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CHAPTER 1 

Introduction 

 

 

1.1 Trends in Microelectronics Device Miniaturization 

Thin film growth is an essential step in the production of functional devices and 

materials. Current trends in microelectronics device manufacturing are calling for the growth 

of conformal films at thickness ranges from tens of nanometers down to a few atomic layers.
1
 

The drive and motivation towards the continued miniaturization of device features was 

predicted by Gordon Moore in 1965.
1
 His publication became the doctrine commonly known 

as “Moore’s Law” which stated that the number of transistors on a single device will double 

every 18-24 months. The semiconductor industry has maintained pace in accordance with 

this prediction for the last 60 years through constant innovation using new materials and 

transistor architectures. Exponential growth of transistor density in logic and memory devices 

has led to devices that are smaller, faster, and increasingly power efficient. Continued 

advancement in this regard has led to a fundamental shift in computing technology that has 

ushered in the Digital and Information Age. 

Unfortunately, semiconductor device sizes cannot be reduced to the smallest possible 

dimension due to the physical limitations dictated by quantum mechanics. While the 

fundamental limits are challenging to overcome, they can often be mitigated by introducing 

novel materials and unique device architectures. Constant advancement in technologies such 

as photolithography and thin film growth have allowed the industry to achieve the modern 

level of design for logic and memory devices with transistor gate lengths of 22 and 28 nm, 

respectively.  



2 
 

 

 

To manufacture devices of such complexity, thin films grown with absolute precision 

and thickness control are required. In addition, uniform coverage of highly detailed, three-

dimensional features with high aspect ratios is required if the current trend in 

microelectronics miniaturization is to continue.
2,3 

With functional devices predicted to reach 

the 14 nm node in early 2014 and 10 nm in 2016, the need for producing thin conformal 

films with precise thickness control becomes increasingly important.
4
 This drive toward 

smaller feature sizes will require controlled growth of films as thin as 1 nm. 

1.2 Important Materials Containing Transition Metals 

 Thin films containing first row transition metal elements have many important current 

and future applications. Copper has replaced aluminum as the interconnect material in 

electronics due to its lower resistivity and higher resistance towards electromigration. 

Metallic copper is applied in trenches and vias through a two-step process involving the 

creation of a thin, conformal copper seed layer by physical vapor deposition, followed by 

electrodeposition copper fill.
2
 However, copper does not adhere well to SiO2 surfaces, and 

the creation of a continuous copper seed layer is difficult. In response to this challenge, other 

metal seed layers for Cu metallization have been explored, including chromium, cobalt, and 

ruthenium.
3
 Copper is known to diffuse readily into SiO2 layers and Si substrates during the 

high temperatures encountered in microelectronics device fabrication. Therefore, a barrier 

between copper and silicon is required. This barrier must stop the diffusion of copper at 

deposition temperatures long enough for device fabrication, must be unreactive toward both 

copper and silicon, and should demonstrate good adhesion to both copper and silicon. In 

addition, barriers in future devices should be  5 nm thick to reduce the electrical resistivity 

of the interconnect structure.
2,4

 Materials that are currently under consideration as advanced 
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barriers include TaN and WNx (x = 0.5-1), as well as ternary compositions of these materials 

containing carbon or silicon.
5
 However,  5 nm thick layers of these nitride-based barrier 

materials may not serve as effective copper diffusion barriers.
2
 In reaction to this concern, 

considerable effort has been directed toward identification of alternative barrier materials. 

Very thin films ( 5 nm) of transition metals such as manganese,
6
 chromium, ruthenium,

7
 

and others have emerged as new copper diffusion barrier materials.
8
 It has been recently 

shown that annealing of a 150 nm thick 90/10 Cu/Mn alloy film on SiO2 substrates at 

temperatures between 250-450 C led to migration of the Mn atoms towards the SiO2 

interface to form a separate 2-8 nm MnSixOy layer between the SiO2 and Cu layers (Figure 

1).
6
 Most notably, this Mn-containing layer served as a Cu diffusion barrier for up to 100 h at 

450 C.
6c

 This work is very significant, as it suggests that ultrathin Mn-based films can 

replace current nitride-based barriers (TaN, WNx) in future microelectronics devices. 

However, growth of the Cu/Mn alloy films relied upon a physical deposition method 

(sputtering),
9
 which affords poor conformal coverage in the narrow and deep features of 

future microelectronics devices.
2,8

 There are other applications that require the growth of thin 

transition metal films. Magnetoresistive random access memory (MRAM) devices require 

thin, conformal layers of magnetic metals such as Ni, Co, or Fe.
9
 More applications will be 

discussed in Chapter 1.4. 

Figure 1. ALD Growth of MnSixOy Diffusion Barriers.
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1.3 Thin Film Deposition Methods 

Vapor deposition methods that are currently employed, including physical vapor 

deposition (PVD), chemical vapor deposition (CVD) and atomic layer deposition (ALD), 

allow the formation of uniform films throughout the micron and nanometer range.
10

 Film 

thickness control is challenging for films ≤ 100 nm and becomes ever more difficult in 

nanoscale features.
10

 Conformality is the ability of a film to coat a topographically complex 

surface uniformly (Figure 2). In order for a device to function appropriately, all three 

dimensional features (trenches and vias) should be coated uniformly.  PVD, CVD, and ALD 

are able to coat features uniformly to varying degrees depending on feature size, which will 

be discussed in detail below. The research outlined in this thesis focuses upon precursor and 

process development for ALD. 

Figure 2. Film conformality illustration for various thin film deposition methods.
 

 

1.3.1 Physical Vapor Deposition (PVD) 

In a typical PVD-type film growth process, discrete atoms are removed from solid 

source material and travel through an evacuated vacuum chamber until the atoms collide on a 

substrate of interest and condense to create a thin film (Figure 3).
11

 The removal of the 
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surface-bound source atoms can be accomplished by laser ablation, thermal heating, or by 

physically bombarding the surface with electrons, atoms, ions, or photons.
11

 A standard 

evaporative-type PVD setup is shown in Figure 3a. There are two types of source 

evaporation techniques: quasi-equilibrium and non-equilibrium-based processes.
11

 In the 

quasi-equilibrium example, the source is held in a near steady state equilibrium between the 

liquid and gas phase. Knudsen cells often consist of a heated vessel with a small canal. The 

source vapor slowly diffuses through the tunnel and travels towards the target substrate and 

condenses upon the surface. In non-equilibrium evaporative methods, the source is vaporized 

in an open vessel, such as a boat or ceramic crucible, and the source vapor distributes through 

the chamber towards the target substrate.
11

  Another non-equilibrium evaporation process 

used in PVD involves the use of an electron beam. The electron beam is focused towards the 

target to cause confined heating at the surface. After sufficient heating, source vaporization is 

induced which allows for target molecules to diffuse and travel towards to substrate of 

interest. 

