Monte Carlo Evaluation of Ordinal \(d \) with Improved Confidence Interval

Du Feng
Texas Tech University, du.feng@ttu.edu

Norman Cliff
University of Southern California

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the [Applied Statistics Commons](http://digitalcommons.wayne.edu/jmasm), [Social and Behavioral Sciences Commons](http://digitalcommons.wayne.edu/jmasm), and the [Statistical Theory Commons](http://digitalcommons.wayne.edu/jmasm)

Recommended Citation

DOI: 10.22237/jmasm/1099267560
Available at: http://digitalcommons.wayne.edu/jmasm/vol3/iss2/6

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.
Monte Carlo Evaluation of Ordinal d with Improved Confidence Interval

Du Feng
Texas Tech University

Norman Cliff (Emeritus)
University of Southern California

This article reports a Monte Carlo evaluation of ordinal statistic d with modified confidence intervals (CI) for location comparison of two independent groups under various conditions. Type I error rate, power, and coverage of CI of d were compared to those of the Welch's t-test.

Key words: d statistic, Welch’s t, computer simulation, Monte Carlo study

Introduction

One of the most commonly asked questions in social, behavioral, and biomedical research is concerned with whether scores from one group tend to be higher than those from the other (e.g., treatment effects). This type of location comparison questions (or two-sample problems) is usually answered by parametric tests such as Student’s t test or Welch’s t test, which requires interval level of measurement of the test variables. However, many behavioral and social variables have only ordinal justification (e.g., Likert-scaled data), thus, performing equivalence testing of two means can yield misleading results. Furthermore, Student’s t test is known to be not robust when the normality and/or homogeneity of variance assumptions are violated (e.g., Wilcox, 1990, 1991), as they often are in empirical studies (Micceri, 1989; Wilcox, 1996, p.135). Although Welch’s test was found to improve on t test under violations of these assumptions, ordinal methods are more appropriate, and can be more powerful, than the t tests for ordinal data.

Definition of d

Cliff (1993) introduced a dominance analysis summarized by the ordinal statistic d, which compares the proportion of times a score from one group or under one condition is higher than a score from the other, to the proportion of times when the reverse is true. The population analog of d is called δ (often written Δ). For random variables X_1 and X_2, $\delta = \Pr\{x_1 > x_2\} - \Pr\{x_1 < x_2\}$. It is equivalent to the form of Kendall’s τ called Somer’s d (Somer, 1968) when one variable is dichotomous. This measure was introduced and discussed by nonparametric statistics books for years (e.g., Agresti, 1984; Hettmansperger, 1984; Randles & Wolfe, 1979), and its application was emphasized and extended by Cliff (1991, 1993, 1996).

Advantages of the ordinal statistics over the classical ones have been suggested repeatedly, including their robustness and power under departure from normality or equal variance assumptions, being invariant under monotonic transformation, suitability for much behavioral data which can only be given ordinal-scale status, and their descriptive superiority (Caruso & Cliff, 1997; Cliff, 1993; Long, Feng, & Cliff, 2003). From its definition, we can see that δ is the effect size itself. It is more directly related to the research question often asked: whether scores in one group or under one condition tend to be higher than those in another, than is through some kind of comparison of means or medians. The sample d as defined is an unbiased estimate of δ.

Du Feng is an Associate Professor in the Department of Human Development and Family Studies, Box 41162, Lubbock, Texas 79409-1162. Email: du.feng@ttu.edu. Norman Cliff is a former president of the Psychometric Society, Society for Multivariate Experimental Psychology, and of Division 5 of the American Psychological Association. The authors wish to thank Dr. Rand Wilcox for his comments on an early draft of the manuscript.
where n_1 and n_2 are the sample sizes for x_i and x_j, respectively.

It was noted that δ is a simple transformation of a measure, $p = \Pr\{x_1 > x_2\}$, proposed by Birnbaum (1956): $p = (\delta + 1) / 2$, which is estimated by a “common language effect size statistic” (McGraw & Wong, 1992), when there is no ties between random scores from the two groups (Long, Feng, & Cliff, 2003). However, δ has advantages over p because it takes into account ties in the data (Long, Feng, & Cliff, 2003). Similarly, Vargha and Delaney (2000) proposed a generalization of the “common language effect size statistic” (CL) suggested by McGraw and Wong (1992), in order to take into account ties between the two groups scores. They called the generalization “A measure of stochastic superiority,” which was defined as $A = \Pr\{x_1 > x_2\} + .5 \Pr\{x_1 = x_2\}$. It was noted that A is simply a linear transformation of δ: $A = (\delta + 1)/2$ (Vargha & Delaney, 2000, p.104).

