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INVITED ARTICLES 
Confidence Intervals On Subsets May Be Misleading 

 
 
A combination of hypothesis testing and confidence interval construction is often used in social and 
behavioral science studies. Sometimes confidence intervals are computed or reported only if a null hypothesis 
is rejected, perhaps to see whether the range of values is of practical importance. Sometimes they are 
constructed or reported only if a null hypothesis is accepted, in order to assess the range of plausible nonnull 
values due to inadequate power to detect them. Even if always computed, they are interpreted differently, 
depending on whether the null value is or is not included. Furthermore, many studies in which the null 
hypothesis is not rejected are never published (the “file drawer” problem). This article discusses the coverage 
probability of nominal 1− α  confidence intervals when examining intervals that do or do not cover some 
specified null value, usually zero. A briefer treatment considers interval coverage when undesirable results are 
suppressed. The coverage probability of such conditional confidence intervals may be very far from the 
nominal value. The magnitude of the effect of selection on interval coverage probability and possible resultant 
biases in inference are illustrated, and discussed in relation to effect sizes of importance in social and 
behavioral science research and to estimation of effect sizes. 
 
Keywords: Hypothesis tests, selected confidence intervals, censored studies  
 

Introduction 
 
There has been an enormous amount of 
literature, much of it in the social sciences, 
recommending that confidence intervals always 
be constructed, either in addition to or instead of 
p-values or other information related to testing 
hypotheses.    The   purpose   of  this  article is to 
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point out a problem in interpreting confidence 
intervals when they are pertinent to a hypothesis 
of interest.  

The correct interpretation of 1 − α  
confidence intervals is that these randomly-
chosen intervals have probability 1− α  of 
covering the true values of the parameter being 
estimated. Given a set of intervals, on the 
average 1 − α  proportion should cover the true 
values. However, it is often true that special 
attention is paid to intervals depending on their 
coverage. Often there is special interest in a 
particular value of the parameter involved, either 
zero (often in comparing two groups) or some 
specified nonzero value. This article will 
consider the situation in which zero is of special 
interest; the results generalize to any other value 
with only obvious changes. 

In such cases of selective interest, 
special attention may be paid to intervals that 
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don’t include zero, in order to estimate the size 
of plausible parameter values. There may be 
special interest in intervals that are far from 
zero. Or on the contrary, special attention may 
be paid to intervals that do include zero, to see 
whether there might be differences of substantial 
interest that could be verified by more powerful 
studies. Usually the direction of departure from 
the null hypothesis is of special interest, and 
intervals in one or the other direction may be 
especially scrutinized.  

Furthermore, it is well known that 
studies with insignificant results often are not 
reported, and therefore not known, as is 
sometimes true of studies with results in a 
direction opposite to that of the desires or 
expectations of the sponsoring organization. 
Then only some selected intervals are available 
to be considered. 

As soon as there is special consideration 
of a subset of intervals based on the values they 
include, the probability that they cover the true 
parameter value, in other words their conditional 
coverage probability, may be considerably 
different from the nominal 1 − α  probability 
that applies to the whole set. 

Such conditional considerations apply to 
all situations in which confidence intervals are 
obtained. This article will give detailed 
quantitative results for the comparison of the 
means of two distributions, assuming 
independent, normally-distributed observations 
with equal variance and equal sample sizes. All 
quantitative results reported here for known 
variance apply also to the case of matched pairs 
of observations with variances of the matched 
differences known, given the appropriate one-
sample test in that case, provided the tabled 
effect sizes are divided and tabled sample sizes 
multiplied by the square root of 2.  

Section 1 will give a general overview 
of conditional probability coverage both when 
the intervals do and when they do not cover the 
value zero, with most attention on the former. 
The coverage depends on the noncentrality 
parameter, a function of the sample size and the 
effect size. Sections 2 and 3 will examine the 
coverage for effect sizes and sample sizes that 
are frequently encountered in social and 
behavioral science research: Section 2 primarily 
when zero is not covered, and Section 3 when 

intervals in one direction are not calculated or 
reported. Section 4 will discuss effect size 
estimation issues as they relate to conditional 
coverage. Section 5 discusses and summarizes 
the issues raised.   
 
