes for ears at time points following

birth.

Time Point % Pass % Falil % Fail Following Pass
Birth 54 (50%) 54 (50%) N/A

1 week 75 (72.1%) 29 (27.9%) 6 (5.8%)

4 weeks 88 (84.6%) 16 (15.4%) 8 (7.7%)

8 weeks 86 (86.0%) 14 (14.0%) 9 (9.0%)

12 weeks 96 (96.0%) 4 (4.0%) 0 (0.0%)

Figure 2. DPOAE pass and fail outcomes following birth.

DPOAE Outcomes Over Time

100

Percentage

Birth 1 week 4 weeks 8 weeks 12 weeks
Time Point Tested

m % DPOAE pass @ % DPOAE fail after previous pass

Longitudinal WBR Outcomes
Mean reflectance outcomes are shown as a function of frequency for ears that

passed DPOAE screening in Figure 3. These data show little change in the reflectance
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of the highest frequencies in the time between birth and twelve weeks. For the lower
frequencies, particularly 1500 Hz, there was a systematic decrease in mean reflectance
over the first twelve weeks following birth.

Preliminary analysis of data for failing ears demonstrated substantially different
patterns for those ears that failed at twelve weeks, relative to the other failing ears.
Because of the possibility that these differences represented differing etiologies for
failure (i.e. the ears that failed at twelve weeks were failing due to dysfunction that was
different than the other infants who failed but eventually passed), the longitudinal data
for these groups is displayed separately. Figure 4 shows the mean reflectance data as a
function of frequency for ears that failed the DPOAE screening, excluding subjects 18
and 40 who continued to fail the screening at twelve weeks. Figure 5 shows the mean
reflectance data for the four ears of these two subjects. In order to understand the
longitudinal reflectance differences between ears that passed and ears that failed
DPOAE screenings, mean difference values were plotted as a function of frequency.
These differences can be seen in Figure 6 for those ears that failed the DPOAE
screening excluding subjects 18 and 40 who continued to fail the screening at twelve
weeks. Figure 7 shows this same information for subjects 18 and 40.

The overall trends for both Figures 6 and 7 can be described as increased
reflectance in the higher-frequency range when compared to passing ears. Reflectance
values were also higher at 1000 Hz than for passing ears. This resulted in an “S-
shaped” configuration, in which the 1500-2000 Hz range had much lower reflectance
than higher and lower frequencies in referring ears. At some time points these values

were even lower than in the group of passing ears.
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Figure 3. Mean WBR outcomes for DPOAE passing ears. Note that standard deviations
are not represented here for the sake of visual clarity. However, the range of values can

be seen in Figures 8 through 12, which show the percentiles for passing ears.

Mean Longitudinal Reflectance - DPOAE Pass

100

90

80

—e— Birth
—8— 1 week
—A— 4 weeks

8 weeks
12 weeks

Reflectance

20

10

1000 1500 2000 3000 4000 6000

Frequency in Hertz




35

Figure 4. Mean WBR outcomes for DPOAE failing ears, excluding subjects 18 and 40.
Note that standard deviations are not represented here for the sake of visual clarity.
However, the range of values can be seen in Figures 8 through 12, which show the

percentiles for passing ears.
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Figure 5. Mean WBR outcomes for subjects 18 and 40, who had four failing ears

throughout the entire protocol.
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Figure 6. Differences between mean WBR outcomes for DPOAE failing (excluding

subjects 18 & 40) and passing ears.
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Figure 7. Differences between mean WBR outcomes for DPOAE failing ears of subjects

18 & 40 and passing ears.
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Wideband Reflectance and Current DPOAE Outcomes

Wideband reflectance values are reported in Table 5 as a function of DPOAE
screening outcome, time point, and reflectance frequency tested. Minimum and
maximum scores are recorded, as well as 10" and 90™ percentiles. Due to the small
number of failing subjects at week 12 (four in number), 25" and 75" percentile were
calculated instead. A percentile is a measure that tells what percentage of scores were

below a given score. So in Table 5, for example, in the case of DPOAE passes, at birth,
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for 1000 Hz, the minimum reflectance value was 5.8. Ten percent of the reflectance
values for this group fell below a reflectance score of 29.90. Ninety percent of the
reflectance values for this group fell below 68.30. The maximum value for the group was
73.90. Use of percentiles is one method that provides a sense of the range and
distribution of values found for the group. In this case, eighty percent of the passing
ears had reflectance values at 1000 Hz between 29.90 and 68.30.

Table 5. Percentiles of WBR values as a function of time point tested, frequency, and

DPOAE outcome.

DPOAE Outcome Pass Percentiles DPOAE Outcome Fail Percentiles
Time Point Frequency Min 10 90 Max Min 10 90 Max
Birth 1000 5.8 29.90 |68.30 | 73.90 23.40 | 39.75 | 88.45 | 93.90
Birth 1500 16.00 |22.60 |63.45 |68.80 2.00 |37.15 |89.55 |93.90
Birth 2000 20.60 |23.25 | 75.00 |61.35 9.40 | 30.30 | 89.10 | 95.20
Birth 3000 22.10 31.90 75.55 88.80 29.70 | 51.00 97.65 100.30
Birth 4000 33.60 49.10 87.75 120.50 | 12.30 | 49.10 104.30 | 118.10
Birth 6000 2.70 17.15 78.50 86.90 1.70 17.95 90.60 98.50
1 week 1000 26.30 32.76 75.60 84.20 27.80 | 36.00 80.60 92.00
1 week 1500 14.90 25.50 63.44 107.10 | 28.10 | 35.40 80.10 90.30
1 week 2000 5.80 14.44 54.72 92.80 25.90 | 31.40 84.40 90.80
1 week 3000 8.20 32.24 67.56 88.40 16.00 | 29.20 93.20 99.70
1 week 4000 15.70 40.06 81.00 98.00 16.00 | 16.20 103.30 | 106.30
1 week 6000 1.50 14.74 | 70.80 | 95.80 7.60 | 1350 |84.70 |91.00
4 weeks 1000 1450 |33.26 |71.04 |112.10 | 27.90 |39.94 | 7210 |72.80
4 weeks 1500 6.00 22.18 | 6225 |73.90 10.20 | 18.39 |56.95 | 57.30