Inferences About δ

With traditional ordinal methods, for example, the Wilcoxon-Mann-Whitney (WMW) rank-sum test (Mann & Whitney, 1947; Wilcoxon, 1945), inferences are usually based on a randomization hypothesis which assumes that the two populations are identically distributed under the null hypothesis. The identical distribution assumption makes the test tend to be sensitive to differences in spread (also called "scale") and shape of the two distributions. However, this assumption is not necessary for making inferences about δ, because the sampling distribution of d is asymptotically normal and normal-based inferences can be made, with σ_d^2 being estimated from the sample. Several researchers (Birnbaum 1956; Cliff, 1991, 1993, 1996; Fligner & Policello, 1981; Hettmansperger, 1984; Mee, 1990; Siegel & Castellan, 1988; Zaremba, 1962) have suggested ways of making inferences about δ based on d with the sample estimate of its variance, and described the calculation of the sample estimate of σ_d^2.

Fligner and Policello (1981) introduced a robust version of the WMW test for comparing the medians of two independent continuous distributions, and tested behavior of d, using the sample estimate of its variance. Their results indicated that d behaved well in small samples in terms of Type I error rate and power over a variety of conditions of population distribution. Cliff (1993) suggested a modification of Fligner and Policello’s (1981) procedure by deriving an unbiased sample estimate of the variance of d and setting a minimum allowable value for it in order to increase the efficiency of the estimate and to eliminate impossible values. Defining a dominance variable, which represents the direction of differences between scores, as: $d_{ij} = \text{sign}(x_{i1} - x_{j2})$, where x_{i1} represents any observation in the first group, x_{j2} in the second, Cliff (1993) showed that variance of d can be expressed as

$$\sigma_d^2 = \frac{(n_1 - 1)\sigma_{d_{i.}}^2 + (n_2 - 1)\sigma_{d_{.j}}^2 + \sigma_{d_{ij}}^2}{n_1n_2}$$

where $d_{i.}$ is

$$d_{i.} = \frac{\#(x_i > x_j) - \#(x_i < x_j)}{n_1},$$

and similarly for $d_{.j}$.

The unbiased sample estimate of σ_d^2 was shown to be

$$s_d^2 = \frac{n_1^2\Sigma(d_{i.} - d)^2 + n_2^2\Sigma(d_{.j} - d)^2 - \Sigma\Sigma(d_{ij} - d)^2}{n_1n_2(n_1 - 1)(n_2 - 1)}$$

To eliminate possible negative estimate of variance, $(1 - d^2)/(n_1n_2 - 1)$ was introduced by Cliff (1993, 1996) as the minimum allowable value for s_d^2. For detailed discussion on the σ_d^2 and its components, or the formulas presented above, see Cliff (1993, 1996).

Modification of CI for δ

The CI for δ is traditionally computed by $(d - z_{\alpha/2} s_d, d + z_{\alpha/2} s_d)$. However, this CI was
found to be unsatisfactory in Monte Carlo studies (Feng & Cliff, 1995; Vargha & Delaney, 2000). Delaney and Vargha (2002) used modifications of CI for δ that consisted of using Welch-like dfs. They adopted these dfs from Fligner and Policello (1981) procedure and Brunner-Munzel test (2000), and reported that these modifications improved performance of d (Delaney & Vargha, 2002).

These modifications, however, were used without paying attention to the specific situations in which d with traditional CI performed poorly. Long, Feng, and Cliff (2003) pointed out two reasons why d with traditional CI was unsatisfactory. One reason has to do with a zero estimated variance for d when $d = \pm 1$, in which case the conventional CI reduces to a point $\delta = \pm 1$. The other reason is that the traditional symmetric CI does not take into account the negative correlation between σ_d^2 and δ. They proposed using an asymmetric CI to account for boundary effects on the variance of d due to the negative correlation between σ_d^2 and δ. When $d \neq \pm 1$, using sample estimates of variance of d, the asymmetric CI for δ can be constructed based on the following equation:

$$
\delta = \frac{d - d^3 \pm t_{a/2} \sigma_d (1 - 2d^2 + d^4 + t_{a/2} \sigma_d^2)}{1 - d^2 + t_{a/2} \sigma_d^2}. \quad (5)
$$

When $d = \pm 1$, a conservative approach, leading to relatively wide CI, is to assume the maximum possible variance for d, given δ. The maximum possible variance (σ_{m}^2) occurs when the scores in one group are bimodal with all the scores in the other group falling between the modes, leading to a variance of

$$
\sigma_{m}^2 = (1 - \delta^2) / n_b, \quad (6)
$$

where n_b is the sample size of the bimodal group.

