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CHAPTER 1

INTRODUCTION

1.1 Motivation
Microarray studies are used to measure the expression level of thousands of genes under

various conditions in different cells [98, 125]. Capturing the changes between two biological

phenotypes is a crucial task in understanding the mechanisms of various diseases. Differential

analysis methods, such as differential expression analysis and differential network analysis,

are useful in understanding the biological processes induced by the conditional changes. The

existing approaches depend on individually testing the changes in the expression level of each

gene. However, it was shown that disease candidate genes are not marked only by the changes

in their expression levels, but also by the changes in the gene-gene correlation and the changes

in the network structure [90]. We propose two computational methods to find these differen-

tial genes. Three types of differential (or discriminative) genes are being identified using the

proposed work: differential hubs, differential subnetworks and differential co-clusters.

1.2 Cancer Microarray Data and Phenotypic Variations
Recent advances in DNA microarray technologies have revolutionized the analysis of genes

and proteins, and have made it possible to simultaneously measure the expression levels of

thousands of genes. The expression level of a gene is a measurement of the frequency of the

gene expression, and it can be used to estimate the current amount of the protein in a cell the

gene codes for [70]. Usually, the number of genes is significantly larger than the number of

biological samples, and it becomes crucial to identify subsets of genes that are relevant to the

biological problem under study.

The gene expression data can be organized in two-dimensional matrices where the rows

represent genes, and the columns represent various possible phenotypes such as normal cells,
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cancerous cells, drug treated cells or time series points. There are various kinds of phenotypic

variations. Examples of such phenotypic variations include the following:

• Different tissue types: e.g., normal VS. cancerous [3, 53].

• Different class sub-types: e.g., acute lymphoblastic leukemia (ALL) VS. acute myeloid

leukemia samples (AML) [48].

• Different stages of cancer: early stage VS. developed stage of prostate cancer [99].

• Different subject type: e.g., male VS. female [131].

• Different group types (racial disparity): African-American VS. Caucasian American [71,

69].

• Different time points [47].

• Different organisms [65, 101].

In each of these examples, there are two classes of biological samples. We refer to them as

class A and class B. Each class has the same set of genes, but the gene expression values and

their activities are different between the two classes. Differential analysis methods, such as

differential expression analysis and differential network analysis, are useful in understanding

the biological processes induced by the conditional changes [26]. The goal of the differential

analysis of gene expression data is to identify the set of differential genes that are responsible

for the differences between two classes of biological samples. Most of the existing computa-

tional approaches depend on testing the changes in the expression levels of the each single gene

individually. In this work, we propose novel computational methods approaches to efficiently

identify the differential genes.
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1.3 Main Challenges
Identifying the differential genes from the gene expression data is a challenging task due to

the following issues:

• Incorporating the class-labels. Differential analysis methods are used to extract pat-

terns that are highly correlated in one class compared to the other class. To identify

these class-specific patterns, it is crucial to effectively incorporate the class labels of the

samples to analyze the gene expression data [32].

• Types of changes. It was shown that the differential genes are not marked only by the

changes in their expression levels, but also by the changes in the gene-gene correlations

and the changes in the network structures.

• Pattern-based analysis. The activities of the genes are not independent of each other.

Thus, it becomes critical to be able to study groups of genes in the context of differential

analysis rather than analyzing single genes one at a time.

• Heterogeneous samples (or cancer subtypes). Due to the heterogeneity of the samples

or the existence of cancer subclasses, a subset of genes can be correlated in any subset of

the samples. Hence, it is important to develop computational algorithms that can capture

such differential subspace patterns. We refer to these patterns as biclusters or co-clusters.

• Noisy cancer microarray data. The expression data contains a huge amount of noise [68].

Hence, the differential analysis algorithms should be robust against noise.

• Overlapping-patterns. A gene can be involved in several biological pathways. Hence,

the same gene can belong to more than one group [95, 34].

• Positive and negative correlations. There are different types of correlations between

genes in any cell. Examples of such relationships are positive and negative correlations.

In a positive correlation, genes show similar patterns while in a negative correlation,
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genes show opposite patterns. Since it is possible that genes with both types of correla-

tions exist in the same biological pathway [67], there is a need for a computational model

that captures both types of correlations simultaneously [143].

The existing methods do not handle all of the above challenges. The proposed work tack-

les all of the above challenges. Specifically, the differential networking and differential co-

clustering algorithms effectively incorporate the class labels of the biological samples in the

search process, and they can identify groups of differential genes (differential subnetworks and

differential co-clusters). Moreover, both approaches allow the discovery of overlapping pat-

terns that contain negative and positive correlations. Furthermore, these approach are robust

against noise.

The proposed differential network approach can analyze the changes in the network struc-

ture and identify differentially connected genes in the form of differential hubs and differential

subnetworks.

Co-clustering can be used to simultaneously cluster both dimensions of a data matrix by

utilizing the relationship between the two entities [113], and it helps in discovering local pat-

terns that cannot be identified by the traditional one-way clustering algorithms. The proposed

differential co-clustering method can identify differential subspace patterns. Therefore, it can

handle heterogeneous samples (or cancer subtypes).

1.4 Our Contributions
In this work, we propose to develop novel computational methods to find the differential

genes between two phenotypes. The proposed approaches are: differential network analy-

sis and differential co-clustering. The proposed models can quantitatively and qualitatively

characterize the differences between two classes (or two phenotypes) and can provide better

insights and understanding of various diseases. Figure 1.1 illustrates the overview of the pro-

posed framework.

As shown in this Figure, the input to the proposed work is a dataset that consists of two phe-
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Figure 1.1: Overview of the proposed approach 1 and approach 2.

notypes (or two classes) of biological samples. This dataset is organized as a two-dimensional

matrix. Each row in this matrix represents a single gene, and each column represents a biologi-

cal sample which belongs to one of the two classes. The goal is to identify the set of differential

genes between the two phenotypes. We propose two computational methods to find these dif-
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ferential genes. Three types of differential genes are being identified using the proposed work:

differential hubs, differential subnetworks differential co-clusters. The output of the proposed

work will be statistically analyzed and the corresponding p-values are computed. It is worth

mentioning that the proposed work can be applied on other problem that has two classes of

samples. The purpose of this thesis is three-fold described as follows:

1. A review of the differential analysis methods. We review the state-of-the-art ap-

proaches for differential analysis of gene expression data including the following cat-

egories: differential expression, differential variability, differential co-expression, differ-

ential biclustering and differential networking methods. We characterize each category,

and we observe certain relationships between them.

2. A novel differential network analysis method. We propose novel differential network

analysis methods that is composed of two algorithms, namely DiffRank and DiffSubNet,

to identify differential hubs and differential subnetworks, respectively. In this approach,

two datasets are used to construct two networks, and then the problem of identifying

differential genes is transformed to the problem of comparing two networks to identify

the most differential network components.

3. A novel differential co-clustering method. We propose a novel differential co-clustering

approach to efficiently identify discriminative co-clusters from large datasets. To achieve

this goal, we propose two novel algorithms. The first algorithm is a novel co-clustering

algorithm: Ranking-based Arbitrarily Positioned Overlapping Co-Clustering (RAPOCC),

which can be used to efficiently find arbitrarily positioned co-clusters in the data matrix.

This algorithm is then extended to discover discriminative co-clusters: Discriminative

RAPOCC (Di-RAPOCC) by incorporating the class information into the co-cluster dis-

covery process to extract class-specific co-clusters.

The proposed novel differential network analysis is composed of two algorithms (DiffRank
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and DiffSubNet) which can be used to identify differential hubs and differential subnetworks,

respectively. In this approach, two datasets are represented as two networks, and the problem

of identifying differential genes is transformed to the problem of comparing two networks to

identify the most differential network components [96]. Studying such networks can provide

valuable knowledge about the data. The DiffRank algorithm ranks the nodes of two networks

based on their differential behavior using two novel differential measures: differential connec-

tivity and differential betweenness centrality for each node [97]. These measures are propa-

gated through the network and are optimized to capture the local and global structural changes

between two networks [98]. Then, we integrate the results of this algorithm in the second

proposed differential subnetwork algorithm (DiffSubNet). This algorithm aims to identify sets

of differentially connected genes. We demonstrated the effectiveness of these algorithms on

synthetic datasets and real-world applications and showed that these algorithms are capable in

identifying meaningful and valuable information compared to some of the baseline methods

that can be used for such a task.

The goal of the differential co-clustering approach is to discover a distinguishing set of

gene patterns that are highly correlated in a subset of the samples in one phenotype but not in

the other [99]. Due to the heterogeneity of some diseases such as cancer, the set of genes can

be co-expressed only in a subset of the samples (subspace co-expressions). Hence, the pro-

posed differential co-clustering approach does not require correlated genes to be similar under

all the features (biological samples). To achieve this goal, we propose a novel co-clustering al-

gorithm, Ranking-based Arbitrarily Positioned Overlapping Co-Clustering (RAPOCC), to ef-

ficiently extract significant co-clusters. This algorithm optimizes a novel ranking-based objec-

tive function to find arbitrarily positioned co-clusters, and it can extract large and overlapping

co-clusters containing both positively and negatively correlated rows [95]. Then, we extend this

algorithm to discover discriminative co-clusters by incorporating the class information into the

co-cluster search process. The novel differential co-clustering algorithm, called Differential
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RAPOCC (Di-RAPOCC), can efficiently extract the discriminative co-clusters from labeled

datasets. We also characterize the discriminative co-clusters and propose three novel measures

that can be used to evaluate the performance of any differential subspace algorithm.

1.5 Organization of this Thesis
This thesis is composed of the following three major parts:

• Part 1: Review of existing methods (Chapter 2). In this Chapter, we review the state-

of-the-art approaches for differential analysis of expression data. We also discuss the

main limitations and problems in the existing approaches and explain how the proposed

approaches solve these problems.

• Part 2: Differential networking approach (Chapters 3 and 4). In chapter 3 we present

the proposed differential hubs ranking algorithm (DiffRank), and in Chapter 4 we present

the proposed differential subnetwork detection algorithm (DiffSubNet). We present the

results of each algorithm on synthetic and real datasets.

• Part 3: Differential co-clustering approach (Chapters 5 and 6). In chapter 5 we

present the proposed co-clustering algorithm (RAPOCC), and in Chapter 6 we present

the proposed differential co-clustering algorithm (Di-RAPOCC). We present the results

of each algorithm on synthetic and real datasets in the corresponding chapter along with

the comparisons with other algorithms available in the literature.

Finally, we summarize and conclude our work and provide some possible directions for future

work in chapter 7.
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CHAPTER 2

A REVIEW OF DIFFERENTIAL ANALYSIS

ALGORITHMS

2.1 Overview
Microarray studies are used to measure the expression level of thousands of genes under

different conditions in different cells [125]. These cells have the same set of genes, but the

gene expression levels and their activities are different. There are several examples of such

phenotypic variations [115] such as: different tissue types: e.g., normal vs cancerous [3, 53],

or different class types: e.g., acute lymphoblastic leukemia (ALL) vs acute myeloid leukemia

samples (AML) [48]. In these examples, the expression levels of the same genes are measured

under two classes of conditions.

Capturing the changes between two biological conditions, such as normal versus cancer,

is a crucial task in understanding the causes of diseases. Differential analysis methods, such

as differential expression analysis and differential co-expression analysis, are helpful in under-

standing the biological processes induced by the conditional changes. In this chapter, we survey

the state-of-the-art approaches for differential analysis of gene expression data including the

following categories: differential expression, differential variability, differential co-expression

(or differential clustering), differential biclustering (or differential co-clustering) and differ-

ential networking methods. These methods are classified in Figure 2.1 and summarized in

Table 2.1. We characterize each category, and we make some observations about the relation-

ships between them.

Basically, the differential analysis methods can be classified into three main categories. The

first category is single gene analysis in which each gene is tested individually to identify differ-

entially expressed genes. The methods in the second category identifies differential patterns by
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Figure 2.1: Classification of the state of the are differential analysis methods of gene expression
data.

testing the changes in the gene-gene correlation to identify differentially co-expressed genes.

The third category is the differential networking approach. In this approach, a network is con-

structed from the expression data of each phenotype, and then the two networks are analyzed

to identify differentially connected genes.

2.2 Single Gene Analysis

2.2.1 Differential Expression (DE)

Several methods have been used to identify differentially expressed (DE) genes that are

related to a certain phenotype [141]. The differentially expressed genes can be identified by

testing the statistical significance of the changes in the mean level of the expression level of

each individual gene. A threshold level is defined on the test statistics, usually the t-test or

fold change [51], and a correction method, such as FDR, is used to adjust for the multiple

hypothesis testing problem [129, 140]. The DE methods are helpful only when the disease

genes are differentially expressed. However, there are some cases where the disease genes are

not differentially expressed such as in mutations and post-translational modifications of a gene

product. In these cases, the function of the gene is affected but not its expression level [32].

Therefore, depending only on the change in the mean of the expression level of the genes can

not identify all the disease genes [32].
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2.2.2 Differential Variability (DV)

Differential variability (DV) was proposed to identify genes with a significant change in

the variance of expression between two conditions [104]. In this type of analysis, ANOVA

(ANalysis Of VAriance) [105] or the F-test [55] can be used to identify the DV genes. Both

of the differential expression and the differential variability depend on statistically testing each

gene individually and do not capture the relationships between the genes. Since the activities

of the genes are not independent of each other, there is a critical need to study groups of genes

rather than performing a single gene analysis.

2.3 Differential Patterns

2.3.1 Differential Co-expression (DC)

Functionally related genes usually exhibit expression patterns (correlated expression pro-

files) [122, 81, 27]. Differentially Co-expressed (DC) methods aim to find the differences in

the co-expression patterns in normal and disease samples [32]. It was shown that some dis-

ease genes were highly differentially co-expressed but not differently expressed. In addition,

differential expression does not necessarily indicate biological significance [58]. Differentially

co-expressed (DC) genes are correlated in one type of samples but not in the other [136, 26].

The co-expression relationships (or correlation) can be measured by several functions, such as

Pearson correlation coefficient, and they reflect functional relationships. Since genes are not

independent and they interact with each other, the differential co-expression methods consider

the relationships between different genes, while DE and DV methods are based on testing each

gene individually [58].

To achieve a similar goal, differential Clustering Analysis (DCA) was proposed in [65] to

find differentially correlated groups of genes between two conditions. This method was used

to identify conserved and diverged co-expression patterns when comparing two organisms.
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2.3.2 Differential Biclustering (DB)

A bicluster (or co-cluster) is a subset of co-expressed genes under a subset of samples [95].

Differential Biclustering is used to extract differential biclusters from the gene expression data

where the samples belong to one of the two classes. Since some genes are activate only in

a subset of the samples, identifying the genes that are over- or down-expressed in some but

not all the samples in a group is very important [139]. The genes in the differential biclusters

have strong correlation in one class but not in the other, or they may have different types of

co-expression among the two classes [99]. Differential biclustering is useful when the biolog-

ical samples are assumed to be heterogenous or have multiple subtypes. The main difference

between differential co-expression and differential biclustering is that in the first approach the

correlation between any two genes is computed based on all the samples, while in the second

approach, two genes can be similar in a subset of the samples.

2.4 Differential Network Analysis
Networks have been extensively used to model the gene activities and their interactions

[62, 8, 125, 50, 132, 30, 29, 93]. These networks consist of genes as the nodes and the interac-

tions between them as the edges. Studying the topology and the functionality of these networks

can provide valuable knowledge for understanding the roles of genes in several diseases [32].

Differential analysis of networks has led to important results in studying the phenotypic dif-

ferences across different conditions [56, 18, 17, 142, 131, 119, 5, 54, 134, 87, 94]. The set of

genes which cause network topological changes may serve as biomarkers [145]. In addition,

network comparison can be used to provide insights into disease-specific alterations [32] and to

examine the effects of a certain treatment [145]. The main challenge in the differential network

analysis is to identify the important differences between two networks.

There are some differential networking methods that have been proposed in the literature.

We categorize these methods into three basic categories: node-level (hubs), subnetwork level,

and network level.
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Table 2.1: Differential analysis methods of gene expression data.
Type Definition Illustration Examples

SAM [129],
Differential Testing the changes Pattern analysis [10],
Expression in the mean level of Samroc [14],

(DE) expression of PUL [130],
each gene. Maximum-Likelihood [63],

B-statistics [88].

ANOVA [105],
Differential Testing the changes DV [55],
Variability in the variance of AlteredExpression [104],

(DV) expression of Kerr et al. [72],
each gene. Variance ratio [23]

ECF-statistic [75],
Differential Testing the changes CoXpress [136], DCIM [43]

Co-expression in the co-expression MIClique [147],
(DC) patterns of genes GSCA [28], DGCL [82]

in all of the samples. dCoxS [26],
(Kostka and Spang 2004) [74]

BiModule [100],
Differential Testing the changes SDC [39],
Biclustering in the co-expression DiBiCLUS [99].

(DB) patterns of genes FDCluster [135]
in a subset DeBi [112]
of the samples.

D
iff

er
en

tia
lN

et
w

or
ki

ng

Differential Connectivity [109]
Differential Testing the changes Differential Hubbing[60]

Hubs in the connectivity MDA-single gene [47]
of single gene. DiffK [44], DiffRank [97].

Differential clique [132],
DiffCoEx [127],
COSINE [90], PNA [73],

Differential Testing the changes Liu et al., [87], OptDis [31],
Subnetworks in the connectivity DifferentialNW [17],

of groups of genes. DDN [146], postOR [30],
jActiveModules [62],
MDA-class of genes [47].

Degree distribution [108],
Differential Testing the changes Degree similarity [144],
Networks in the structure Network diameter [144],

of the networks MDA-modular structures [47].

2.4.1 Differential Hubs (DH)

The goal is to identify the differentially connected genes (or differential hubs). Although

this type of analysis focuses on identifying single genes as differential hubs, the correlation be-

tween each gene and each other gene is considered rather than testing each gene individually as

the DE and DV methods. To compare the genes between two gene networks, several differen-
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tial measures such as differential connectivity have been defined in [18, 109, 44, 38, 126, 60].

Some methods are based on performing permutations and statistical test such as the MDA test

[47]. Most of these methods depend on pair-wise comparisons of the genes based on their

degrees. Therefore, as will be discussed in the next chapters, we propose an efficient algorithm

to capture all the local and global changes between two networks.

2.4.2 Differential Subnetworks (DS)

In this category, the goal is to identify differentially connected groups of genes among

two co-expression networks. There are a few differential network analysis methods that have

been proposed to identify differential subnetworks when comparing two biological conditions.

Most of the existing methods merely perform pairwise comparisons based on: (i) the nodes

(jActiveModules [62], DDN [145] and OptDis [31]) or (ii) the edges (DifferentialNW [17],

Differential clique analysis [132], DiffCoEx [127], postOR [30] and [87]) or (iii) both of the

nodes and the edges (COSINE [90] and PNA [73]).