40

4 weeks 2000 7.00 16.00 |59.15 | 70.00 10.80 | 10.87 | 45.38 | 52.10
4 weeks 3000 0.60 18.37 | 65.65 | 81.70 18.50 | 22.28 | 66.12 | 67.10
4 weeks 4000 4.70 27.06 | 76.52 | 88.60 37.10 | 37.10 |84.22 | 89.40
4 weeks 6000 0.40 3.04 69.69 | 100.70 | 6.40 |13.96 |61.16 |69.00
8 weeks 1000 11.80 | 36.60 |68.97 | 95.00 32.80 | 37.20 |82.20 | 85.90
8 weeks 1500 9.50 19.12 | 58.04 | 77.40 13.70 | 19.15 | 88.70 | 93.30
8 weeks 2000 1.10 12.91 54.19 79.20 5.30 9.25 92.60 95.40
8 weeks 3000 0.70 14.38 58.76 79.60 20.70 | 22.50 92.80 93.10
8 weeks 4000 0.10 20.20 69.59 101.20 | 6.30 9.15 89.70 97.60
8 weeks 6000 0.00 5.00 55.44 100.50 | 8.10 9.00 82.50 85.00
Time Point Frequency Min 10 90 Max Min 25 75 Max
12 weeks 1000 2150 |35.10 |69.11 |82.20 50.20 | 50.75 | 54.83 | 55.10
12 weeks 1500 2.7 17.87 |59.81 | 73.30 18.40 | 21.08 | 64.03 | 71.60
12 weeks 2000 0.70 12.05 |58.56 |93.10 18.30 | 20.2 73.25 | 82.20
12 weeks 3000 4.40 12.47 |56.35 | 76.00 43.70 | 48.1 93.8 100.30
12 weeks 4000 0.80 6.14 65.26 | 85.70 32.80 | 39.95 |94.95 | 103.00
12 weeks 6000 0.00 3.21 63.21 101.10 | 13.50 | 23.28 86.45 94.60

The values from Table 5 are displayed as function of frequency in Figures, 6, 7,

8, 9, and 10. In the figures, differences between the 10" percentile for failing ears and

minimum values for passing ears represent an area of WBR that correlated with a

passing outcome on DPOAE screening. Differences between maximum values for

failing ears and 90™ percentile for passing ears represent an area of WBR that

correlated with failing outcome on DPOAE screening. Differences between the 90"

percentile of passing ears and the 10™ percentile of failing ears represent an area of

ambiguity, where WBR values were similar among passing and failing ears. For the
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twelve week time point, 25" and 75™ percentiles were calculated instead of 10" and 90™

percentiles. This is because only four ears were available for analysis in the group of

“failing” ears. This sample size precludes calculation of 10™ and 90™ percentiles and

only allows for analysis of 25™ and 75" percentiles.

Figure 8. Percentiles for birth time point. The “Pass” area represents the difference

between the 10™ percentile for failing ears and minimum value for passing ears. The

“Fail” area represents the difference between the maximum value and the 90"

percentile for passing ears. The “Ambiguous” area represents the difference between

the 90™ percentile for passing ears and the 10™ percentile for failing ears.
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Figure 9. Percentiles for one-week time point as described in Figure 8.
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Figure 10. Percentiles for four-weeks time point as described

43

in Figure 8.
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Figure 11. Percentiles for eight-weeks time point as described in Figure 8.
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Figure 12. Percentiles for twelve-weeks time point. The “Pass” area represents the
difference between the 25" percentile for failing ears and minimum value for passing
ears. The “Fail” area represents the difference between the maximum value for failing
ears and the 90™ percentile for passing ears. The “Ambiguous” area represents the
difference between the 90™ percentile for passing ears and the 25™ percentile for failing

ears.
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The sensitivity of a test, the degree to which the test is able to predict a true
positive outcome, is generally at odds with the specificity of a test, the ability of a test to
correctly reject false positive outcomes, but the degree to which this is true differs with

each test. The best tests are those which have maximum sensitivity and specificity.
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Receiver operating characteristic (ROC) curves are plots of the proportion of true
positive outcomes (hits), which relate to sensitivity, and to false positive outcomes (false
alarms), which relate to specificity. The higher the true positive proportion and the lower
the false positive proportion, the better the predictive ability of the test. A value that can
characterize these two components is the area under the curve (AUC). Literally, the
AUC is the portion of a unit of 1 that exists under the ROC curve. In general, the higher
the AUC value, the better the predictive value of the test.

ROC curves are generated from the distributions of values from two populations.
In this case, the two groups are DP passes and DP refers. The values that make up the
distributions are WBR outcomes. The distributions for these two groups will overlap to
some extent. These distributions are available for each WBR frequency measured. So
for each frequency, there will be differing degree of overlap of the distributions. The
greater the separation of the WBR distributions for DP pass and DP refer groups, the
greater the ability to predict DP outcome with a given WBR measure. ROC values range
from O to 1 and the higher the value, the more the reflectance measure accurately
predicts DPOAE outcomes.

Receiver operating characteristic (ROC) curves were generated via IBM SPSS
Statistics Version 20 (IBM Corp.) from the distributions of WBR values from the current
time point DPOAE pass and DPOAE fail groups. Data are shown in Table 6. In this
table, as well as Table 7, ROC values were calculated for each frequency used for
reflectance testing. In this way, the frequency which is best predictive of DPOAE
outcomes can be ascertained. This information can help direct the audiologist’s

attention toward frequencies that are most important for interpretation of clinical data. In
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Table 6, this information is displayed for each time point tested. For example, the ROC
value of .787 at 1000 Hz at birth provides a metric for how well the 1000 Hz reflectance

values found at birth accurately predict DPOAE outcomes at birth.

Table 6. ROC values based on DPOAE pass and DPOAE fail outcomes for WBR values

at time points following birth.

Frequency Birth 1 week 4 weeks 8 weeks 12 weeks
1000 787 .584 .618 .635 576
1500 .832 737 444 .708 .525
2000 .807 .806 .335 .703 .615
3000 .808 726 .581 .669 927
4000 702 .668 .646 .631 .836
6000 .663 .652 .616 .616 .760

Wideband Reflectance and Future DPOAE Outcomes

Receiver operating characteristic (ROC) curves were generated via IBM SPSS
Statistics Version 20 (IBM Corp.) from the distributions of WBR values from an earlier
time point to the DPOAE outcomes of a later time point. Data are shown in Table 7. In
Table 7, this information is displayed for the reflectance data from one time point and
the DPOAE outcomes at a later time point. For example, the ROC value of .574 at 1000
Hz at “birth — 1 week” provides a metric for how well the 1000 Hz reflectance values

found at birth accurately predict DPOAE outcomes at one week.
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Table 7. ROC values based on DPOAE pass and DPOAE fail reflectance distributions
for WBR frequencies. Each time point compares the current or final DPOAE outcome to

a previous time point WBR.