Comparing the means of two distributions: 
Conditional on coverage or noncoverage of a 
specified value 

Consider two groups of independent, 
normally-distributed observations with equal, 
known variance, and of equal sample size. With 
unknown variance, the standard test of equality 
of the means is the two-sample t test. With 
known variance, the known value σ  is used in 
place of the estimate s; the test statistic then has 
a normal distribution, and the resulting test will 
be referred to as the two-sample z test. Since the 
t distribution tends to the normal distribution as 
the number of degrees of freedom tends to ∞ , 
the properties of the z test hold approximately 
for the t test when the variance is estimated with 
large degrees of freedom.  
 Suppose a 1 − α  confidence interval is 
constructed for a difference between the means 
of the two groups, where α  = .05 is assumed 
throughout the paper. Consider separately the 
probability of covering the correct value for 
confidence intervals that do not include the 
value zero, and the same probability for 
confidence intervals that do include zero. Figure 
1 gives the conditional coverage of those 
intervals, as a function of the noncentrality 
parameter, which is the standard effect size 
measure ( )1 2 /µ µ σ−  (Cohen, 1962, 1988), 
multiplied by the square root of / 2n , where n is 
the sample size of each group. Given the known 
sample size n of each group, the noncentrality 
parameter, and therefore the conditional 
coverage, is a function of the unknown true 
effect size.  

What Figure 1 illustrates is the well-
known fact that intervals that do not cover zero 
also have very small conditional probabilities 
(given that fact) of covering values close to zero 
(see, e.g., Olshen, 1973). Correspondingly, 
intervals that do cover zero are also more likely 
than the nominal confidence coefficient to cover 
values close to zero. These properties are true 
for intervals of fixed length as in this case, when 
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the standard deviation is known. For the same 
true effect size, the coverage probabilities depart 
even further from the nominal values when the 
standard deviation is unknown and must be 
estimated, so that the size of the conditional 
intervals varies with the estimated standard 
deviation. In that case, for a given effect size, 
intervals that don’t cover zero are likely to be 
shorter than intervals that do, so both location 
and interval length affect the conditional 
coverage. Figure 2 gives the correlation between 
the interval length and the probability that the 
interval includes the correct value, for t intervals 
with varying degrees of freedom. 

 
Relation of conditional true value coverage and 
non-coverage to effect sizes and sample sizes 
frequently encountered in social-behavioral 
science research. 
 The noncentrality parameter that 
determines the coverage probability is a function 
of the known sample size n of each group and of 
the effect size. Thus, consideration of effect 
sizes is crucial in examining conditional 
confidence interval coverage. Of course, there is 
no direct way of making use of the quantitative 
information in a particular case, since the true 
effect size is unknown. However, many studies 
in the social sciences, as noted in Cohen’s 
(1962) pioneering paper, support the assumption 
that effect sizes in these fields are often between 
.1 and .5. Cohen suggested the now-standard 
terminology of small effects = .2, medium 
effects = .5, and large effects = .8. He stated 
“Many effects sought in personality, social, and 
clinical-psychological research are likely to be 
small effects as here defined…” (Cohen, 1988, 
p. 13). 
 Examples of estimated effect sizes in the 
literature show many around .2 or less. For 
instance, Fukkuk and Glopper (1998), in a meta-
analysis of studies of learning of word-meaning 
from context, found out of 22 effect size 
estimates that nine were smaller than .20, ten 
were  between .21 and .40, and only three were 
greater than .40. Grissmer (1999), in a meta-
analytic    study  of  the   effects   of   class    size  
 
 
 

reduction on achievement, found effect sizes 
between .15-.25 for grades K-3, and .11-.20 for 
grades 4-7. Although researchers carrying out 
meta-analytic studies try to find as many studies 
as possible, it seems clear that it is easier to 
locate studies with significant effects, and thus 
probably larger real or apparent effect sizes, than 
those with insignificant effects, which may 
never have been reported. Furthermore, in the 
former study (Fukkuk and Glopper), it was 
noted that the data for some studies, even though 
the studies were found, could not be obtained. 
Thus, the obtained values reported above are 
likely to represent an upwardly-biased sample. It 
follows that even when all reported confidence 
intervals are considered equally, the available 
studies are likely to include an overabundance of 
intervals that do not include zero. 
 In summary, a small effect size of .2 or 
smaller is likely to be a feature of many studies 
of this kind, and furthermore, the reported values 
may be upwardly biased. Since the conditional 
coverage probability of confidence intervals is a 
function of the effect size, an examination of 
effect sizes in the range assumed to be common 
in social and behavioral science research, and 
their relation to conditional coverage, is called 
for.  