Some of the recent methods, such as OptDis [31] and CRANE [29], depend on integrating

protein-protein interaction (PPI) data to define the networks, and they use the gene expres-

sion data to measure the changes of the expression levels of the genes between two biological

conditions. OptDis [31] uses a color coding algorithm to find the subnetworks. CRANE [29]

works on binary gene expression data, the digitization which is sensitive to several user-defined

parameters. COSINE [90] is a recent method that uses the F-statistic to measure the differen-

tial expression of each gene, and it uses the Expected Conditional F-statistic (ECF-statistic)

to measure the differential genegene co-expression across different groups. Then, a genetic

algorithm is used to search for the highest scoring subnetwork. Differential clique analysis

was defined in [132]. In this approach, clique membership is combined with differential cor-

relation. DiffCoEx [127] works based on the WGCNA model [76]. This method uses a new

dissimilarity measure computed from the topological overlap that is found using Pearson cor-

relation. postOR [30] compares the posterior probabilities of connectivity for each gene pair
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across two disease states, expressed as a posterior odds-ratio (postOR) for each pair, which is

then used to compute the overall differential connectivity for each gene sets. There are some

statistical based methods to identify differentially expressed set of genes from gene networks.

Such methods include: MDA [47] and DDN [146].

2.4.3 Differential Networks(DN)

In this category, the goal is to test if the given connectivity of the overall two gene co-

expression networks are different or not. In [108], the degree distribution of each network was

used to compare the two gene networks, and in [47] a statistical test was defined to test the

changes in the overall modular structures of the two networks. However, several other network

features can be used to compare two gene co-expression networks, such as the average shortest

paths length, the network diameter, the mean clustering coefficient and the degree similarity

[144].

2.5 Other Related Topics
• Gene set enrichment Incorporating priori knowledge has been used in several methods

to identify significant genes, gene sets or pathways [12]. Gene set enrichment analysis

aims to identify differentially expressed groups of genes [123, 37, 1]. This types of

analysis primarily depends on prior knowledge about the groups of genes processes [86].

Each group consists of functionally related genes such as certain pathways or biological

processes [117]. Examples of such gene set enrichment methods include GSEA [123],

SAFE [9] and GNEA [85]. A review of such methods can be found in [1].

• Over-Representaion Analysis (ORA) Over-Representaion Analysis tests whether a given

gene set, such as Gene Ontology (GO) terms, is statistically over-represented in a list of

DE genes based on the hypergeometric test [148].
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2.6 Limitations of the Existing Work
The differential analysis methods in the single gene analysis category do not capture the

correlations between genes. The differential expression and the differential variability methods

depend on statistically testing each gene individually. Since the activities of the genes are

not independent of each other, there is a critical need to study groups of genes rather than

performing a single gene analysis. To capture the correlations between genes, co-expression or

clustering methods can be used to identify gene patterns.

Differential co-expression and differential clustering methods have been used to find dif-

ferentially correlated groups of genes between two phenotypes and to identify class-specific

patterns. These methods use the entire feature space to find the differential genes for each

phenotype. However, these genes can be correlated only in a subset of the cancerous samples

due to the heterogeneity in the sample space [95]. Hence, it is important to develop a model

that can identify discriminative patterns that are correlated in a subset of the the feature space.

Co-clustering has been proposed to capture the patterns that are correlated in a subset of fea-

tures, but it cannot handle discriminative patterns in labeled datasets. In this work, the author

proposes a novel algorithm (Di-RAPOCC) to discover discriminative co-clusters by effectively

incorporating the class information into the co-cluster search process. The proposed algorithm

captures large and overlapping differential co-clusters that contain positive and negative corre-

lations. In addition, the proposed algorithm is robust against noise.

In the context of differential network analysis, there are a few differential measures that

have been proposed to identify the differential hub genes. However, these methods depend on

pair-wise comparisons of the genes based on their degrees. Therefore, the author proposes an

efficient algorithm to capture all the local and global changes between two networks. our pro-

posed DiffRank algorithm ranks the genes based on their differential behavior using two novel

differential measures, namely, differential connectivity and differential betweenness centrality.

Compared to identifying differential hubs, identifying differential subnetworks is even
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more challenging since it optimizes for a group of connected nodes that are specific to one

particular class. Most of the existing methods merely perform pairwise comparisons based on

the nodes[62] or the edges [17, 132] or both of the nodes and edges [90, 73]. Hence, these

methods do not capture the global changes in the network because they focus only on the local

comparisons. Here, the author proposes a novel algorithm (DiffSubNet) to identify the dif-

ferential subnetworks. This algorithm incorporates the differential node scores obtained from

the DiffRank algorithm. The differential subnetworks are groups of strongly connected nodes

(dense subnetworks) in one network but not in the other network. These subnetworks can

overlap within the same network, but they should not overlap between the two networks.
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CHAPTER 3

RANKING DIFFERENTIAL HUB GENES

3.1 Motivation
Networks have been extensively used to model various complex systems such as online

social networks, co-authorship and biological networks. These networks consist of data objects

as the nodes and the interactions between them as the edges. Studying such networks can

provide valuable knowledge about the data objects and their interactions. The interactions

between the data objects depend on the domain in which these data objects are studied.

Normal and cancerous cells have the same set of genes, but some of these genes are differ-

entially wired in the cancerous cells, which results in two different gene interaction networks

[32]. Here, the nodes are the genes, and the edges represent the interactions between the genes.

Since the genes that have strongly altered connectivity play an important role in the disease

phenotype [32], finding the differential genes can be used in several applications such as iden-

tifying disease-causing genes and examining the effects of a certain treatment [32].

3.1.1 Differential Gene Network Analysis

Gene networks have emerged as an efficient tool in modeling gene activities and in un-

derstanding the roles of genes in several diseases [32]. The main advantage of differential

networking over the other methods, is that using networks will enable studying the whole

spectrum of pair-wise relationships [38]. Differential analysis of networks has led to impor-

tant results in studying the phenotypic differences across different conditions [44], identifying

disease-causing genes and in examining the effects of a certain treatment [32]. Moreover, the

set of genes which cause network topological changes may serve as biomarkers [145]. How-

ever, network comparison is a challenging problem, and it was shown that it is an NP-complete

problem [17, 106].
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The goal of differential network analysis is to identify the differentially connected genes

(or differential hubs). Although this type of analysis focuses on identifying single genes as

differential hubs, the correlation between each gene and with the other genes is considered

rather than testing each gene individually as in the differential expression (DE) [129] and the

differential variability (DV) [55] methods. Both of the DE and the DV methods depend on sta-

tistically testing each gene individually using the T-test and the F-test respectively. Therefore,

these methods do not capture the relationships between the genes. To overcome these prob-

lems, networks have been successfully used to model the gene activities and their interactions.

These networks consist of genes as the nodes and the interactions between them as the edges.

Studying the topology and functionality of these networks can provide valuable knowledge for

understanding the roles of genes in several diseases [32].

The main technical challenge of exploiting the network structure to find the differential

hubs is to find all the differences between two networks. A straightforward solution is to

transfer this problem to solving the subgraph isomorphism problem. Unfortunately, this is

not desirable as it is computationally infeasible, and it was shown that solving the subgraph

isomorphism problem is NP-complete problem [106].

Figure 3.1: A simple illustration of differential hubs.

3.1.2 Related Work

In the biological domain, there are some differential measures that have been proposed to

measure the differences between two gene networks. To compare the genes between two gene
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networks, several differential measures such as differential connectivity have been defined in

[109, 44, 60], some methods are based on performing permutations and statistical test such as

the MDA test [47]. However, most of these methods depend on pair-wise comparisons of the

genes based on their degrees. Therefore, we propose an efficient algorithm to capture all the

local and global changes between two networks.

Toy Example: As an example, two networks are shown in Figure 3.1. In this example, it

can be seen that the gene 4 should be identified as the differential gene when comparing net-

work A and network B. However, this gene has the same degree (which is 3) in both networks.

Therefore, depending only on comparing the degree of each gene cannot capture all the differ-

ences between two gene networks. Using the proposed method, gene 4 will be the top ranked

differential gene in this figure.

Our goal is to identify the differential hubs by analyzing two interaction networks. We com-

bine differential network analysis with ranking in one framework and propose a novel ranking

algorithm, DiffRank, which ranks the nodes of two networks based on their differential behav-

ior in the two networks. To achieve this goal, we define novel measures such as differential

connectivity and differential centrality for each node. These measures are propagated through

the network and are optimized to capture the changes in the local and global structures between

two networks.

3.1.3 Our Contributions

The main contributions of this chapter can be summarized as:

1. We propose DiffRank algorithm to rank the hubs of two networks based on their differ-

ential behavior in the two networks and to identify the differential hubs.

2. We propose two novel differential measures:

(a) A local structure measure, differential connectivity, to capture the local differences

between two networks based on their weighted edges.
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(b) A global structure measure, differential betweenness centrality, to capture the global

differences between two networks based on the shortest paths

3. We develop a simulator for generating synthetic differential scale-free networks based

on two models to evaluate the proposed algorithm.

The proposed algorithm has two salient features. First, it can effectively capture the differ-

ences in both local and global structures between two networks. Second, it iteratively propagate

the novel differential scores through the network until convergence to obtain accurate rankings

for all the nodes. We show that DiffRank is motivated by and well reflects the existing obser-

vations about the differences between two networks. Empirical experiments on three different

applications show that our approach is effective and outperforms various baselines. To the best

of our knowledge when this thesis was written, DiffRank is the first algorithm to rank the nodes

of two networks based on their differential behavior and to identify the differential hubs.

3.2 Preliminaries and Problem Formulation
We will now introduce the notations to be used in the rest of the chapter; then, we formally

present the problem statement.Given two gene networks, represented by graphs GA(V,EA)

and GB(V,EB), where V is the set of N nodes and Ec is the set of edges in Gc, c ∈ {A,B}.

An edge between two genes u and v, with a weight wc(u, v) in Gc, determines the strength of

the interaction between the genes. The weight of each edge must be a non-negative value, 0 if

the nodes are not connected to each other, or 1 in unweighted graphs. We denote the degree

of gene v in network c as kcv. The proposed algorithm can be applied on both directed and

undirected networks. In this work, we focus our discussion to undirected networks with no

self-links.

Problem Formulation: Given two networks, GA and GB, the goal is to find the differen-

tial hubs that best explain the differences between the two networks. The final output of the
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DiffRank algorithm is a vector

Π =< π1, π2, ..., πN >

where πv denotes the rank of the differential node v.

A reasonable and accurate model for differential networks should not only capture the

changes in the local structure, but also the changes in the global structure. Before formally

introducing the algorithm, we first explain several key observations that motivate our approach.

Connectivity: The connectivity, or the degree, of a node is the number of other nodes that it

is connected to. Nodes with the highest number of edges, known as the hubs, play an essential

role in the analysis of networks. Pair-wise comparisons of the degree of each node in the two

networks, as proposed in [44], may not lead to accurately identifying the differential hubs. For

example, node 4 in Figure 3.1 has the same degree in both networks but the edges are different.

Centrality: Centrality is important in understanding many networks such as social net-

works [20], co-authorship networks [36] and biological networks [49]. Moreover, central nodes

can have high influence on their neighbors [137]. Betweenness Centrality (BC) can be used

to measure the centrality for each node, which is proportional to the sum of the shortest paths

passing through it [42].

Identifying the shortest paths between two nodes is critical in several applications, such as

social and biological networks [49], and the influence maximization problem [21]. Usually,

the weights of the edges represent the strength of the interactions (or correlations) between

the nodes. Therefore, distance values should be calculated from the weight values in order to

calculate the shortest paths. For example, if w(u, v) is the weight of interactions between two

nodes u and v, then the weight on each edge can be translated to distance path using 1−w(u, v)

or −log(w(u, v)) [21]. We expect these intuitions and observations to be helpful in designing

the proposed algorithm.
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3.3 The Proposed DiffRank Algorithm
The proposed model is composed of two measures: differential connectivity and differen-

tial betweenness centrality. These measures are optimized to capture the changes in the local

structure and the changes in the global structure between two the networks respectively.

3.3.1 Differential Connectivity

Genes with the highest number of edges, known as hubs, play central roles in the analysis

of networks. Differential connectivity measures the local differences between two networks,

GA and GB, by considering the actual weights of all the edges, and it is defined as follows:

∆C i(v) =
N∑

u=1

|wA(u, v)− wB(u, v)| · πi
u∑N

z=1 |wA(u, z)− wB(u, z)|
(3.1)

where πi
v is the differential scores (or rank) of node v at the ith iteration. It is initialized to

1
N

and will be updated in each iteration (it can also be used to incorporate prior knowledge).

If a given gene has the same set of edges in both networks with the same weights, then the

differential connectivity of that node will be 0. On the other hand, when a node has different

sets of edges (such as gene 4 in Figure 3.1), it will get a high value for the differential con-

nectivity. In addition to the number of edges and their weights, the differential connectivity of

each gene also depends on the differential scores of the neighbors it is connected to. A gene

will be assigned a higher score if it is connected to many differential genes. Given two genes,

u and v, the propagation of the differential score from u to v depends on three factors:

1. The weight of the edge (u, v) in both networks, denoted by |wA(u, v)− wB(u, v)|.

2. The current score of the gene u, denoted by πi
u.

3. The weights of all the edges connected to u, denoted by
∑N

z=1 |wA(u, z)− wB(u, z)|.
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(a) Network A (b) Network B

Figure 3.2: A simple illustration for differential betweenness centrality.

3.3.2 Differential Centrality

Centrality is an important measure in understanding biological networks because it is diffi-

cult to detect the changes in the expression level of the central genes by single gene analysis.

However, these changes could significantly alter the topology of the network [41]. Hence, we

integrate the notion of gene centrality into the proposed algorithm.

Betweenness Centrality (BC) can be used to measure the centrality of each node, which is

proportional to the sum of the shortest paths passing through it [42]. If Pst is the number of

the shortest paths from node s to node t, where s ̸= t, and Pst(v) is the number of the shortest

paths from s to t that pass through a node v, where s ̸= v and t ̸= v, then the BC of the node

v can be computed as BC(v) =
∑

s ̸=t
Pst(v)
Pst

[41]. In gene co-expression networks, the weights

of the edges represent the correlation between the genes. Therefore, distance values should be

calculated from the correlation values in order to calculate the shortest paths. For example, if

w(u, v) is the correlation between two genes, then the distance between the two genes could

be computed as 1− w(u, v).

Comparing the values of BC may not detect the topological changes. For example, the

shaded gene in Figure 3.2 has the same value of BC (which is 6) in both networks. However,

the shortest paths that pass through that gene are different. Therefore, we propose to consider

the shortest paths in our method. Let SP c
v be a binary N ×N matrix, such that SP c

v (s, t) = 1

if one of the shortest paths from s to t passes through the node v in network c = {A,B},

where s ̸= t, and it is 0 otherwise. We define differential betweenness centrality of a node v as
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follows:

∆BC(v) =
N∑
s=1

N∑
t=1

|SPA
v (s, t)− SPB

v (s, t)| (3.2)

3.3.3 The DiffRank Algorithm

We propose DiffRank algorithm which iteratively optimizes an objective function that is a

linear combination of differential connectivity and differential betweenness centrality (param-

eterized by λ) within a PageRank-style framework [52], such that the rank of each node v is

computed as follows:

πi
v = (1− λ) · ∆BC(v)∑N

u=1∆BC(u)
+ λ ·∆Ci(v) (3.3)

The parameter λ controls the trade-off between differential connectivity and differential be-

tweenness centrality. It can be assigned any value in the range [0, 1]. When λ = 0, the ranking

depends only on the differential betweenness centrality, and when λ = 1, the ranking depends

only on the differential connectivity. Any other value of λ combines both terms in the ranking.

We set λ to 0.75 based on some of the preliminary experiments we performed. The integration

of the ∆BC term into Equation (3.3) adds significant global topological information to the

differential analysis of networks.

3.3.4 Condition-specific Analysis

It is important to find the genes that are differentially rewired in the cancer cells. For

this purpose, we introduce a second version of the proposed algorithm based on the particular

network of interest. To find the differential nodes in network B, the differential connectivity

(∆C ′) for each gene can be redefined as follows:

∆C
′i(v) =

N∑
u=1

max(wB(u, v)− wA(u, v), 0) · πi
u∑N

z=1max(wB(u, z)− wA(u, z), 0)
(3.4)

This new definition excludes any edge in the network of interest if the corresponding edge in



26

the other network has a higher weight. Similarly, the new definition of differential betweenness

centrality, ∆BC ′ , includes the unique shortest paths that are in the network of interest and

excludes the unique shortest paths in the other network.

∆BC
′
(v) =

N∑
s=1

N∑
t=1

max(SP v
B(s, t)− SP v

A(s, t), 0) (3.5)

The second version of DiffRank is modified as follows:

πi
v = (1− λ) · ∆BC

′
(v)∑N

u=1∆BC
′(u)

+ λ ·∆C ′i(v) (3.6)

These two versions of DiffRank can solve the following problems:

1. Find the top differential genes; this can be solved by the first version of DiffRank. In this

version, we solve the phenotypic distinction problem.

2. Find condition-specific differential genes; this can be solved by the second version of

DiffRank. In this type of analysis, we focus on the set of genes that are active in the

cancer networks (identifying disease-causing genes).

3.3.5 Preservation and Convergence

To begin with, all the nodes are initialized to 1
N

(uniform distribution), so that the sum of

the rankings is 1 i.e.,
∑N

v=1 π
i
v = 1. The rankings will be updated in each iteration. There is no

need to normalize after each step since the sum of the rankings is preserved to unity.

Lemma 1. The sum of the node ranks Π∆ obtained by DiffRank is preserved to unity.

Proof. Let us assume that the algorithm is at the iteration i and
∑N

v=1 π
i
v = 1. Now, we will
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show that the sum of the rankings is preserved for the next iteration (i+ 1):

N∑
v=1

πi+1
v =

N∑
v=1

(
(1− λ).∆BC(v)∑N

u=1∆BC(u)
+ λ.

N∑
u=1

∆DCi(v)

)

= (1− λ).

(∑N
v=1∆BC(v)∑N
u=1∆BC(u)

)
+ λ.

(
N∑
v=1

N∑
u=1

|wA(u, v)− wB(u, v)|.πi
u∑N

z=1 |wA(u, z)− wB(u, z)|

)

= (1− λ) + λ.

(
N∑

u=1

πi
u

∑N
v=1 |wA(u, v)− wB(u, v)|∑N
z=1 |wA(u, z)− wB(u, z)|

)

= (1− λ) + λ.
N∑

u=1

πi
u

= (1− λ) + λ = 1

One issue that needs to be resolved is handling the sinks (or isolated nodes). These nodes

will be assigned uniform weighted edges to each other node in the network in order to ensure

the convergence of the DiffRank algorithm [77].