Freq Birth — | Birth — | Birth — | Birth — | 1wk — | 1wk - |1wk—- |4wks — | 4wks — | 8wks —
1wk 4 wks 8 wks 12 wks | 4 wks 8 wks 12 wks | 8 wks 12 wks | 12 wks
1000 | .574 719 .634 .692 .565 .611 478 456 461 .263
1500 | .618 .686 .616 .692 .634 742 .828 459 .393 .349
2000 | .596 611 611 .708 .620 .683 .903 .395 .230 418
3000 | .594 .625 .676 784 516 .681 .943 494 511 577
4000 | .563 .656 .696 770 499 .676 .940 496 .508 .686
6000 | .537 .621 .598 .760 487 .536 .639 .385 518 .820

The percentiles for the WBR to future time point are displayed as function of
frequency in Figures 13-16. In the figures, differences between the 10" percentile for
failing ears and minimum values for passing ears represent an area of WBR that
correlated with a passing outcome on a future DPOAE screening. Differences between
maximum values for failing ears and 90™ percentile for passing ears represent an area
of WBR that correlated with failing outcome on a future DPOAE screening. Differences
between the 90" percentile of passing ears and the 10" percentile of failing ears
represent an area of ambiguity, where WBR values were similar among passing and
failing ears. For the twelve week time point predictions, 25" and 75™ percentiles were
calculated instead of 10™ and 90™ percentiles. This is because only four ears were
available for analysis in the group of “failing” ears. This sample size precludes
calculation of 10™ and 90™ percentiles and only allows for analysis of 25" and 75"

percentiles.
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Figure 13. Percentiles for the birth time point WBR values compared to future DPOAE

pass or fail.
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Figure 14. Percentiles for the one-week time point WBR values compared to future

DPOAE pass or fail.
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Figure 15. Percentiles for the four-weeks time point WBR values compared to future

DPOAE pass or fail.
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Figure 16. Percentiles for the eight-weeks time point WBR values compared to future

DPOAE pass or fail.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

The results of this study provide evidence to address the research questions as
follows.

Do patient factors at birth, including birth weight , head circumference, and
gender correlate with initial DPOAE screening outco mes?

Gender was not a factor in initial DPOAE screening outcomes in this study.
Previous work (Gordts, et al, 2000) has demonstrated that DPOAEs are larger in female
than in male infants, but such differences, if present, are likely to be too small to be
observed when utilizing a screening level for evaluation. Interestingly, infant gender did
appear to be a factor in the willingness of parents to enroll subjects into the study and
the recruited group was ultimately skewed toward females. Given that only about half of
infants born are female, it is unknown why more parents of females chose to participate
than parents of male infants.

Birth weight and head circumference were not significantly different for passing
and failing groups in this study. Infants in intensive care nurseries have previously been
shown to have poorer otoacoustic emission outcomes than the regular care population
(Chiong et al, 2003), and because such infants tend, as a group, to be smaller than
infants in the regular care population, it could be hypothesized that size differences
could affect DPOAE outcomes. However, other correlated factors can account for these

differences, such as gestational age and other health factors, and in this study the
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relationship between infants size, as measured by birth weight and head circumference,
was unrelated to DPOAE screening outcomes.
What is the longitudinal time course of DPOAE outco mes in infants?

As expected, the rates of DPOAE passes increased over the time course of the
study. Also, the rate of ears that failed following some previous pass increased at each
time point, with the exception of week twelve in which no new failing ears were
generated. The greatest increase in passing ears was seen within the period between
birth and one week (an additional 21 ears), but with a change in six ears from a passing
to a failing outcome. There is also a reasonably large increase between one and four
weeks of age (an additional 12 ears) but with only two additional ears failing that had
passed at some previous time point. This improvement in passing outcome would
suggest that beyond birth, four weeks is preferable to one week for retesting. Eight
weeks of age does not appear to provide much additional advantage over four weeks of
age in that there were only two additional passing ears and one additional new fail.

The twelve week time point clearly provided the most efficient time point in this
study. By this time, 96% of ears had passed, with no new referrals occurring. It is
surprising, however, that there were no new referrals when the rate of referrals had
been steadily increasing from birth. It is possible that there may be ear canal
maturational effects that caused referrals throughout the first three months of life that
were resolved by the twelve week time point. Another possibility is that there were
seasonal effects that contributed to referrals occurring at early time points than the final
measurement, as most interim measures were taken during winter months, while the

final time point measurements primarily occurred in the spring. Perhaps otitis media
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occurred during the interim time points and had resolved by the final time point when
incidence of otitis media would naturally begin to wane. Of course, a simple anomalous
situation cannot be ruled out either. If the pattern of results were unrelated to situational
factors and were rather related to maturational factors, then the twelve week time point
would represent the most efficient opportunity for re-evaluation for infants who fail on
testing. If the pattern were due to situational factors, such as seasonal otologic issues,
waiting until the twelve week time point could potentially result in higher rates of new
referrals, diminishing the positive effect of waiting.

Another potential concern is that of loss to follow up for infants who fail. In this
study subject attrition was limited to four infants, but this was likely due to considerable
effort on the part of the investigator to maintain subjects in the study by conducting
testing in the homes of patients. The nationwide average for follow-up before three
months of age is a mere 46% in real-world clinical situations (Centers for Disease
Control, 2007). It is unknown whether waiting a longer period of time, such as twelve
weeks versus four, might contribute to increases in loss to follow up. An answer to this
guestion requires future study.

What is the longitudinal time course of WBR outcome s in infants?

Post-hoc analysis demonstrated interesting development changes in WBR over
the first twelve weeks following birth. Figure 3 shows that in infants who pass DPOAE
screenings, lower-frequency reflectance values (1000 — 2000 Hz and especially 1500
Hz) decrease systematically following birth, while the higher frequency reflectance
values are stable. This clearly suggests an early developmental trend in normal infants

which has not been previously shown in the literature.
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In ears that failed the DPOAE screening (Figures 4 and 5), there is a trend
toward higher reflectance values in the highest frequencies, relative to the passing ears.
This trend can be seen more clearly in Figures 6 and 7, (more pronounced in Figure 7)
which show the difference between reflectance scores for failing and passing ears as a
function of frequency and time point tested. There is an “S-shaped” trend that is present
in both figures that indicates low reflectance for the 1500 - 2000 Hz range and higher
reflectance for the 3000 — 4000 Hz range than the trends for passing ears. The
mechanism underlying the inability to record DPOAESs in these ears appears to have its
impact on both the mass (high-frequency) and stiffness (low-frequency, 1000 Hz) of the
middle ear and ear canal systems. There are numerous developmental factors that
occur in the ear canal and middle ear following birth that can help to explain the
developmental changes in the passing ears. Among the many factors that can help to
explain the mass and stiffness effects apparent in the failing ears, fluid in the middle ear
space has the potential to generate these forces.

What frequencies on wideband reflectance testing ar e best predictive of DPOAE
testing outcomes at different ages and later time p  oints?