This relation between σ_d^2 and δ^2 in the extreme case was used in constructing a CI for δ when $d = \pm 1$. The method is similar to the one used in constructing a CI for population proportion from a sample proportion (see Hayes, 1973, p.379). Assuming that $(d - \delta) / \sigma_{m} \sim N(0,1)$, we have the CI with confidence level $1 - \alpha$: $Z_{a/2} < (d - \delta) / \sigma_{m} < Z_{a/2}$, where $Z_{a/2}$ is the critical z-score at the selected α level. The upper and lower limits of the CI for δ are the solutions of the equation

$$
Z_{a/2}^2 = \frac{(d - \delta)^2}{\sigma_{m}^2} \quad (7)
$$

Inserting Equation (6) to the above for σ_{m}^2, when $d = 1$, the solution of Equation (7) gives

$$
\delta = \frac{(n_b - Z_{a/2}^2)}{(n_b + Z_{a/2}^2)} \quad (8)
$$
as the lower limit for the CI when $d = 1$ (in which case the upper limit is 1); and upper limit of the CI when $d = -1$ (in which case the lower limit is -1). With unequal groups, a conservative solution is to use the smaller sample size as n_b in Equation (8). This modification obviates the necessity of using a minimum allowable variance of d.

Methodology

A simulation study comparing rank t test, rank Welch test, Fligner-Policello test, and the d test found d to have inflated Type I error rate (Vargha & Delaney, 2000). However, the above mentioned modifications of CI was not used in this existing study. The primary purpose of the current study was to evaluate the performance of d with modifications of CI that were made based on theoretical and empirical concerns.

A Monte Carlo study was carried out in a variety of situations. To provide a basis for comparison for the behavior of d, the t-test with unpoled variance and Welch’s adjustment of df (referred to as Welch’s t, or t_w) was included in the analyses. Although this is known to be not completely robust (Wilcoxon, 1990), it is reasonably so for moderate variance heterogeneity, and it is clearly preferable to Student’s t. It sacrifices a little power relative to the latter, but the sacrifice is realistic, especially in forming CI. It is now widely available in
statistical packages and is sometimes even the default statistic for mean comparisons.

Samples of small ($n = 10$) to moderate ($n = 30$) sizes were taken repeatedly from a large number of pairs of uncorrelated populations. In simulating the data, five factors were manipulated: form, mean, variance, skewness of the parent distributions, and sample size. Then, statistical inferences about δ were computed based on each selected pair of samples, and two-sided d and t_w tests at the .05 significance level were performed to compare the two independent groups. Subroutines of IMSL library were called by Fortran programs to generate the populations and samples. Another Fortran program was written to compute statistical inferences about δ for two independent groups and to perform d and t_w tests.

The intention of the present study was to investigate a variety of situations so that the results could be generalized to a wide spectrum of behavioral data. Behavioral variables are often strongly skewed (Miccerri, 1989; Wilcox, 1990), with concomitant kurtosis, whereas thick-tailed, but symmetric, distributions seem less common. Variables are often bounded by zero, and many are bounded at both ends. Furthermore, distributions differing in location can also differ in scale and/or skewness. Therefore, four families of distributions were selected for the Monte Carlo study: normal, skewed (defined below), chi-square, and beta-distributions. Chi-square and beta-distributions were employed to simulate one-side-bounded and two-side-bounded data with various degrees of skewness, respectively.

Within each family of distributions, certain combinations of means and variances were selected so that δ ranged from .3 to .8. The selection of effect sizes, in terms of δ, conforms to Cohen's (1988) guidelines for small, medium, and large effects for comparable location models.

Normal Distribution

The normal distributions selected had μ of 0, 1, 2, or 3, and σ^2 of 1, 4, or 9. While all pairs of groups with these means and variances were considered, only a subset of them, representing typical results, are reported here. With symmetric distributions, the null hypothesis for the d analyses, $H_0 : \delta = 0$, is true when the null hypothesis for t_w, $H_0 : \mu_1 = \mu_2$, is true.

Skewed Distribution

Although there appears to be no satisfactory guidelines on what values of skewness are realistic, some studies found that estimated skewness of 2 was not uncommon (Miccerri, 1989; Wilcox, 1990). Thus, skewnesses of -2, 0, and 2 were used to examine the effect of unequal skewnesses. The logistic inverse transformation (Ramberg et al., 1979): $\pm \log (U - 1)$, where U represents a uniform distribution on the interval zero to one ($0 \leq U \leq 1$), was used to generate skewed data. This yields distributions having skewnesses of 2 or -2. The transformed data were then re-scaled to have μ of -3, -1, 0, 1, 2, or 3, with σ^2 of 1, 4, or 9.

These skewed distributions also have heavier tails than the normal distribution; their kurtosis tends to be around 5. To avoid a possible effect of unequal kurtosis, and separate it from the effect of unequal skewness, the h-transformation: $Z e^{hZ^2/2}$ (Hoaglin, 1985), where Z is $N(0,1)$, was applied to generate symmetric populations with greater kurtosis. $h \approx .126$ results in kurtosis of around 5, which is comparable to kurtosis of the skewed distributions. Given the levels of mean, variance, and skewness, there can be 54 different kinds of combinations for each group, and the number is squared when two groups are involved. However, only some representative combinations were selected, and a subset of these are reported here. Unlike in the normal case, for skewed data, the null hypothesis regarding δ and the null hypothesis regarding ($\mu_1 - \mu_2$) are not necessarily both true or both false, although effects are quite small. Cases when both H_0's are true or false, as well as one of them is true while the other is false, were included.

