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Monte Carlo Evaluation of Ordinal d with Improved Confidence Interval 
 

                           Du Feng                                                           Norman Cliff (Emeritus) 
                  Texas Tech University                                                University of Southern California  
 
 
This article reports a Monte Carlo evaluation of ordinal statistic d with modified confidence intervals (CI) 
for location comparison of two independent groups under various conditions. Type I error rate, power, 
and coverage of CI of d were compared to those of the Welch's t-test. 
 
Key words: d statistic, Welch’s t, computer simulation, Monte Carlo study 
 
 

Introduction 
 
One of the most commonly asked questions in 
social, behavioral, and biomedical research is 
concerned with whether scores from one group 
tend to be higher than those from the other (e.g., 
treatment effects). This type of location 
comparison questions (or two-sample problems) 
is usually answered by parametric tests such as 
Student’s t test or Welch’s t test, which requires 
interval level of measurement of the test 
variables. However, many behavioral and social 
variables have only ordinal justification (e.g., 
Likert-scaled data), thus, performing 
equivalence testing of two means can yield 
misleading results. Furthermore, Student’s t test 
is known to be not robust when the normality 
and/or homogeneity of variance assumptions are 
violated (e.g., Wilcox, 1990, 1991), as they often 
are in empirical studies (Micceri, 1989; Wilcox, 
1996, p.135). Although Welch’s test was found 
to improve on t test under violations of these 
assumptions, ordinal methods are more 
appropriate, and can be more powerful, than the 
t tests for ordinal data. 
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Definition of d 
 Cliff (1993) introduced a dominance 
analysis summarized by the ordinal statistic d, 
which compares the proportion of times a score 
from one group or under one condition is higher 
than a score from the other, to the proportion of 
times when the reverse is true. The population 
analog of d is called δ (often written ∆). For 
random variables X1 and X2, δ = Pr{x1 > x2} – 
Pr{x1 < x2}. It is equivalent to the form of 
Kendall’s τ called Somer’s d (Somer, 1968) 
when one variable is dichotomous. This measure 
was introduced and discussed by nonparametric 
statistics books for years (e.g., Agresti, 1984; 
Hettmansperger, 1984; Randles & Wolfe, 1979), 
and its application was emphasized and 
extended by Cliff (1991, 1993, 1996).  
 Advantages of the ordinal statistics over 
the classical ones have been suggested 
repeatedly, including their robustness and power 
under departure from normality or equal 
variance assumptions, being invariant under 
monotonic transformation, suitability for much 
behavioral data which can only be given ordinal-
scale status, and their descriptive superiority 
(Caruso & Cliff, 1997; Cliff, 1993; Long, Feng, 
& Cliff, 2003). From its definition, we can see 
that δ is the effect size itself. It is more directly 
related to the research question often asked: 
whether scores in one group or under one 
condition tend to be higher than those in another, 
than is through some kind of comparison of 
means or medians. The sample d as defined is an 
unbiased estimate of δ 
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  #(xi > xj) - #(xi < xj) 
 d =                                       ,     (1) 
   n1n2 
 
where n1 and n2 are the sample sizes for xi and 
xj, respectively. 

It was noted that δ is a simple 
transformation of a measure, p = Pr{x1 > x2}, 
proposed by Birnbaum (1956): p = (δ + 1) / 2, 
which is estimated by a “common language 
effect size statistic” (McGraw & Wong, 1992), 
when there is no ties between random scores 
from the two groups (Long, Feng, & Cliff, 
2003). However, δ has advantages over p 
because it takes into account ties in the data 
(Long, Feng, & Cliff, 2003). Similarly, Vargha 
and Delaney (2000) proposed a generalization of 
the “common language effect size statistic” (CL) 
suggested by McGraw and Wong (1992), in 
order to take into account ties between the two 
groups scores. They called the generalization “A 
measure of stochastic superiority,” which was 
defined as A = Pr{x1 > x2} + .5 Pr{x1 = x2}. It 
was noted that A is simply a linear 
transformation of δ: A = (δ + 1)/2 (Vargha & 
Delaney, 2000, p.104). 
 