Theorem 1. The result from the DiffRank model converges to a unique rank vector.

Proof. Let us define MN×N as a square matrix, such that

Muv =
|wA(u, v)− wB(u, v)|∑N
z=1 |wA(u, z)− wB(u, z)|

We replace all rows with zeros by 1
N

. Now, M is considered to be a stochastic matrix in which

the sum of each row is 1:
∑N

v=1Muv = 1, 1 ≤ u ≤ N . Let P denote a vector of length N ,

such that

Pv =
∆BC(v)∑N
u=1∆BC(u)

then we will have
∑N

v=1 Pv = 1. Finally, we define a new matrix M ′ as follows:

M
′
= λ.M + (1− λ).P T
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The combination of the stochastic matrix M , and the vector P reduces the effect of the iso-

lated nodes λ ∈ [0, 1]. Now, the rank vector Π∆ can be computed by solving the following

eigenvector problem:

Π∆
TM

′
= Π∆

T

Since M ′ is a stochastic matrix, the DiffRank model is reduced to a personalized PageRank

model for which a unique solution is guaranteed [77, 52].

3.3.6 Scalability

While the differential connectivity is computed in a linear time, computing the differential

centrality is time consuming because it requires finding the shortest paths between the genes.

Using the traditional Dijkstra’s algorithm, computing the shortest paths between two nodes

requires O(m+ nlog(n)) where m is the number of links, and n is the number of nodes in the

graph and solving all-pairs shortest paths requiresO(nm+n2logn) time andO(n2) space [49].

However, some recent methods have been proposed to reduce the computational overhead by

using approximation methods [49], which can potentially help in efficiently applying DiffRank

on large-scale networks. In our previous work, we applied the DiffRank algorithm in other

domains such as the co-authorship networks [96].

3.4 Experiments
Given the ith gene, kA(i) and kB(i) are the connectivity of the ith gene in networks A and

B, respectively;

1. (∆ PR): As a baseline method, we used the difference between the scores computed by

the PageRank algorithm [13] in the two networks and is defined as follows:

∆PR(v) = |PRA(v)− PRB(v)| (3.7)

Where PRK(v) is the score for the gene v obtained by applying PageRank on network
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K.

2. (DH): Differential Hubbing was defined based on the degrees of each gene as follows [60]:

DH(v) = KA
i −KB

i (3.8)

3. (DC): Differential Connectivity was defined based on the degrees of each gene as fol-

lows [109]:

DC(v) = log10(
KA

i

KB
i

) (3.9)

4. (DiffK) is defined as follows [44]:

DiffK(v) = |KA(v)−KB(v)| (3.10)

where KA(v) = kA(v)
max(kA)

and KB(v) = kB(v)
max(kB)

.

Figure 3.3: Results on simulated networks evaluated based on the local measure (ML).

3.4.1 Synthetic Differential Scale-free Networks

We developed a simulator to generate synthetic differential scale-free networks. Initially,

we started with a small network as a seed; then followed the preferential attachment rule [7]

in adding new nodes. This rule assumes the probability of receiving new edges increases with

the increase in node degree. To generate two differential networks of size n, we start with the
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same seed for each network of size m; then we generate the remaining n −m nodes for each

network separately.

Evaluation Measures

Since there is no standard measure for comparing two networks, we developed two eval-

uation measures, and we used the Kendall′s Tau statistic [78] to measure the correlation

between the evaluation measures and the ranking algorithms.

Local structure measure (ML): This measure depends on comparing the edges of each node

to find the differential genes. It is a local measure which is defined as follows:

ML(v) =
N∑

u=1

[wA(u, v)− wB(u, v)]2 (3.11)

Global structure measure (MG): This measure captures the global changes in the gene net-

works, and it uses the shortest paths in the computation as follows: Let us define dist(u, v,Gc)

to be the distance between the nodes u and v in graph Gc computed through the shortest path

between them, and let Gc′
z be the same as Gc except that all the edges for node z are removed.

Then, we define ∆zdist(u, v,G
c) = [dist(u, v,Gc)− dist(u, v,Gc′

z )]
2. Finally, MG is defined

as follows:

MG(z) =
N∑

u=1

N∑
v=1

[∆dist(u, v,GA)−∆dist(u, v,GB)]2 (3.12)

MG measures the importance of each node to all other nodes in the network. It captures the

contribution of each gene in the global structure of the network by considering the changes in

the shortest paths between each pair of genes.

3.4.2 Results on Simulated Datasets

Figure 3.3 shows the results on the simulated data for different network sizes: 50, 200 and

500 evaluated using ML. These results are the average of 10 runs. As shown in this figure,

it is obvious that as the value of λ increases from 0 to 1, better results are obtained. This is
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Figure 3.4: Results on simulated networks evaluated based on the global measure (MG).

because the ML measure depends only on the connectivity and does not include the centrality

component. However, regardless of the value of λ, the DiffRank algorithm outperforms the

other methods in all of the cases. Figure 3.4 shows the results of the simulated data for different

network sizes: 50, 200 and 500 evaluated using MG. These results are the average of 10 runs.

Again, regardless the value of λ, the DiffRank algorithm outperforms the other methods in all

the cases.

Table 3.1: Description of the four gene expression datasets used in our experiments.

Dataset Genes Class A Class B
Description Samples Description Samples

Leukemia [48] 3051 AML 11 ALL 27

Medulloblastoma [91] 2059 Metastatic 10 Non-metastatic 13

Lung cancer [39] 1975 Normal 67 Tumor 102

Gastric cancer [53] 7192 Normal 8 Tumor 22

3.4.3 Experiments on Real-world Datasets

Table 3.1 shows the four real-world datasets used in our experiments. For each dataset, we

built a network for each class; then, we ran the proposed method on the two networks.

Constructing the Gene Co-expression Network

Mutual Information (MI) can be used to measure the correlations between different genes,

and it outperforms Pearson correlation and other linear measurements because it can capture
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Table 3.2: Degree distribution of the networks built for our experiments.
Dataset Class Min Mean Max

Leukemia
AML 5 8.7 96
ALL 5 8.8 120

Medulloblastoma
Metastatic 5 8.5 66

Non-metastatic 5 9.0 743

Lung cancer
Normal 5 9.9 878
Tumor 5 9.9 858

Gastric cancer
Normal 5 9.4 288
Tumor 5 8.5 248

nonlinear dependencies [128]. Therefore, we used MI to construct the gene networks defined

as follows:

MI(g1, g2) = H(g1) +H(g2)−H(g1, g2)

where H is the entropy, which is calculated as [121]:

H(g1) = −
∑
j

P (g1j) logP (g1j)

H(g1, g2) = −
∑
i

∑
j

P (g1i , g2j) logP (g1i , g2j)

where P (g1j) is the probability that gene gi takes the value dij , and P (g1j , g2j) is the joint

probability of the g1 and g2 genes.

To find the threshold for the MI values, we followed the rank-based approach that was

proposed in [111]. The MI between each gene and all other genes are computed and ranked;

then, each gene will be connected to the top d genes that are similar to it. Based on this

approach, the minimum degree is d, the mean degree is between d and 2d and the maximum

degree can be N − 1. There are two main advantages of this approach over the other value-

based approaches [111]: First, the network will contain only reliable edges. Second, there will

be no isolated nodes in the networks. We used d = 5, and the resulting networks for each
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class are given in Table 3.2. This table shows the minimum, the mean and the maximum of the

degrees. However, it is worth mentioning that the proposed algorithm can be applied on any

network regardless of the construction method used.

Biological Evaluation

To evaluate the results of proposed algorithm, we used the DAVID functional annotation

tool [59] to identify enriched biological GO terms and biological pathways of the top 100

ranked genes in each dataset, and we showed the top five biological terms ranked based on

their corrected p-values. In addition, we compared the top 100 ranked genes with the previously

published results in the original papers from which we obtained the datasets.

Results

The top 3 differential genes from each dataset are shown in Table 3.3. In this table we

present the degrees of each gene in network A, network B and the common edges between

the two classes. Table 3.4 shows the top 5 enriched biological terms for each dataset using the

DAVID tool [59].

Table 3.3: Top 3 differential genes obtained from the gene expression datasets.

Dataset Rank Gene Name Degree in Degree in Common
Class A Class B Edges

Leukemia
1 M26692 s at 21 92 1
2 X03934 at 120 5 1
3 D87459 at 6 96 0

Medulloblastoma
1 196 s at 5 743 3
2 2008 s at 5 709 2
3 664 at 25 678 6

Lung cancer
1 MTHFR 15 659 11
2 BAI1 84 492 52
3 CSF1 530 851 496

Gastric cancer
1 HG1751HT1768 s at 22 248 0
2 M10098 5 at 123 224 7
3 M11722 at 62 181 2
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(i) The Leukemia Dataset: The leukemia data contains the expression profiles of 3051

genes in 38 tumor samples. In this dataset, there are 27 acute lymphoblastic leukemia (ALL)

samples and 11 acute myeloid leukemia (AML) samples [48]. For this dataset, we applied the

version 1 of the proposed DiffRank algorithm. In addition to the functional enrichment analysis,

we compared our results with the previously published results, and we found some differential

genes, such as M80254 at (CyP3) and M27891 at (Cystatin C), were reported in [48] among

the most highly correlated genes with AML-ALL class distinction.

(ii) The Medulloblastoma Dataset: Medulloblastoma is a common malignant brain tu-

mor of childhood. The medulloblastoma dataset [91] contains gene expression profiles of pri-

mary medulloblastomas clinically designated as either metastatic or non-metastatic. For this

dataset, we applied the version 1 of the proposed DiffRank algorithm and found some statisti-

cally significant pathways such as: Pathways in cancer, Chemokine signaling pathway, MAPK

signaling pathway which have p-values= 1.7E − 06, 4.0E − 04 and 1.0E − 02, respectively.

The mitogen-activated protein kinase MAPK signal transduction pathway was reported as an

up-regulated pathway in the metastatic tumors that is relevant to the study of the metastatic

disease [91]. In addition, some of the top differential genes were reported in [91] among the

genes differentiating metastatic from non-metastatic tumors, such as 2042 s at, 311 s at and

1001 at.

(iii) The Lung Cancer Dataset: This dataset [39] contains the expression profiles of 1975

genes in normal and lung cancer samples. For this dataset, we applied the version 2 of the

proposed DiffRank algorithm. When compared with the previously published results on the

same dataset, we found that some of the top ranked genes, such as {CLDN14, PAX7, SDCBP,

TADA3L, ITGA2B}, were also reported in the differential patterns discovered by the subspace

differential co-expression analysis proposed in [39].

(v) The Gastric Cancer Dataset: The Gastric cancer dataset [53] contains the expression

profiles of 7192 genes in normal and Gastric cancer samples. For this dataset, we applied the
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version 2 of the proposed DiffRank algorithm and found some of the top ranked genes such

as X51441 s at and Y07755 at had been reported as highly expressed genes in gastric tumors

in [53].

Table 3.4: Top 5 enriched biological terms obtained from the gene expression datasets

Dataset Term Fold Corrected
Enrichment p-value

Leukemia

transmembrane protein 4.51 2.9E − 03
GO:0005829 cytosol 2.66 1.1E − 02

GO:0033273 response to vitamin 15 1.8E − 02
GO:0002520 immune system development 5.98 2.3E − 02
GO:0048534 lymphoid organ development 6.35 2.8E − 02

Medulloblastoma

hsa05200:Pathways in cancer 4.83 1.7E − 06
kinase 5.47 4.8E − 06
ATP 9.75 1.3E − 05

domain:Protein kinase 6.64 1.9E − 05
nucleotide-binding 3.22 1.9E − 05

Lung cancer

acetylation 2.73 2.3E − 06
Proto-oncogene 10.14 3.2E − 06
disease mutation 3.30 4.1E − 06
phosphoproteinr 1.71 4.5E − 06

nucleus 2.13 4.9E − 06

Gastric cancer

GO:0005576 extracellular region 2.57 1.3E − 04
signal peptide 2.21 1.3E − 03

GO:0005615 extracellular space 3.59 3.1E − 03
disulfide bond 2.10 3.5E − 03

GO:0044459 plasma membrane part 2.0 4.1E − 03

3.4.4 The Relationships Between DiffRank and Other Approaches

The relationships between the top ranked genes from the DiffRank algorithm, DE (rep-

resented by the t-test) and DV methods (represented by the F-test) are shown in Figure 3.5.

The numbers in this figure are the averages of the rankings from the four datasets. As shown

in this figure, most of the genes identified by one approach cannot be identified by the other

approaches. This fact explains why we found a few number of genes that were previously pub-

lished and were top ranked by our algorithm. Furthermore, some of the top ranked genes have

not been annotated yet. For example the top ranked gene from the Gastric dataset, HG1751-

HT1768 s at, has no annotations according to the NCBI1. As shown in Table 3.3, this gene

has 22 edges in the normal network and 248 different edges in the tumor network. From these
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(a) Top 100 genes. (b) Top 200 genes.

Figure 3.5: The overlap between the results of the DiffRank algorithm, the t-test and the F-
test. The numbers are the averages of the four datasets (a) based on the top 100 genes in each
method and (b) based on the top 200 genes in each method.

numbers, one can observe that this gene may be involved in important biological processes

relevant to the Gastric cancer. Such genes can further be investigated.

3.5 Summary of the DiffRank Algorithm
In this chapter, we propose the novel problem of finding the differential hubs in homoge-

nous networks. Given two networks with the same nodes but different edges, the proposed

DiffRank algorithm can find the differential hubs that are responsible for the differences be-

tween the two networks. We make several key observations about how the local and global

measures mutually influence the ability to identify the differential nodes, and propose a novel

algorithm, called DiffRank, for mining the top K differential hubs in the two networks. Com-

prehensive experimental studies on real-world datasets and synthetically generated datasets

showed that our approach outperforms the baselines.

1http://www.ncbi.nlm.nih.gov/
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CHAPTER 4

IDENTIFYING DIFFERENTIAL SUBNETWORKS

4.1 Motivation
One of the main goals of using high throughput data such as the DNA microarray is to

find disease markers. To achieve this gaol, it is crucial to identify the differences between

normal and affected cells [32]. However, it was shown that disease candidate genes are not

marked only by the changes in their expression levels, but also by the changes in the gene-gene

correlation and the changes in the network structure [90]. Therefore, differential networking is

considered as a powerful approach to detect the changes in the network structure and to identify

the differentially connected genes among two gene networks. In this approach, a gene co-

expression network is constructed for each condition (normal and disease); then, an objective

function is optimized to score either single genes (to identify differential hubs) or a group of

connected genes (to identify differential subnetworks) based on the differences between the

two gene co-expression networks.

The guilt-by-association principle states that genes with similar functions exhibit similar

expression patterns (co-expressed) [132, 33]. Therefore, it is crucial to study the relationships

between the genes among various biological conditions [2]. Given a gene expression data

where the samples belong to one of two biological samples such as normal or cancerous. The

author proposes a novel network-based differential subnetwork algorithm to identify differen-

tial subnetworks between two networks. A differential subnetwork is a subset of the genes

that are strongly connected in one network but not in the other. The proposed algorithm was

evaluated on simulated data. As real-world application, we applied and analyzed the proposed

differential subnetwork algorithm to the analysis of racial disparity in prostate cancer.

An illustration example of differential subnetworks is shown in Figure 4.1. The shown
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(a) Subnetwork A (b) Subnetwork B

Figure 4.1: A simple illustration of differential subnetworks.

networks were generated using Cytoscape tool [116]. Each subnetwork has the same set of 10

nodes, but the edges between the nodes are different. Basically, the nodes in the first subnet-

work are highly inter-connected compared to the second subnetwork. The main characteristics

of the differential subnetworks are the following:

• Differentially connected. The nodes in a differential subnetwork must be strongly con-

nected in one network but not in the other network.

• Dense subnetworks. Differential subnetworks must be dense subnetworks in one and

only one network.

• Overlap. Differential subnetworks can overlap within the same network, but they should

not overlap between the two networks.

• Hubs and non-hubs. Differential subnetworks can have both hub and non-hub nodes.

Figure 4.2 shows two examples of non-differential subnetworks. In this Figure, subnetwork

1 is not considered as a differential subnetwork because the nodes in this subnetwork are not

strongly connected in any of the two networks although the nodes have more connections in

network A than in network B. Subnetwork 2 is not considered as a differential subnetwork
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(a) Subnetwork 1 in network A (b) Subnetwork 1 in network B

(c) Subnetwork 2 in network A (d) Subnetwork 2 in network B

Figure 4.2: Examples of two non-differential subnetworks.

because the nodes have the same number of edges in both networks although none of the edges

is common between the two networks.

4.2 Related Work
Compared to identifying differential hubs, identifying differential subnetworks is even

more challenging since it optimizes for a class-specific group of connected nodes. Hence,

rather than considering only the hubs, the goal is to find a group of nodes such that the connec-

tivity and the structure of this group have been significantly changed between the two networks.

Most of the existing methods merely perform pairwise comparisons based on: (i) the nodes

(jActiveModules [62], DDN [145] and OptDis [31]), (ii) the edges (DifferentialNW [17], Dif-

ferential clique analysis [132], DiffCoEx [127], postOR [30] and [87]) or (iii) both of the nodes
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and the edges (COSINE [90] and PNA [73]). Hence, these methods do not capture the global

changes in the network because they focus only on the local comparisons. In addition, most

of these methods use some thresholds to define the differential edges or differential nodes. For

instance, differential correlation was defined as an edge that was present above 0.875 in one

network and the corresponding correlation value in the other network was less than 0.25 [132].

The major problem in such thresholding-based approaches is that it is difficult to accurately

determine the optimal values for the thresholds and such methods typically produce differ-

ent results under different parameter settings. Here, we propose a novel algorithm to identify

the differential subnetworks. The proposed algorithm incorporates the differential node scores

obtained from the DiffRank algorithm described previously.

4.3 The Proposed Differential Subnetwork Algorithm
In this Section, we describe the novel proposed algorithm (DiffSubNet) which can be used

to identify the most differential subnetworks between two gene subnetworks that represent

two phenotypes. In addition, we discuss how to statistically measure the significance of the

identified differential subnetworks.

4.3.1 Preliminary and Problem Formulation

Given two gene networks, represented by graphs GA(V,EA) and GB(V,EB), where V is

the set of the N nodes and Ec is the set of edges in Gc, c ∈ {A,B}. An edge between two

genes u and v, with a weight wc(u, v) in Gc, determines the strength of the interaction between

the genes. Let S denote a subnetwork or a group of connected genes. In addition, we are given

the results of the DiffRank algorithm as a vector Π =< π1, π2, ..., πN >, where πv denotes the

rank of the node v using the DiffRank algorithm, the goal of the DiffSubNet algorithm is to find

the set of differential subnetworks in class A:

< SA
1 , S

A
2 , S

A
3 ..., S

A
N >
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and the set of differential subnetworks in class B:

< SB
1 , S

B
2 , S

B
3 ..., S

B
N >

where Sc
m denotes themth differential subnetwork in class c. The proposed algorithm generates

N differential subnetworks in each class. For each node n of the N nodes the the network, the

proposed algorithm generates the most differential subnetwork containing n as a seed node.