Chi-square Distribution

The one-side-bounded data were simulated using chi-square distributions with df ranging from 2 to 32. Certain combinations of the population groups were selected so that the
effect size, δ, fell into the low (.3) to high (.8) range. Several chi-square variates were rescaled by multiplying by constants in order to obtain the desired effect sizes.

Beta Distribution
The two-side-bounded data were generated, according to beta distributions with the first parameter (p) and the second parameter (q) ranging from 1 to 14. Again, certain population groups were selected for comparison, so that δ ranged from .3 to .8.

The null cases for bounded data were those when the two groups had identical chi-square or beta distributions. For the non-null cases, again, the populations compared could have equal or unequal variance, skewness, and kurtosis. For non-normal data, four non-null situations were considered: when two groups were (a) the same in shape (skewness and kurtosis) and scale (variance); (b) the same in shape but different in scale; (c) the same in scale but different in shape; and (d) different in shape and scale.

Sample size, particularly differences in sample size, can profoundly affect the behavior of location comparisons. For each population, observations were simulated for two independent groups using four combinations of the sample sizes $n_1 = 10, 30$, and $n_2 = 10, 30$. Both d and t_w tests were performed for the same data at the $\alpha = .05$ significance level. Two thousand simulation replications were employed under each distributional situation, so that for nominal $\alpha = .05$ and the 95% CI, a .01 difference is significant.

For example, empirical α’s that are higher than .06 are considered significantly higher than the nominal level .05; similarly, CI coverages that are lower than .94 are considered significantly lower than the nominal .95. With 2000 replications and $\alpha = .05$ for the proportions test, the power of the test to detect a departure of $\alpha \pm 1/2\alpha$, which was defined as the “liberal” tolerance criterion (Bradley, 1978) for robustness of Monte Carlo experiments, is .996; the power to detect a departure of $\alpha \pm 1/4\alpha$, the “intermediate” criterion (Robey & Barcikowski, 1992), is .7 (Cohen, 1988; Robey & Barcikowski, 1992).

The d and t_w tests were evaluated and compared in terms of three criteria: empirical Type I error rate, power, and CI coverage. The three criteria evaluate the tests from three different aspects. Coverage of CI has not been addressed as much as the other two by similar studies, though it is equally important and informative, and it is not necessarily implied by the others.

The proportion of the 2000 statistics that exceed the appropriate .05 critical values in the null case is the empirical Type I error rate. It is an estimate of the actual probability of a Type I error. Power is estimated by the proportion of rejection in the right direction at the .05 level in non-null cases. The CI coverage probability is estimated by the proportion of times that the CI constructed by each method covers the corresponding population parameter.

Results
Comparison of empirical α of d and t_w, revealed that with the adjusted CI, d gave rejection rates that were at or below .05 under all circumstances, tending to be conservative when at least one group was small (n = 10). On the other hand, use of the simple traditional CI led to liberal empirical α’s (greater than .06) when at least one group was small, particularly when the small n was paired with a larger variance. Welch’s t gave several α’s above .06 when group sizes were unequal. It should be noted that none of these departures were above the liberal criterion, even though the range of conditions studied was wide.

The findings about the performance of d are similar to those of Fligner and Policello’s (1981) in that d behaved well in terms of controlling the probability of Type I errors, but d appeared to be more conservative in this study with the adjustments on the CI for δ. Table 1 summarizes empirical Type I error rates of d and t_w.
Power

Detailed results on the empirical power of the tests are summarized in Table 2. In general, t_w showed slightly higher power than d (when the adjusted CI was employed) in small samples. When both sample sizes were as larger as 30, d and t_w had similar power. However, it should be noted that a direct power comparison between the two statistics is not always valid, because they usually had different actual α level and different CI coverage as well. It is also noted that many of the conditions under which t_w had the power advantage are those where its Type I error rate was too high in the null case, or the CI coverage was inadequate. Thus its advantages are largely spurious.

The power of both tests increased with sample size, and with effect size, in the expected ways. However, it appeared that the sample size had a stronger effect on d than on t_w, given that with moderate samples ($n_1 = n_2 = 30$), the power advantage of t_w became less obvious or disappeared--d sometimes had slightly higher power than t_w. Figure 1 shows an example of this condition with chi-square distributions.

Power of d with unadjusted CI was slightly higher compared to the reported power with the adjustments. However, as noted, this slight gain in power is associated with higher Type I error rate and poorer CI coverage.