ROC calculations demonstrate that the WBR frequencies with the highest
predictive level of DPOAE outcomes were 1500 Hz at birth, 2000 Hz at one week, 4000
Hz at four weeks, 1500 Hz at eight weeks, and 3000 Hz at twelve weeks. Overall and
not surprisingly, the ROC values were smaller for the relationship of WBR measures to
future DPOAE outcomes (Table 7) than they were for current DPOAE outcomes (Table

6). Interpretation of these values will be discussed further in the section on clinical utility.
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A challenge inherent in the design of this study is that there is a smaller subject
pool of failing ears at each additional time point to evaluate the relationship of WBR to
DPOAE outcome, dropping from 54 ears at birth to 29 at one week, 16 at four weeks,
14 at eight weeks, and only 4 at twelve weeks. As such, the data must be interpreted
cautiously and with the knowledge that a small subject pool cannot be assumed to be
representative of population data.

It is beyond the scope of this study to determine the primary mechanisms
responsible for changes in the frequencies that are characteristically useful in the infant
ear canal, but some possibilities include developmental changes in the resonance
characteristics of the ear canal related to size and outer and middle ear structures. Due
the mechanics involved in various dysfunctions in the outer or middle ear, there would
presumably be different patterns of energy transfer into the middle ear space,
depending on the dysfunction. These differences would manifest as different
frequencies having characteristic outcomes that are representative of the type of
dysfunction. Because WBR measurements are made in the ear canal, it is presumed
that, like tympanometry, this frequency-specificity would reflect the most peripheral level
of dysfunction.

Clinical Utility

To help interpret the data found herein, it is important to consider the diagnostic
guestions facing the clinician. If an infant has failed a DPOAE hearing screening at birth,
the following questions would be of interest to the clinician:

1. Is there heightened suspicion for sensorineural hearing loss?

2. Is there concern that a conductive component will be persistent?
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3. When should the infant be re-tested?

To understand how the data presented here can inform this question, consider the
percentiles for measurements taken at birth (shown again in Figure 17). In these
scenarios, assume that the audiologist has obtained DPOAE and WBR data.

Scenario A: Imagine that the infant failed the DPOAE screening and had (for the
sake of simplicity) WBR values of 35 across all frequencies. The WBR values for 1000 —
3000 Hz fall within the “pass” area of the percentiles, while those values for and 6000
Hz fall within the “ambiguous” area. (In this case 4000 Hz would be below the minimum
values recorded in this population. Again, this value was chosen only for convenience of
display). If we only had access to WBR data for 2000, 4000 or 6000 Hz, this information
would not be helpful in answering whether there is heightened suspicion for
sensorineural hearing loss because there is no clear “pass” area for these frequencies.
However, the data for the 1000 — 3000 Hz range suggests that the infant does not have
a conductive component. In the face of a failed DPOAE screening, the clinician should
have heightened concern for sensorineural hearing loss, little to no concern for

persistent conductive loss, and should recommend re-testing in the immediate future.
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Figure 17. Percentiles for WBR values at the birth time point for DPOAE pass or falil

outcomes. Various scenarios of WBR outcomes are highlighted for descriptive

purposes.
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Scenario B: Imagine that the infant failed the DPOAE screening and (for the sake
of simplicity) had WBR values of 85 across all frequencies. In the case of the second
clinical question, WBR values fall within the “fail” area at all frequencies except 4000
Hz. This is consistent with a conductive dysfunction of some type. Note that this does
not rule out the possibility of sensorineural hearing loss, which can co-exist with

conductive loss. So, in answer to the first clinical question, we do not have heightened
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concern for sensorineural hearing loss; just that which is typical for any other infant who
fails a screening. We do expect that the infant has conductive hearing loss, but we do
not know whether this is expected to be persistent.

The question of persistence, whether a conductive component is likely to resolve
independently, or may require medical treatment, is important for the purpose of
planning the assessment process for the patient. If the conductive component is likely to
be persistent, it may be of interest to refer the infant for medical follow up at an earlier
age, rather than waiting several months and repeatedly testing the infant to see if it will
resolve on its own. On the other hand, if the conductive component is likely to resolve
independently, it would be helpful to anticipate this and to know when resolution is likely
to occur. To assist in answering the third clinical question of when the infant should be
re-evaluated, we would examine the value of WBR in predicting future outcomes. Figure
18 shows the figure that depicts the WBR values at birth as a tool for predicting DPOAE
outcomes at twelve weeks. The reflectance values at birth for Scenario B, 85, are

plotted for reference.



60

Figure 18. Percentiles for WBR values at the birth time point for predicting DPOAE pass
or fail outcomes at twelve weeks. The scenario of WBR outcomes is highlighted for

descriptive purposes.
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It can be seen that in this case WBR values are not a useful predictor for whether
the conductive component will persist to twelve weeks because the reflectance values
found at birth fall within the “ambiguous” area of the graph, meaning that the values for
passing and failing ears overlap. Indeed, there is almost no clear “fail” area on the
graph. (However, if the values were at 35, as in the previous scenario, the predictive

utility would be greatly heightened because there is a clear “pass” area to be seen).
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The ROC calculations in Tables 6 and 7 provide a value that captures the overall
relationship between WBR measures and DPOAE outcomes. The reader will recall that
ROC values to be lower for future predictions than for concurrent predictions. The
functional consequences of this can be seen in these scenarios. When looking at the
birth time point Percentiles (concurrent predictions), there are distinct regions of pass,
fail, and ambiguous outcomes. The audiologist could use this information in a
meaningful way to guide clinical decision making. However, in the birth to twelve week
Percentiles (future predictions), the area of ambiguity is much larger and there is no
region that clearly predicts fail outcomes. This is of much less utility to the audiologist
because there is no more useful information that can be gleaned from these data to
assist in decision-making. Overall, ,the utility of the predictive value that is represented
by the calculated ROC values does not depend on the particular ROC value per se.
This value is merely descriptive. Rather the utility depends on the clinical question
which is being asked and whether the confidence-interval data can provide information
to assist in the decision-making process. The audiologist must use the information
accordingly.