Figure 3. (a) Evaporative PVD and (b) Sputter PVD.
11 
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In sputter-type PVD film growth, a target material is bombarded with high energy 

particles such as inert gas ions, molecules, or neutral atoms.
11

 Induced collision of energetic 

particles results in the subsequent ejection of surface-bound atoms. The discharged atoms are 

then directed towards a substrate and condense upon the surface resulting in the formation of 

a thin film (Figure 3b). Sputter PVD processes are economical, and can allow for the 

deposition of highly pure and uniform films over large, two-dimensional surfaces. However, 

films grown by sputtering have a tendency to have poor thickness conformality in nanoscale 

features due to the line-of-sight nature of this technique. 

Evaporative and sputtered PVD have the capability to grow thin films at high growth 

rates. However, in the instance of evaporative sputtering, the film growth is highly 

directional leading to films that have an inherent pillar-type microstructural features.
11

 

Directionality in evaporative PVD is a consequence of the low probability of in-flight 

collisions with other non-target gas atoms.
11

 In sputter PVD, film growth occurs in a non-

directional manner. Presumably, this is a result of the increased gas pressure in the deposition 

space that leads to gas-phase scattering of the sputtered target atoms. Resultant 

multidirectional growth from this process generates a wide distribution of atoms upon the 

target substrate leading adequate step-coverage in three-dimensional surface features.
11

 

Unfortunately, many PVD processes result in film growth with poor step coverage in features 

with high aspect ratios (> 10:1), which is associated with the low surface mobility of source 

atoms, as well as the inherent directionality of PVD film growth.
11

 As a result, adsorbing 

species do not penetrate and coat the intricate three-dimensional features and high-aspect-

ratio structures within advanced microelectronic devices. 
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1.3.2 Thin Film Growth by CVD 

 In CVD film growth, one or more precursors are introduced to a heated substrate.
12

 

Once the precursors are in close proximity or in contact with the heated substrate, a series of 

complex gas phase and surface reactions afford a thin film of interest.
12

 CVD is widely 

employed in the semiconductor industry because of the high throughput of thin conformal 

films by this method.
12

 Figure 4 exemplifies the general scheme of CVD growth. First, the 

precursors are introduced to the heated substrate typically by an inert gas stream. Once the 

precursors approach the substrate within the heated region of the reaction chamber, many 

complex processes can occur. The precursor may react with other precursor molecules in the 

gas phase, which can result in gas phase precipitation. Gas phase precipitation can lead to the 

formation of fine particles and impurities which can incorporate into the film, affording 

defects and non-conformality.
12b

 Intact precursor molecules can also adsorb on the surface 

and undergo oxidation and reduction reactions, depending upon reaction conditions. 

Adsorption can be classified into physisorption (weak van der Waals interactions on the 

substrate surface) or chemisorption (where the adsorbing molecule chemically reacts with the 

functionalized substrate surface). Excess reactants and volatile byproducts are taken into the 

inert gas stream and are eliminated out of the reaction chamber. 

 

 

 

 

 

 



8 
 

 

 

Figure 4. Typical CVD scheme in the deposition of graphene from methane and hydrogen 

gas.
 

 

 

Selection of precursors is very important in CVD, since film growth proceeds by 

complex surface and gas phase reactions. In addition, CVD precursors must meet a stringent 

set of requirements that include volatility, thermally stability, and reactivity at the desired 

deposition temperatures.
12b

 The properties of the precursor can have profound effects on the 

uniformity, conformality, and resultant step-coverage of a deposited thin film. The 

probability of a precursor to react with or adhere to a substrate surface is called the relative 

sticking coefficient (RSC).
12b

 The RSC of a molecule depends upon the surface conditions as 

well as the chemistry of the precursor at the substrate temperature. A highly reactive 

precursor is expected to have a high RSC value. In contrast, precursors with low reactivity, 

and hence a low RSC value, would be relatively inert at the deposition temperature and be 

prone to surface desorption. However, it has been shown that precursors with low RSC 

values have high surface mobility and consequently afford conformal thin films in featured 

substrates.
12b
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 CVD and PVD are the primary film growth techniques in the semiconductor industry 

due to their high throughput and ability to produce conformal thin films. However, it can be 

difficult to obtain conformal films on high-aspect-ratio features using these methods. With 

the rapid miniaturization of feature sizes in microelectronics devices and increased use of 

such features, a deposition technique that can lead to thin, uniform films in nanoscale 

topographies will be required. As a result, there has been increased interest in ALD because 

of its inherent ability to deposit thin, conformal films with excellent thickness control.
13 

1.3.3 Atomic Layer Deposition 

ALD was developed in the 1970’s by Tuomo Suntola for the production of 

electroluminescent flat panel displays.
14,15

 Continued device miniaturization in the 

semiconductor industry has led to a need for thin, conformal films with excellent thickness 

control at the nanoscale thickness regime.
14

 ALD is able to coat high-aspect-ratio features 

with perfect conformality and excellent thickness control.
14

 In contrast to CVD, an ALD 

process requires precursors to be pulsed into the reaction chamber separately. Film growth by 

ALD occurs in a stepwise, self-limited manner, which allows for sub-nanometer control of 

film thickness.
10

 Under optimized deposition conditions, the growth rate per cycle remains 

constant, allowing the film thickness to be dependent upon the number deposition cycles. 

This self-limiting growth mechanism allows for defined thickness control and conformality 

upon various substrates.
10-12

 ALD is emerging as a primary deposition technique for the 

manufacturing of functional materials and microelectronic devices in the years to 

come.
4,10,13,18

 

In a typical ALD process, a metal precursor is transported in the vapor phase by an 

inert carrier gas into the reaction chamber, where it adsorbs to reactive surface sites upon the 
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substrate. This process is illustrated in Figure 5 with the deposition of Al2O3 thin films on 

silicon substrates with native oxide. Once all accessible surface sites have become occupied, 

the surface is saturated and unreacted precursor and reaction byproducts are eliminated out of 

the reactor using an inert gas purge. A pulse of a second vapor precursor subsequently reacts 

with surface adsorbed metal precursor to produce the desired thin film material. To conclude 

a growth cycle, a second inert gas purge is then performed to remove additional byproducts 

and excess precursor.
10

 Repetition of this process affords smooth thin films with excellent 

thickness control. 

Figure 5. Steps in the ALD cycle of Al2O3 using trimethylaluminum and water.
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In ALD, a precursor adsorbs to or reacts with the active surface sites on the target 

substrate. Once all of the active sites are occupied, excess precursor molecules that are 

purged out of the reaction chamber.
10

 This results in the formation of one atomic layer. The 

hallmark of ALD growth is exhibited in Figure 6, where a plot of growth rate versus 

precursor pulse length affords a region of constant growth rate that corresponds to the point 

where the precursor has reacted with all available surface reactive sites. The minimum 

precursor pulse length needed to achieve a constant growth rate is termed the minimum 

saturative dose. If the precursor is thermally stable at the deposition temperature, no further 

film growth reactions occur once the minimum surface saturative dose has been delivered. 