Coverage of CI

With the aforementioned adjustments on the CI for δ (i.e., the adjustment when $d = \pm 1$, and the asymmetric adjustment), d performed well in general in terms of CI coverage, with a few exceptions. This coverage appeared to be a negative function of δ. It was at or above the nominal $1 - \alpha$ level independent of sample size, the form of the population distributions, and

Table 1. Empirical Type I Error Rate of d and t_w for $\alpha = .05$

<table>
<thead>
<tr>
<th>$\sigma_1 : \sigma_2$</th>
<th>$\gamma_1 : \gamma_2$</th>
<th>$n_1 = 10, n_2 = 10$</th>
<th>$n_1 = 30, n_2 = 30$</th>
<th>$n_1 = 10, n_2 = 30$</th>
<th>$n_1 = 30, n_2 = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1:1</td>
<td>.021$^$.035$^$</td>
<td>.048 .052</td>
<td>.041 .051</td>
<td>.037* .047</td>
</tr>
<tr>
<td></td>
<td>1:3</td>
<td>.031* .056</td>
<td>.039* .048</td>
<td>.048 .057</td>
<td>.032* .048</td>
</tr>
<tr>
<td>Skewed</td>
<td>1:1</td>
<td>.038* .044</td>
<td>.047 .048</td>
<td>.038* .064$^+$</td>
<td>.041 .064$^+$</td>
</tr>
<tr>
<td></td>
<td>1:3</td>
<td>4 .029$^$ --</td>
<td>.049 --*</td>
<td>.050 --*</td>
<td>.032$^$ --</td>
</tr>
<tr>
<td>Chi-square</td>
<td>1:1</td>
<td>.028* .042</td>
<td>.050 .057</td>
<td>.039* .060$^+$</td>
<td>.049 .061$^+$</td>
</tr>
<tr>
<td>Beta</td>
<td>1:1</td>
<td>.033* .050</td>
<td>.048 .052</td>
<td>.037* .053</td>
<td>.039* .057</td>
</tr>
</tbody>
</table>

$^+$ At least two standard deviation above .05, computed as if $\alpha = .05$.

$^-*$ At least two standard deviation below .05, computed as if $\alpha = .05$.

* No Type I error rate of t_w reported because this is a non-null case for means.
Table 2. Empirical Power of d and t_w for $* = .05$

<table>
<thead>
<tr>
<th>δ</th>
<th>σ_1, σ_2</th>
<th>sk_1, sk_2</th>
<th>$n_1=10, n_2=10$</th>
<th>$n_1=30, n_2=30$</th>
<th>$n_1=30, n_2=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d</td>
<td>t_w</td>
<td>d</td>
<td>t_w</td>
<td>d</td>
</tr>
<tr>
<td>Normal Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.218</td>
<td>3:2</td>
<td>0.0</td>
<td>.093</td>
<td>.132</td>
<td>.269</td>
</tr>
<tr>
<td>.363</td>
<td>1:1</td>
<td>0.0</td>
<td>.212</td>
<td>.275</td>
<td>.674</td>
</tr>
<tr>
<td>.473</td>
<td>3:1</td>
<td>0.0</td>
<td>.280</td>
<td>.438</td>
<td>.848</td>
</tr>
<tr>
<td>.520</td>
<td>1:1</td>
<td>0.0</td>
<td>.464</td>
<td>.553</td>
<td>.961</td>
</tr>
<tr>
<td>.711</td>
<td>1:1</td>
<td>0.0</td>
<td>.803</td>
<td>.868</td>
<td>1.0</td>
</tr>
<tr>
<td>.820</td>
<td>2:1</td>
<td>0.0</td>
<td>.910</td>
<td>.967</td>
<td>1.0</td>
</tr>
<tr>
<td>Skewed Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.227</td>
<td>1:3</td>
<td>-2.0</td>
<td>.078</td>
<td>--*</td>
<td>.249</td>
</tr>
<tr>
<td>.397</td>
<td>1:1</td>
<td>0.0</td>
<td>.254</td>
<td>.218</td>
<td>.743</td>
</tr>
<tr>
<td>.472</td>
<td>1:1</td>
<td>4.0</td>
<td>.402</td>
<td>.566</td>
<td>.899</td>
</tr>
<tr>
<td>.503</td>
<td>3:1</td>
<td>0.0</td>
<td>.422</td>
<td>.467</td>
<td>.940</td>
</tr>
<tr>
<td>.781</td>
<td>1:3</td>
<td>-4.0</td>
<td>.905</td>
<td>.939</td>
<td>1.0</td>
</tr>
<tr>
<td>.816</td>
<td>3:1</td>
<td>0.0</td>
<td>.948</td>
<td>.907</td>
<td>1.0</td>
</tr>
<tr>
<td>Chi-square Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.242</td>
<td>14:1</td>
<td>.9</td>
<td>.089</td>
<td>.191</td>
<td>.289</td>
</tr>
<tr>
<td>.346</td>
<td>1:1</td>
<td>-.5</td>
<td>.206</td>
<td>.218</td>
<td>.632</td>
</tr>
<tr>
<td>.498</td>
<td>2:1</td>
<td>-.6</td>
<td>.405</td>
<td>.407</td>
<td>.942</td>
</tr>
<tr>
<td>.662</td>
<td>1:1</td>
<td>-.1</td>
<td>.728</td>
<td>.794</td>
<td>.998</td>
</tr>
<tr>
<td>.807</td>
<td>5:1</td>
<td>-.1</td>
<td>.939</td>
<td>.971</td>
<td>1.0</td>
</tr>
<tr>
<td>.835</td>
<td>1:1</td>
<td>-.1</td>
<td>.945</td>
<td>.966</td>
<td>1.0</td>
</tr>
<tr>
<td>Beta Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.291</td>
<td>4.5:1</td>
<td>-.1</td>
<td>.130</td>
<td>.249</td>
<td>.463</td>
</tr>
<tr>
<td>.327</td>
<td>2.5:1</td>
<td>-.4</td>
<td>.181</td>
<td>.250</td>
<td>.585</td>
</tr>
<tr>
<td>.411</td>
<td>1:1</td>
<td>-.1</td>
<td>.276</td>
<td>.343</td>
<td>.802</td>
</tr>
<tr>
<td>.553</td>
<td>7:1</td>
<td>-.5</td>
<td>.481</td>
<td>.612</td>
<td>.968</td>
</tr>
<tr>
<td>.650</td>
<td>1:1</td>
<td>-.9</td>
<td>.700</td>
<td>.774</td>
<td>.998</td>
</tr>
<tr>
<td>.814</td>
<td>12:1</td>
<td>-1.6</td>
<td>.904</td>
<td>.978</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* No power of t_w reported because these are null cases for means.