Inferences About δ 

With traditional ordinal methods, for 
example, the Wilcoxon-Mann-Whitney (WMW) 
rank-sum test (Mann & Whitney, 1947; 
Wilcoxon, 1945), inferences are usually based 
on a randomization hypothesis which assumes 
that the two populations are identically 
distributed under the null hypothesis. The 
identical distribution assumption makes the test 
tend to be sensitive to differences in spread (also 
called "scale") and shape of the two 
distributions. However, this assumption is not 
necessary for making inferences about δ, 
because the sampling distribution of d is 
asymptotically normal and normal-based 
inferences can be made, with σd

2 being 
estimated from the sample. Several researchers 
(Birnbaum 1956; Cliff, 1991, 1993, 1996; 
Fligner & Policello, 1981; Hettmansperger, 
1984; Mee, 1990; Siegel & Castellan, 1988; 
Zaremba, 1962) have suggested ways of making 
inferences about δ based on d with the sample 

estimate of its variance, and described the 
calculation of the sample estimate of σd

2. 
 Fligner and Policello (1981) introduced 
a robust version of the WMW test for comparing 
the medians of two independent continuous 
distributions, and tested behavior of d, using the 
sample estimate of its variance. Their results 
indicated that d behaved well in small samples 
in terms of Type I error rate and power over a 
variety of conditions of population distribution. 
Cliff (1993) suggested a modification of Fligner 
and Policello’s (1981) procedure by deriving an 
unbiased sample estimate of the variance of d 
and setting a minimum allowable value for it in 
order to increase the efficiency of the estimate 
and to eliminate impossible values. Defining a 
dominance variable, which represents the 
direction of differences between scores, as: dij = 
sign(xi1 - xj2), where xi1 represents any 
observation in the first group, xj2 in the second, 
Cliff (1993) showed that variance of d can be 
expressed as 
 
  (n1 - 1)σdi.

2 + (n2 - 1)σd.j
2 + σdij

2 
σd

2 =                                                     ,  (2) 
     n1n2 

 
where di. is 
 

#(xi > xj) - #(xi < xj) 
di. =                                         ,    (3) 

                        n1 
 
and similarly for d.j. 
 The unbiased sample estimate of σd

2 
was shown to be 
 
       n1

2Σ(di. - d)2 + n2
2Σ(d.j - d)2 - ΣΣ(dij - d)2 

sd
2 =                                 . (4) 

n1n2(n1 - 1)(n2 - 1) 
 

To eliminate possible negative estimate 
of variance, (1 - d2)/(n1n2 - 1) was introduced by 
Cliff (1993, 1996) as the minimum allowable 
value for sd

2. For detailed discussion on the σd
2 

and its components, or the formulas presented 
above, see Cliff (1993, 1996). 
Modification of CI for δ 
 The CI for δ is traditionally computed 
by (d - zα/2 sd, d + z α/2 sd). However, this CI was 
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found to be unsatisfactory in Monte Carlo 
studies (Feng & Cliff, 1995; Vargha & Delaney, 
2000). Delaney and Vargha (2002) used 
modifications of CI for δ that consisted of using 
Welch-like dfs. They adopted these dfs from 
Fligner and Policello (1981) procedure and 
Brunner-Munzel test (2000), and reported that 
these modifications improved performance of d 
(Delaney & Vargha, 2002). 
 These modifications, however, were 
used without paying attention to the specific 
situations in which d with traditional CI 
performed poorly. Long, Feng, and Cliff (2003) 
pointed out two reasons why d with traditional 
CI was unsatisfactory. One reason has to do with 
a zero estimated variance for d when d = ±1, in 
which case the conventional CI reduces to a 
point δ = ±1. The other reason is that the 
traditional symmetric CI does not take into 
account the negative correlation between σd

2 and 
δ. They proposed using an asymmetric CI to 
account for boundary effects on the variance of 
d due to the negative correlation between σd

2 
and δ. When d ≠ ±1,  using sample estimates of 
variance of d, the asymmetric CI for δ can be 
constructed based on the following equation: 
 
      d - d3 ± tα/2sd (1 - 2d2 + d4 + tα/2

2sd
2)½ 

δ =                                   .                   (5) 
                      1 - d2 + tα/2