Scenario C: Imagine that the infant failed the DPOAE screening and (for the sake
of simplicity) WBR values of 55 were found across all frequencies (Figure 17). In this
case the reflectance data is of no value because the these values fall within the area of
ambiguity where there is complete overlap of values that occur for passing and failing
ears. In this case, the longitudinal DPOAE outcome data will be most helpful in

informing the clinician’s next recommendation of when the infant should be re-tested.
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Longitudinal assessment demonstrated that referral on DPOAE screening
declined with each additional time point, even though the rate of referral following an
earlier passing outcome increased at each time point, with the exception of the final
time point. Based on these data, twelve weeks would be optimal time for re-evaluation
of infants who fail at birth. However, in the clinical population, it is unknown whether
waiting this amount of time would be detrimental to the rate at which patients received
follow up care. Furthermore, an infant who is found to fail at twelve weeks of age would
then require further diagnostic follow up, including auditory brainstem response
evaluation. While DPOAE measures can reasonably be performed in infants who are
awake, ABR evaluation cannot, and waiting until twelve weeks of age for this possibility
may be inadvisable as infants at three months of age do not spend as much time in
natural sleep as younger infants. Therefore, the next best recommendation would be to
re-screen at four weeks following birth. This would yield the greatest improvement in
passes without substantial new referrals. An additional advantage is that re-screening at
four weeks would fall within the JCIH guidelines, which are based on theoretically ideal
timelines for speech and language development. The JCIH guidelines are for re-
screening by one month, and identification and quantification of hearing loss (which
requires further audiologic evaluation) by three months of age. Due to these factors, it
would likely be in the best interest of the clinician to recommend re-testing at four weeks
of age.

Study Limitations
The intensive nature of data collection for this study necessarily limited sample

size, which contributed to limitations of the study. As subjects had a natural resolution of
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conductive hearing loss over time there was a progressively smaller sample size
available for understanding the wideband reflectance results of failing ears. This small
sample size compromises the ability to generalize study results for the latest time
points, particularly eight and twelve weeks of age. In addition, those infants who did
continue to have conductive hearing loss at the later stages may have had a
fundamentally different mechanism underlying the conductive disorders than those who
resolved spontaneously at earlier time points. A larger sample size would have allowed
for more infants to be examined with conductive hearing loss at the latest time points. A
larger sample size might also allow for effects of race and ethnicity to be evaluated. It is
the author’s opinion that a useful sample size, while not impossible, will be ambitious to
achieve. The JCIH recommended referral rate is 4%. However, institutions such as
where these data were collected have a much higher referral rate; closer to 15%. If a
realistic referral rate of around 10% is assumed, there would be a need for ten infants to
be tested for one to refer. Further, the author estimates that approximately 90% of the
population asked to participate in the study either declined or were ineligible for some
reason. Following the inclusion criteria for this study and in a population similar to this, it
is estimated then that about one infant out of 100 will refer on initial screening, will be
eligible to participate, and will have caregivers willing to participate. In this study, of
those infants who fail the screening, 96% of ears resolved, leaving only 4% that did not.
Based on these data, if we were to desire to have a sample size of 50 ears that did not
resolve by twelve weeks of age, for the purpose of characterizing wideband reflectance
results in a sample of ears that is resistant to spontaneous recovery of TCHL, a

population size of approximately 122,500 infants would be required for the study.



64

The home-based evaluation of infants was deemed necessary to secure the
ongoing participation of subjects in the study. However, this method limited the type of
data collected. Because data was collected in the home by a single investigator, there
was no ability to evaluate otoscopic status of infants during testing. Even if the
investigator was adequately trained to perform such evaluations, there would be no
corroboration of this subjective assessment by another rater.

Another limitation of the study was the inability to ascertain the underlying cause
of the apparent conductive hearing losses in these infants. Other assessment beyond
otoscopic examination, such as tympanocentesis could provide important information to
understand the mechanisms underlying the results that were used to infer conductive
hearing loss. Unfortunately, this type of procedure has some potential for harm and
could not be ethically performed in infants who do not require such a procedure for
treatment purposes.

Future Directions

This study provided useful information regarding the natural course of temporary
conductive hearing loss in infants. However, prior to providing recommendations based
upon such findings, it is important to understand potential unintended consequences of
suggesting that parents wait for a particular period of time prior to having infants re-
evaluated. It is known that while nearly all infants are screened for hearing at birth,
approximately half of all infants are lost to follow-up for re-evaluation. One important
piece of information to know is whether the duration of time between initial screening
and outpatient rescreening would contribute to loss to follow up. If waiting a particular

period of time for re-evaluation results in an increase in loss to follow up, then the
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savings of resources that would be achieved by waiting may not be worth the cost of
losing infants who require re-evaluation.

Another important question of interest is whether reflectance measures
performed in conjunction with universal newborn hearing screening protocols could, in
fact, improve the age of identification of sensorineural hearing loss in infants. A
prospective study, using data such as these as normative values for passing and
referring groups would allow determination of whether reflectance should be used as an
adjunct measure in screening protocols.

In this study, the time points selected for examination were largely arbitrary.
Future studies which examine more discrete time points, particularly in the first few days
following birth might be useful in further refining the screening process.

Lastly, the vast majority of infants who failed the screening in this sample and
were assumed to have TCHL passed their AABR screening. Only five ears failed this
screening. It is important to understand the natural resolution of TCHL in infants
screened with DPOAESs because this technology is widely used in various regions of the
world as the primary newborn hearing screening mechanism. However, in much of the
United States, AABR is the method of choice for newborn hearing screening. While the
“failing” group of infants in this study was presumed to have TCHL, the vast majority of
these infants would have “passed” the typical AABR screening protocol. This is because
of the different mechanisms underlying measurement using these systems and the
impact of conductive dysfunction on the outcomes. For AABR screening, conductive
hearing loss attenuates the intensity of the stimulus signal which can potentially result in

a failure on screening. For DPOAE screening, conductive dysfunction can attenuate the
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intensity of the stimulus but, more importantly, attenuates the “backward” traveling OAE
signal. The attenuation of the evoked emission nearly always results in a failure on
screening because the signal is too low in intensity to be measured in the ear canal.
The difference that the conductive mechanism has upon these test outcomes can be
seen in this population, wherein 49 of the 54 ears that failed the DPOAE screening had
passed the AABR screening. The degree of conductive dysfunction, which results in a
pass on AABR and a failure on DPOAE screening, is likely mild, and it is this degree of
dysfunction which is primarily represented in this study. An outcome of failure on AABR
and DPOAE screenings (in the face of confirmed normal sensorineural reserve),
suggests a more severe degree of conductive dysfunction. The differences in degree of
dysfunction could potentially be caused by fundamentally different mechanisms.
Therefore, a replication of this study in infants who fail on both AABR and DPOAE
screenings should be performed to investigate this possibility.
Summary

Universal newborn infant hearing screening has been an unmitigated success at
reducing the age of identification of hearing loss in children and the age of intervention.
There is, however, room for improvement, particularly in the area of follow-up
evaluation. Knowledge obtained from longitudinal examination of the development of
normal and abnormal function in infants can be useful in refining screening and follow-
up protocols.