Figure 6. Plot of precursor pulse length versus growth rate. Region A (red): Sub-saturative 

film growth. Region B (green): Surface sites are saturated and film growth is self-limited.

 

 Plotting precursor pulse length as a function of deposition temperature allows one to 

assess the thermal growth properties of an ALD process. In most ALD processes, there is a 

region of constant growth rate that is independent of the deposition temperature (Figure 7, 

region II).
10

 This temperature region is referred to as the “ALD Window”. At lower growth 

temperatures, an increase in growth rate is suggestive of precursor condensation (dashed line, 
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region I). Inadequate precursor reactivity at lower deposition temperatures can lead to a 

reduction in growth rate (solid line, region I). At higher deposition temperatures, a decrease 

in growth rate can occur as a result of thermal desorption of surface bound precursor 

molecules or loss of surface-reactive sites (dashed line, region III). An increase in growth 

rate can also be observed if the process temperature is in excess of the precursor 

decomposition temperature (solid line, region III). Although there are some advantages to 

having an ALD window, such as precise thickness control across broad temperature ranges, it 

is not necessary to be considered ALD growth. Demonstrating surface saturation is the key to 

establishing self-limited growth. 

Figure 7. A plot of temperature versus growth rate. Region I (blue): Insufficient reactivity 

(solid line), Precursor condensation (dashed line). Region II (green): ALD window. Region 

III (red): Precursor desorption (dashed line), Precursor self-decomposition (solid line). 

 

 

ALD film growth has several advantages over other vapor phase methods. The 

thickness of the film is only dependent on the number of reaction cycles, affording thin films 

with excellent thickness control. Since ALD growth occurs only by surface reactions, the 

precursor fluxes and gas flows are not crucial to the formation of uniform and conformal 
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films over large areas.
10

 Keeping the precursors separated allows for the use of highly 

reactive compounds, which can afford growth at low temperatures. Furthermore, the presence 

of an ALD window for a particular process allows the growth rate to remain constant even in 

the event of temperature fluctuations.
10 

Thermal and plasma ALD are two types of processes that are often considered when 

discussing this type of film growth.
17

 Thermal ALD processes use the heat of the deposition 

reactor to drive growth thermodynamically. Plasma processes, often noted as plasma-

enhanced ALD (PEALD), use high-energy radicals to react with surface bound precursor 

molecules. Plasma sources can also offer flexibility when developing new ALD processes 

and can include sources from O2, N2, NH3, H2, and H2O vapor. Advantages of PEALD 

processes include higher growth rates relative to thermal processes and lower process 

temperatures due to the highly reactive nature of the generated plasma species. These 

attributes are attractive towards developing processes for making oxide and nitride films by 

ALD. 

In metal ALD process development, there exists a set of stringent requirements to 

fulfill the needs of the microelectronic industry. These include depositing metals at 

temperatures of ≤ 100 °C to afford smooth films, promote facile nucleation, and give 

continuous films even at thicknesses of a few nanometers. At higher temperatures, metal 

atom agglomeration occurs, leading to high surface roughness, void formation, and eventual 

device failure. In addition, plasma processes are to be avoided due to the fact that plasma 

species suffer from low conformal coverage in plasma processes. This occurs due to the 

radical recombination of plasma species along the feature leading to a loss of reactive growth 

species. Furthermore, plasmas are known to induce substrate damage and lead to rough films. 
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Overall, the microelectronics industry would prefer to limit any viable metal deposition 

process to thermal ALD in device manufacturing. 

1.4 Transition Metal Precursors for ALD and CVD 

 Unfortunately, there is a limited number of chemical precursors available that have 

high thermal stability, reactivity, and vapor pressure suitable for ALD film growth to occur. 

Thermal decomposition of the precursor within the deposition chamber would lead to a loss 

of the self-limited growth mechanism, leading to CVD-type growth. Precursor molecules are 

also required to adsorb on or react with surface sites and reactivity must be sufficient towards 

other precursors. In addition, sufficient volatility of the precursor is also necessary to ensure 

effective mass transport to achieve self-limited film growth. These properties jointly 

contribute to the lack of suitable transition metal precursors available for use in ALD. As a 

result, new ALD precursors with optimized properties must be developed and tested to allow 

broad application of the ALD technique. A description outlining the state of the literature 

regarding transition metal thin film precursors will be discussed below. 

1.4.1 Chromium and Iron 

Thin films containing chromium and iron have received attention due to their 

potential use in magnetic, catalytic, optical, and electrical applications.
3
 Chromium metal in 

particular, has been proposed as a seed layer for copper metallization technology.
3
 While 

chromium metal films have never been deposited by CVD or ALD, Cr2O3 films were 

deposited using Cr(CO)6 and O2 as the oxygen source.
18,19

 Other volatile chromium source 

compounds have included Cr(B3H8)2,
20

 Cr(iPrNC(CH3)NiPr)3,
21

 Cr(tBuNC(CH3)NtBu)2(X) 

(X = pyrazolate, 1,2,4-triazolate),
21

 and Cr(tBu2DAD)2.
22

 



15 
 

 

 

There have been a small number of metal-organic precursors reported for iron-

containing materials. Precursors for the CVD growth of Fe2O3 include Fe(CO)5
23

 and
 

Fe2(OtBu)6.
24

 Volatile ALD iron source precursors include Fe(tmhd)3,
25

 Fe2(OtBu)6,
24

 

Fe(Cp)2,
26,27

 and Fe(tBu2DAD)2.
22

 ALD Fe2O3 was demonstrated from Fe(Cp)2 and ozone 

with a growth rate of 1.4 Å/cycle at 200 °C.
27 

ALD growth of iron metal upon aerogels was 

claimed, although no details were discussed.
28

 Thermal self-decomposition of Fe(tBu2DAD)2 

to Fe metal at 260 °C illustrates the potential of this precursor in CVD.
22 

Chart 1. Selected iron precursors for ALD and CVD. 

 

1.4.2 Manganese 

Manganese-containing thin films have important applications in memory and logic 

devices, sensors, flat panel displays, and battery technologies. Manganese silicate copper 

diffusion barriers in advanced integrated circuits have also spurred interest in developing 

manganese films.
6
 Given the large negative redox couple of Mn

2+
/Mn

0
 (E0= -1.185 V),

29a
 

Mn
2+ 

is very difficult to reduce. While there are numerous examples of PVD Mn,
6
 only one 

documented example of ALD Mn exits. Presumably the difficulty in reducing Mn
2+ 

to Mn
0
 

explains why there is one example of the deposition of ALD Mn.
29b

 This process entailed the 

use of Mn(tmhd)3 and hydrogen plasma, although specific details were not mentioned.
29b

 Manganese oxides (MnO, MnO2) have been deposited using CVD and ALD methods. 