2sd
2 

 
When d = ±1, a conservative approach, 

leading to relatively wide CI, is to assume the 
maximum possible variance for d, given δ. The 
maximum possible variance (σdm

2) occurs when 
the scores in one group are bimodal with all the 
scores in the other group falling between the 
modes, leading to a variance of 

 
σdm

2 = (1 - δ2)/nb ,             (6) 
 

where nb is the sample size of the bimodal 
group. 
 This relation between σd

2 and δ2 in the 
extreme case was used in constructing a CI for δ 
when d = ±1. The method is similar to the one 
used in constructing a CI for population 
proportion from a sample proportion (see Hayes, 
1973, p.379). Assuming that (d - δ)/σdm ~ 

N(0,1), we have the CI with confidence level 1-
α: Zα/2  < (d - δ)/σdm < Zα/2, where Zα/2 is the 
critical z-score at the selected α level. The upper 
and lower limits of the CI for δ are the solutions 
of the equation 
 

    (d - δ)2  
Zα/2

2 =                        .  (7) 
 

       σdm
2 

Inserting Equation (6) to the above for σdm
2, 

when d = 1, the solution of Equation (7) gives 
 

(nb - Zα/2
2)  

δ =                             (8) 
(nb + Zα/2

2) 
 

as the lower limit for the CI when d = 1 (in 
which case the upper limit is 1); and upper limit 
of the CI when d = -1 (in which case the lower 
limit is -1). With unequal groups, a conservative 
solution is to use the smaller sample size as nb in 
Equation (8). This modification obviates the 
necessity of using a minimum allowable 
variance of d. 
 

Methodology 
 
A simulation study comparing rank t test, rank 
Welch test, Fligner-Policello test, and the d test 
found d to have inflated Type I error rate 
(Vargha & Delaney, 2000).  However, the above 
mentioned modifications of CI was not used in 
this existing study. The primary purpose of the 
current study was to evaluate the performance of 
d with modifications of CI that were made based 
on theoretical and empirical concerns. 
 A Monte Carlo study was carried out in 
a variety of situations. To provide a basis for 
comparison for the behavior of d, the t-test with 
unpooled variance and Welch’s adjustment of df 
(referred to as Welch’s t, or tw) was included in 
the analyses. Although this is known to be not 
completely robust (Wilcox, 1990), it is 
reasonably so for moderate variance 
heterogeneity, and it is clearly preferable to 
Student’s t. It sacrifices a little power relative to 
the latter, but the sacrifice is realistic, especially 
in forming CI. It is now widely available in 
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statistical packages and is sometimes even the 
default statistic for mean comparisons. 

Samples of small (n = 10) to moderate 
(n = 30) sizes were taken repeatedly from a large 
number of pairs of uncorrelated populations. In 
simulating the data, five factors were 
manipulated: form, mean, variance, skewness of 
the parent distributions, and sample size. Then, 
statistical inferences about δ were computed 
based on each selected pair of samples, and two-
sided d and tw tests at the .05 significance level 
were performed to compare the two independent 
groups. Subroutines of IMSL library were called 
by Fortran programs to generate the populations 
and samples. Another Fortran program was 
written to compute statistical inferences about δ 
for two independent groups and to perform d 
and tw tests. 

The intention of the present study was to 
investigate a variety of situations so that the 
results could be generalized to a wide spectrum 
of behavioral data. Behavioral variables are 
often strongly skewed (Miccerri, 1989; Wilcox, 
1990, 1991), with concomitant kurtosis, whereas 
thick-tailed, but symmetric, distributions seem 
less common. Variables are often bounded by 
zero, and many are bounded at both ends. 
Furthermore, distributions differing in location 
can also differ in scale and/or skewness. 
Therefore, four families of distributions were 
selected for the Monte Carlo study: normal, 
skewed (defined below), chi-square, and beta-
distributions. Chi-square and beta-distributions 
were employed to simulate one-side-bounded 
and two-side-bounded data with various degrees 
of skewness, respectively. 

Within each family of distributions, 
certain combinations of means and variances 
were selected so that δ ranged from .3 to .8. The 
selection of effect sizes, in terms of δ, conforms 
to Cohen's (1988) guidelines for small, medium, 
and large effects for comparable location 
models. 
 