These data have demonstrated no differences in the gender, birth weight, or
head circumference of ears that pass or fail on initial screenings using DPOAESs in a

normal and diverse clinical population.
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Reflectance data demonstrated developmental trends in normal passing ears
and trends in failing ears that are consistent with a conductive etiology. WBR may be
utilized as means to predict DPOAE screening outcomes, but the usefulness of this
measure can only be interpreted in light of the clinical answer that is sought.

DPOAE longitudinal data suggests that re-evaluation at either four or twelve
weeks would be optimal due to high rates of infants who pass, without a substantial
number of new cases of fails. The decision to re-test at four or twelve weeks may
ultimately be based on psychosocial factors that impact rate of follow-up, rather than
physical outcomes per se. However, until clinical evidence is accumulated to provide
guidance, it is the opinion of the investigator that: 1) if there is heightened concern for
sensorineural hearing loss based on WBR outcomes, audiologic evaluation should
occur as soon as possible, to characterize degree and type of hearing loss; 2) if WBR
data at a particular time point predicts that a conductive loss is likely to be persistent,
the clinician should make a medical referral and defer re-evaluation until after medical
evaluation (but preferably before twelve weeks of age); and 3) if WBR provides
ambiguous information regarding either of the aforementioned concerns, the clinician

should re-evaluate at around four weeks of age.
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APPENDIX

CAREGIVER INTERVIEW TO DETERMINE STUDY CANDIDACY

1. Is there anybody in your family who has or has had hearing loss at a young age?
2. Has your baby spent any time in the neonatal intensive care unit?
3. Did you have any infections during your pregnancy?

4. Does your baby have any health issues that you are aware of?



69

REFERENCES

Abdala, C., and Keefe, D. H. (2006). Effects of middle-ear immaturity on distortion
product otoacoustic emission suppression tuning in infant ears. Journal of the
Acoustical Society of America, 120(6), 3832-3842.

Balkany, T. J., Berman, S. A., Simmons, M. A., and Jafek, B. W. (1978). Middle ear
effusions in neonates. Laryngoscope, 88, 398-405.

Beers, A., Shahnaz, N., and Kozak, F. (2008). Wideband reflectance in normal school
aged children and in children with otitis media. The Bulletin of the American
Auditory Society, 33(1), 31.

Brookhouser, P. E., Worthington, D. W., and Kelly, W. J. (1993). Middle ear disease in
young children with sensorineural hearing loss. Laryngoscope, 103, 371-378.

Cavanaugh, R. M. (1987). Pneumatic otoscopy in healthy full-term infants. Pediatrics,
79(4), 520-523.

Chang, K. W., Vohr, B. R., Norton, S. J., and Lekas, M. D. (1993). External and middle
ear status related to evoked otoacoustic emission in neonates. Archives of
Otolaryngology - Head and Neck Surgery, 119, 276-282.

Chiong, C. M., DvLlanes, E. G., Tirona-Reumulla, A. N., Calcaguian, C. M., and Reyes-
Quintos, M. R. (2003). Neonatal hearing screening in a neonatal intensive care
unit using distortion-product otoacoustic emissions. Acta Otolaryngologica,
123(2), 215-218.

Centers for Disease Control (2007). Summary of 2007 National CDC EHDI Data



70

Version 2. Retrieved June 19, 2010 from http://www.cdc.gov/ncbddd/ehdi/2007-
data/2007_EHDI_HSFS_Summary_Ver2.pdf

Dalzell, L., Orlando, M., MacDonald, M., Berg, A., Bradley, M., Cacace, A., Campbell,
D., DeCristofaro, J., Gravel, J., Greenberg, E., Gross, S., Pinheiro, J., Regan, J.,
Spivak, L., Stevens, F., and Prieve, B. (2000). The New York State Universal
Newborn Hearing Screening Demonstration Project: Ages of hearing loss
identification, hearing aid fitting, and enrollment in early intervention. Ear and
Hearing, 21(2), 118-130.

Decker, T. N., and Carrell, T. D. (2004). Instrumentation: An Introduction for Students in
the Speech and Hearing Sciences. 3™ ed. New Jersey: Lawrence Erlbaum
Associates, Inc.

deSa, D. J. (1973). Infection and amniotic aspiration of middle ear in stillbirths and
neonatal deaths. Archives of Disease in Childhood, 48, 872-880.

deSa, D. J. (1977). Polypoidal organization of aspirated amniotic squamous debris
(amnion nodosum) in middle-ear cavity of newborn infants. Archives of Disease
in Childhood, 52, 148-151.

deSa, D. J. (1983). Mucosal metaplasia and chronic inflammation in the middle ear of
infants receiving intensive care in the neonatal period. Archives of Disease in
Childhood, 58, 24-28.

Doyle, K. J., Burggraaff, B., Fujikawa, S., Kim, J., and MacArthur, C. J. (1997). Neonatal
hearing screening with otoscopy, auditory brain stem response, and otoacoustic
emissions. Otolaryngology - Head and Neck Surgery, 116(6), 597-603.

Durieux-Smith, A., Fitzpatrick, E., and Whittingham, J. (2008). Universal newborn



71

hearing screening: A question of evidence. International Journal of Audiology, 47,
1-10.

Ellison, J. C., and Keefe, D. H. (2005). Audiometric predictions using stimulus-frequency
otoacoustic emissions and middle ear measurements. Ear and Hearing, 26(5),
487-503.

Feeney, M. P., Grant, I. L., and Marryott, L. P. (2003). Wideband energy reflectance
measurements in adults with middle-ear disorders. Journal of Speech Language
and Hearing Research, 46(4), 901-911.

Feeney, M. P., Grant, |. L., and Mills, D. M. (2009). Wideband energy reflectance
measurements of ossicular chain discontinuity and repair in human temporal
bone. Ear and Hearing, 30(4), 391-400.

Gordts, F., Naessens, B., Mudde, C. A., and Clements, P. A. (2000). Reference data for
DPOAE in healthy newborns. Scandinavian Audiology, 29(2), 79-82.

Gorga, M. P., Norton, S. J., Sininger, Y. S., Cone-Wesson, B., Folsom, R. C., Vohr, B.
R., Widen, J. E., and Neely, S. T. (2000). Identification of neonatal hearing
impairment: Distortion product otoacoustic emissions during the perinatal period.
Ear and Hearing, 21(5), 400-424.

Groothuis, J. R., Sell, S. H., Wright, P. F., Thompson, J. M., and Altemeier, W. A.
(1979). Otitis media in infancy: Tympanometric findings. Pediatrics, 63(3), 435-
442.

Hall, J. W., and Swanepoel, D. (2010). Objective Assessment of Hearing. San Diego:
Plural Publishing, Inc.

Halpin, K. S., Smith, K. Y., Widen, J. E., and Chertoff, M. E. (2010). Effects of universal



72

newborn hearing screening on an early intervention program for children with
hearing loss, birth to 3 yr of age. Journal of the American Academy of Audiology,
21, 169-175.