Figure 1. Empirical power curve with chi-square distribution when $n_1 = n_2 = 30$.

![Figure 1](image-url)
variance ratio, skewness, and boundedness of
the populations compared, unless when \(\delta \) was
quite high (above .7). But it rarely dropped
below .93 under all conditions considered. The
adjustments provided improvement over the
unadjusted CI--the coverage was lower without
the adjustments when \(\delta \) was above .7.

The Welch's \(t \)-test yielded good CI
coverage for \(\mu_\delta \) with normal data, regardless of
variance ratio and sample size. However, it was
not robust to skewness and nonnormality. The
coverage was particularly poor when skewness
was combined with heterogeneity of variance, or
when high population variance ratio was
combined with boundedness and/or small or
unequal sample sizes. Table 3 shows results on
the empirical CI coverage of \(d \) and \(t_\nu \).

Conclusion

The ordinal method \(d \) does not involve excessive
elaboration and complicated statistical analyses.
Its concept can be easily understood by
nonstatisticians. The aforementioned computer
program for independent groups \(d \) analysis is
easy to implement. Its output provides
descriptive information, not only the null
hypothesis is tested, but also a CI is provided. In
addition, a dominance matrix that the program
produces is a useful visual aid to the test.

It was a preliminary purpose of this
study to evaluate the performance of \(d \) with
comparison to the Welch's \(t \). The performance of
\(d \) was evaluated in terms of Type I error rate,
power, and CI coverage using a variety of
normal and nonnormal data, and was compared
to that of Welch's \(t \)-test. The findings based on
simulations generally show that \(d \), with adjusted
CI, has good control over \(\alpha \) under all conditions
considered. Welch's \(t \) controls \(\alpha \) at its nominal
level with normal data, but sometimes fails to do
so under nonnormality. Theory indicates that
unequal sample sizes and unequal skewnesses
would affect the robustness of \(t_\nu \) (Wilcox,
1990), and the results support this conclusion.

The results on \(t_\nu \) is also consistent with
previous researches which found the \(t_\nu \) to be
robust when \(n_1 = n_2 \) (Tan, 1982; Wilcox, 1990),
and which showed that \(t_\nu \) was not robust in
terms of Type I errors when the two groups had
unequal variances, unequal sample sizes, and
unequal skewnesses (Wilcox, 1990). Although,
\(t_\nu \) behaved better here than Wilcox (1990)
reported, probably because the levels of
nonnormality examined in this study were not as
high as in Wilcox (1990).

Adjustments of the CI for \(\delta \) were
proposed here, and it was examined whether and
to what extent the adjustments improved the
distributional behavior of \(d \). The simulation
results suggest that these adjustments improve
the performance of \(d \) in term of Type I error rate
and coverage, with a slight loss of power.
However, the coverage is not completely
satisfactory—it is adequate when \(\delta \) is not too
high, but can be low when the population \(\delta \) is
close to 1. Perhaps even further modification on
the construction of the CI for \(\delta \) is needed.

For both \(d \) and \(t_\nu \), using normal or
nonnormal data, under each selected effect size,
the performance of the tests were better when
the sample sizes were larger. This is accounted
for by the central limit effect.

The findings of this study are partly
consistent with those of Fligner and Policello's
(1981) in that both studies suggest that the small
sample behavior of \(d \) is good in terms of Type I
error rate under normality, and it is robust when
there is shift in scale. However, in our study,
without the adjustments on the CI for \(\delta \), \(d \)
sometimes appears to be more liberal in terms of
actual \(\alpha \).