Normal Distribution 

The normal distributions selected had µ 
of 0, 1, 2, or 3, and σ2 of 1, 4, or 9. While all 
pairs of groups with these means and variances 
were considered, only a subset of them, 
representing typical results, are reported here. 

With symmetric distributions, the null 
hypothesis for the d analyses, H0 : δ = 0, is true 
when the null hypothesis for tw, H0 : µ1 = µ2, is 
true. 
 
Skewed Distribution 

Although there appears to be no 
satisfactory guidelines on what values of 
skewness are realistic, some studies found that 
estimated skewness of 2 was not uncommon 
(Micceri, 1989; Wilcox, 1990). Thus, 
skewnesses of -2, 0, and 2 were used to examine 
the effect of unequal skewnesses. The logistic 
inverse transformation (Ramberg et al., 1979): ±
log (U - 1)

-1
, where U represents a uniform 

distribution on the interval zero to one (0≤U≤1), 
was used to generate skewed data. This yields 
distributions having skewnesses of 2 or -2. The 
transformed data were then re-scaled to have µ 
of -3, -1, 0, 1, 2, or 3, with σ2 of 1, 4, or 9. 

These skewed distributions also have 
heavier tails than the normal distribution; their 
kurtosis tends to be around 5. To avoid a 
possible effect of unequal kurtosis, and separate 
it from the effect of unequal skewness, the h-
transformation: ZehZ²/2 (Hoaglin, 1985), where Z 
is N(0,1), was applied to generate symmetric 
populations with greater kurtosis. h ≈ .126 
results in kurtosis of around 5,  which is 
comparable to kurtosis of the skewed 
distributions. 
 Given the levels of mean, variance, and 
skewness, there can be 54 different kinds of 
combinations for each group, and the number is 
squared when two groups are involved. 
However, only some representative 
combinations were selected, and a subset of 
these are reported here. Unlike in the normal 
case, for skewed data, the null hypothesis 
regarding δ and the null hypothesis regarding (µ1 
- µ2) are not necessarily both true or both false, 
although effects are quite small. Cases when 
both H0's are true or false, as well as one of them 
is true while the other is false, were included. 
 
Chi-square Distribution 

The one-side-bounded data were 
simulated using chi-square distributions with df 
ranging from 2 to 32. Certain combinations of 
the population groups were selected so that the 
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effect size, δ, fell into the low (.3) to high (.8) 
range. Several chi-square variates were rescaled 
by multiplying by constants in order to obtain 
the desired effect sizes. 
 
Beta Distribution 

The two-side-bounded data were 
generated, according to beta distributions with 
the first parameter (p) and the second parameter 
(q) ranging from 1 to 14. Again, certain 
population groups were selected for comparison, 
so that δ ranged from .3 to .8. 

The null cases for bounded data were 
those when the two groups had identical chi-
square or beta distributions. For the non-null 
cases, again, the populations compared could 
have equal or unequal variance, skewness, and 
kurtosis. For non-normal data, four non-null 
situations were considered: when two groups 
were (a) the same in shape (skewness and 
kurtosis) and scale (variance); (b) the same in 
shape but different in scale; (c) the same in scale 
but different in shape; and (d) different in shape 
and scale. 

Sample size, particularly differences in 
sample size, can profoundly affect the behavior 
of location comparisons. For each population, 
observations were simulated for two 
independent groups using four combinations of 
the sample sizes n1 = 10, 30, and n2 = 10, 30. 
Both d and tw tests were performed for the same 
data at the α = .05 significance level. Two 
thousand simulation replications were employed 
under each distributional situation, so that for 
nominal α = .05 and the 95% CI, a .01 
difference is significant. 

For example, empirical α’s that are 
higher than .06 are considered significantly 
higher than the nominal level .05; similarly, CI 
coverages that are lower than .94 are considered 
significantly lower than the nominal .95. With 
2000 replications and α = .05 for the proportions 
test, the power of the test to detect a departure of 
α ± 1/2α, which was defined as the “liberal” 
tolerance criterion (Bradley, 1978) for 
robustness of Monte Carlo experiments, is .996; 
the power to detect a departure of α ± 1/4α, the 
“intermediate” criterion (Robey & Barcikowski, 
1992), is .7 (Cohen, 1988; Robey & 
Barcikowski, 1992).  