The subnetworks are scored and ranked using the following objective function:

Ω(SA
m) =

∑
u,v∈Sm

πuπv(w
A(u, v)− wB(u, v))

and for class B:

Ω(SB
m) =

∑
u,v∈Sm

πuπv(w
B(u, v)− wA(u, v))

The resulting differential subnetworks in each class are ranked based on the corresponding

objective function. The top ranked ones are reported, and the remaining ones are ignored.

4.3.2 The DiffSubNet Algorithm

A differential subnetwork is defined as a subset of highly connected nodes in one network

compared to the other network (such as dysregulated pathways). The proposed algorithm (Diff-

SubNet) is described in Algorithm 1.

The proposed DiffSubNet algorithm starts with a seed node, then it finds the differential

subnetwork that contains that node. It is an iterative algorithm that adds one node to the sub-

network at each iteration. The DiffSubNet algorithm produces an initial candidate set to select

the node to be added to the subnetwork. This set is composed of all the nodes that are con-

nected to the subnetwork. In the next step, the initial candidate set is filtered by removing the

nodes that do not have enough connections with the subnetwork. For this purpose, the proposed

algorithm uses a predefined density factor d. If d = 0.5, the algorithm excludes the nods that
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Algorithm 1 DiffSubNet(GA,GB, Π, d)
1: Input: Data matrix (D)

Network A (GA)
Network B (GB)
The DiffRank results (Π =< π1, π2, ..., πN >)
The subnetwork density factor (d)

2: Output:: A set of differential subnetworks in class A (SA)
A set of differential subnetworks in class B (SB)

3: Procedure:
4: for seed = 1 : N do
5: / ∗ Initialize the current subnetwork in each class to the seed node ∗ /
6: SA

seed = {seed}
7: SB

seed = {seed}
8: repeat
9: / ∗ Define the initial candidate set as the neighbors of the current subnetwork SA

seed ∗ /
10: iniCandSetA =

∪
{v : wA(u, v) > 0, u ∈ SA

seed, v /∈ SA
seed}

11: /∗ From the candidate set, exclude the nodes that are less connected to subnetwork SA
seed ∗/

12: candSetA = {iniCandSetA} −
∪
{z :

∑
u∈SA

seed
|wA(u, z) > 0| > |SA

seed| ∗ d}
13: / ∗ Find the best node to be added to SA

seed ∗ /
14: yA = argmaxyi∈candSetA

∑
u,v∈{Sm

∪
yi} πuπv

(
wA(u, v)− wB(u, v)

)
15: / ∗ Add yA to SA

seed ∗ /
16: SA

seed = SA
seed

∪
yA

17: until No more nodes can be added to SA
seed

18: repeat
19: / ∗ Define the initial candidate set as the neighbors of the current subnetwork SB

seed ∗ /
20: iniCandSetB =

∪
{v : wB(u, v) > 0, u ∈ SB

seed, v /∈ SB
seed}

21: /∗ From the candidate set, exclude the nodes that are less connected to subnetwork SB
seed ∗/

22: candSetB = {iniCandSetB} −
∪
{z :

∑
u∈SB

seed
|wB(u, z) > 0| > |SB

seed| ∗ d}
23: / ∗ Find the best node to be added to SB

seed ∗ /
24: yB = argmaxyi∈candSetB

∑
u,v∈{Sm

∪
yi} πuπv

(
wB(u, v)− wA(u, v)

)
25: / ∗ Add yB to SB

seed ∗ /
26: SB

seed = SB
seed

∪
yB

27: until No more nodes can be added to SB
seed

28: end for
29: return ({SA}, {SB})

are not connected to at least half of the nodes in the subnetworks. The goal of using this condi-

tion is to target dense differential subnetworks. From the filtered candidate set, the DiffSubNet

algorithm selects the node that maximizes the objective function defined earlier. This process

is repeated until no more nodes can be added to the subnetwork. Finally, the subnetworks in

each class are ranked based on the objective function. The most differential subnetworks are
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reported and the remaining ones are ignored.

Example. To illustrate how the proposed algorithm works, Figure 4.3 shows an example

of two unweighted networks. Each network has 8 nodes. The solid lines between the nodes

represent common edges, and the dashed lines represent unique edges. Let us assume that the

algorithm at iteration t identified the nodes {4, 6, 7} as a differential subnetwork. Figure 4.3(a)

shows network A, Figure 4.3(b) shows network B and Figure 4.3(c) shows the differential

subnetwork identified from network A at time t. The question is: which node can be added to

the current subnetwork at iteration t+ 1?

The result of the DiffRank algorithm {8, 2, 3, 7, 4, 1, 6, 5} where node 8 is the top differen-

tial hub node in this example. To add a new node to the current differential subnetwork, the

DiffSubNet algorithm defines the initial candidate set as the neighbors of the current subnet-

work (lines 9-10). In this example, the initial candidate set is {1, 3, 5, 8}. Next, the DiffSubNet

algorithm excludes the nodes that are less connected to the current differential subnetwork

(lines 11-12). If we assume that the density factor is set to 0.5, then the algorithm excludes

each node that is not connected to at least two nodes in the subnetwork. As a result, nodes 1 and

8 will be excluded and the final candidate set is reduced to {3, 5}. Node 3 has two connections

with the current subnetwork, and node 5 has three connections with the current subnetworks.

However, since node 5 has two connections that are common in both network A and network

B, the DiffSubNet algorithm prefers node 3 based on the objective function (lines 13-14) be-

cause it has a better rank compared to node 5 according to the DiffRank algorithm. Hence,

at iteration t + 1 the differential subnetwork will contain the following nodes: {3, 4, 6, 7} as

shown in Figure 4.3(d)-(f) .

4.3.3 Evaluation Using Statistical Analysis

For quantitative evaluation, a permutation procedure is performed. Given a differential

subnetwork SA
n of size |SA

n | genes, its statistical significance can be assessed by randomly

permutating the class labels of the samples, and then comparing the differential correlation
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(a) Network A at iteration t (b) Network B at iteration t (c) The differential subnetwork at t

(d) Network A at iteration t+ 1 (e) Network B at iteration t+ 1 (f) The differential subnetwork at t+ 1

Figure 4.3: An illustration example of the DiffSubNet algorithm identifies differential subnet-
works. The figures in the first row show network A, network B and the differential subnetwork
at iteration t, while the figures in the second row show network A, network B and the differen-
tial subnetwork at iteration t+ 1.

of the observed and the randomized subnetworks. The differential correlation is measured

based on the gene-gene correlations of all the genes in the subnetwork in both classes. The

subnetwork S is considered significant if the difference between the gene-gene correlation of

the two classes is more than the random subnetworks.

Figure 4.4 illustrates the evaluation process. First, the observed differential scores are

computed for all the subnetworks generated by the proposed DiffSubNet algorithm. Second,

the class labels of the biological samples are permutated P times . In each time, the scores

for the subnetworks are recomputed and compared with the observed (original) scores. The

p-value for a given differential subnetwork can then be computed as the fraction of times the

permutated score was larger than or equal to the observed score. We used a significance level

of 0.05 to report the statistically significant differential subnetworks.
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(a) Subnetwork B

Figure 4.4: Computing the P-values for the differential subnetworks using permutations.

4.4 Experimental Results
In this section, we present the results of the proposed differential subnetwork algorithm on

simulated and real dataset. For the simulated dataset, we implanted differential subnetworks

in the dataset. As a real-world application, we applied and analyzed the proposed differential

subnetwork algorithm to the analysis of racial disparity in prostate cancer.

4.4.1 Constructing the Gene Networks

We used Mutual Information (MI) to measure the correlations between different genes

[121] and to construct the gene networks. To find the threshold for the MI values, we followed

the rank-based approach that was proposed in [111]. The MI between each gene and all other

genes are computed and ranked; then, each gene will be connected to the top 5 genes that are

similar to it.
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(a) (b)

Figure 4.5: The precision and recall of the simulated datasets. (a) Similar networks. (b)
Random networks.

4.4.2 Results on Synthetic Datasets

For the synthetic datasets, a set of subnetworks were implanted in the randomly generated

datasets. In the first experiment, we generated a dataset with two classes. The dataset has 1000

genes and 100 samples in each class. The data for each class was randomly generated. We

implanted 4 patterns (subnetworks) of size 10 genes and 4 patterns of size 20 genes. These pat-

terns were implanted in one class only (differential). In addition, we implanted some patterns

in both classes. These patterns are not differential because they are common in both classes.

We constructed a network from each class and run the DiffSubNet algorithm, and we evaluated

the results using precision and recall which are defined as follows [124]:

Precision =
SIMP ∩ SRES

SRES

Recall =
SIMP ∩ SRES

SIMP

where SIMP indicates the implanted subnetworks, and SRES indicates the resulting subnet-

works. The results are shown in Figure 4.5(a). As shown in this figure, the proposed algorithm
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extracted all the implanted differential subnetworks. Therefore the recall value is 1. However,

the resulting subnetworks included more nodes than the implanted subnetworks. Since the data

was randomly generated, more genes were added to the resulting subnetworks compared to the

implanted ones.

In the second experiment, we used exactly the same data for both classes, then we added the

differential patterns which were discovered by the proposed algorithm as differential subnet-

works. Similar to the first set of experiments, the DiffSubNet algorithm successfully identifies

the differential subnetworks with some additional nodes as summarized in Figure 4.5(b).

4.4.3 Results on Prostate Cancer

Dataset and Problem Definition

One of the main applications of the DNA microarray data is to compare the biological

activities of the genes in two types of cells, such as normal and cancer cells [83]. Comparing

the biological roles of genes in two classes of cells is an important problem to identify the

genes that are responsible for the phenotypic changes. For instance, African American males

(AAM) have a higher risk of developing prostate cancer compared to Caucasian American

males (CAM) [107, 133, 110]. There are several hypotheses to explain this difference[66,

110]. One of them is based on the assumption that genetic factors may play a key role in this

difference between these two groups. The existing approaches use a simple test, such as the

t-test, to identify the differentially expressed genes between AAM and CAM [133, 110]. In

this work, we are the first to propose using differential network analysis to identify the genes

that are responsible for the differences between Caucasian American and African-American in

developing prostate cancer.

The prostate cancer data was generated on a custom Illumina array with 529 genes and 637

samples. This dataset has two classes of conditions. The first class is Caucasian American (369

samples) and the second class is African-American (268 samples).
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Results of the DiffRank Algorithm

We constructed a gene co-expression network from the Caucasian American expression

data and another gene co-expression network from the African-American expression data. Fig-

ure 4.6 shows the degree distribution for each network. As shown in this figure, the networks

have scale-free structures where most of the nodes in each network have a low number of

connections and a few nodes have a high number of connections (hubs).

(a) Caucasian American group (b) African-American group

Figure 4.6: The degree distribution for the prostate cancer networks. (a) Caucasian American
group. (b) African-American group.

The next step is running the DiffRank algorithm to identify the most differential genes

based on their connectivity and centrality which were discussed in the previous chapter. The

scores obtained from the DiffRank algorithm are used to weigh the nodes when searching for

subnetworks. Table 4.1 shows the top 30 genes based on the DiffRank algorithm. In addition,

it shows the p-values for the t-test and the F-test, respectively. From this table, we emphasize

the following observations:

• Some genes are statistically significant based on both tests (Examples include NFKBIB

and CAPZB).

• Some genes are statistically significant based on the t-test but are not statistically signif-

icant based on the F-test (Examples include TCF7L1 and CD14).



49

Table 4.1: The top 30 differential genes in the Prosate cancer dataset.
DiffRank Gene P-value t-test P-value F test

1 TCF7L1 0.010 0.570
2 NFKBIB 0.002 0.001
3 CAPZB 0 0.007
4 APLP2 0.234 0.304
5 CD14 0 0.704
6 FOS 0.033 0.013
7 ERBB3 0.038 0.179
8 NFATC4 0.035 0.139
9 AKT1 0.031 0.566
10 TGFBR3 0.359 0
11 LTC4S 0.001 0.002
12 MGP 0 0.006
13 ADD2 0.047 0.185
14 CCND2 0.001 0.395
15 NCDN 0 0.021
16 KLK4 0.290 0.013
17 CDH1 0 0.022
18 PLN 0.037 0.374
19 TIMP3 0.017 0.076
20 MTHFD2 0.137 0.171
21 HPN 0.369 0.477
22 ACACA 0.105 0
23 KLK2 0.007 0.019
24 PCM1 0.0382 0.187
25 ERCC2 0.026 0.461
26 MYOCD 0.010 0.010
27 PLS3 0.760 0.010
28 MYLK 0.001 0.874
29 TMSB15A 0.002 0.365
30 PAICS 0.019 0

• Some genes are statistically significant based on the F-test but are not statistically signif-

icant based on the t-test (Examples include TGFBR3 and KLK4).

• Some genes are not statistically significant based on either the F-test nor the t-test (Ex-

amples include TGFBR3 and HPN).
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These observations confirmed our hypothesis that differential genes are not marked only by the

changes in their expression levels but also by the changes in their connectivity.

Results of the DiffSubNet Algorithm

Figure 4.7 shows four examples of differential subnetworks obtained from the Prostatec

caner dataset using the proposed DiffSubNet algorithm. The first differential subnetwork was

obtained from the Caucasian American expression data and it has a p-value of 0. This differen-

tial subnetwork is shown in Figure 4.7(a) and in Table 4.2, and the corresponding subnetwork

from the African-American expression data is shown in Figure 4.7(b). The second differen-

tial subnetwork was also obtained from the Caucasian American expression data and it has a

p-value of 0.02. This differential subnetwork is shown in Figure 4.7(c) and in Table 4.3, and

the corresponding subnetwork from the African-American expression data is shown in Figure

4.7(d).

Table 4.2: First differential subnetwork in Caucasian American.
Gene DiffRank P-value t-test P-value F test

CAPZB 3 0 0.007
FOS 6 0.033 0.0126
MGP 12 0 0.006
MYLK 28 0.001 0.874

DPYSL3 33 0.008 0
ACTA2 36 0 0
TIMP2 39 0.010 0.028
BLVRA 52 0 0
MAPK8 113 0.059 0.283
EGFR 173 0.228 0.038
HLA-F 218 0.001 0.002

The third differential subnetwork was obtained from the African-American expression data

and it has a p-value of 0. This differential subnetwork is shown in Figure 4.7(e) and in Ta-

ble 4.4, and the corresponding subnetwork from the Caucasian American expression data is

shown in Figure 4.7(f). The fourth differential subnetwork was also obtained from the African-
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American expression data and it has a p-value of 0.01. This differential subnetwork is shown in

Figure 4.7(g) and in Table 4.5, and the corresponding subnetwork from the Caucasian Ameri-

can expression data is shown in Figure 4.7(h).

Table 4.3: Second differential subnetwork in Caucasian American.
Gene DiffRank P-value t-test P-value F test

TCF7L1 1 0.010 0.570
NFATC4 8 0.035 0.139
CCND2 14 0.001 0.395
ACACA 22 0.105 0

TMSB15A 29 0.002 0.365
GATM 73 0.347 0.956
CD40 93 0.937 0.010

GSTP1 115 0.001 0.016
PDGFC 191 0.210 0

These four differential subnetworks were selected based on the objective function (Ω).

From these differential subnetworks, we make the following observations:

1. The genes in the differential subnetworks do not necessarily be along to the differential

hubs (top ranked by the DiffRank algorithm). Most of the differential subnetworks may

contain a hub or two hubs, but the remaining genes have lower ranks in the list.

2. The differential subnetworks can overlap. For example, both the differential subnetworks

for the African-American group (Table 4.5 and Table 4.5) contain the following genes:

NFKBIB, ERBB3 and NCDN. Since the same gene can be involved in more than one

biological process or pathway, it is important to develop computational algorithms that

allow overlapping patterns or subnetworks.

3. In all of the four differential subnetworks, there are significant differences between the

two classes in terms of the connectivity and the structure of the subnetworks. Moreover,

in each subnetwork, there is at least one gene that is isolated in the other class. Identifying

these isolated genes is very important because each one of them is strongly connected



52

with a set of genes in one phenotype but is not connected with any gene in that set in the

other phenotype.

4. The genes in the differential subnetworks can be statistically significant or insignificant

using the standard tests.

Table 4.4: First differential subnetwork in African-American.
Gene DiffRank P-value t-test P-value F test

NFKBIB 2 0.002 0.001
ERBB3 7 0.038 0.179
NCDN 15 0 0.021
ERCC2 25 0.026 0.461
SUFU 50 0.020 0.127
TRAF2 59 0.289 0.202
PLCG1 150 0.469 0.056
PLD2 185 0.010 0.214
TP53 282 0.148 0.045

4.5 Discussion and Summary
In this chapter, we presented a novel differential network algorithm (DiffSubNet) to iden-

tify differential subnetworks between two networks that have the same nodes but different set

of edges. We demonstrated the effectiveness of the DiffSubNet algorithm on simulated data.

Moreover, we applied this algorithm to a racial disparity problem, which is a very important

problem in bioinformatics. Basically, we are given a dataset that has two classes of biological

samples (Caucasian American and African-American). The goal is to study the influence of

patient race in the devolvement of Prostate cancer. Although this problem has been tackled

by several studies, we are the first to propose solving this problem by using novel differen-

tial subnetwork analysis. The differential subnetworks are groups of strongly connected nodes

(dense subnetworks) in one network but not in the other network. The resulting differential

subnetworks can overlap within the same network, but they should not overlap between the

two networks. Furthermore, the genes in the differential subnetworks do not necessarily have
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Table 4.5: Second differential subnetwork in African-American.
Gene DiffRank P-value t-test P-value F test

NFKBIB 2 0.002 0.001
ERBB3 7 0.038 0.179
AKT1 9 0.031 0.566
NCDN 15 0 0.021
PIK3R2 57 0.075 0.004
PLA2G6 131 0.252 0.052
SEPT5 212 0.783 0.013
GRN 320 0.055 0.005

to be among the differential hubs (top ranked by the DiffRank algorithm).

The genes in the differential subnetworks can be statistically significant or insignificant

using the standard t-test or the F-test. These tests capture the changes in the expression levels of

single genes while the proposed differential subnetwork algorithm captures the changes in the

gene-gene correlations and the changes in the connectivity and the structure of the networks.