MnO is the exclusive composition of thin films produced by CVD.
30,31

 ALD growth of MnO 
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has been demonstrated from Mn(EtCp)2 and H2O with a growth rate of 1.2 Å/cycle at 100 

°C.
32

 ALD MnO2 was demonstrated using Mn(tmhd)3 and ozone.
33,34 

Unfortunately, only a 

few precursors have been developed for manganese. Suitable thin film manganese precursors 

include Mn(EtCp)2,
32

 Mn(tmhd)3,
33,34

 Mn2(CO)10,
35

 Mn(MeCp)2,
35

 Mn(iPrNC(nBu)NiPr)2,
36

 

and Mn(tBu2DAD)2.
22

 The surface chemistry of Mn2(CO)10 on SiO2 and Cu surfaces have 

been extensively studied using XPS with hopes of forming metallic films.
35

 However, it was 

found that MnO and manganese silicates and not Mn metal are being produced.
35c

 

Chart 2. Selected manganese precursors for ALD and CVD. 

 

 

 

1.4.3 Cobalt 

 Cobalt is an important element in magnetoresistive devices, integrated circuits, 

lithium battery technologies, and spintronics.
37

 The deposition of highly conformal cobalt 

metal films is the key process responsible for the continued miniaturization of dynamic 

random access memory (DRAM) technology. Selective deposition of Co-containing films on 

Cu lines is also useful for preventing Cu diffusion into the overlying ILD layer.
4
 Such 

technology is responsible for the ongoing development of high density information storage 

such as USB flash memory and solid state drives. Thin films of CoO and Co3O4 have been 

previously deposited by CVD and ALD using various oxygen sources that include water and 

ozone.
38,39

 A cobalt ALD metal process was claimed using CoCp(CO)2 and Co(Cp)2 as the 
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cobalt source precursors and NH3 plasma as the reducing source.
40

 However, the deposition 

temperature of 300 °C is above the thermal decomposition temperature of the cobalt 

precursors indicating a large CVD component to the film growth.
 
Other plasma ALD 

processes for reducing cobalt precursors have been developed but there is often little mention 

of surface roughness and film composition.
41,42,44,45

 A handful of Co ALD processes are 

known.
43,46

 A thermal Co ALD process was claimed using Co(iPrNC(nBu)NiPr)2 and NH3 

gas, however a process temperature of 350 °C was required for film growth.
43

 Another 

thermal Co ALD process was demonstrated at 140 °C using Co(tBuCHCH=CH2)(CO)3 and 

1,1-dimethylhydrazine as the reducing agent.
46a

 This study explored the unique ability of this 

process to deposit Co selectively on hydrogen-terminated silicon using surface analysis 

techniques. Other volatile source precursors for Co have included Co(tmhd)2,
26,27,47

 

Co2(CO)8,
41

 Co(Cp)(iPrNC(nBu)NiPr),
44

 CCTBA,
46b

 and Co(tBu2DAD)2.
22 

Chart 3. Selected cobalt precursors for ALD and CVD. 

 

 

 

1.4.4 Nickel 

 Thin films of nickel and its alloys (NiSi, Ni3N) have inherently low contact resistivity 

and are useful as contact materials in metal oxide semiconductor field effect transistor 

(MOSFET) devices.
48

 Silicidation of Ni metal or Ni3N using silane gas results in the 

formation of NiSi, which is a low resistivity material used in the gate contact junction of 
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MOSFET devices.
48,60

 Several Ni metal CVD processes have been reported that use Ni(CO)4 

or nickelocene derivatives as the nickel precursor.
49

 All Ni ALD processes reported to date 

use reactive plasmas as the reducing species,
50

 presumably due to the difficulty in reducing 

Ni
2+

 to Ni
0 

(E0= -0.257 V).
29a

 There is a drive to avoid plasma-based processes for the 

deposition of ALD metal films for the reasons previously mentioned.  

Nickel oxide (NiO) films have also received much attention for their useful optical, 

magnetic, and electrical properties.
51

 Films of this material have been deposited by both 

CVD
52

 and ALD
53

 methods using water or ozone as the oxygen sources. Currently, NiO 

films are being integrated into resistive switching random access memory (ReRAM), a next 

generation memory technology with the promise of faster speeds and low power 

consumption.
54 

Volatile source precursors for nickel include Ni(dmamp)2,
53a,53f

 

Ni(dmamb)2,
50,52f,56

 Ni(tmhd)2,
53c,53d

 Ni(Cp)2,
53b,53e

 Ni(EtCp)2,
53b

 Ni(ohapim)2,
57

 

Ni(Cp)(allyl),
58

 Ni(tta),
59

 Ni(tBuNC(nBu)NtBu)2,
60

 Ni(OC(CF3)CHCMeNH)2,
61

 and 

Ni(tBu2DAD)2.
22 

 

 

Chart 4. Selected nickel precursors for ALD and CVD. 
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1.4.5 Copper 

Copper is the primary interconnect material in microelectronics devices, due to its 

low resistivity and high resistance to electromigration.
1a

 The dimensions of the smallest 

features in microelectronics devices are scheduled to reach 22 nm by 2012,
3
 which places 

severe demands upon the film growth techniques used in device fabrication. Copper metal 

needs to be deposited by ALD to meet future conformality and film thickness uniformity 

requirements in microelectronics devices. In addition, the copper metal should be deposited 

ideally at ≤ 100 °C to afford the smallest surface roughnesses, promote facile nucleation, and 

give continuous films even at thicknesses of a few nanometers. Existing copper ALD 

processes have yet to meet all of these demands. Examples of direct copper ALD processes 

include CuL2/ZnEt2 at 100-150 °C (L = OCHMeCH2NMe2, β-ketiminate, β-

diketiminate),
62,63

 Cu(tmhd)2/H2 at 190-260 °C,
64

 [Cu(sBuNCMeN-sBu)]2/H2 at 150-250 

°C,
65

 Cu(hfac)2/isopropanol at 300 °C,
66

 CuCl/H2 at 360-410 °C,
67

 and CuCl/Zn at 440-500 

°C.
68

 ALD growth of copper thin films was claimed from a copper(I) β-diketiminate 

precursor and diethylsilane,
69

 but a later study showed that this process proceeds by a pulsed 

CVD mechanism.
70

 Indirect routes to copper films have included reduction of ALD CuO by 

isopropanol,
71

 reduction of ALD Cu3N with H2,
72

 and reduction of ALD Cu2O by formic acid 

in conjunction with a ruthenium seed layer.
73

 Finally, plasma-based ALD processes include 

Cu(acac)2/hydrogen plasma
74

 and Cu(dmap)2/hydrogen plasma.
75

 Problems with existing 

copper ALD processes include high growth temperatures, lack of self-limited growth in some 

of the systems, low reactivity of the copper precursors toward the reducing co-reagents, 

incorporation of unwanted elements (Zn), and possible substrate damage and low conformal 

coverage in plasma processes.  
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Chart 5. Selected copper precursors for ALD and CVD. 