Table 1 gives the coverage probability 
for the two-sample z Test, equal sample sizes, 
with sample sizes ranging from 5 per group to 
50 per group, assuming effect sizes of .1 to .5, 
and assuming the null hypothesis is rejected, so 
that the intervals do not include zero. The values 
in parentheses are the probabilities of rejecting 
the null hypothesis for the associated sample 
size-effect size combination. All values hold 
approximately when variances are estimated 
with large degrees of freedom.  
 If the variance must be estimated from 
the information in the two sets of observations, 
the confidence coverage results are still further 
from the nominal values. When there are 5 
observations per group, so that t is based on 8df , 
the    first  row    entries   in  Table 1   would  be  
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replaced by .18(.05), .36(.06), .52(.07) .64(.09), 
and .73(.11), respectively, and when there are 10 
observations per group (18df ), the second row 
entries would be replaced by .28(.06), .53(.07), 
.69(.10), .80(.14), and .86(.18), respectively. For 
larger df , the differences are very small, so the 
results for known variance are approximately 
correct.  

For an effect size of .1, the probability 
of rejecting the null hypothesis, i.e. the 
probability that the interval does not include 
zero, is quite small, even for samples of size 50 
in each group. However, if these cases are the 
ones that get attention, perhaps the only ones 
that get published, the extreme departure from 
the nominal coverage probability of the 
associated confidence intervals means that 
incorrect    quantitative   inferences   are   highly  

 

 
 
 
 

likely. Even for effect sizes larger than .1, the 
under-coverage of the intervals can be non-
negligible, and the probability that the intervals 
don’t contain zero becomes much larger. As 
noted above, effect sizes within the range .1 to .3 
are very common in social-behavioral science 
research.   
 
Values that are covered when the true value is 
not covered 
 When intervals that do not include zero 
also do not include the true values, they will 
include either only values in the wrong direction 
from the true effect, smaller than the true effect 
in the correct direction, or, more likely with 
small effect sizes, values in the correct direction 
but farther away from zero than the true values. 
When the true effect is barely different from 

 
Table 1: True conditional probability that the nominal .95 confidence interval based on the z test 
covers the correct value, given rejection of the null hypothesis (values in parentheses are probabilities 
of rejection). 
 
 
 
 
  

   Effect size   

Sample 
size .1 .2 .3             . 4 .5 

5  .20(.05)  .41(.06)  .57 (.07)  .69(.10) .77 (.12)  

10  .29(.05)  .55(.07)  .72(.10)   .81(.15) .87(.20)  

20  .41(.06)  .69(.09)  .83(.16)   .90(.24) .93(.35)  

30  .49(.07)  .77(.11)  .88(.21)   .93(.34) .95(.48)  

40  .55(.07)  .81(.14)  .91(.26)  .94(.43)  .96(.60)  

50  .60(.08)  .84(.17)  .92(.32)  .95(.51)  .96(.70)  
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zero, clearly the probability of a range of values 
more extreme in the right direction and a range 
in the wrong direction will each be 
approximately .50. When the true effect is 
extremely large, the probability of ranges of 
values more extreme in the right direction and 
less extreme in the right direction will each be 
approximately .50. For the effect sizes and 
sample sizes in Table 1, the probabilities of 
intervals covering only smaller values in the 
correct direction are all equal to zero. Table 2 
gives the conditional probabilities that the 
results do not cover the true values; the entries in 
parentheses are the expected proportion of these 
non-covering intervals that are in the right 
direction but more extreme. Subtracting these 
proportions from one gives the conditional 
probabilities of confidence intervals with ranges 
entirely in the wrong direction.  

 Note that for the smaller effect sizes 
and/or sample sizes in this table, the probability 
that the intervals do not cover the true values can 
be quite substantial, as can the probabilities that 
they cover values in the correct direction but 
larger. In some cases, the probability of intervals 
entirely in the wrong direction is non-negligible. 
Thus, the calculated intervals may lead to either 
incorrect directional inferences or unwarranted 
optimism about the true sizes of the effects 
under study. 

 It has been noted that when studies with 
insignificant effects are not reported, many 
studies in the literature claim real differences 
when in fact the null hypotheses are true. 
However, it is shown here that even when the 
null hypotheses are false, the confidence 
intervals are likely to indicate that the effect 
sizes are larger than they really are. This is true 
if special attention is paid to confidence intervals 
that do not include zero, even when there is no 
withholding of studies showing insignificant 
effects.  