Comprehensive studies should consider all of these changes rather than using a single method

of differential analysis.
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(a) Subnetwork 1 in Caucasian American (b) Subnetwork 1 in African-American

(c) Subnetwork 2 in Caucasian American (d) Subnetwork 2 in African-American

(e) Subnetwork 3 in Caucasian American (f) Subnetwork 3 in African-American

(g) Subnetwork 4 in Caucasian American (h) Subnetwork 4 in African-American

Figure 4.7: The top two differential subnetworks in each phenotype.
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CHAPTER 5

RANKING-BASED CO-CLUSTERING OF MICROARRAY

DATA

5.1 Introduction
The goal of co-clustering (or biclustering) is to simultaneously cluster both rows and columns

in a given matrix [22]. Motivated by several applications in text mining, recommendation sys-

tems and bioinformatics, different methods have been developed to discover local patterns that

cannot be identified by traditional clustering algorithms. In spite of vast research in this re-

search, existing co-clustering algorithms have some critical limitations in terms of identifying

co-clusters with different types of correlations in the data and their ability to capture overlap-

ping co-clusters in the data. In this chapter, we present a new deterministic co-clustering algo-

rithm that can be used to efficiently extract significant co-clusters. Our algorithm uses a novel

ranking-based objective function that is optimized to simultaneously find large co-clusters with

minimum residual errors. It allows positively and negatively correlated objects to be members

of the same co-clusters and can extract overlapping co-clusters. In addition, the co-clusters can

be arbitrarily positioned in the data matrix.

5.1.1 Motivation

Clustering is an important tool in unsupervised learning that is used to group similar data

points [95]. Partitioning data points into clusters is a challenging problem in several data anal-

ysis including text mining and bioinformatics. Traditional one-dimensional clustering algo-

rithms, such as k−means and hierarchical clustering, assign every data point to a cluster based

on a similarity measure computed across all the features. In some applications, traditional clus-

tering algorithms cannot capture the structural patterns in the data [4]. Since these algorithms

assume that correlated rows (columns) share similar patterns across all the columns (rows),
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they fail to discover local subspace patterns that exist in subsets of rows (or columns) [34] .

Given a data matrix with two entities (objects, features), such as (words, documents) in

text mining, (users,movies) in recommendation systems and (genes, samples) in bioinfor-

matics, a subset of rows may be inter-related under a subset of columns forming blocks of

substructures (co-clusters). For example, a set of genes may be co-expressed under a sub-

set of samples and applying traditional clustering techniques cannot capture such blocks [4].

Co-clustering has emerged as a powerful tool to simultaneously cluster both dimensions of a

data matrix by utilizing the relationship between the two entities [113]. Co-clustering helps

in discovering local patterns that cannot be identified by the traditional one-way clustering

algorithms.

Compared to traditional one-dimensional clustering, co-clustering is considered more in-

formative and more scalable [6] because it simultaneously measures the degree of coherence

in the samples across various attributes of a given data matrix. [57]. Moreover, considering co-

clusters rather than the entire feature space reduces the noise that is inherent in the data [46].

Co-clustering has been used in several applications such as clustering microarray data [92],

identifying protein interactions [80], collaborative filtering [45], text mining [16], matrix ap-

proximation [113]. In this work, we focus on applying co-clustering in biological applications

such as gene expression data analysis to identify local patterns.

5.1.2 Characteristics of Co-clusters

There are several important characteristic that should be considered while searching for

co-clusters in gene expression data. A subset of genes can be correlated only in a small subset

of samples due to the heterogeneity of the samples. Moreover, a gene can be involved in

more than one biological pathway; therefore, there is a need for a co-clustering algorithm that

allows overlapping between the co-clusters [34], i.e., the same gene can be a member of more

than one co-cluster. In addition, since genes can be positively or negatively correlated [67],

it is important to allow both types of correlation in the same co-cluster. Furthermore, the
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co-clusters can be arbitrarily positioned in the gene expression data. Existing algorithms do

not incorporate all of these important characteristics. The proposed algorithm supports the

discovery of large and possibly overlapping co-clusters that contain positively and negatively

correlated genes. Here, we describe the important characteristics of the co-clusters in the gene

expression domain. However, many of these characteristics are applicable to several other

domains as well.

1. Arbitrarily positioned co-clusters. Due to the heterogeneity of the samples, a subset of

genes can be correlated across any subset of the samples. Hence, the co-clusters can be

arbitrarily positioned in the matrix [95].

2. Overlapping. Discovering overlapping patterns is a challenging task in data mining [89].

For example, a gene can be involved in more than one biological process. Therefore,

that gene can belong to more than one co-cluster. One of the main advantages of our

algorithm is that it allows overlapping between co-clusters, which helps in understanding

the different roles played by a particular gene in a living cell. [95, 34].

3. Positive and negative correlations. There are different types of correlations between

the genes in any cell. Examples of such relationships are positive and negative correla-

tions [143]. Figure 5.1 shows an example these correlations. In a positive correlation,

genes show similar patterns while in a negative correlation, genes show opposite patterns.

Since it is possible that genes with both types of correlations exist in the same biological

pathway [67], there is a need for a computational model that captures both types of cor-

relations simultaneously [143]. However many of the existing co-clustering algorithms

capture positive correlations only. In this chapter, we introduce a novel algorithm that

can be used systemically to capture positive and negative correlations simultaneously.

4. Noisy data. The expression data contains a huge amount of noise [68]. Hence, the

co-clustering algorithms should be robust against noise.
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Figure 5.1: Different types of relationships between the genes in one co-cluster. The genes
{a, b} are positively correlated with each other, and the genes {c, d, e} are positively correlated
with each other. However, the genes {a, b} are negatively correlated with the genes {c, d, e}.

Measuring the Coherence of Co-clusters

The coherence is a measure of how similar a set of gene expression profiles are. Cheng and

Church proposed the mean-squared residue (MSR) score as a measure of the coherence for a

given co-cluster [22]

Definition 1. (Mean-Squared Residue). The mean-squared residue of a co-cluster X of |I|

rows and |J | columns is measured as:

MSR(X) =
1

|I||J |
∑

i∈I,j∈J

(Xij −XIj −XiJ +XIJ)
2

where Xij is the value in row i and column j in co-cluster X , XiJ =
∑

j∈J Xij

|J | is the row mean,

XIj =
∑

i∈I Xij

|I| is the column mean and XIJ =
∑

i,j Xij

|I||J | is the overall mean of X .

5.1.3 Our Contributions

In this chapter, we present a novel co-clustering algorithm to efficiently find arbitrarily

positioned co-clusters in the data matrix. Our contributions can be summarized as follows:

• Propose a novel co-clustering algorithm, Ranking-based Arbitrarily Positioned Overlapping

Co-Clustering (RAPOCC), to efficiently extract significant co-clusters.
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• Propose a novel ranking-based objective function to find arbitrarily positioned co-clusters.

• Extract large and overlapping co-clusters containing both positively and negatively cor-

related rows.

5.2 Limitations of Existing Co-clustering Algorithms
In this section, we describe some of the popular co-clustering algorithms. Cheng and

Church (CC) [22] proposed the first co-clustering algorithm that produces one co-cluster at

a time. The obtained co-cluster is replaced with random numbers, which typically reduces the

quality of the co-clusters. The Order-Preserving Submatrices (OPSM) algorithm [11] finds one

co-cluster at a time in which the expression levels of all genes induce the same linear order-

ing of the experiments. A co-cluster is considered order-preserving if there is a permutation

of its columns under which the sequence of values in every row is strictly increasing. This

algorithm does not capture the negatively correlated genes. The Iterative Signature Algorithm

(ISA) [64] defines a co-cluster as a co-regulated set of genes under a set of experimental con-

ditions. It starts from a set of randomly selected rows that are iteratively refined until they are

mutually consistent. The Robust Overlapping Co-clustering (ROCC) algorithm [34] finds κ×ℓ

co-clusters using the Bregman co-clustering algorithm [6]. This algorithm does not handle the

negative correlations. Our proposed co-clustering algorithm overcomes all of the above limita-

tions by (i) capturing arbitrarily positioned co-clusters, (ii) handling overlapping and positive

and negative correlations and (iii) being robust against noise.

Recently, the (κ, ℓ) co-clustering model has been proposed to simultaneously find κℓ co-

clusters [4, 34]. This model was shown to perform well in various applications [4, 34]. How-

ever, the main limitation of this model is that it assumes a grid structure comprised of κ × ℓ

co-clusters as shown in Figure 5.2(a). The assumption here is that the rows in each row cluster

should be correlated under each of the ℓ column clusters. Such an assumption may not hold

when a subset of rows is correlated only in a limited subset of columns (or vice versa). To
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(a) Grid structure (b) Arbitrarily positioned co-clusters

Figure 5.2: Types of co-cluster structures.

overcome this limitation, we propose a novel co-clustering algorithm that is able to identify

arbitrarily positioned co-clusters as shown in Figure 5.2(b). We will now discuss two synthetic

examples that motivate the need for a new co-clustering algorithm.

(a) (b) (c)

Figure 5.3: Motivating example 1: (a) Nine co-clusters arranged in a 3× 3 grid structure. (b)
The error of each co-cluster measured by MSR. (c) The accumulated sum of the error of the
best K co-clusters is shown in the Y-axis. The value of K is shown on the X-axis ( the cut-off
is based on elbow point criterion).
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Motivating Example 1:

In Figure 5.3(a), an example of 9 co-clusters arranged in a 3 × 3 grid structure is shown.

The corresponding error for each co-cluster is shown in Figure 5.3(b). The error is measured

by the mean-squared residue (MSR) score given by Definition (1). Let us consider the co-

cluster present in the intersection of the third row cluster and the second column cluster. This

co-cluster has an error of 0, which means that this is a perfect co-cluster. However, since

the other co-clusters in the same row cluster have high error values, this co-cluster will not

be extracted by the existing algorithms. Our objective function depends only on the score of

the top-ranked co-clusters. Hence, in this example if 70% of the co-clusters are included in

the objective function (as represented by the vertical line shown in Figure 5.3(c)), then the

proposed algorithm will be able to identify the six best co-clusters regardless of the score of

the three remaining co-clusters. The co-clusters found by our algorithm are the highly ranked

ones which are unknown in advance, arbitrarily positioned, and can be changed during the

iterative re-assignment step.

Motivating Example 2:

Figure 5.4 shows two co-clusters of size 4 × 4. The MSR of the first co-cluster is 0.098,

and the MSR of the second co-cluster is 2.723, which means that the first co-cluster is more

homogenous than the second one. Given a new row, as shown in Figure 5.4, the question is:

can we add it to the current co-clusters or not? If this row is to be added; then only the error of

the first co-cluster will be reduced. Specifically, the MSR of the first co-cluster will be reduced

to 0.085, but the error of the second co-cluster will be increased to 4.47. That is, the average

MSR of the two co-clusters before adding the new row is 1.41 while the average MSR of the

two co-clusters after adding the new row is 2.273. Therefore, the row will not be added to the

current co-clusters because of the high error of the second co-cluster, which will be pruned

eventually. In this work, we propose a new objective function that considers the score of the
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top-ranked co-clusters when the rows (or columns) are to be added/removed. Therefore, when

our algorithm is applied to this example, this row will be added because it improves the score

of the co-cluster that already has the maximum score. We will show that by using the new

objective function, it is possible to obtain improved results by focusing on the discovery of

high quality co-clusters.

Figure 5.4: Motivating example 2: Two co-clusters are shown with their corresponding MSR.
The problem here is to decide whether to add the new row to the current solution or not.

The intuition behind considering only the top-ranked co-clusters in the computation of

the objective function is that the co-clusters with high error values will be pruned eventually,

and we are interested in finding the co-clusters with the minimum error values regardless of

the other co-clusters. The existing co-clustering algorithms optimize for the co-clusters whose

sum of errors is minimized, while our algorithm optimizes for the best co-clusters, which could

be missed by other algorithms as a result of the effects including the co-clusters with high error

values. The set of co-clusters that are found by our algorithm are the highly ranked ones which

are unknown in advance, arbitrarily positioned and can be changed during the optimization

process.

5.3 The Proposed RAPOCC Algorithm
In this Section, we describe the RAPOCC algorithm. This algorithm is proposed to effi-

ciently extract the most coherent and large co-clusters that are arbitrarily positioned in the data
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matrix. These co-clusters can overlap and have positively and negatively correlated rows.

5.3.1 Preliminaries

In this section, we introduce the coherence measure that can be used to measure the quality

of the co-clusters, and we formulate the problem of co-clustering. The notations used in this

chapter are described in Table 5.1.

Table 5.1: Notations used in this chapter.
Notation Description

D input data matrix of M rows and N columns
κ number of row clusters
ℓ number of column clusters
ρ mapping of row clusters
γ mapping of column clusters
K number of optimized co-clusters
X Co-cluster of |I| rows and |J | columns
I set of rows in co-cluster X
J set of columns in co-cluster X
xj the jth column in row x
|.| the cardinality function

5.3.2 Definitions and Problem Formulation

Coherence is a measure of how similar a set of gene expression profiles are. Cheng and

Church proposed the mean-squared residue (MSR) score as a measure of coherence [22]. Since

the the overall shapes of gene expression profiles are of greater interest than the individual

magnitudes of each feature [68], we normalize the expression values of each gene to be between

0 and 1. As a result, the value of the objective function will also be bounded between 0 and 1.

Definition 2. (Coherence measure H). The coherence of a co-cluster X of |I| rows and |J |

columns is measured as

H(X) = 1− 1

|I||J |
∑

i∈I,j∈J

(Xij −XIj −XiJ +XIJ)
2

where Xij is the value in row i and column j in co-cluster X , XiJ =
∑

j∈J Xij

|J | is the row mean,
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XIj =
∑

i∈I Xij

|I| is the column mean and XIJ =
∑

i,j Xij

|I||J | is the overall mean of X .

Using Definition 2, a perfect co-cluster will have a score = 1. Given two rows (x and y)

and J columns, the coherence measure can be re-written as follows:

h(x, y, J) = 1− 1

2|J |
∑
j∈J

(
xj − x̄− xj + yj

2
+

x̄+ ȳ

2

)2

− 1

2|J |
∑
j∈J

(
yj − ȳ − xj + yj

2
+

x̄+ ȳ

2

)2

= 1− 1

|J |
∑
j∈J

(
(xj − x̄)− (yj − ȳ)

2

)2

(5.1)

where x̄ (ȳ) represents the mean of the values for the row x (y). An optimal co-cluster has a

value of H(X) = 1, which results from the case where (xj − x̄) = (yj − ȳ),∀j ∈ J . This

type of correlation is positive (h+(x, y, J)). In the negative correlation, the rows have opposite

patterns (i.e. the two negatively correlated rows will get a perfect score when (xj − x̄) =

−(yj − ȳ) ∀j ∈ J). The positive and negative correlations are defined in Definition 3.

Definition 3. (Positive and negative correlations). Given two rows (x and y) and J columns,

the positive correlation between them is defined as

h+(x, y, J) = 1− 1

|J |
∑
j∈J

(
(xj − x̄)− (yj − ȳ)

2

)2

and the negative correlation is defined as

h−(x, y, J) = 1− 1

|J |
∑
j∈J

(
(xj − x̄) + (yj − ȳ)

2

)2

Definition 4. (Pairs-based Coherence HP). Given a co-clusterX of |I| rows and |J | columns,

the coherence of this co-cluster is measured based on all the pairs in X:

HP (X) =
|2|

|I|(|I| − 1)

∑
x,y∈X

(h◦(x, y, J))
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where ◦ ∈ {−,+}.

The type of correlations (either positive or negative) between any two rows, referred to

as ◦ in Definition 4, is maintained for each pair of rows in each co-cluster in the proposed

algorithms.

(a) Input data matrix (b) Step 1: Initial-
ization

(c) Step 2: Core Co-
clustering

(d) Step 3: Merging (e) Step 4: Refine-
ment

Figure 5.5: The main steps of the proposed RAPOCC algorithm

Now, we will formally define the problem of co-clustering.

Definition 5. (Co-clustering). Let D ∈ RM×N denote a data matrix; the goal of co-clustering

is to find a row mapping (ρ) that maps the rows to the κ row clusters and a column mapping

(γ) that maps the columns to the ℓ column clusters

ρ : {1, 2, ...,M} −→ {1, 2, ..., κ}

γ : {1, 2, ..., N} −→ {1, 2, ..., ℓ}

such that the coherence of the top-K co-clusters is maximized.

argmax
X1,X2,...,XK

K∑
i=1

HP (Xi)

The problem of finding the co-clusters is an NP-hard problem [22]. We propose a novel

co-clustering algorithm to efficiently find arbitrarily positioned co-clusters from a given data

matrix.
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5.3.3 Ranking-based Objective Function

In the proposed iterative algorithm, the score of each of the κℓ co-clusters is computed

at each iteration, and the overall value of the objective function is computed based on the

coherence score of the top-K scores where K is the number of optimized co-clusters (1 ≤

K ≤ κ ∗ ℓ).

argmax
X1,X2,...,XK

K∑
i=1

HP (Xi)

The set of the top-K co-clusters can be any subset of the κ ∗ ℓ co-clusters. During each

iteration, the objective function will be computed for each possible change in the row/column

mapping keep the function monotonically increasing. The advantage of using this objective

function is that it allows the discovery of arbitrarily positioned co-clusters.

5.3.4 The RAPOCC Algorithm

The main steps of the RAPOCC algorithm are shown in Figure 5.5. The algorithm starts

with a two-dimensional matrix (objects × features) as an input. In the first step (see Figure

5.5(b)) a divisive approach is used for initialization. Basically, it starts with all the rows and

columns in one co-cluster; then the algorithm splits the co-cluster with the largest error. This

iterative procedure continues until κ row clusters and ℓ column clusters are obtained. The core

co-clustering step (see Figure 5.5(c)) finds the optimal row and column clusterings (ρ, γ). In

the third step, Figure 5.5(d), similar co-clusters are merged using a hierarchical agglomerative

approach. In the fourth step (see Figure 5.5(e)) more rows and columns are added to each co-

cluster individually. Finally, a pruning step is used to prune the co-clusters with low coherence

scores. These steps are described in Algorithm 2. In this algorithm, H(u, v) and HP (u, v)

indicate the coherence of the co-cluster formed by the row cluster u and column cluster v.

The inputs to this algorithm include the data matrix D ∈ RM×N , the number of row clusters

κ and the number of column clusters ℓ. These are common parameters in the co-clustering

methods [34], and they can be set based on the size of the data matrix. K determines the

number of the optimized co-clusters and can be set to any value between 1 and κ × ℓ. The
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parameters κ, ℓ and K can be set to large values because the RAPOCC algorithm will only

report the most coherent co-clusters, and the remaining ones will be pruned in the last step.