 

 

 

1.5 Thesis Problem 

As stated previously, there are many current and future applications for thin films 

containing first-row transition metal elements.
4
 ALD has been proposed as the primary 

deposition technique for the manufacturing of future microelectronic devices due to its 

inherit ability to provide thin films with absolute surface conformality and thickness 

control.
10

 Unfortunately, there is a limited quantity of existing first-row transition metal 

precursors that have the requisite high thermal stability, reactivity, and vapor pressure 

suitable for ALD film growth to occur. These desired properties contribute to the lack of 

suitable transition metal precursors available. As a result, new first-row transition metal ALD 

precursors with optimal properties must be developed and tested to allow broad application 

of the ALD technique. An increase in thermal stability and volatility relative to existing ALD 

precursors can decrease impurity content and lead to lower deposition temperatures. These 

features can allow for the growth of smooth and continuous metallic films. 

The thesis objective is to develop new ALD precursors and processes that afford thin 

films of high purity chromium, manganese, iron, cobalt, nickel, and copper metal thin films. 

These processes should obey the self-limited ALD growth mechanism over the widest 

possible temperature range to meet future microelectronics and other manufacturing 
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requirements. In addition, the metals should be deposited at the lowest possible temperatures 

(ideally ≤ 100 °C) to afford the smallest surface roughnesses, promote facile nucleation, and 

give continuous films even at thicknesses of a few nanometers. To meet these goals, highly 

volatile precursors with the highest possible thermal stabilities are required. The aim is to 

synthesize and structurally characterize new transition metal complexes containing various 

substituents that promote volatility, thermal stability, and appropriate reactivity. The thermal 

stability and volatility of the complexes will be assessed by TGA/DTA, solid state 

decomposition determinations, and preparative sublimations. ALD growth studies of 

manganese, cobalt, nickel, and copper will be performed using newly-developed precursors 

and studied by varying film growth parameters. The composition and surface morphology of 

the films will be assessed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction 

(XRD), elastic recoil detection analysis (ERDA), atomic force microscopy (AFM), scanning 

electron microscopy (SEM), and four-point probe resistivity. 
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CHAPTER 2 

Volatility and High Thermal Stability in Mid- to Late-First-Row Transition-Metal 

Diazadienyl Complexes 

 

 

2.1 Introduction 

Nitrogen ligands are of special interest in the design of ALD precursors, since the 

metal-nitrogen bonds are often highly reactive. In addition, the absence of oxygen within the 

ligand framework makes these complexes particularly attractive since oxygen atoms can 

potentially be incorporated into metallic films. However, the challenge is to identify 

nitrogen-containing ligand systems that can also lead to volatile and highly thermally stable 

complexes. Recently, 1,4-diaza-1,3-butadienes (RN=CR’CR’=NR, R = alkyl, aryl, R’ = H, 

alkyl) have been investigated as ligands, especially for the mid to late first row transition 

metals.
76-80

 Most complexes discussed are of high molecular weight (> 500 g/mol) and are 

therefore not volatile. These ligands are redox non-innocent, and can exist in three distinct 

forms (Figure 8).
77-80

 Form A is neutral with a long carbon-carbon distance and short carbon-

nitrogen distances, form B is a monoanionic, delocalized radical anion with intermediate 

carbon-carbon and carbon-nitrogen distances, and form C is formally dianionic with a short 

carbon-carbon distance and long carbon-nitrogen distances. These ligands can form square 

planar to distorted tetrahedral complexes with chromium(II),
77

 manganese(II),
78

 iron(II),
79

 

cobalt(II),
80

 and nickel(II) ions
80 

and could potentially lead to thermally stable and volatile 

complexes that are useful for CVD or ALD. The redox nature of these systems may prove 

useful in forming a wide combination of transition metal complexes. 
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Figure 8. Redox non-innocent nature of α-diimine ligands. 

 

In this chapter, the synthesis, structure, volatility, thermal stability, and thermal 

decomposition of a series of chromium(II), manganese(II), iron(II), cobalt(II), and nickel(II) 

complexes that contain 1,4-di-tert-butyl-diaza-1,3-butadienyl (tBu2DAD) ligands are 

reported. These complexes sublime at low temperatures and have high solid state 

decomposition temperatures, which highlight the potential application of these complexes as 

ALD or CVD precursors. In addition, these transition metal complexes self-decompose to 

their respective metal foils upon heating, a unique attribute that may prove useful in 

developing new CVD processes. 

2.2 Results and Discussion 

Synthetic Aspects. Treatment of anhydrous metal(II) chlorides (MCl2, M = Cr, Mn, 

Fe, Co, Ni) with two equivalents of 1,4-di-tert-butyl-diaza-1,3-butadiene and two equivalents 

of lithium metal afforded complexes of the formula M(tBu2DAD)2 as purple (1), black (2), 

brown (3), blue (4), and dichroic red/green (5) crystalline powders (Figure 9). Crystalline 

samples of 1-5 were subsequently obtained either by sublimation or crystallization in hexane 

at -23 °C. The synthetic procedure is a modification of previous routes to transition metal 

complexes containing 1,4-diaza-1,3-butadiene ligands.
77-80 

It was not possible to prepare any 

copper(II) or copper(I) complexes containing tBu2DAD ligands, since all reactions afforded 

copper powders. The compositions of 1-5 were determined by a combination of analytical 
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and spectroscopic techniques, and by X-ray crystal structure determinations of 1 and 3-5. 

Complex 5 is the only diamagnetic species in the series, and revealed tert-butyl and imino 

hydrogen atom resonances at  1.93 and 8.95, respectively, in the 
1
H NMR spectrum in 

benzene-d6. In the infrared spectra of 1-5, the carbon-nitrogen stretching frequencies were 

observed between 1716 and 1698 cm
-1

. Solid state magnetic moments for 1-4 were 2.83, 

3.85, 2.88, and 1.75 BM, respectively. Very similar values were measured in benzene 

solution using the Evans method, suggesting similar molecular structures in the solid state 

and solution. The magnetic moments for 1-4 are very close to those expected for high spin 

M(II) ions that are antiferromagnetically coupled to two unpaired electrons of radical anion 

tBu2DAD ligands (Figure 8, form B). Analogous magnetic coupling is well established in 

transition metal complexes containing 1,4-diaza-1,3-butadiene radical anion ligands with 

various alkyl and aryl substituents.
76-80

 Complexes 3
79e

 and 5
80e

 have been previously 

reported, and 4 was studied theoretically.
80g

 The solution state magnetic moment reported for 

3 in benzene solution was 2.88 BM,
79e

 which is very similar to the values of 2.88 and 2.68 

BM that were observed herein for the solid state and benzene solution magnetic moments, 

respectively. The 
1
H NMR spectrum previously reported for 5 exactly match that reported 

herein.
80e

 

Figure 9. Synthesis of transition metal diazadienyl complexes. 