Suppose, however, that confidence 
intervals including zero are specially noted, in 
order to estimate the range of plausible nonzero 
values. When the true value is small, these 
intervals are likely to have probability higher 
than the nominal probability of covering true 
values, and thus also to give falsely optimistic 

impressions of possible null hypothesis 
departures.  

If the variance must be estimated from 
the two samples themselves, the first row would 
be replaced by the values for t with 8 df : 
.82(.59), .67(.33), .48 (.74), .36 (.81), and .27 
(.87), respectively, while the entries in the 
second row, replaced by the values for t with 18 
df , would be .72(.63), .47(.75),.31(.84),.20(.91), 
and .14 (.95), respectively. For larger degrees of 
freedom, the values are very close to those for 
known variance. As for known variance, the 
probability of coverage in the correct direction 
but smaller than the true value is zero for the 
sample sizes and effect sizes in the table. 
 
Conditioning when significant results in one 
direction only are noted 

According to an Associated Press article 
in the September 9, 2004 San Francisco 
Chronicle, and also reported in other places, 
editors of 11 medical journals are adopting a 
policy requiring the results of all clinical studies 
to be made public, noting that “drug company-
sponsored studies with negative results rarely 
are submitted to medical journals” (Tanner, 
2004). In this case, “negative” means results 
contrary to the desires of the company. This can 
be interpreted in two ways, noted by (a) and (b) 
below.  

(a) The results may be reported only if 
significant and in the direction desired by the 
company. If the results are significant, but the 
true value is in the direction that is not reported, 
then reported confidence intervals will have 
probability zero of including the correct value, 
and from Table 2 it is possible to calculate the 
probability of results in the false direction being 
reported (multiply the probability of rejection by 
the conditional probability of intervals in the 
incorrect direction, given rejection). If the true 
value is in the direction that is reported, the 
values in Table 1 are the probabilities that the 
reported intervals cover the true values.  
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Table 2: Conditional probability of noncoverage (of true values) of the nominal .95 confidence interval, and (in 
parentheses) the proportion of noncovering intervals containing larger values in the correct direction. 
 

   
Effect size  

 

Sample size       .1        .2        .3             .4        .5  

5  .80(.59) .59(.69) .43(.77)    .31(.84)  .23(.89)  

10  .71(.63) .45(.76) .28(.85)    .19(.92)  .13(.96)  

20  .59(.69) .31(.84) .17(.93)    .10(.98)  .07(.99)  

30  .51(.73) .23(.89) .12(.97)    .07(.99)  .05(1.00)  

40  .45(.76) .19(.92) .09(.98)    .06(1.00) .04(1.00)  

50  .40(.78) .16(.94) .08(.99)    .05(1.00) .04(1.00)  
 
 
Table 3: True conditional probability that the nominal .95 confidence interval covers the correct value, as a function of 
effect size and sample size per group, given that the the results are not significant in the true direction, for a two sample 
z test (values in parentheses are probabilities that the interval is reported). 
 

   
Effect size  

 

Sample size       .1      .2       .3              .4       .5  

5  .94(.96) .92(.95) .91(.93)    .88(.91)  .85 (.88)  

10  .93(.96) .91(.93) .88(.90)    .83(.86)  .78(.80)  

20  .92(.95) .88(.91) .82(.84)    .73(.76)  .62(.65)  

30  .92(.94) .86(.88) .76(.79)    .63(.66)  .48(.51)  

40  .91(.93) .83(.86) .71(.73)    .54(.57)  .37(.39)  

50  .90(.93) .81(.83) .65(.68)    .46(.48)  .27(.29)  
 

 
 
 



CONFIDENCE INTERVALS ON SUBSETS 269

(b) Suppose results are reported if either 
nonsigificant or significant in the desired 
direction, i.e. suppressed only when the results 
are significant in the less-favored direction, as 
might be the case if some studies suggested 
undesirable side effects of a medication. If the 
favored direction happens to be the true one, the 
confidence interval coverage will be equal to the 
nominal coverage, .95 in the example, regardless 
of the true effect size. Table 3 gives the 
probabilities that the confidence intervals cover 
the true values, variance known, when the true 
values are in the less-favored direction: This is 
the probability that the null hypothesis is 
accepted and contains the true values. The 
probability that the interval is reported is given 
in parentheses. 
 