Algorithm 2 RAPOCC(D,κ, ℓ,K)
1: Input: Data matrix (D)

No. of row clusters (κ)
No. of column clusters (ℓ)
No. of optimized co-clusters (K)

2: Output:: A set of K co-clusters ({X})
3: Procedure:
4: Step 1 : initialization
5: i← 1, j ← 1
6: ρ(g)← i, ∀[g]m1
7: γ(c)← j, ∀[c]n1
8: while i < κ or j < ℓ do
9: if i < κ then

10: i← i+ 1
11: α← argminα

∑ℓ
j=1H

′
(u, v) : ρ(u) = α, γ(v) = l

12: Partition α using bisecting clustering algorithm
13: end if
14: if j < ℓ then
15: j ← j + 1
16: β ← argminβ

∑κ
i=1H

′
(u, v) : ρ(u) = i, γ(v) = β

17: Partition β using bisecting clustering algorithm
18: end if
19: end while
20: Step 2 : core co clustering
21: repeat
22: / ∗ Row clustering ∗ /
23: for a = 1 : M do
24: ρ(a) = argmaxu∈{−κ,...,−1,0,1,...,κ}HP (ρ(a) = u, γ)
25: end for
26: / ∗ Column clustering ∗ /
27: for b = 1 : N do
28: γ(b) = argmaxb∈{0,1,...,ℓ}HP (ρ, γ(b) = v)
29: end for
30: until convergence
31: Step 3 : Merging similar co clusters
32: Step 4 : Refinement
33: Step 5 : Pruning

Step 1: Initialization. Inspired by the bisecting K-means clustering technique [120], we

use a deterministic algorithm for the initialization. Each row is mapped to one of the κ clusters,
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and each column is mapped to one of the ℓ clusters, resulting in a checkerboard structure κ× ℓ

as shown in Figure 5.5(b). The initialization algorithm is a divisive algorithm that starts with

the complete data assigned to one cluster as described in Algorithm 2 (lines 5-7); then, the

following steps are repeated until the desired number of row clusters is obtained. (1) Find the

row cluster with the lowest coherence score (αmin). (2) Find the two rows in αmin with the

lowest correlation (r1, r2). (3) Create two new row clusters α1 and α2. Add r1 to α1 and r2

to α2. (4) Add each of the remaining rows in αmin to α1 (α2) if it is more correlated to r1

(r2). The column clusters are initialized in the same manner. The algorithm alternates between

clustering the rows and the columns as described in Algorithm 2 (lines 8-19).

Step 2: Core Co-clustering (ρ, γ). This step finds the optimal row and column clusterings

(ρ, γ) as shown in Figure 5.5(c). To update ρ, each row (ri) is considered for one of the

following three actions as described in Algorithm 2 (lines 20-30):

• Exclude ri from any row cluster by setting ρ to 0.

• Find the best row cluster to include ri as a positively correlated row {1, 2, .., κ}.

• Find the best row cluster to include ri as a negatively correlated row {−κ, ...,−2,−1}.

The objective function is computed for each possible action, and the action to be carried out

is the one corresponding to the maximum value of the three objective function values. Within

each co-cluster, there is a sign vector that determines the type of correlation (positive or nega-

tive) of each row. Therefore, a row can be positively correlated in some of the co-clusters and

negatively correlated in other co-clusters. The column mapping (γ) is calculated in a similar

manner, but there is no consideration for negatively correlated columns. Following this strat-

egy, the value of the objective function is monotonically increasing, and the convergence is

guaranteed as shown in Theorem 1. After convergence, the result will be a non-overlapping set

of co-clusters.
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Theorem 1. The Algorithm RAPOCC (Algorithm 2) converges to a solution that is a local

optimum.

Proof. From Definition 4, the coherence measure HP is bounded between 0 and 1. Hence, the

objective function given in Definition 5 is also bounded. Algorithm 2 iteratively performs a

set of update operations for the row clustering and the column clustering . In each iteration, it

monotonically increases the objective function. Since this objective function is bounded for the

top-K co-clusters, the algorithm is guaranteed to converge to a locally optimal solution.

Step 3: Merging the Co-clusters. The top-K co-clusters with the maximum coherence

are retained from the previous step. In this step, similar co-clusters are merged as shown in

Figure 5.5(d) using an agglomerative clustering approach. The two most similar co-clusters

are merged in each iteration. The goal of this step is two-fold: (i) it allows the discovery of

large co-clusters, and (ii) it allows for overlapping co-clusters.

Step 4: Refinement. In this step, the algorithm adds more rows and columns to each co-

cluster individually to obtain larger co-clusters and also allows for overlapping co-clusters as

shown in Figure 5.5(e). Hence, the same row/column can be added to several co-clusters.

Step 5: Pruning. In this step, we prune the co-clusters with the lowest coherence scores.

To determine which co-clusters to prune, (i) sort the co-clusters based on their coherence

(measured byHP ), (ii) compute the difference between the consecutive scores and (iii) report

the set of co-clusters just before the largest difference, and prune the remaining co-clusters. The

time complexity of the RAPOCC algorithm is O (κ.ℓ.max(MN2, NM2)).

5.4 The Experimental Results
To demonstrate the effectiveness of the proposed algorithm, several experiments were con-

ducted using both synthetic and real-world gene expression datasets.
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5.4.1 Experimental Setup

Datasets

For the synthetic datasets, a set of co-clusters were implanted in randomly generated datasets

using the shifting and scaling patterns [143]. Given two rows, x and y, their relationship can

be represented as:

xj = yj ∗ sscale + sshift

where sshift and sscale are the shifting and scaling parameters. The sign of sshift determines

the correlation type: if sshift > 0, then x and y are positively correlated, and if sshift < 0, then

x and y are negatively correlated [143]. In addition, two types of synthetic datasets were used,

one without noise and the other with Gaussian noise. For the real-world datasets, we used eight

expression datasets in the co-clustering experiments as described in Table 5.2.

(a) without noise (b) with 10% Gaussian noise

Figure 5.6: The co-clustering results on the synthetic datasets.

Comparisons with existing methods

In the co-clustering experiments, we compared the results of the RAPOCC algorithm against

the CC [22], the OPSM [11], the ISA [64] and the ROCC [34] algorithms. We used BiCAT

software (http://www.tik.ethz.ch/sop/bicat/) to run CC, ISA and OPSM algorithms using the

default parameters. The code for the ROCC was obtained from the authors of [34].



71

Table 5.2: Description of the real-world gene expression datasets used in the co-clustering
experiments

Dataset Genes Samples
Leukemia [48] 5000 38
Colon cancer [3] 2000 62
Medulloblastoma [91] 2059 23
Scleroderma [138] 2773 27
Arabidopsis thaliana [103] 734 69
Gasch yeast [103] 2993 173
Cho yeast [25] 6240 14
Causton yeast [19] 4960 11

Evaluation Measures

To evaluate the effectiveness of the proposed algorithm, we used several measures such as

the number of co-clusters, the average size and the average coherence of the co-clusters

computed using Definition 4. We also used the recovery and relevance measures [103]. Re-

covery determines how well each of the implanted co-clusters is discovered, and relevance

is the extent to which the resulting co-clusters correspond the implanted co-clusters. Given a

set of implanted co-clusters denoted by Yimp and a set of co-clusters obtained by an algorithm

denoted by Xres, the recovery and the relevance can defined as follows:

Recovery =
1

|Yimp|
∑

(Y ∈Yimp)

argmax
(X∈Xres)

|X ∩ Y |
|X ∪ Y |

Relevance =
1

|Xres|
∑

(X∈Xres)

argmax
(Y ∈Yimp)

|X ∩ Y |
|X ∪ Y |

Biological Evaluation

The biological significance was estimated by calculating the p-values using the DAVID

tool (http://david.abcc.ncifcrf.gov/) to test if a given co-cluster is enriched with genes from a
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(a) 80× 35 (b) 31× 40 (c) 8× 129

(d) 60× 30 (e) 14× 5 (f) 18× 20

Figure 5.7: Examples of the co-clusters identified by the proposed RAPOCC algorithm on
the gene expression datasets. The three co-clusters in the first row contain only the positively
correlated genes which show similar patterns. The three co-clusters in the second row contain
both positively and negatively correlated genes which show opposite patterns.

particular category to a greater extent than would be expected by chance [84]. When working

with biological data, we are interested in identifying the biological significance of the results.

The biological significance was estimated using the p-values with different significance levels

= 5%, 1% and 0.1%. The hypergeometric distribution is used to calculate the probability of

having at least k genes from a co-cluster of size n genes by chance in a biological process

containing f genes from a total size of N genes as follows:

P = 1−
k∑

i=0

(
f
i

)(
N−f
n−i

)(
N
n

)
This test measures if a co-cluster is enriched with genes from a particular category to a greater

extent than that would be expected by chance [84]. The range of the p-values is from 0 to 1.

Lower p-values indicate biological significance [24].
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5.4.2 Co-clustering Results

In this subsection, we present the results for the co-clustering experiments.

Results on Synthetic Data

Two types of datasets were used, one without noise and one with 10% noise. The size of

each synthetic dataset is 200×150. Two co-clusters were implanted in each dataset, and the size

of each co-cluster is 50×50. As shown in Figure 5.6, the RAPOCC algorithm outperformed the

other algorithms because it optimizes for high-quality co-clusters. As a result, fewer random

data points are added to the co-clusters obtained by our algorithm.

Results on Real Gene Expression Data

Figure 5.7 shows examples of the co-clusters identified by the proposed RAPOCC algo-

rithm. The three co-clusters in the first row contain only the positively correlated genes which

show similar patterns. These co-clusters were obtained from the Gasch yeast dataset. The

three co-clusters in the second row contain both positively and negatively correlated genes

which show opposite patterns. These co-clusters were obtained from Gash yeast, Scleroderma

and Causton yeast datasets, respectively. The results of the five co-clustering methods on the

eight datasets are shown in Table 5.3 and summarized in the following observations:

• Coherence of the co-clusters. The RAPOCC algorithm outperformed all the other al-

gorithms on all of the datasets. The OPSM and the ROCC algorithms performed better

than the CC and the ISA algorithms. These results confirmed one of our initial claims

that the proposed RAPOCC algorithm was designed to identify high-quality co-clusters.

• Size of the co-clusters. Except for the Leukemia dataset, the RAPOCC produced either

the largest or the second largest co-clusters in all of the datasets. The OPSM and the

RAPOCC algorithms produced the largest co-clusters in four datasets and three datasets,

respectively.



75

• Number of the co-clusters. The ROCC algorithm produced the largest number of co-

clusters in all of the datasets. However, we observed that, in most of the cases, the

co-clusters generated by this algorithm were either duplicates, subsets of each other or

highly overlapping. On the other hand, the ISA algorithm did not produce any co-cluster

for three datasets: Leukemia, Cho yeast and Causton yeast.

• Biological significance of the co-clusters. Figure 5.8 shows the average of the percent-

ages of the biologically significant co-clusters using the DAVID tool from all the eight

gene expression datasets. As shown in this figure, our proposed algorithm outperformed

all other algorithms. The good performance of the OPSM algorithm in this context is

due to the large size of co-clusters it generated.

(a) Leukemia (b) Colon (c) Medulloblastoma (d) Scleroderma

(e) Arabidopsis thaliana (f) Gasch yeast (g) Cho yeast (h) Causton yeast

Figure 5.8: Proportion of the co-clusters that are significantly enriched in each dataset (signif-
icance level = 5%).

In summary, the proposed co-clustering algorithm produced the higher quality, more bio-

logically significant and relatively larger co-clusters compared to the other algorithms. Fur-

thermore, the RAPOCC algorithm is more robust to noise.
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5.5 Summary of the Co-clustering Algorithm
In this chapter, we presented a novel co-clustering algorithm (RAPOCC) to cluster large-

scale gene expression data. It uses a novel objective function that is optimized to simultane-

ously find large co-clusters with minimum errors, and it allows positively and negatively cor-

related genes to be in the same co-cluster. The co-clusters can be arbitrarily positioned in the

gene expression matrix and can overlap. Furthermore, the algorithm performs well on noisy

data, and it can handle missing values. The experimental results on synthetic and real-word

datasets showed that the proposed algorithm can extract biologically and statistically signifi-

cant co-clusters from gene expression data. The proposed algorithm was compared to some of

the existing algorithms, and the comparisons showed that the RAPOCC outperformed the other

methods that are available in the literature.
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CHAPTER 6

DIFFERENTIAL CO-CLUSTERING

6.1 Introduction
Discriminative models are used to analyze the differences between two classes and to iden-

tify class-specific patterns. Most of the existing discriminative models depend on using the

entire feature space to compute the discriminative patterns for each class. Co-clustering has

been proposed to capture the patterns that are correlated in a subset of features, but it cannot

handle discriminative patterns in labeled datasets. In some applications, it is critical to con-

sider the discriminative patterns that are correlated in a subset of the feature space. In this

chapter, we extend the RAPOCC co-clustering algorithm to discover discriminative co-clusters

by incorporating the class information into the co-cluster search process. In addition, we also

characterize the discriminative co-clusters and propose three novel measures that can be used

to evaluate the performance of any discriminative subspace algorithm. We evaluated the pro-

posed algorithms on several synthetic and real gene expression datasets, and our experimental

results showed that the proposed algorithms outperformed several existing algorithms available

in the literature.

Discriminative models are used to extract patterns that are highly correlated in one class

compared to another class. Mining such discriminative patterns can provide valuable knowl-

edge toward understanding the differences between two classes and identifying class-specific

patterns. For example, discriminative mining of gene expression data can lead to the identifi-

cation of cancer-associated genes by comparing the expression patterns of the genes between

healthy and cancerous tissues [32]. However, these genes can be correlated only in a subset

of the cancerous samples due to the heterogeneity in the sample space [95]. Since the existing

discriminative models are based on using all the features to find the discriminative patterns,
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it is crucial to develop a model that can identify discriminative patterns that are correlated in

a subset of the feature space. Figure 6.1 shows the correlations between three objects in two

classes. These objects are highly correlated in a subset of the features in class A, but they

are not correlated in class B. Such discriminative patterns cannot be discovered using standard

discriminative models that use all the features. In order to capture these patterns, discriminative

co-clustering is being proposed in this chapter.

Co-clustering has been proposed to identify subsets of objects that are inter-related under

subsets of features (co-clusters) [22, 35, 34, 95, 146]. However, co-clustering is an unsuper-

vised procedure that does not consider the class labels to find the discriminative patterns in

labeled datasets. In order to capture the subspace discriminative patterns (or discriminative

co-clusters), discriminative co-clustering is being proposed in this chapter by incorporating the

class labels into the co-clustering process.

Figure 6.1: A set of three objects that are highly correlated in a subset of the features in class A,
but they are not correlated in class B. Hence, these objects are considered as a discriminative
(or differential) co-cluster.

6.1.1 Characteristics of Discriminative Co-clusters

Discriminative models aim to extract patterns that are differentially correlated between two

classes [40]. In addition to the previously mentioned characteristics of the co-clusters, the

discriminative co-clusters must possess the following characteristics:

1. High discriminative coherence: Coherence is a measure of similarity between a set of

objects [95]. The discriminative co-clustering algorithms should identify the set of co-
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clusters with the maximum difference in the coherence among the two classes. Trivial

co-clusters that have the same correlation in both of the classes should be ignored.

2. Low inter-class overlapping: The discriminative co-clusters discovered in one class

should have a minimal number of common rows with the co-clusters discovered in the

other class.

3. High discriminative power: Incorporating the class labels can improve the performance

of classification algorithms [61]. Discriminative co-clusters must be able to make more

accurate predictions.

6.1.2 Motivating Example

Figure 6.2 shows an example of discriminative and non-discriminative co-clusters. The

width of each co-cluster (X) indicates the number of features in it, and its shade represents its

correlation score, which is also displayed as a percentage inside each co-cluster. The correla-

tion score can be measured by various functions such as the mean-squared residue [22]. In this

example, the higher the percentage (or the darker the shade), the stronger the correlation. The

co-cluster properties (shade and width) are the main criteria used to distinguish between dis-

criminative and non-discriminative co-clusters. A co-cluster is considered as a discriminative

co-cluster if it is correlated only in one class (such as X1 and X5.b), if it is highly correlated

in one class and less correlated in the other class (such as X4) or if it is correlated in relatively

higher percentage of features (such as X3 and X6). The co-clusters X2 and X5.a are not con-

sidered as discriminative co-clusters because they are similarly correlated in both classes. Can

any co-clustering algorithm be used to identify the discriminative co-clusters? A naive

solution to this problem is to co-cluster each class separately and then identify the co-clusters

that appear in only one class. However, there are many limitations in following such a proce-

dure: (i) Standard co-clustering algorithms focus on identifying the most correlated co-clusters.

Therefore, discriminative co-clusters that have low correlation score (such as X1 and X6) will
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Figure 6.2: Example of discriminative co-clusters.

not be discovered. (ii) Since the standard co-clustering algorithms do not detect all the co-

clusters, it is possible that co-cluster X2 is discovered only in one class and considered as a

discriminative co-cluster. (iii) Most co-clustering algorithms prefer large co-clusters. There-

fore, the complete co-cluster X5 may be considered as a discriminative co-cluster because part

a is not discovered in class B due to its size limitation. In this chapter, we develop a novel

algorithm that directly optimizes an objective function to efficiently identify the discriminative

co-clusters, and we propose two metrics to score the discriminative co-clusters based on their

correlation scores and the number of features in them.

6.1.3 Our Contributions

The purpose of this chapter is to present a novel discriminative co-clustering algorithm to

efficiently find arbitrarily positioned co-clusters in the data matrix. The proposed algorithm

can be used to discover discriminative co-clusters by incorporating the class information into

the co-cluster discovery process. Our contributions can be summarized as follows:

1. Propose a novel discriminative co-clustering algorithm, Discriminative RAPOCC (Di-
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RAPOCC), to efficiently extract the discriminative co-clusters from labeled datasets.

2. Find the discriminative co-clusters from labeled datasets efficiently by incorporating the

class information into the co-clustering process.

3. Propose three new evaluation metrics to quantify the results of the discriminative co-

clustering algorithms on both synthetic and real gene expression datasets. Two met-

rics are used to measure the discriminative coherence property of the discriminative co-

clusters, and the third one measures the inter-class overlap property.

4. Categorize the state-of-the-art approaches for discriminative co-clustering and charac-

terize each category. We also empirically compare the performance of these categories

with the proposed algorithm.

6.2 Differential Co-clustering Algorithms
In general, the co-clustering algorithms work in an unsupervised manner. However, some

algorithms incorporate a priori knowledge in the co-clustering process. For example, in con-

strained co-clustering, some information can be incorporated such as the must-link and cannot-

link constraints [102, 118, 114]. In discriminative co-clustering, the class labels are incorpo-

rated to find class-specific co-clusters. As illustrated in Figure 6.3, the existing discriminative

co-clustering approaches can be categorized as two-step or one-step approaches.