 

 

Structural Aspects. The X-ray crystal structures of 1 and 3-5 were determined to 

establish their solid-state configurations. Despite multiple attempts, high quality crystals of 2 
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could not be obtained, although a low resolution X-ray structure revealed a monomeric, 

tetrahedral complex with a molecular arrangement similar to those of 3-5. Experimental 

crystallographic data are summarized in Table 4, selected bond lengths and angles are given 

in Tables 2 and 3, and perspective views are presented in Figures 10-13. 

 Complexes 1 and 3-5 adopt mononuclear structures, with distorted tetrahedral 

geometry about the metal centers. In 3-5, the planes of the C2N2 ligand cores are constrained 

by symmetry to be orthogonal. Complex 1 crystallizes with two independent molecules in the 

unit cell; both molecules are identical within experimental error. Complexes 3-5 are 

isostructural. The metal-nitrogen bond lengths (1, 1.924(2)-1.934(2) Å; 3, 1.952(1)-1.956(1) 

Å; 4, 1.929(1)-1.936(1) Å; 5, 1.916(1)-1.919 Å) fall into a narrow range. The metal-nitrogen 

bond distances in 1 are considerably shorter than those found in Cr(2,6-

iPr2C6H3N=CHC(Me)=NC6H3-2,6-iPr2)2 (2.019(1), 2.030(1) Å)
77a

 and Cr(2,6-

iPr2C6H3N=CHCH=NC6H3-2,6-iPr2)2 (2.030(4), 2.035(5) Å),
77b

 but are similar to the values 

observed in Cr2(2,6-iPr2C6H3N=CHCH=NC6H3-2,6-iPr2)2 (1.914(2), 1.913(2) Å).
77c

 The 

metal-nitrogen bond distances in 3 are similar to those of Fe(C6F5N=C(Me)C(Me)=NC6F5)2 

(1.962(2), 1.962(2) Å),
79c

 but are shorter than those found in Fe(2,6-

iPr2C6H3N=C(Me)C(Me)=NC6H3-2,6-iPr2)2 (1.988(9)-2.077(8) Å).
79d

 

Fe(C6F5N=C(Me)C(Me)=NC6F5)2 is proposed to contain two diazadienyl radical anion 

ligands, based upon the carbon-carbon and carbon-nitrogen distances of the ligand core.
79c

 

By contrast, one of the ligand core carbon-carbon distances in Fe(2,6-

iPr2C6H3N=C(Me)C(Me)=NC6H3-2,6-iPr2)2 is about 0.08 Å longer than the other, suggesting 

more neutral character in one ligand (Figure 8, form C).
79d

 The cobalt-nitrogen distances in 4 

are similar to those of Co(C6F5N=C(Me)C(Me)=NC6F5)2 (1.931(3), 1.932(3) Å).
80c

 The 
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nickel-nitrogen bond lengths in 5 compare well with those of 

Ni(C6F5N=C(Me)C(Me)=NC6F5)2 (1.9173(18), 1.9165(17) Å)
80c

 and Ni(2,6-

Me2C6H3N=CHC(Me)=NC6H3-2,6-Me2)2 (1.921(1)-1.948(1) Å),
80a

 but are shorter than those 

found in Ni(2,6-iPr2C6H3N=CHC(Me)=NC6H3-2,6-iPr2)2 (1.963(2)-1.999(2) Å).
80a

 

Interestingly, the X-ray crystal structure of a polymorph of 5 was reported,
80d

 and has nickel 

nitrogen bond lengths of 1.906 to 1.941 Å, with an average value of 1.923 Å.  

 

Table 1. Selected bond lengths (Å) and angles (°) for 1. 

Cr1-N1 1.924(3) 

Cr(1)-N(2) 1.924(2) 

Cr(1)-N(3) 1.928(3) 

Cr(1)-N(4) 1.934(2) 

Cr(1)-C(1) 2.351(3) 

Cr(1)-C(2) 2.361(3) 

C(1)-C(2) 1.395(4) 

C(11)-C(12) 1.337(5) 

C(1)-N(1) 1.360(4) 

C(2)-N(2) 1.356(4) 

C(11)-N(3) 1.386(4) 

C(12)-N(4) 1.367(4) 

N(1)-Cr(1)-N(2) 91.79(11) 

N(1)-Cr(1)-N(3) 127.13(11) 

N(1)-Cr(1)-N(4) 118.60(11) 

N(2)-Cr(1)-N(3) 123.99(11) 

N(2)-Cr(1)-N(4) 114.94(11) 

N(3)-Cr(1)-N(4) 82.91(11) 

Cr(1)-N(1)-C(1) 89.69(19) 

Cr(1)-N(2)-C(2) 90.38(18) 

Cr(1)-N(3)-C(11) 112.1(2) 

Cr(1)-N(4)-C(12) 112.2(2) 
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Figure 10. Perspective view of 1 with thermal ellipsoids at the 50% probability level. 
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The average metal-nitrogen bond lengths follow the order 3 (1.954 Å) > 4 (1.932 Å) 

> 1 (1.928 Å) > 5 (1.917 Å), even though the ionic radii of the metal ions decrease in the 

order Cr(II) (0.80 Å) > Fe(II) (0.78 Å) > Co(II) (0.745 Å) > Ni(II) (0.69 Å).
81

 Hence, the 

chromium-nitrogen distances in 1 are shorter than expected, based upon the ionic radius of 

the Cr(II) ion relative to those of the other ions. Closer inspection of 1 reveals that there are 

two types of tBu2DAD ligands. The ligand that contains N(1) and N(2) has the C(1) and C(2) 

atoms tilted toward the chromium atom, with chromium-carbon distances of 2.351(3) and 

2.361(3) Å. By contrast, the ligand containing N(3) and N(4) forms a planar CrN2C2 ring and 

has chromium-carbon distances of 2.758 and 2.767 Å. For comparison the metal-carbon 

distances associated with the tBu2DAD core carbon atoms of 3-5 range between 2.706 and 

2.727 Å and the metal ions are coplanar with the N2C2 rings. The chromium-carbon 

interactions in the ligand in 1 containing C(1) and C(2) appear to reflect the additional empty 

d-orbitals associated with the d
4
 Cr(II) ion. The modified bonding to one of the ligands in 1 

may alleviate interligand tert-butyl crowding by a small amount, thereby allowing slightly 

shorter chromium-nitrogen bond lengths than expected based upon the ionic radius of the 

Cr(II) ion. 