Coverage probabilities and effect size estimation 
 Given the type of conditioning, 
conditional confidence interval coverage 
depends on the noncentrality parameter, which is 
a function of the sample size (known) and the 
effect size (unknown). Thus, if the effect size 
were known, the conditional coverage 
probability would be known, and vice versa. It 
would appear, then, that estimating the effect 
size would be helpful in estimating the 
confidence interval coverage. The relation 
between effect size estimation and confidence 
interval coverage, however, is complex. 

If the variance were known, estimation 
of effect size would be equivalent to estimation 
of the mean difference. With unknown variance, 
however, estimation of the effect size, which 
requires an estimate of the unknown standard 
deviation in the denominator, is considerably 
more difficult and less robust than estimation of 
the mean difference. In either case, estimation of 
effect size is unlikely to be helpful in estimating 
confidence coverage of the true mean difference. 
Although the confidence interval coverage when 
the variance is estimated with small degrees of 
freedom is not drastically different from the 
coverage with known variance, estimation of the 
effect size is very much poorer in the former 
case. 

  

Note that problems with effect size 
estimation exist even if there is equal 
information on and attention to any outcome, 
while in that case confidence interval coverage 
is equal to the nominal level, given the 
assumptions of the model. Calculation of the 
confidence interval is straightforward, while 
there are a number of different estimates of 
effect size even in this simplest case (Hedges & 
Olkin, 1985).  

Hedges (1984) studied the theoretical 
properties of effect size estimation when only 
significant effect sizes are observed; see also 
Hedges and Olkin (1985). The standard estimate  

 
)( /Cg X X sΕ −= as 

 
an estimate of   
 

( ) /E Cµ µ σ−∂ = , 
 
where E is the experimental group mean and C 
is the control group mean, is biased towards 
more extreme absolute values even with no 
censoring, and is also biased when such 
censoring occurs. The exception is for ∂  = 0, in 
which case neither is biased. Note that in this 
case, with censoring, the confidence interval 
coverage is zero. The variance of g when ∂  = 0 
is much larger under censoring than without 
censoring, and is bimodal, so highly nonnormal, 
for small sample sizes and/or effect sizes. Thus, 
under the conditions for which confidence 
interval coverage is far from optimal coverage, 
estimation of effect sizes is no help in trying to 
estimate the non-coverage probability. 
 Even under known censoring conditions, 
effect size estimation for single studies is of 
little value when the noncentrality parameter is 
small. The value of effect size estimation comes 
through meta-analysis, when a series of 
estimates of the same effect size are available. 
One of the problems, even in that case, is that 
there is almost certainly some censoring, but the 
type and extent are usually unknown. 
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Conclusion 
 
It is often claimed that confidence interval or 
confidence set procedures give more useful 
information than hypothesis-testing procedures, 
since they indicate not only whether the 
hypothesis of a specified value for a parameter 
would be accepted or rejected, but indicate 
plausible values of that parameter. This article 
points out some difficulties in interpreting 
confidence intervals when there is a parameter 
value of special interest, as is true when 
hypotheses are tested. Confidence intervals 
conditional on covering or especially on not 
covering that particular value may have 
coverage probabilities considerably different 
from their nominal probabilities, under 
conditions frequently encountered in research in 
the social and behavioral sciences.  

Although the conditional considerations 
are obviously important when confidence inter-
vals are computed or known only for selected 
cases, they are also important when confidence 
intervals are calculated in all cases, if subsets of 
intervals are examined for different purposes. As 
noted, intervals that do not include zero are often 
examined to see whether the range of plausible 
values is of practical importance, while intervals 
that do include zero may be examined to see 
whether studies with greater power would be 
worth carrying out. Under the conditions 
reported in this paper, the true coverage 
probability of each of these subsets of intervals 
may be very different from their nominal 
coverage probabilities. 
 This article has dealt only with inference 
concerning a single test or interval. Additional 
problems arise in multiple testing or estimation. 
A recent paper on this subject (Benjamini & 
Yekutieli, 2004, with discussion) notes that the 
conditional problem is insoluble when there are 
no plausible assumptions about the possible 
effect sizes; thus, the conditional coverage 
properties noted in this paper are relevant for the 
ranges of sample sizes and effect sizes covered. 
The authors suggest an alternative interpretation 
involving unconditional aspects that allows 
some bounds on the probability of non-covering 
intervals.   
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