Hanley, J. A., and McNeil, B. J. (1982). The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.

Hemsath, F. A. (1936). Intra-uterine and neonatal otitis: A student of seven cases
include a case of otitic meningitis. Archives of Otolaryngology, 78-92.

Hunter, L. L., Bagger-Sjobéack, D., and Lundberg, M. (2008). Wideband reflectance
associated with otitis media in infants and children with cleft palate. International
Journal of Audiology, 47(Suppl 1), S57-S61).

Hunter, L. L., Feeney, M. P., Lapsley Miller, J. A., Jeng, P. S., and Bohning, S. (2010).
Wideband reflectance in newborns: Normative regions and relationship to
hearing-screening results. Ear and Hearing, 31(5), 599-610.

Hunter, L. L., Tubaugh, L., Jackson, A., and Propes, S. (2008). Wideband middle ear
power measurement in infants and children. Journal of the American Academy of
Audiology, 19, 309-324.

Jaffe, B. F., Hurtado, F., and Hurtado, E. (1970). Tympanic membrane mobility in the
newborn (with seven months' follow-up). Laryngoscope, 80(1), 36-48.

Joint Committee on Infant Hearing (2007). Year 2007 position statement: Principle and
guidelines for Early Hearing Detection and Intervention programs. Pediatrics,
120(4), 898-921.

Kaf, W. A. (2011). Wideband energy reflectance findings in presence of normal



73

tympanogram in children with Down’s syndrome. International Journal of
Pediatric Otorhinolaryngology, 75(2), 219-226.

Keefe, D. H., Bulen, J. C., Arehart, K. H., and Burns, E. M. (1993). Ear canal impedance
and reflection coefficient in human infants and adults. Journal of the Acoustical
Society of America, 94, 2617-2638.

Keefe, D. H., Fitzpatrick, D., Liu, Y. W., Sanford, C. A., and Gorga, M. P. (2010).
Wideband acoustic-reflex test in a test battery to predict middle-ear dysfunction.
Hearing Research, 263(1-2) Epub ahead of print, September 20, 2009.

Keefe, D. H., Folsom, R. C., Gorga, M. P., Vohr, B. R., Bulen, J. C., and Norton, S. J.
(2000). Identification of neonatal hearing impairment: Ear-canal measurements of
acoustic admittance and reflectance in neonates. Ear and Hearing, 21(5), 443-
461.

Keefe, D. H., Gorga, M. P., Neely, S. T., and Zhao, F. (2003). Ear-canal acoustic
admittance and reflectance measurements in human neonates. Il. Predictions of
middle-ear dysfunction and sensorineural hearing loss. Journal of the Acoustical
Society of America, 113(1), 407-422.

Keefe, D. H., and Levi, E. (1996). Maturation of the middle and external ears: Acoustic
power-based responses and reflectance tympanometry. Ear and Hearing, 17(5),
361-373.

Keefe, D. H., and Simmons, J. L. (2003). Energy transmittance predicts conductive
hearing loss in older children and adults. Journal of the Acoustical Society of
America, 111(6 Pt 1), 3217-3238.

Keefe, D. H., Zhao, F., Neely, S. T., Gorga, M. P., and Vohr, B. R. (2003). Ear-canal



74

acoustic admittance and reflectance effects in human neonates. I. Predictions of
otoacoustic emission and auditory brainstem responses. Journal of the
Acoustical Society of America, 113(1), 389-406.

Keith, R. W. (1975). Middle ear function in neonates. Archives of Otolaryngology, 101,
376-379.

Kemp, D. T., and Ryan, S. (1991). Otoacoustic emission tests in heonatal screening
programmes. Acta Otolaryngologica (Stockholm), Supplement, 482, 73-84.
Kennedy, C. R., McCann, D. C., Campbell, M. J., Law, C. Mullee, M., Petrou, S., Wakin,
P., Worsfold, S., Yuen, H. M., and Stevenson, J. (2006). Language ability after
early detection of permanent childhood hearing impairment. The New England

Journal of Medicine, 354(20), 2131-2142.

Liu, H. and Li, G. (2005). Testing statistical significance of the area under a receiver
operating characteristics curve for repeated measures design with bootstrapping.
Journal of Data Science, 3, 257-278.

Marchant, C. D., Shurin, P. A., Turczyk, V., Wasikowski, D. E., Tutibasi, M. A., Kinney,
S. E. (1984). Course and outcome of otitis media in early infancy: A prospective
study. Journal of Pediatrics, 104(6), 826-831.

McLellan, M. S., and Webb, C. H. (1959). Ear studies in the newborn infant. Journal of
Pediatrics, 51, 672-677.

McLellan, M. S., and Webb, C. H. (1961). Ear studies in the newborn infant Il. Age of
spontaneous visibility of the auditory canal and tympanic membrane, and the
appearance of these structures in healthy newborn infants. Journal of Pediatrics,

58(4), 523-527.



75

McNellis, E. L., and Klein, A. J. (1997). Pass/fail rates for repeated click-evoked
otoacoustic emission and auditory brainstem stem response screenings in
newborns. Otolaryngology - Head and Neck Surgery, 116(4), 431-437.

Merchant, G. R., Horton, N. J., and Voss, S. E. (2010). Normative reflectance and
transmittance measurements on healthy newborn and 1-month-old infants. Ear
and Hearing, 31(6), 746-754.

Moeller, M. P. (2000). Early intervention and language development in children who are
deaf and hard of hearing. Pediatrics, 106(3), e43.

Norton, S. J., Gorga, M. P., Widen, J. E., Folsom, R. C., Sininger, Y., Cone-Wesson, B.,
Vohr, B. R., Mascher, K., and Fletcher, K. (2000). Identification of neonatal
hearing impairment: Evaluation of transient evoked otoacoustic emission,
distortion product otoacoustic emission, and auditory brainstem response
performance. Ear and Hearing, 21(5), 508-528.

Norton, S. J., Gorga, M. P., Widen, J. E., Vohr, B. R., Folsom, R. C., Sininger, Y. S.,
Cone-Wesson, B., and Fletcher, K. A. (2000). Identification of neonatal hearing
impairment: Transient evoked otoacoustic emissions during the perinatal period.
Ear and Hearing, 21(5), 425-442.

Paradise, J. L., Smith, C. G., and Bluestone, C. D. (1976). Tympanometric detection of
middle ear effusion in infants and young children. Pediatrics, 58, 198-210.
Pestalozza, G., and Cusmano, G. (1980). Evaluation of tympanometry in diagnosis and
treatment of otitis media of the newborn and of the infant. International Journal of

Pediatric Otorhinolaryngology, 2, 73-82.