Two-step approaches

There are two sub-categories of these approaches: (i) first co-clustering, and then dis-

criminative analysis. In [100], differentially expressed gene modules are identified by ap-

plying co-clustering each class separately, then the identified co-clusters are ranked based on

their discrimination between the two classes. (ii) first discriminative analysis, and then

co-clustering. The DeBi [112] algorithm uses two steps to identify differentially expressed
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(a) Two-step approach

(b) Two-step approach

(c) The proposed model: one-step approach

Figure 6.3: Different approaches to obtain discriminative co-clusters.

co-clusters. The first step is to find the up or the down regulated genes using fold change

analysis. In the second step, the MAFIA algorithm [15] is used to find the co-clusters from

the up-regulation and the down-regulation data. There are two limitations for the two-step

approaches: (i) the co-clustering is done for each class separately, and (ii) the discriminative

analysis step is independent of the co-clustering step. Therefore, the one-step approaches have

been proposed to overcome these limitations.

One-step approaches

The subspace differential co-expression (SDC) algorithm [39] uses the Apriori search algo-

rithm to identify the discriminative patterns. The Apriori approach depends on using thresholds

to define the discriminative patterns [39, 40]. For example, a given pattern is considered as a

discriminative pattern if the difference between the correlations of this pattern in the two classes
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is above a fixed threshold. Otherwise, this pattern will be split into smaller patterns to be tested

again using the same threshold [39]. Therefore, the SDC method suffers from the following

limitations: (i) It generates very small patterns [39]. (ii) The number of the discovered patterns

dramatically grows with the size of the datasets, and it significantly varies with the threshold

value [39, 40]. (iii) It has computational efficiency problems and does not scale well to large-

scale datasets. In addition, the SDC method does not identify the subset of columns in which

a given pattern shows the maximum correlation. In our previous work [99], we proposed a

discriminative co-clustering algorithm to analyze the differences in the biological activities of

several genes between two classes. Although this algorithm generated large co-clusters com-

pared to the SDC method, this algorithm does not scale to large datasets because it maintains,

for each pair of rows (genes), the set of columns under which the two rows are differentially

correlated. Recently, locally discriminative co-clustering was proposed in [146] to explore

the inter-sample and inter-feature relationships, but it does not find discriminative co-clusters

as defined in our work. To overcome all of the above limitations of the existing approaches,

we propose a novel discriminative co-clustering algorithm that directly optimizes an objective

function to efficiently identify the discriminative co-clusters from a given labeled dataset.

6.3 The Proposed Differential Co-clustering Algorithm

6.3.1 Preliminaries and Problem Formulation

In this section, we introduce the coherence measure that can be used to measure the qual-

ity of the co-clusters, and we formulate the problems of co-clustering and discriminative co-

clustering. The notations used in this chapter are described in Table 6.1, and we also used some

of the notations from the previous chapter (Table 5.1). Here, we formally define the problems

of co-clustering and discriminative co-clustering. Discriminative co-clustering aims to find the

co-clusters that are highly correlated in one class but are less correlated in the other class. Min-

ing discriminative co-clusters from labeled datasets is essential in several applications such as

microarray data analysis and prediction.
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Table 6.1: Notations used for the discriminative co-clustering algorithm.
Notation Description
NA No. of columns in class A
KA number of optimized co-clusters in class A
cAj jth column in class A, 1 ≤ j ≤ |NA|

XA
k .r(i) ith row of the kth co-cluster in class A

XB
k .c(j) jth column of the kth co-cluster in class B

Definition 6. (Discriminative Co-clustering). If HPA(Xi) measures the coherence of the co-

cluster Xi in class A, the goal is to find the set of co-clusters that has maximal discriminative

coherence

argmax
X1,X2,...,XKA

KA∑
i=1

(
HPA(Xi)− ψB(Xi)

)

argmax
X1,X2,...,XKB

KB∑
i=1

(
HPB(Xi)− ψA(Xi)

)
where ψA(Xi) (ψB(Xi)) is the maximum coherence of any subset of the objects in Xi in

class A (B). The challenge here is to find ψ(Xi), which is similar to the NP-hard problem

of finding the maximum subspace in Xi [22]. In the proposed discriminative co-clustering al-

gorithm, we propose two approximations for computing ψ(Xi) that can be used to efficiently

discover discriminative co-clusters by incorporating the class labels into the co-clusters discov-

ery process.

Discriminative co-clustering aims to extract patterns that are highly correlated in a subset

of the features in one class but not correlated in the other class. As illustrated in Figure 6.2, the

rows of a discriminative co-cluster in one class should not form a co-cluster in the other class.

This implies that there are two tasks that should be performed simultaneously: (i) search for

a co-cluster in one class, and (ii) find the coherence of the rows of the co-cluster in the other

class (ψA(X) or ψB(X) in Definition 6). The challenge is to compute ψB(X) (ψA(X)) while

searching for the co-cluster in class A (B).

Consider XA as a co-cluster in class A that has |I| rows and |JA| columns, and consider
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DB(I, .) as the sub-matrix composed of the I rows and all the columns in class B. XA will

be considered as a discriminative co-cluster if there are no co-clusters in DB(I, .). An optimal

solution for this would be to apply a co-clustering algorithm to find the maximal co-cluster in

class DB(I, .). However, this is an NP-hard problem [22].

Table 6.2: A running example dataset for the discriminative co-clustering.
Row c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
x 9 8 6 5 3 2 1 6 8 5
y 10 4 10 6 9 3 2 9 9 10
z 2 5 8 4 5 9 8 9 1 8

An alternative solution to this problem is to consider the correlations of each pair of rows

in DB(I, .). Given two rows (x and y) in DB(I, .), the aim is to find the subset of columns

where the coherence between the two rows is maximized. To find an exact solution, one should

enumerate all possible subsets of the |NB| columns. However, this solution is computation-

ally infeasible since it requires enumerating all the 2|N
B | subsets, where NB is the number of

columns in class B. To avoid such an exhaustive enumeration, we propose two efficient solu-

tions: (i) a greedy-columns-selection solution and (ii) a clustering-based solution. Table 6.2

demonstrates a running example to illustrate how these solutions work.

6.3.2 Greedy-Columns-Selection

The intuition behind this measure is to iteratively compute the coherence between x and y

based on the best J i sets of columns for 1 ≤ J i ≤ NB and then report a weighted average

of these NB computations. In the first iteration, all the NB columns are used. In the second

iteration, one of the columns (j) is removed, and the remaining NB − 1 columns are used

to compute the coherence between the two rows. These are the set of NB − 1 columns that

achieves the maximum coherence between the two rows. This will be repeated to compute the

coherence of the two rows using the best NB − 2, NB − 3, ..., 1 columns. The final value of



86

this measure is a weighted average of {h(x, y, J1), ..., h(x, y, JNB
)}:

∑NB

i=1 h+(x, y, J
i)|J i|/NB∑NB

i=1 |J i|/NB

J (i+1) = {J i} − argmax
j

h(x, y, {J i} − {j})

|J i|/NB is the weight assigned to each set of columns such that larger sets of columns are

assigned more weight than smaller sets of columns. This measure can be used to capture the

negative correlations by applying h−(x, y, J) instead of h+(x, y, J). Since no prior knowledge

about the correlations between the rows is used, hG will be computed twice, and the final value

for this measure hG(x, y) is computed as the maximum of

(∑NB

i=1 h+(x, y, J
i)|J i|/NB∑NB

i=1 |J i|/NB
,

∑NB

i=1 h−(x, y, J
i)|J i|/NB∑NB

i=1 |J i|/NB

)

Finally, ψB
G(X) is computed as:

ψB
G(X) =

|2|
|I|(|I| − 1)

∑
x,y∈X

hG(x, y)

As an example, Table 6.3 shows the results of applying hG on the x and y rows in Table 6.2.

From this table, it should be noted that the two rows form a perfect co-cluster in the columns

{c1, c4, c6, c7, c9}. Figure 6.4(a) shows a plot for all the three rows in all the columns, and Fig-

ure 6.4(b) shows a plot for all the three rows in the identified subset of the columns. Based on

the greedy-columns-selection method, the first proposed discriminative coherence mea-

sure is defined as

∆A
G(X) = ψA

G(X)− ψB
G(X). ∆B

G(X) = ψB
G(X)− ψA

G(X)

The range of ∆A
G and ∆B

G is (−1, 1).
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(a) All columns. (b) A co-cluster.

Figure 6.4: (a) a plot for the entire running datasets. (b) a plot for the co-cluster extracted from
the running dataset.

Table 6.3: Results of hG on the x and y rows in Table 6.2.
(i) Çolumns {Jm} h+(x, y, J

i)
1 J1 = {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10} 0.9723
2 J2 = {c1, c3, c4, c5, c6, c7, c8, c9, c10} 0.9860
3 J3 = {c1, c3, c4, c6, c7, c8, c9, c10} 0.9908
4 J4 = {c1, c3, c4, c6, c7, c8, c9} 0.9947
5 J5 = {c1, c4, c6, c7, c8, c9} 0.9978
6 J6 = {c1, c4, c6, c7, c9} 1.0
7 J7 = {c4, c6, c7, c9} 1.0
8 J8 = {c6, c7, c9} 1.0
9 J9 = {c6, c9} 1.0
10 J10 = {c9} 1.0

hG(x, y, J) (weighted average) 0.994

6.3.3 Clustering-based discretization

The goal of the discretization step is to create a new representation of the data using a

standard one-dimensional clustering algorithm to cluster each row separately. We rank the

clusters in each row, and each value in a row will be represented by the rank of the cluster it

belongs to. After clustering, we estimate the coherence between any two rows using the new

representation.

The intuition of using clustering is to guarantee that similar data points within each row

will be represented by the same value. The basic idea is as follows: (i) Cluster the values of

each row to c clusters. (ii) Rank the clusters based on the mean of the values of each cluster

such that cluster 1 contains the lowest values in x, and cluster c contains the highest values in
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x. (iii) Map each value of x to the rank of the cluster the value belongs to.

ζ : {1, 2, ..., NB} −→ {1, 2, ..., c}

The positive correlation between two rows is defined as (xj−x̄) = (yj−ȳ) and the negative

correlation between them is defined as (xj − x̄) = −(yj − ȳ). Using the new representation,

the positive correlation can be represented as

ζ(xj)− ζ(yj) = s+

where s+ is the positive shift parameter. Since ζ(xj) and ζ(yj) can take any value between 1

and c , the shift parameter (s+) can take any value from the following set: {−(c−1), ...,−1, 0, 1, ..., c−

1}. Similarly, the negative correlation can be represented as

ζ(xj) + ζ(yj) = s−

where s− is the negative shift parameter that can take any value from the following set: {2, 3, ..., 2c}.

Now, we can efficiently estimate the correlation between any two rows by finding the values

of s+ and s− which will have a finite number of possible values. To estimate the positive cor-

relation between x and y, we will subtract ζ(xj) from ζ(yj), and the most frequent value that

appears in many columns will be considered as the value for s+. Similarly, to estimate the

negative correlation between x and y, we will add ζ(xj) to ζ(yj), and the most frequent value

that appears in many columns will be considered as the value for s−. To determine if the two

rows are positively or negatively correlated, we compare the number of columns in which the

two rows are considered positively correlated to the number of columns in which the two rows

are considered negatively correlated.

JC+ = {j | ζ(xj)− ζ(yj) = s+}
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JC− = {j | ζ(xj) + ζ(yj) = s−}

If |JC+ | ≥ |JC−|, x and y are considered positively correlated, and their coherence is com-

puted as hc(x, y) = h+(x, y, JC+)
|JC+ |
|NB | , else, x and y are considered negatively correlated, and

their coherence is computed as hC(x, y) = h−(x, y, JC−)
|JC− |
|NB | . Finally, ψB

C in class B can be

computed as

ψB
C (X) =

|2|
|I|(|I| − 1)

∑
x,y∈X

hC(x, y)

To illustrate how this measure works, Table 6.4 shows the results of clustering each row

in Table 6.2 (Here we used k-means, k=3. However, any other clustering algorithm can be

used). The values in this table are the rankings of the clusters. For example, 1 indicates the

cluster that has the lowest values in the corresponding row, and 3 indicates the cluster that has

the maximum value. As an example, consider the first two rows. Subtracting ζ(x) from ζ(y)

yields the following:

(0, 2,−1, 0,−2, 0, 0,−1, 0,−1)

This means that the maximum positive correlation between x and y is in 5 columns {c1, c4, c6, c7, c9}

with s+ = 0, while adding ζ(x) to ζ(y) yields

(6, 4, 5, 4, 4, 2, 2, 5, 6, 5)

This means that the maximum negative correlation between x and y is in 3 columns: {1, 4, 5}

with s− = 4 or {c3, c8, c10} with s− = 5). Hence, the coherence between x and y is computed

as follows:

hC(x, y) = h+(x, y, {c1, c4, c6, c7, c9})
5

10
= 0.5

As another example, the last two rows (y and z) are negatively correlated in the same set of

columns:

hC(y, z) = h− (y, z, {c1, c4, c6, c7, c9})
5

10
= 0.5
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The results here are similar to those obtained using hG in terms of the set of columns in

which the two rows have the maximum coherence, which is {c1, c4, c6, c7, c9}. Based on

the clustering-based discretization method, the second proposed discriminative coher-

ence measures is defined as follows:

∆A
C(X) = ψA

C(X)− ψB
C (X). ∆B

C(X) = ψB
C (X)− ψA

C(X)

Similar to ∆A
G and ∆B

G, the range of ∆A
C and ∆B

C is (−1, 1). Our preliminary results showed

that ψC and ψG produced very similar results on some of the simulated datasets. Since the com-

putation of ψC is much faster than the computation of ψG, ψC is implemented in the proposed

discriminative co-clustering algorithm. However, both measures will be used for evaluation

purposes to quantify the resulting discriminative co-clusters using the proposed and the exist-

ing algorithms.

Table 6.4: Clustering of the running example dataset.
Row c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
ζ(x) 3 3 2 2 1 1 1 2 3 2
ζ(y) 3 1 3 2 3 1 1 3 3 3
ζ(z) 1 2 3 2 2 3 3 3 1 3

6.3.4 The Di-RAPOCC Algorithm

The Di-RAPOCC algorithm, described in Algorithm 3, optimizes for the following objec-

tive function in order to extract the discriminative co-clusters.

Definition 7. (Discriminative Objective Function) To obtain the top-KA discriminative co-

clusters from classA, the objective function can be written as: argmaxX1,X2,...,XKA

∑KA

i=1 Φ
A(X)

where ΦA(X) =
(
HPA(Xi)− ψB

C (Xi)
)
. To obtain the top-KB discriminative co-clusters

from class B, the objective function can be written as: argmaxX1,X2,...,XKB

∑KB

i=1 Φ
B(X)

where ΦB(X) =
(
HPB(Xi)− ψA

C(Xi)
)
.
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Next, we will introduce all the steps of the proposed Di-RAPOCC algorithm.

Step 1: Initialize the KA and KB co-clusters. First, we compute hAC and hBC for all pairs

of rows. This step is preceded by clustering the values of each class. The clustering is only

used to identify the set of columns in which two rows have the maximum correlation, and the

original values will be used in all the steps. Hence, there is no loss of information in this step.

Then, we define δAC(x, y) and δBC (x, y) as follows:

δAC(x, y) = hAC(x, y)− hBC(x, y)

These will be used to identifyKA groups of rows, SA, to be used as the seeds for the co-clusters

(lines 7-12). If α is the minimum number of rows in any co-cluster, the candidate set for each

row Rx is computed as follows:

RA
x = argmax

r1,r2,...,rα

α∑
i=1

δAC(x, ri) (6.1)

From all of the M candidate sets (since there are M rows in the data matrix, each row will be

a candidate to be considered as a seed for a co-cluster), the top-KA sets are used as the initial

co-clusters for each class.

SA = argmax
SA
1 ,SA

2 ,...,SA
K

KA∑
i=1

 ∑
x,y∈RA

i

δAC(x, y)

 (6.2)

Similarly, RB and SB will be computed for class B. Regarding the columns, all of them

will be included in each co-cluster in the initialization.

Step 2: Updating the row/column clusterings. This is an iterative step in which we consider

each row/column to be added/deleted from each co-cluster (lines 13-27). For each row, there

are three possible assignments {−1, 0, 1}: 1 (−1) indicates adding the row to the co-cluster

as positively (negatively) correlated, and 0 indicates removing the row from the corresponding
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co-cluster. The assignments of the columns does not consider a negative correlation. The same

row (or column) is allowed to be included in more than one co-cluster in this step. Similar to

the RAPOCC algorithm, the convergence of the Di-RAPOCC algorithm is guaranteed since the

maintained objective function is bounded and optimized to be monotonically increasing.

Algorithm 3 Di-RAPOCC(D, K, α),
1: Input: Data matrix (D)

No. of co-clusters (KA and KA )
Minimum No. of rows in any co-cluster (α)

2: Output:: A set of discriminative co-clusters ({XA}, {XB})
3: Procedure:
4: Step 1: Compute δC for all the rows
5: ∀x, y ∈ {I} δAC ← hAC(x, u)− hBC(x, u)
6: ∀x, y ∈ {I} δBC ← hBC(x, u)− hAC(x, u)
7: Step 2: Initialize each of the K co-clusters for each class
8: Compute SA and SB as defined in Section 5.3

/ ∗ Initialize rows and columns of each co-cluster ∗ /
9: for k = 1 : K do

10: ∀m∈SA
k
XA

k .r(m) = 1, ∀n∈NAXA
k .c(n) = 1

11: ∀m∈SB
k
XB

k .r(m) = 1, ∀n∈NBXB
k .c(n) = 1

12: end for
13: Step 3: Update the rows and the columns clusterings
14: repeat
15: for k = 1 : K do
16: for i = 1 : M do
17: XA

k .r(i) = argmaxu∈{−1,0,1}Φ(X
A
k .r(i) = u)

18: XB
k .r(i) = argmaxu∈{−1,0,1}Φ(X

B
k .r(i) = u)

19: end for
20: for j = 1 : NA do
21: XA

k .c(j) = argmaxv∈{0,1}Φ(X
A
k .c(j) = v)

22: end for
23: for j = 1 : NB do
24: XB

k .c(j) = argmaxv∈{0,1}Φ(X
B
k .c(j) = v)

25: end for
26: end for
27: until convergence
28: Step 3: Merging similar co-clusters.
29: Step 4: Pruning.
30: return ({XA}, {XB})

Step 3: Merging the Co-clusters. Similar to the RAPOCC algorithm, the goal of this

step is to merge similar co-clusters using an agglomerative clustering approach. The two most
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similar co-clusters, within the same class, are merged in each iteration. This step allows the dis-

covery of large discriminative co-clusters, and it allows intra-class overlapping co-clusters.

Step 4: Pruning. In this step, we prune the co-clusters with the lowest discriminative

scores. To determine which co-clusters to prune, (i) sort the co-clusters based on ΦA(X), in

class A and ΦB(X), in class B, (ii) compute the difference between the consecutive scores

and (iii) report the set of co-clusters just before the largest difference, and prune the remaining

co-clusters.