The d and tw tests were evaluated and 
compared in terms of three criteria: empirical 
Type I error rate, power, and CI coverage. The 
three criteria evaluate the tests from three 
different aspects. Coverage of CI has not been 
addressed as much as the other two by similar 
studies, though it is equally important and 
informative, and it is not necessarily implied by 
the others. 
 The proportion of the 2000 statistics that 
exceed the appropriate .05 critical values in the 
null case is the empirical Type I error rate. It is 
an estimate of the actual probability of a Type I 
error. Power is estimated by the proportion of 
rejection in the right direction at the .05 level in 
non-null cases. The CI coverage probability is 
estimated by the proportion of times that the CI 
constructed by each method covers the 
corresponding population parameter. 
 

Results 
 
Comparison of empirical α of d and tw, revealed 
that with the adjusted CI, d gave rejection rates 
that were at or below .05 under all 
circumstances, tending to be conservative when 
at least one group was small (n = 10). On the 
other hand, use of the simple traditional CI led 
to liberal empirical α’s (greater than .06) when 
at least one group was small, particularly when 
the small n was paired with a larger variance. 
Welch’s t gave several α’s above .06 when 
group sizes were unequal. It should be noted that 
none of these departures were above the liberal 
criterion, even though the range of conditions 
studied was wide. 
 The findings about the performance of d 
are similar to those of Fligner and Policello's 
(1981) in that d behaved well in terms of 
controlling the probability of Type I errors, but d 
appeared to be more conservative in this study 
with the adjustments on the CI for δ. Table 1 
summarizes empirical Type I error rates of d and 
tw. 
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Power 

Detailed results on the empirical power 
of the tests are summarized in Table 2. In 
general, tw showed slightly higher power than d 
(when the adjusted CI was employed) in small 
samples. When both sample sizes were as larger 
as 30, d and tw had similar power. However, it 
should be noted that a direct power comparison 
between the two statistics is not always valid, 
because they usually had different actual α level 
and different CI coverage as well. It is also 
noted that many of the conditions under which tw 
had the power advantage are those where its 
Type I error rate was too high in the null case, or 
the CI coverage was inadequate. Thus its 
advantages are largely spurious. 

The power of both tests increased with 
sample size, and with effect size, in the expected 
ways. However, it appeared that the sample size 
had a stronger effect on d than on tw, given that  

 

 
with moderate samples (n1 = n2 = 30), the 
power advantage of tw became less obvious or 
disappeared--d sometimes had slightly higher 
power than tw. Figure 1 shows an example of 
this condition with chi-square distributions. 

Power of d with unadjusted CI was 
slightly higher compared to the reported power 
with the adjustments. However, as noted, this 
slight gain in power is associated with higher 
Type I error rate and poorer CI coverage. 
 
Coverage of CI 

With the aforementioned adjustments on 
the CI for δ (i.e., the adjustment when d = ±1, 
and the asymmetric adjustment), d performed 
well in general in terms of CI coverage, with a 
few exceptions. This coverage appeared to be a 
negative function of δ. It was at or above the 
nominal 1 - α level independent of sample size, 
the form of the population distributions, and  

 

Table 1.  Empirical Type I Error Rate of d and tw for α = .05 

 

   n1=10,n2=10 n1=30,n2=30 n1=10,n2=30 n1=30,n2=10 

 σ1:σ2 γ1-γ2 d tw d tw d tw d tw 

Normal 1:1 0 .021- .035- .048 .052 .041 .051 .037- .047 

 1:3 0 .031- .056 .039- .048 .048 .057 .032- .048 

Skewed 1:1 0 .038- .044 .047 .048 .038- .064+ .041 .064+ 

 1:3 4 .029- --* .049 --* .050 --* .032- --* 

Chi-square 1:1 0 .028- .042 .050 .057 .039- .060+ .049 .061+ 

Beta 1:1 0 .033- .050 .048 0.52 .037- .053 .039- .057 
 

+ At least two standard deviation above .05, computed as if α = .05. 