In this article, skewed, chi-square, and
beta-distributions were selected for the purpose
of assessment. More types of nonnormal
distributions, such as heavy-tailed distributions,
can be used in future simulation studies testing
the behavior of the statistics. Further more, the
distribution characteristics of the \(d \) statistic, its
variance, and other components such as \(d_i \) and
\(d_j \) should be investigated in further detail.

Several ad hoc analyses of \(d \) and \(s_d \) were
carried out in an attempt to shed light on the
reasons both for its good behavior and for the
exceptions. No conclusions are possible so far,
but some directions for investigation are
suggested by these analyses. One aspect of the
regular behavior of \(d \) may lie in the relative
stability of \(s_d \) as an estimate of \(\sigma_d \) under most
circumstances.
Table 3. Estimated Confidence Interval Coverage Probability of \(d\) and \(t_w\) for \(\alpha = .05\)

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>(\sigma_1: \sigma_2)</th>
<th>(sk_1-sk_2)</th>
<th>(n_1=10, n_2=10)</th>
<th>(n_1=30, n_2=30)</th>
<th>(n_1=10, n_2=30)</th>
<th>(n_1=30, n_2=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(d)</td>
<td>(t_w)</td>
<td>(d)</td>
<td>(t_w)</td>
</tr>
<tr>
<td>Normal Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.218</td>
<td>3:2</td>
<td>0.0</td>
<td>.962*</td>
<td>.950</td>
<td>.955</td>
<td>.951</td>
</tr>
<tr>
<td>.363</td>
<td>1:1</td>
<td>0.0</td>
<td>.964*</td>
<td>.949</td>
<td>.952</td>
<td>.946</td>
</tr>
<tr>
<td>.473</td>
<td>3:1</td>
<td>0.0</td>
<td>.951</td>
<td>.946</td>
<td>.959</td>
<td>.950</td>
</tr>
<tr>
<td>.520</td>
<td>1:1</td>
<td>0.0</td>
<td>.951</td>
<td>.958</td>
<td>.960+</td>
<td>.945</td>
</tr>
<tr>
<td>.711</td>
<td>1:1</td>
<td>0.0</td>
<td>.933+</td>
<td>.945</td>
<td>.951</td>
<td>.956</td>
</tr>
<tr>
<td>.820</td>
<td>2:1</td>
<td>0.0</td>
<td>.921+</td>
<td>.950</td>
<td>.930+</td>
<td>.955</td>
</tr>
<tr>
<td>Skewed Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.227</td>
<td>1:3</td>
<td>-2.0</td>
<td>.964+</td>
<td>.918+</td>
<td>.963+</td>
<td>.935+</td>
</tr>
<tr>
<td>.397</td>
<td>1:1</td>
<td>0.0</td>
<td>.962+</td>
<td>.965+</td>
<td>.960+</td>
<td>.950</td>
</tr>
<tr>
<td>.472</td>
<td>1:1</td>
<td>4.0</td>
<td>.958</td>
<td>.915+</td>
<td>.957</td>
<td>.951</td>
</tr>
<tr>
<td>.503</td>
<td>3:1</td>
<td>0.0</td>
<td>.956</td>
<td>.913+</td>
<td>.964+</td>
<td>.932+</td>
</tr>
<tr>
<td>.781</td>
<td>1:3</td>
<td>-4.0</td>
<td>.961+</td>
<td>.914+</td>
<td>.950</td>
<td>.924+</td>
</tr>
<tr>
<td>.816</td>
<td>3:1</td>
<td>0.0</td>
<td>.938+</td>
<td>.903+</td>
<td>.944</td>
<td>.934+</td>
</tr>
<tr>
<td>Chi-square Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.242</td>
<td>14:1</td>
<td>.9</td>
<td>.968+</td>
<td>.916+</td>
<td>.960+</td>
<td>.934+</td>
</tr>
<tr>
<td>.346</td>
<td>1:1</td>
<td>-.5</td>
<td>.958</td>
<td>.956</td>
<td>.951</td>
<td>.947</td>
</tr>
<tr>
<td>.498</td>
<td>2:1</td>
<td>-.6</td>
<td>.956</td>
<td>.956</td>
<td>.963+</td>
<td>.951</td>
</tr>
<tr>
<td>.662</td>
<td>1:1</td>
<td>-.1</td>
<td>.947</td>
<td>.951</td>
<td>.947</td>
<td>.945</td>
</tr>
<tr>
<td>.807</td>
<td>5:1</td>
<td>-.1</td>
<td>.938+</td>
<td>.951</td>
<td>.938+</td>
<td>.944</td>
</tr>
<tr>
<td>.835</td>
<td>1:1</td>
<td>-1.1</td>
<td>.925+</td>
<td>.951</td>
<td>.924+</td>
<td>.954</td>
</tr>
<tr>
<td>Beta Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.291</td>
<td>4.5:1</td>
<td>-.1</td>
<td>.959</td>
<td>.944</td>
<td>.957</td>
<td>.949</td>
</tr>
<tr>
<td>.327</td>
<td>2.5:1</td>
<td>-.4</td>
<td>.965+</td>
<td>.944</td>
<td>.953</td>
<td>.946</td>
</tr>
<tr>
<td>.411</td>
<td>1:1</td>
<td>-.1</td>
<td>.963+</td>
<td>.955</td>
<td>.949</td>
<td>.948</td>
</tr>
<tr>
<td>.553</td>
<td>7:1</td>
<td>-.5</td>
<td>.954</td>
<td>.939+</td>
<td>.955</td>
<td>.943</td>
</tr>
<tr>
<td>.650</td>
<td>1:1</td>
<td>-.9</td>
<td>.946</td>
<td>.959</td>
<td>.949</td>
<td>.949</td>
</tr>
<tr>
<td>.814</td>
<td>12:1</td>
<td>-1.6</td>
<td>.932+</td>
<td>.934+</td>
<td>.931+</td>
<td>.945</td>
</tr>
</tbody>
</table>