Piza, J., Gonzalez, M., Northrop, C. C., and Eavey, R. D. (1989). Meconium



76

contamination of the neonatal middle ear. Journal of Pediatrics, 115(6), 910-914.

Prieve, B. A., Hancur-Bucci, C. A., and Preston, J. L. (2009). Changes in transient-
evoked otoacoustic emissions in the first month of life. Ear and Hearing, 30(3),
330-339.

Roberts, D. G., Johnson, C. E., Carlin, S. A, Turczyk, V., Karnuta, M. A., and Yaffee, K.
(1995). Resolution of middle ear effusion in newborns. Archives of Pediatrics and
Adolescent Medicine, 149(8), 873-877.

Sanford, C. A., and Feeney, M. P. (2008). Effects of maturation on tympanometric
wideband acoustic transfer functions in human infants. Journal of the Acoustical
Society of America, 124(4), 2106-2122.

Sanford, C. A., Keefe, D. H., Liu, Y. W., Fitzpatrick, D., McCreery, R. W., Lewis, D. E.,
and Gorga, M. P. (2009). Sound-conduction effects on distortion-product
otoacoustic emission screening outcomes in newborn infants: Test performance
of wideband acoustic transfer functions and 1-kHz tympanometry. Ear and
Hearing, 30(6), 635-652.

Schwartz, D. M., and Schwartz, R. H. (1980). Tympanometric findings in young infants
with middle ear effusion: Some further investigations. International Journal of
Pediatric Otorhinolaryngology, 2, 67-72.

Shahnaz, N. (2008). Wideband reflectance in neonatal intensive care units. Journal of
the American Academy of Audiology, 19(5), 419-429.

Shahnaz, N. (2010). Review: Clinical application of wideband reflectance (WBR) in
infants, children and adults. Canadian Hearing Report, 5(2), 23-29.

Shahnaz, N., Bork, K., Polka, L.., Longridge, N., Bell, D., and Westerberg, B. D. (2009).



77

Energy reflectance and tympanometry in normal and otosclerotic ears. Ear and
Hearing, 2009, 30(2), 219-233.

Sininger, Y. S., Martinez, A., Eisenberg, L., Christensen, E., Grimes, A., and Hu, J.
(2009). Newborn hearing screening speeds diagnosis and access to intervention
by 20-25 months. Journal of the American Academy of Audiology, 20, 49-57.

Sipila, M., Pukander, J., and Karma, P. (1987). Incidence of acute otitis media up to the
age of 1 1/2 years in urban infants. Acta Otolaryngologica (Stockholm), 104, 138-
145.

Teele, D. W., Klein, J. O., and Rosner, B., and the Greater Boston Otitis Media Study
Group. (1989). Epidemiology of otitis media during the first seven years of life in
children in Greater Boston: A prospective, cohort study. Journal of Infectious
Diseases, 160(1), 83-93.

Teele, D. W., and Teele, J. (1984). Detection of middle ear effusion by acoustic
reflectometry. Journal of Pediatrics, 104(6), 832-838.

Vander Werff, K. R., Brown, C. J., Gienapp, B. A., and Schmidt Clay, K. M. (2002).
Comparison of the auditory steady-state response and auditory brainstem
response thresholds in children. Journal of the American Academy of Audiology,
13, 227-235.

Vander Werff, K. R., Prieve, B. A., and Georgantas, L. M. (2007). Test-retest reliability
of wideband reflectance measures in infants under screening and diagnostic test
conditions. Ear and Hearing, 28(5), 669-681.

Voss, S., Horton, N., Woodbury, R., Sheffield, K. N. (2008). Sources of variability in



78

reflectance measurements on normal cadaver ears. Ear and Hearing, 29, 651-
655.

Werner, L. A., Levi, E. C., and Keefe, D. H. (2010). Ear-canal wideband acoustic
transfer functions of adults and two- to nine-month-old infants. Ear and Hearing,
Epub ahead of print, May 28, 2010.

Yang, E. Y., Stuart, A. Mencher, G. T., Mencher, L. S., and Vincer, M. J. (1993).
Auditory brain stem responses to air- and bone-conducted clicks in the
audiological assessment of at-risk infants. Ear and Hearing, 14(3), 175-182.

Yoshinaga-Itano, C., Sedey, A. L., Coulter, D. K., and Mehl, A. L. (1998). Language of
early- and later-identified children with hearing loss. Pediatrics, 102(5), 1161-

1171.



79

ABSTRACT

LONGITUDINAL OUTCOMES OF DISTORTION PRODUCT OTOACOQOU STIC
EMISSIONS AND WIDEBAND REFLECTANCE IN INFANTS

by
VIRGINIA RAMACHANDRAN
December 2012

Co-Advisors: Dr. Jean E. Andruski and Dr. Kenneth R. Bouchard
Major: Communication Sciences and Disorders
Degree: Doctor of Philosophy

Clinical practice has shown that some infants are born with, or develop a
temporary conductive hearing loss characterized by the absence of measurable
otoacoustic emissions (OAESs) but normal sensorineural hearing. This transient situation
interferes with the process of universal newborn hearing screening and identification.

The purpose of this prospective, longitudinal study was to describe outcomes of
distortion product OAE (DPOAE) screening in infants at birth, and one, four, eight, and
twelve weeks of age. In addition, wideband reflectance (WBR) measures, which have
the potential to help characterize outer-ear canal and middle-ear function, were
examined to determine their potential utility in identifying DPOAE screening outcomes.

Beginning with a sample of 50% of ears that passed the initial DPOAE screening
at birth, results showed that passing outcomes rose over the course of time, at rates of
72.1%, 84.6%, 86.0%, and 96.0% at weeks one, four, eight, and twelve, respectively.
Rates of new fails — ears that had passed the screening at a previous time point — also
increased over time, with the exception of the last time point, at which no new failing

outcomes were seen. These data suggest that twelve weeks would be the most efficient
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time for re-evaluation of infants, and that four weeks would be an appropriate
alternative.

Percentiles of reflectance measures were calculated for DPOAE outcomes at
each time point. Reflectance outcomes were distributed such that fail and pass DPOAE
outcomes could be predicted from the highest and lowest values, with an area of
ambiguity in between. Receiver operating characteristic curves were calculated to
determine the reflectance frequencies that would provide the highest predictive value at
each time point. In addition, this method was used to determine how well WBR could be
used to predict DPOAE outcomes at future time points. The predictive value of WBR for
future DPOAE outcomes was poorer than concurrent prediction and likely has little
clinical utility at present. However, low WBR values in the face DPOAE screening
failures should cause concern for sensorineural hearing loss and can be used to

prioritize such infants for follow-up audiologic evaluation.
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