- At least two standard deviation below .05, computed as if α = .05. 
* No Type I error rate of tw reported because this is a non-null case for means. 
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Table 2.  Empirical Power of d and tw for * = .05 

 
   n1=10,n2=10 n1=30,n2=30 n1=10,n2=30 n1=30,n2=10 
δ σ1:σ2 sk1-sk2 d tw d tw d tw d tw 

Normal Distribution 

.218 3:2 0.0 .093 .132 .269 .299 .120 .157 .177 .207 

.363 1:1 0.0 .212 .275 .674 .709 .338 .398 .360 .425 

.473 3:1 0.0 .280 .438 .848 .918 .301 .442 .773 .869 

.520 1:1 0.0 .464 .553 .961 .972 .661 .719 .659 .705 

.711 1:1 0.0 .803 .868 1.0 1.0 .947 .967 .943 .971 

.820 2:1 0.0 .910 .967 1.0 1.0 .927 .984 1.0 1.0 
Skewed Distribution 
.227 1:3 -2.0 .078 --* .249 --* .208 --* .092 --* 
.397 1:1 0.0 .254 .218 .743 .513 .158 .037 .311 .368 
.472 1:1 4.0 .402 .566 .899 .997 .578 .852 .588 .844 
.503 3:1 0.0 .422 .467 .940 .981 .216 .070 .731 .898 
.781 1:3 -4.0 .905 .939 1.0 1.0  1.0  1.0 .971 .956 
.816 3:1 0.0 .948 .907 1.0 1.0 .999 .941 .992 .992 

Chi-square Distribution 
.242 14:1 .9 .089 .191 .289 .712 .096 .186 .259 .661 
.346 1:1 -.5 .206 .218 .632 .524 .356 .225 .312 .381 
.498 2:1 -.6 .405 .407 .942 .887 .642 .465 .615 .675 
.662 1:1 -.1 .728 .794 .998 .998 .941 .942 .845 .915 
.807 5:1 -.1 .939 .971 1.0 1.0 .976 .982 .998 .999 
.835 1:1 -1.1 .945 .966 1.0 1.0 1.0 1.0 .962 .982 

Beta Distribution 
.291 4.5:1 -.1 .130 .249 .463 .768 .143 .236 .334 .611 
.327 2.5:1 -.4 .181 .250 .585 .723 .217 .241 .321 .481 
.411 1:1 -.1 .276 .343 .802 .837 .440 .507 .454 .512 
.553 7:1 -.5 .481 .612 .968 .994 .580 .650 .840 .940 
.650 1:1 -.9 .700 .774 .998 .997 .941 .934 .818 .879 
.814 12:1 -1.6 .904 .978 1.0 1.0 .937 .991 1.0 1.0 

* No power of tw reported because these are null cases for means. 
 
Figure 1. Empirical power curve with chi-square distribution when n1 = n2 = 30. 
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variance ratio, skewness, and boundedness of 
the populations compared, unless when δ was 
quite high (above .7). But it rarely dropped 
below .93 under all conditions considered. The 
adjustments provided improvement over the 
unadjusted CI--the coverage was lower without 
the adjustments when δ was above .7. 
 The Welch's t-test yielded good CI 
coverage for µd with normal data, regardless of 
variance ratio and sample size. However, it was 
not robust to skewness and nonnormality. The 
coverage was particularly poor when skewness 
was combined with heterogeneity of variance, or 
when high population variance ratio was 
combined with boundedness and/or small or 
unequal sample sizes. Table 3 shows results on 
the empirical CI coverage of d and tw. 
 

Conclusion 
 

The ordinal method d does not involve excessive 
elaboration and complicated statistical analyses. 
Its concept can be easily understood by 
nonstatisticians. The aforementioned computer 
program for independent groups d analysis is 
easy to implement. Its output provides 
descriptive information, not only the null 
hypothesis is tested, but also a CI is provided. In 
addition, a dominance matrix that the program 
produces is a useful visual aid to the test. 
 It was a preliminary purpose of this 
study to evaluate the performance of d with 
comparison to the Welch's t. The performance of 
d was evaluated in terms of Type I error rate, 
power, and CI coverage using a variety of 
normal and nonnormal data, and was compared 
to that of Welch’s t-test. The findings based on 
simulations generally show that d, with adjusted 
CI, has good control over α under all conditions 
considered. Welch’s t controls α at its nominal 
level with normal data, but sometimes fails to do 
so under nonnormality. Theory indicates that 
unequal sample sizes and unequal skewnesses 
would affect the robustness of tw (Wilcox, 
1990), and the results support this conclusion. 