* At least two standard deviation above .95, computed as if \(\alpha = .05\).

+ At least two standard deviation below .95, computed as if \(\alpha = .05\).
The cases of relatively poor behavior may result from two sources. One source is the correlation between \(s_d \) and \(d \) that becomes quite strong when \(\delta \) is fairly high. The asymmetric CI, given by Equation (10), is one attempt at compensating for this effect, but it seems not to be strong enough when \(\delta \) is very high, and may be too strong when it is low, at the expense of power. It may also be that there are a few circumstances where \(s_d^2 \) is less well behaved, although we do not clearly understand what these circumstances are.

Understanding the behavior of \(d \) may be facilitated by noting that it, too, is a mean difference. Let \((p_{i1}, p_{i2}, \ldots, p_{m1}) \) be the values of a variable representing the proportion of \(x_{i2} \) scores that are less than each \(x_{i1} \), respectively, and correspondingly for the second sample. That is, \(p_{i1} = \frac{1}{2}(d_{i1} + 1) \), and \(p_{i2} = \frac{1}{2}(d_{i1} + 1) \). Then \(d \) is the difference between the mean \(p_{i1} \) and the mean \(p_{i2} \). Each \(p_{i1} \) reflects—even though it does not equal—a corresponding value of a random variable \(P_i \). Given a distribution \(F_i(X_1) \) and correspondingly \(F_2(X_2) \), then for any \(x_{i1}, X_1 \), \(p_{i1} = F_i(x_{i1}) \), and vice versa, and each has a distribution, \(G_1(P_1) \) and \(G_2(P_2) \), respectively. Therefore, the behavior of \(d \) depends on the nature of these distributions in much the same way that the behavior of the sample mean difference depends on \(F_1 \) and \(F_2 \). A difference is that \(p_{i1} \) is a binomial distribution of \(p_{i1} \) whose value depends on which \(x_{i2} \) happens to be in the sample. The two parts of the expression for the variance of \(d \) reflect these two aspects of the sampling process.

Not only does the variance of \(d \) depend on the variance of \(p_{ij} \), but the other moments of its distribution depend on the other moments of their distributions. Thus, \(d \) is not distribution-free except in the limiting case where \(F_1 \) and \(F_2 \) coincide, but it depends on the distributions \(G_1 \) and \(G_2 \) rather than on \(F_1 \) and \(F_2 \). The fact that it behaves more robustly than \(t_w \) simply reflects the fact that the distributions that determine its behavior tend to have better properties that the distributions of the variables themselves. However, we should not be surprised if situations can be found where the opposite is true. These issues can be investigated in future studies.

In sum, this article has shown that \(d \) behaves quite well in small and moderate samples in terms of Type I error rate, power, and coverage of the CI, but not perfectly. The adjustments to the CI improved matters in terms of Type I error rate and coverage. This ordinal statistic is robust to nonnormality, heterogeneity of variance, and unequal sample sizes. Yet, there are a few exceptions to the good behavior of \(d \), and further modification may be needed when the population \(\delta \) is very close to 1 or -1.

Welch’s \(t \)-test performs well under normality, but is not robust to nonnormality. Its Type I error rate is inflated, power is lowered, and coverage is inadequate when the populations are skewed, and when nonnormality is combined with unequal variances and/or unequal sample sizes. It is particularly sensitive to skewness.

The \(d \) has attractive characteristics as a description of location difference. It is a direct numerical reflection of the tendency for scores in one group to lie generally above those of another. It is also invariant under monotonic scale transformations, so conclusions about location need less qualification. The additional fact that its sampling behavior has to be rated as very good seems to lead to a conclusion that it is the method of choice for location comparison in many situations.

References

Welch, B. L. (1937). The significance of the difference between two means when the population variances are unequal. Biometrika, 29, 350-362.