6.4 The Experimental Results
To demonstrate the effectiveness of the proposed algorithms, several experiments were

conducted using both synthetic and real-world gene expression datasets.

6.4.1 Experimental Setup

Datastes

For the synthetic datasets, a set of co-clusters were implanted in randomly generated datasets

using the shifting and scaling patterns [143]. In addition, two types of synthetic datasets were

used, one without noise and the other with Gaussian noise. For the real-world datasets, we

used the four gene expression datasets.

Comparisons with existing methods

In the discriminative co-clustering experiments, we compared the results of the Di-RAPOCC

algorithm against the SDC algorithm [39] and the OPSM algorithm [11]. The OPSM algorithm

is not a discriminative co-clustering algorithm. Therefore, we used the following procedure:

(i) Apply OPSM on each class separately, (ii) compute the inter-class overlap, (iii) remove

the co-clusters that have inter-class overlap ≥ 50%, and (iv) report the remaining co-clusters.

We refer to this modified algorithm as Discriminative OPSM (Di-OPSM). The SDC algorithm

takes as input three parameters (SDC, r,minpattsize) [39], which were set to the default val-
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ues: (0.2, 0.2, 3) unless otherwise stated.

Evaluation Measures

In addition to the co-clustering evaluation measures presented in the previous chapter

Section 5.4 ( number of co-clusters, the average size, average coherence, recovery and rele-

vance), we used the following proposed metrics to evaluate the results of the discriminative

co-clustering:

• Greedy-based discriminative coherence (∆G)

∆G =
1

(KA +KB)

KA∑
k=1

∆A
G +

KB∑
k=1

∆B
G



• Clustering-based discriminative coherence (∆C)

∆C =
1

(KA +KB)

KA∑
k=1

∆A
C +

KB∑
k=1

∆B
C



• Inter-class overlap. If XA (XB) is the set of discriminative co-clusters in class A (B),
the inter-class overlap is defined as the average of:

KA∑
k=1

argmax
XB

k

|XA
k ∩XB

k |
|XA

k ∪XB
k |

+
KB∑
k=1

argmax
XA

k

|XB
k ∩XA

k |
|XB

kB ∪XA
k |



where the union and intersection operations are computed using the rows in the co-

clusters.

The biological significance was estimated by calculating the p-values using the DAVID tool

as described in Section 5.4.

6.4.2 Differential Co-clustering Results

In this subsection, we present the results for discriminative co-clustering experiments. Due

to space limitations, in some of the tables we used OPM and RPC to refer to Di-OPSM and



95

(a) 50× 20 (b) 100× 20

(c) 300× 20 (d) 500× 20

Figure 6.5: Relevance and Recovery for SDC, OPSM and DiCoClus, respectively obtained
from different synthetic datasets.

Di-RAPOCC algorithms, respectively.

Table 6.5: Number of co-clusters from synthetic datasets.
Synthetic dataset SDC Di-OPSM Di-RAPOCC
s= 50 256 15 2
s= 100 990 16 2
s= 300 4, 451 16 3
s= 500 10, 210 22 3

Results on Synthetic Data

Using the shifting-and-scaling model [143], four co-clusters were generated of the size

10 × 10. Half of those co-clusters were designed to be discriminative, while the remaining

co-clusters were common in both classes. The structure of the synthetic datasets is similar
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Table 6.6: Discriminative measures (synthetic datasets).
Synthetic ∆G ∆C
dataset SDC OPM RPC SDC OPM RPC
s=50, η=0 0.51 0.54 0.69 0.51 0.55 0.72
s=100, η=0 0.50 0.68 0.71 0.54 0.0.54 0.70
s=200, η=0 0.49 0.63 0.70 0.54 0.66 0.71
s=300, η=0 0.52 0.51 0.67 0.51 0.64 0.70
s=500, η=0 0.51 0.64 0.71 0.52 0.63 0.72
s=100, η=5% 0.53 0.57 0.71 0.51 0.60 0.70
s=100, η=10% 0.52 0.65 0.67 0.53 0.61 0.65
s=100, η=15% 0.51 0.63 0.76 0.49 0.63 0.70
s=100, η=20% 0.52 0.64 0.72 0.50 0.61 0.65

Table 6.7: Description of the real-world gene expression datasets used in the differential co-
clustering experiments

Dataset Genes Total class A class B
samples Description samples Description samples

Leukemia [48] 5000 38 Acute lymphoblastic leukemia 11 Acute myeloid leukemia 27
Colon cancer [3] 2000 62 Normal 22 Tumor 40
Medulloblastoma [91] 2059 23 Metastatic 10 Non-metastatic 13
Scleroderma [138] 2773 27 Male 12 Female 15

to the structure shown in Figure 6.2. In the first experiment, we implanted the synthetic co-

clusters in random matrices of different sizes given by s × 20, where s = (50, 100, 300, 500).

Figure 6.5 shows the relevance and recovery results of SDC, Di-OPSM and Di-RAPOCC co-

clustering algorithms when applied to the synthetic datasets. The noise level, η, in this set of

experiments is 0. The proposed algorithm outperformed other algorithms indicating that the

proposed algorithm is capable of identifying the discriminative co-clusters. Since Di-OPSM

was not directly designed to extract discriminative co-clusters, the identified co-clusters include

both discriminative and non-discriminative co-clusters. The poor performance of the SDC

algorithm can be explained by two main reasons. (i) SDC generates too many patterns as

shown in Table 6.5. As the size of the dataset increases, the number of the generated patterns

generated by the SDC algorithm increases dramatically. (ii) The SDC algorithm generates very

small patterns (average of 3 rows per pattern). On the other hand, the Di-RAPOCC algorithm

prunes any non-discriminative co-cluster.
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(a) Relevance (b) Recovery

Figure 6.6: Relevance and recovery obtained with noise levels of 5%, 10%, 15% and 20%,
respectively.

Table 6.8: Discriminative measures (expression datasets).
Dataset ∆G ∆C

SDC OPM RPC SDC OPM RPC
Colon 0.60 0.58 0.62 0.50 0.53 0.56
Medulloblastoma 0.49 0.54 0.59 0.51 0.53 0.55
Leukemia - 0.57 0.59 - 0.56 0.58
Scleroderma 0.57 0.54 0.60 0.54 0.55 0.60

In the second experiment, different levels of noise were used, which are 0, 5%, 10%, 15%

and 20%, respectively, to the synthetic dataset of size 100× 20. Figure 6.6 shows the recovery

and the relevance of the three algorithms. As the noise level increases in the dataset, the

relevance and the recovery values are degraded. However, our algorithm is still the algorithm

most robust to noise due to the use of a clustering approach to estimate the coherence of any co-

cluster. Table 6.6 shows the average results of the discriminative measurements ∆G and ∆C for

all the different synthetic datasets. Unsurprisingly, our algorithm achieved the best results in

all the datasets because it primarily focuses on identifying the most discriminative co-clusters

in the search process. Figure 6.7 shows the inter-class overlap on synthetic datasets. The Di-

RAPOCC algorithm achieved the best results because it avoids common patterns in both of the

classes.
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Table 6.9: Results of differential co-clustering.
Dataset No. of co-clusters in A No. of co-clusters in B Overlap Average coherence (H)

SDC OPM RPC SDC OPM RPC SDC OPM RPC OPM RPC
Colon 155 10 15 1 3 13 0.0 0.01 0.04 0.992 0.997
Medulloblastoma 74,957 8 14 7,597 9 14 0.2 0.12 0.01 0.988 0.994
Leukemia - 21 35 - 5 22 - 0.40 0.09 0.990 0.995
Scleroderma 48,623 12 10 469 10 9 0.04 0.17 0.0 0.986 0.998

Results on Real Gene Expression Data

For the real-world datasets, we used the four datasets as described in Table 6.7. Each

dataset has two distinct classes of biological samples. The SDC algorithm was applied on the

Medulloblastoma and the Scleroderma datasets with the parameters values set to (0.3, 0.3, 3)

to avoid out of memory problems. For the Leukemia datasets, out of memory errors occurred

for different combinations of the parameters; therefore, there are no results for this dataset.

As shown in Table 6.8, the Di-RAPOCC algorithm achieved the best results in terms of the

discriminative coherence measures (∆G and ∆C). The results were also analyzed in terms of

the number of co-clusters, the inter-class overlap and the average coherence as shown in Table

6.9. The coherence measure cannot be applied to the results of the SDC algorithm because it

does not report the columns in which a set of rows is correlated. Here, we make some remarks

regarding the performance of the three algorithms.

Table 6.10: Comparisons between the three differential co-clustering algorithms.
Measure SDC Di-OPSM Di-RARPOCC
No. of the co-clusters High Low Medium
Size of the co-clusters Small Large Medium
Coherence - Low High
Discriminative coherence Low Medium High
Inter-class overlap High Medium Low
Recovery Low Medium High
Relevance Low Medium High

• The SDC algorithm tends to produce a large number of small patterns. Since the SDC
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algorithm uses the Apriori approach, it has some computational efficiency problems, and

the number of the discovered patterns grows dramatically with larger datasets.

• The Di-OPSM algorithm tends to produce co-clusters that are too large. Therefore, it

does not give good results in terms of the coherence, inter-class overlap and discrimina-

tive measures. Since it is not a discriminative co-clustering algorithm, we have to run it

on each class independently.

• The Di-RAPOCC algorithm keeps the top discriminative co-clusters and prunes the

other co-clusters, and it works well on noisy and large datasets.

Figure 6.7: The inter-class overlapping on synthetic datasets.

Figure 6.8 shows the biological evaluation of the results. The SDC algorithm was excluded

from this analysis because it produced too many patterns. The Di-RAPOCC algorithm out-

performed the Di-OPSM algorithm in three datasets, while OPSM was better in the Leukemia

dataset. However, for this dataset, Di-RAPOCC outperformed Di-OPSM in terms of the inter-

class overlap, the coherence and the discriminative coherence measures. In a different analysis,

we found several significant biological pathways that were enriched in the co-clusters produced

by the proposed algorithm. For example, the MAPK signaling pathway which has a p-value

= 4.77E − 12 was reported as an up-regulated pathway in the metastatic tumors that is very

relevant to the study of metastatic disease [91]. The summary of comparisons between the

three algorithms is shown in Table 6.10.
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Figure 6.8: Proportion of the discriminative co-clusters that are significantly enriched in each
dataset (significance level = 5%).

6.5 Summary of the Differential Co-clustering Algorithm
In this chapter, we presented a novel algorithm for discovering discriminative co-clusters.

The proposed algorithm integrates the class label in the co-clustering discovery process, and

it works well on noisy datasets. The experimental results showed that the proposed algorithm

outperforms the existing algorithms and can extract biologically and statistically significant

discriminative co-clusters. As a future work, we are interested in analyzing its discriminative

power of the proposed approach and extending it to solve prediction problems.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Understanding the mechanisms of cancer and other diseases requires analyzing the differ-

ences between the two phenotypes normal (or control) and cancerous (or treated). Most of the

existing computational approaches depend on testing the changes in the expression levels of

each single gene individually. In this work, we proposed novel computational approaches to

find the differential genes between two phenotypes. The proposed approaches are grouped as:

differential network analysis and differential co-clustering. The proposed models can quanti-

tatively and qualitatively characterize the differences between two classes (or two phenotypes)

and can provide better insights and understandings of various diseases.

The goal of the first proposed approach is to represent the two phenotypes as two networks,

and then the problem of identifying differential genes is transformed to the problem of compar-

ing two networks to identify the most differential network components. Networks have been

extensively used to model various complex systems such as online social networks and biolog-

ical networks. Studying such networks can provide valuable knowledge about the data objects

and their interactions. Therefore, we proposed two novel differential networking algorithms

to identify differential hubs and differential subnetworks, respectively. The first differential

network algorithm is called the DiffRank algorithm, which ranks the nodes of two networks

based on their differential behavior. We defined novel differential measures such as differential

connectivity and differential centrality for each node. These measures are propagated through

the network and are optimized to capture the local and global structural changes between two

networks. We demonstrated the effectiveness of DiffRank on synthetic datasets and real-world

applications and showed tha DiffRank identifies meaningful and valuable information com-

pared to some of the baseline methods that can be used for such a task.
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TheDiffRank algorithm has two salient features. First, it can effectively capture the differ-

ences in both local and global structures between two networks. Second, it iteratively prop-

agate the novel differential scores through the network until convergence to obtain accurate

rankings for all the nodes. Therefore, we integrated the results of the DiffRank algorithm in

the proposed differential subnetwork algorithm which is called DiffSubNet. This algorithm

aims to identify sets of differentially connected nodes. Motivated by the guilt-by-association

principle which states that genes with similar functions exhibit similar expression patterns (co-

expressed) [132, 33], we proposed a novel network-based differential subnetwork algorithm

to identify differential subnetworks between two networks. The differential subnetworks are

groups of strongly connected nodes in one network but not in the other.

The major limitation in the proposed networking-based algorithms is its sensitivity to the

network construction method. The DiffRank and the DiffSubNet algorithms take as input two

networks. If the networks are not pre-defined, we need to construct them from the raw data.

Hence, using different network construction methods with different parameters will yield dif-

ferent results. To resolve this issue, we recommend to integrate prior knowledge and the do-

main experts to guide the process of network construction. However, in other domains, the

networks are already predefined. This include PPI networks and social networks.

The goal of the second approach is to discover a distinguishing set of gene patterns that are

highly correlated in a subset of the samples in one phenotype but not in the other. This ap-

proach is useful when the biological samples are assumed to be heterogenous or have multiple

subtypes where a set of genes can be co-expressed only in a subset of the samples (subspace

co-expression). The unique characteristic of the proposed differential co-clustering algorithm

is that it incorporates the class labels of the data in the co-clustering process. co-clustering is an

unsupervised learning process, but our proposed approach aims to find class-specific patterns

by integrating the class labels in the search process. The extensive experimental results showed

that the proposed algorithm outperforms the existing algorithms and can extract biologically
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and statistically significant discriminative co-clusters from synthetic datasets and real-world

datasets.

The main challenge in the co-clustering-based approach is how to predefine the optimal

number of co-clusters for a given dataset. This is a common problem in all the clustering

algorithms. In our proposed co-clustering approach, we added two operations to minimize

the effects of this problem. These operations are merging similar co-clusters and pruning

the irrelevant co-clusters. In addition, our approach ranks the resulting co-clusters to enable

the biologist to focus on a small subset of them that capture the differences between the two

phenotypes under study.

Our work opens the door to several interesting directions for future work. Mainly, we are

interested in: (i) Analyzing its discriminative power of the proposed approaches and extending

them to solve prediction problems. (ii) Applying the proposed approaches in other domains.

• Solving prediction problem. The differential patterns discovered by the proposed frame-

work can be used as predictive patterns. Since these patterns are identified based on the

differences between the two biological conditions, they can be used to discriminate be-

tween the two phenotypes. Mining such discriminative patterns can provide valuable

knowledge toward understanding the differences between two classes and identifying

class-specific patterns. The proposed approaches generate three types of discriminative

patterns: differential hubs, differential subnetworks and differential co-clusters. Since

incorporating the class labels can improve the performance of classification algorithms,

these discriminative patterns must be able to make more accurate predictions. In our

work, we have focused on how to efficiently identifying the discriminative patterns from

gene expression data. In the future, we are interested in investigating the discriminative

power of these patterns and integrating them in prediction systems.

• Considering other domains. We have focused on gene expression data as the main

application of our work. One of the main advantages of our novel approaches is that
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they can be applied to solve various problems that depend on comparing two classes. In

addition to the phenotypic variation, there are several other sources of variation such as

temporal and topic variations which can be modeled as two-classes problems. Here, we

can use the differential networking algorithms to model this problem and find interesting

network components that are relevant to change over time.

Another interesting future study is to further explore the problem of differential networking

analysis in heterogenous or multi-mode networks. In addition, one can investigate how to

integrate the concepts of influential nodes [135] and effectors [79] in the differential analysis

of multiple social networks.
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Capturing the changes between two biological phenotypes is a crucial task in understanding

the mechanisms of various diseases. Most of the existing computational approaches depend on

testing the changes in the expression levels of each single gene individually. In this work,

we proposed novel computational approaches to identify the differential genes between two

phenotypes. These approaches aim to quantitatively characterize the differences between two

phenotypes and can provide better insights and understanding of various diseases. The purpose

of this thesis is three-fold. Firstly, we review the state-of-the-art approaches for differential

analysis of gene expression data.

Secondly, we propose a novel differential network analysis approach that is composed of

two algorithms, namely, DiffRank and DiffSubNet, to identify differential hubs and differential

subnetworks, respectively. In this approach, two datasets are represented as two networks , and

then the problem of identifying differential genes is transformed to the problem of comparing

two networks to identify the most differential network components. Studying such networks

can provide valuable knowledge about the data. The DiffRank algorithm ranks the nodes of

two networks based on their differential behavior using two novel differential measures: dif-

ferential connectivity and differential betweenness centrality for each node. These measures

are propagated through the network and are optimized to capture the local and global struc-
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tural changes between two networks. Then, we integrated the results of this algorithm into the

proposed differential subnetwork algorithm which is called DiffSubNet. This algorithm aims

to identify sets of differentially connected nodes. We demonstrated the effectiveness of these

algorithms on synthetic datasets and real-world applications and showed that these algorithms

identified meaningful and valuable information compared to some of the baseline methods that

can be used for such a task.

Thirdly, we propose a novel differential co-clustering approach to efficiently find arbitrar-

ily positioned difeferntial (or discriminative) co-clusters from large datasets. The goal of this

approach is to discover a distinguishing set of gene patterns that are highly correlated in a

subset of the samples (subspace co-expressions) in one phenotype but not in the other. This

approach is useful when the biological samples are assumed to be heterogenous or have multi-

ple subtypes. To achieve this goal, we propose a novel co-clustering algorithm, Ranking-based

Arbitrarily Positioned Overlapping Co-Clustering (RAPOCC), to efficiently extract significant

co-clusters. This algorithm optimizes a novel ranking-based objective function to find arbitrar-

ily positioned co-clusters, and it can extract large and overlapping co-clusters containing both

positively and negatively correlated genes. Then, we extend this algorithm to discover discrimi-

native co-clusters by incorporating the class information into the co-cluster search process. The

novel discriminative co-clustering algorithm is called Discriminative RAPOCC (Di-RAPOCC),

to efficiently extract the discriminative co-clusters from labeled datasets. We also characterize

the discriminative co-clusters and propose three novel measures that can be used to evaluate the

performance of any discriminative subspace algorithm. We evaluated the proposed algorithms

on several synthetic and real gene expression datasets, and our experimental results showed that

the proposed algorithms outperformed several existing algorithms available in the literature.

The shift from single gene analysis to the differential gene network analysis and differential

co-clustering can play a crucial role in future analysis of gene expression and can help in

understanding the mechanism of various diseases.
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