The results on tw is also consistent with 
previous researches which found the tw to be 
robust when n1 = n2 (Tan, 1982; Wilcox, 1990), 
and which showed that tw was not robust in 
terms of Type I errors when the two groups had 

unequal variances, unequal sample sizes, and 
unequal skewnesses (Wilcox, 1990). Although, 
tw behaved better here than Wilcox (1990) 
reported, probably because the levels of 
nonnormality examined in this study were not as 
high as in Wilcox (1990). 

Adjustments of the CI for δ were 
proposed here, and it was examined whether and 
to what extent the adjustments improved the 
distributional behavior of d. The simulation 
results suggest that these adjustments improve 
the performance of d in term of Type I error rate 
and coverage, with a slight loss of power. 
However, the coverage is not completely 
satisfactory—it is adequate when δ is not too 
high, but can be low when the population δ is 
close to 1. Perhaps even further modification on 
the construction of the CI for δ is needed. 
 For both d and tw, using normal or 
nonnormal data, under each selected effect size, 
the performance of the tests were better when 
the sample sizes were larger. This is accounted 
for by the central limit effect. 
 The findings of this study are partly 
consistent with those of Fligner and Policello's 
(1981) in that both studies suggest that the small 
sample behavior of d is good in terms of Type I 
error rate under normality, and it is robust when 
there is shift in scale. However, in our study, 
without the adjustments on the CI for δ, d 
sometimes appears to be more liberal in terms of 
actual α. 

In this article, skewed, chi-square, and 
beta-distributions were selected for the purpose 
of assessment. More types of nonnormal 
distributions, such as heavy-tailed distributions, 
can be used in future simulation studies testing 
the behavior of the statistics. Further more, the 
distribution characteristics of the d statistic, its 
variance, and other components such as di. and 
d.j should be investigated in further detail. 

Several ad hoc analyses of d and sd were 
carried out in an attempt to shed light on the 
reasons both for its good behavior and for the 
exceptions. No conclusions are possible so far, 
but some directions for investigation are 
suggested by these analyses. One aspect of the 
regular behavior of d may lie in the relative 
stability of sd

2 as an estimate of σd
2 under most 

circumstances. 
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Table 3.  Estimated Confidence Interval Coverage Probability of d and tw for α = .05 

   n1=10,n2=10 n1=30,n2=30 n1=10,n2=30 n1=30,n2=10 
δ σ1:σ2 sk1-sk2 d tw d tw d tw d tw 

 
Normal Distribution 
.218 3:2 0.0 .962+ .950 .955 .951 .959 .945 .957 .945 
.363 1:1 0.0 .964+ .949 .952 .946 .953 .943 .954 .947 
.473 3:1 0.0 .951 .946 .959 .950 .942 .946 .950 .945 
.520 1:1 0.0 .951 .958 .960+ .945 .956 .950 .942 .949 
.711 1:1 0.0 .933- .945 .951 .956 .949 .953 .945 .942 
.820 2:1 0.0 .921- .950 .930- .955 .862- .941 .946 .955 
 
Skewed Distribution 
.227 1:3 -2.0 .964+ .918- .963+ .935- .954 .941 .971+ .896- 
.397 1:1 0.0 .962+ .965+ .960+ .950 .956 .913- .942 .937- 
.472 1:1 4.0 .958 .915- .957 .951 .961+ .925- .963+ .926- 
.503 3:1 0.0 .956 .913- .964+ .932- .966+ .851- .949 .948 
.781 1:3 -4.0 .961+ .914- .950 .924- .953 .938- .950 .910- 
.816 3:1 0.0 .938- .903- .944 .934- .951 .912- .908- .951 
 
Chi-square Distribution 
.242 14:1 .9 .968+ .916- .960+ .934- .967+ .923- .963+ .942 
.346 1:1 -.5 .958 .956 .951 .947 .962+ .942 .950 .938- 
.498 2:1 -.6 .956 .956 .963+ .951 .961+ .931- .951 .953 
.662 1:1 -.1 .947 .951 .947 .945 .951 .948 .928- .945 
.807 5:1 -.1 .938- .951 .938- .944 .922- .939- .931- .957 
.835 1:1 -1.1 .925- .951 .924- .954 .948 .956 .879- .943 
 