It is well established that the carbon-carbon and carbon-nitrogen bond lengths within 

the C2N2 ligand cores offer a reliable tool for distinguishing among forms A, B, and C in 

Figure 8.
77-80

 In 3-5, the carbon-carbon and carbon-nitrogen bond lengths fall into the narrow 

ranges of 1.393 to 1.407 Å and 1.326 to 1.347 Å, respectively. These values are in between 

those expected for single and double bonds, and are diagnostic of the tBu2DAD radical anion. 

These assignments are also consistent with the magnetic moment data described above. The 

situation with 1 is a little more complex, since one ligand has a carbon-carbon distance of 
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1.337(5) Å and carbon-nitrogen distances of 1.386(4) and 1.367(4) Å. The other ligand is 

bent toward the chromium ion and has a carbon-carbon distance of 1.395(4) Å and carbon-

nitrogen distances of 1.360(4) and 1.356(4) Å. The bond distances of the latter ligand are 

very similar to those of 3-5, and support assignment as a tBu2DAD radical anion. In the 

former ligand, only the carbon-carbon bond length differs significantly within experimental 

error from that of the latter ligand. Hence, there may be a slightly higher amount of charge 

localization on the nitrogen atoms in the former ligand, but any differences in the structural 

data are small and at the edge of experimental uncertainty. The magnetic moment data for 1 

described above are consistent with the presence of two tBu2DAD radical anion ligands that 

are antiferromagnetically coupled to a high-spin d
4
 Cr(II) ion. Complexes of the formula 

FeCl3(tBu2DAD),
82a

 CoCl2(tBu2DAD),
82b

 and NiBr2(tBu2DAD)
82c

 have been structurally 

characterized, and have C2N2 ligand core carbon-carbon and carbon-nitrogen distances of 

1.455-1.510 and 1.247-1.275 Å, respectively. The carbon-carbon distances in these 

complexes are close to those expected for a single bond, and the carbon-nitrogen distances 

are close to those expected for a double bond. Hence, these ligands are consistent with 

neutral form A in Figure 8, and are distinct from the radical anion ligand type B observed in 

1 and 3-5. 
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Table 2. Selected bond lengths (Å) and angles (°) for 3-5. 

 3 4 5 

M-N(1) 1.952(1) 1.929(1) 1.919(1) 

M-N(2) 1.956(1) 1.936(1) 1.916(1) 

M-N(3) 1.953(1) 1.931(1) 1.917(1) 

C(1)-C(2) 1.393(2) 1.393(2) 1.401(2) 

C(9)-C(9)’ 1.397(2) 1.403(2) 1.407(2) 

C(1)-N(1) 1.339(2) 1.334(2) 1.326(2) 

C(2)-N(2) 1.341(2) 1.332(2) 1.326(2) 

C(9)-N(3) 1.347(1) 1.335(2) 1.330(1) 

N(1)-M-N(2) 84.72(5) 84.65(6) 83.51(5) 

N(1)-M-N(3) 122.74(3) 122.93(4) 123.93(3) 

N(2)-M-N(3) 123.28(3) 123.26(4) 123.62(3) 

N(3)-M-N(3)’ 85.00(5) 84.77(6) 83.65(5) 

M-N(1)-C(1) 110.18(10) 110.76(11) 112.33(10) 

M-N(2)-C(2) 109.97(9) 110.61(11) 112.61(10) 

M-N(3)-C(9) 110.07(6) 110.87(8) 112.55(7) 
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Table 3. Crystal data and data collection parameters for 1, and 3-5. 

 1 3 4 5 

Formula C20H40CrN4 C20H40FeN4 C20H40CoN4 C20H40NiN4 

FW 388.56 392.41 395.49 395.27 

space group P-1 Pnma Pnma Pnma 

a (Å) 11.1969(10) 18.3813(8) 18.2363(8) 18.1617(7) 

b (Å) 14.0988(13) 13.4195(6) 13.3810(6) 13.3739(5) 

c (Å) 14.4001(14) 9.2799(4) 9.2410(4) 9.2280(4) 

 (°) 86.857(2)    

β (°) 82.672(3)    

(°) 88.077(3)    

V (Å
3
) 2250.5(4) 2289.05(17) 2254.99(17) 2241.41(15) 

Z 4 4 4 4 

T (K) 100(2) 100(2) 100(2) 100(2) 

λ (Å) 0.71073 0.71073 0.71073 0.71073 

ρcalcd (g, cm
-3

) 1.147 1.139 1.165 1.171 

μ (mm
-1

) 0.518 0.668 0.770 0.875 

R(F) (%) 6.65 2.96 2.62 3.02 

Rw(F) (%) 16.83 7.78 6.64 7.72 

 

R(F) = Σ||Fo|-|Fc||/ Σ|Fo|, Rw(F)
2
 = [Σw(Fo

2
-Fc

2
)
2
/ Σw(Fo

2
)
2
]

1/2
 for I > 2σ(I) 
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Figure 11. Perspective view of 3 with thermal ellipsoids at the 50% probability level. 
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Figure 12. Perspective view of 4 with thermal ellipsoids at the 50% probability level. 
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Figure 13. Perspective view of 5 with thermal ellipsoids at the 50% probability level. 
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Volatility and Thermodynamic Stability Study. The volatility and thermal stability 

of 1-5 were studied by preparative sublimation, thermogravimetric analyses, and melting 

point/solid state thermal decomposition experiments to assess their potential for use as ALD 

precursors. Sublimation data, melting points, and solid state decomposition temperatures for 

1-5 are listed in Table 4. In preparative sublimations, 0.5-1.0 g samples were sublimed at 

0.05 Torr and the temperature was adjusted so that the sublimation was complete in less than 

five hours. In previous work, we have established that these preparative sublimation 

temperatures approximate the temperatures required for the vapor phase delivery of 

precursors in our ALD reactors.
83

 Under these conditions, the sublimed recoveries of 1-5 

were ≥ 92.3% with nonvolatile residues of ≤ 6.9%. The high air sensitivity of 1-5 limited the 

ability to obtain higher sublimed recoveries, since product isolation had to be conducted in an 

inert atmosphere dry box. Additionally, exposure to trace amounts of air during sample 

loading may have led to higher nonvolatile residues.  

Table 4. Sublimation Temperature, Melting Point, Solid State Decomposition Temperature, 

Percent Recovery, and Percent Nonvolatile Residue for 1-5. 