Beta Distribution 
.291 4.5:1 -.1 .959 .944 .957 .949 .962+ .925- .956 .950 
.327 2.5:1 -.4 .965+ .944 .953 .946 .962+ .933- .958 .946 
.411 1:1 -.1 .963+ .955 .949 .948 .957 .950 .950 .946 
.553 7:1 -.5 .954 .939- .955 .943 .946 .930- .951 .945 
.650 1:1 -.9 .946 .959 .949 .949 .957 .950 .930- .935- 
.814 12:1 -1.6 .932- .934- .931- .945 .899- .941 .946 .954 

 

+ At least two standard deviation above .95, computed as if α = .05. 

- At least two standard deviation below .95, computed as if α = .05. 
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 The cases of relatively poor behavior 
may result from two sources. One source is the 
correlation between sd and d that becomes quite 
strong when δ is fairly high. The asymmetric CI, 
given by Equation (10), is one attempt at 
compensating for this effect, but it seems not to 
be strong enough when δ is very high, and may 
be too strong when it is low, at the expense of 
power. It may also be that there are a few 
circumstances where sd

2 is less well behaved, 
although we do not clearly understand what 
these circumstances are. 
 Understanding the behavior of d may be 
facilitated by noting that it, too, is a mean 
difference. Let (p11, p12,…, p1n1) be the values of 
a variable representing the proportion of xj2 
scores that are less than each xi1, respectively, 
and correspondingly for the second sample. That 
is, pi1 = ½(di. + 1), and pj2 = ½(d.j + 1). Then d is 
the difference between the mean pi1 and the 
mean pj2. Each pi1 reflects—although it does not 
equal—a corresponding value of a random 
variable P1. Given a distribution F1(X1) and 
correspondingly F2(X2), then for any xi1, pi1 = 
F2(xi1), and vice versa, and each has a 
distribution, G1(P1) and G2(P2), respectively. 
Therefore, the behavior of d depends on the 
nature of these distributions in much the same 
way that the behavior of the sample mean 
difference depends on F1 and F2. A difference is 
that pi1 is a binomial distribution of pi1 whose 
value depends on which xj2 happens to be in the 
sample. The two parts of the expression for the 
variance of d reflect these two aspects of the 
sampling process. 
 Not only does the variance of d depend 
on the variance of pij, but the other moments of 
its distribution depend on the other moments of 
their distributions. Thus, d is not distribution-
free except in the limiting case where F1 and F2 
coincide, but it depends on the distributions G1 
and G2 rather than on F1 and F2. The fact that it 
behaves more robustly than tw simply reflects 
the fact that the distributions that determine its 
behavior tend to have better properties that the 
distributions of the variables themselves. 
However, we should not be surprised if 
situations can be found where the opposite is 
true. These issues can be investigated in future 
studies. 

 In sum, this article has shown that d 
behaves quite well in small and moderate 
samples in terms of Type I error rate, power, and 
coverage of the CI, but not perfectly. The 
adjustments to the CI improved matters in terms 
of Type I error rate and coverage. This ordinal 
statistic is robust to nonnormality, heterogeneity 
of variance, and unequal sample sizes. Yet, there 
are a few exceptions to the good behavior of d, 
and further modification may be needed when 
the population δ is very close to 1 or -1. 
 Welch’s t-test performs well under 
normality, but is not robust to nonnormality. Its 
Type I error rate is inflated, power is lowered, 
and coverage is inadequate when the populations 
are skewed, and when nonnormality is combined 
with unequal variances and/or unequal sample 
sizes. It is particularly sensitive to skewness. 
 The d has attractive characteristics as a 
description of location difference. It is a direct 
numerical reflection of the tendency for scores 
in one group to lie generally above those of 
another. It is also invariant under monotonic 
scale transformations, so conclusions about 
location need less qualification. The additional 
fact that its sampling behavior has to be rated as 
very good seems to lead to a conclusion that it is 
the method of choice for location comparison in 
many situations. 
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