Complex 

Sublimation 

Temperature 

(°C/0.05 Torr) 

Melting 

Point (°C) 

Solid State 

Decomposition 

Temperature (°C) 

% Recovery 

% 

Nonvolatile 

Residue 

1 85 95 295 96.7 3.2 

2 120 155-157 325 95.0 4.3 

3 115 132-134 260 96.1 3.4 

4 115 174-175 235 94.7 5.2 

5 115 184-185 230 92.3 6.9 
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The solid state decomposition temperatures were determined visually by monitoring 

sealed glass capillary tubes containing a few milligrams of 1-5, and then noting the 

temperatures at which metal foils began to appear. These solid state decomposition 

temperatures are generally very close to the upper limit of self-limited ALD growth in plots 

of growth rate versus deposition temperature,
83

 and are thus very useful. The solid state 

decomposition temperature of 2 is the highest at 325 °C, while that of 5 is the lowest at 230 

°C. Interestingly, a plot of the solid state decomposition temperatures of 1-5 versus the 

M
2+

→M
0
 reduction potentials

84
 is linear (Figure 14), suggesting that decomposition might 

occur through transfer of an electron from the tBu2DAD radical anion ligands to the metal 

ions. The failure to produce copper(II) or copper(I) complexes noted above likely arises from 

immediate reduction of the copper ions to copper metal, due to the large positive reduction 

potentials of these ions (Cu
2+

 0.342 V, Cu
+
 0.521 V).

84 

Figure 14. Comparison of the solid-state decomposition temperatures of 1-5 versus the 

M
2+

/M
0
 redox couple. 
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Thermogravimetric analyses (TGA) were performed on 1-5 to understand their 

volatilities and thermal stabilities (Figure 15). These analyses were carried out with an 

instrument that was contained in a high-purity nitrogen-filled glove box to minimize 

decomposition arising from exposure to air. Complexes 1-5 have similar TGA traces with 

single step weight losses occurring between 150 and 225 °C. The residues upon reaching 500 

°C were all ≤ 3.6%. Complex 2 is the most air sensitive compound in the series, and its TGA 

traces always showed 10-20% weight losses between 50 and 150 °C that were presumably 

due to reaction with ambient oxygen or water, in spite of multiple runs and utmost care to 

maintain a high purity nitrogen atmosphere.  

 

Figure 15. Thermogravimetric analysis traces of 1-5 from 50 to 550 °C at 10 °C/min. 
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Vapor pressure measurements were carried out on 2 and 5 using a previously reported 

method and apparatus (Figures 16 and 17).
85

 The vapor pressure of 2 obeys the equation 

Log10P(mTorr) = 12.753 - 3631/T(K), whereas the equation for 5 is Log10P(mTorr) = 13.983 

- 3986/T(K). The vapor pressures of 2 and 5 at 115 °C are 2.48 and 5.13 Torr, respectively. 

The vapor pressures of 1, 3, and 4 should be close to those of 2 and 5, since the preparative 

sublimation temperatures of 1-5 are similar. 

 

 

Figure 16. Vapor pressure measurement of 2. 
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Figure 17. Vapor pressure measurement of 5. 

 

 

As described above, solid state decompositions of 1-5 afforded shiny metallic foils as 

products. The rationale behind this result is presumably due to the recombination of the two 

radicals with the M
2+

 metal center to form M
0
 and neutral diazadiene. This process can be 

summarized in Figure 18 below. 

Figure 18. Self-reduction of transition metal diazadiene complexes. 

 

 To verify the formation of the metals, preparative scale solid state thermolyses were 

carried out on 1-5 as described in the Experimental Section and the residues were analyzed 

by X-ray powder diffraction. X-ray diffraction analyses demonstrated that 1 and 3-5 afford 
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crystalline, shiny gray-black powders of the metals. Figure 19 shows the X-ray diffraction 

pattern of the chromium metal thermolysis product from 1, which matches the JCPDS 06-

0694 reference pattern for chromium metal. The X-ray diffraction patterns of the powders 

derived from 3-5 are contained in Figures 19-22. The thermolysis product of 2 was also a 

shiny metallic powder. The X-ray diffraction pattern of the thermolysis product obtained 

under conditions similar to those used for the thermolysis of 1 and 3-5 showed weak 

reflections that were consistent with Mn3O4 (JCPDS 04-07320).
86

 Since it was possible that 

the Mn3O4 formed upon oxidation of manganese metal by residual oxygen or water in the 

argon used in the thermolysis experiment, the thermolysis of 2 was repeated under a vacuum 

of 0.05 Torr at 375 °C for one hour. X-ray diffraction spectra of the resulting gray-black 

metallic powder did not show any reflections, suggesting an amorphous product. Treatment 

of the powders resulting from the thermolysis of 2 with 30% aqueous hydrogen peroxide led 

to vigorous reaction and gas evolution. Similar reactivities were observed for the powders 

resulting from thermolysis under flowing argon and under vacuum. For comparison, 

manganese metal powder reacted in a similar vigorous manner with 30% aqueous hydrogen 

peroxide, whereas commercial Mn3O4 powder was inert under the same conditions. The 

commercial Mn3O4 powder was crystalline and indexed as Hausmannite (JCPDS 24-0734), 

and is thus in a different crystalline form from the powder described above that was obtained 

upon thermolysis of 2. However, the reactivity of both forms of Mn3O4 toward 30% 

hydrogen peroxide should be similar. Hence, it is possible that thermolysis of 2 affords 

amorphous manganese metal powder. 
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Figure 19. X-ray diffraction pattern of chromium metal powder obtained upon thermolysis 

of 1. 

 

 

 

Figure 20. X-ray diffraction pattern of iron metal powder obtained upon thermolysis of 3. 
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Figure 21. X-ray diffraction pattern of cobalt metal powder obtained upon thermolysis of 4. 

 

 

Figure 22. X-ray diffraction pattern of nickel metal powder obtained upon thermolysis of 5. 
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Solution Screening Studies. Solutions reactions are a powerful tool in ALD process 

development. Such experiments entailing promising ALD precursors and reducing agents 

provide a powerful and efficient means of discovering suitable combinations for thin film 

growth. In addition, solution reactions can allow one to probe the mechanistic details of a 

particular ALD process since their products may be susceptible to characterization 

techniques such as NMR, IR, and powder XRD studies. Metal ALD process development can 

benefit from such studies since most solution reactions will occur < 100 °C and the desired 

product (metal) is insoluble in most solvents. The insoluble precipitate can then be collected 

and subjected to XRD studies to verify the presence of crystalline metal. Solution reaction 

studies have been used in CVD/ALD process development for many metals including Cu,
86

  

Ti,
87

 Pt,
88 

and Pd.
89

 In the solution screening study for a Cu(II) aldiminate complex, several 

mechanistic conclusions were developed to rationalize formation of Cu metal from several 

reducing agents including ZnEt2, AlMe3, and BEt3.
86

 A follow up paper from the same group 

investigated the ALD process development of Cu metal film growth from successful solution 

reactions.
63

 Hence, this work illustrates the significance and understanding achieved 

performing solution screening studies to scout new metal ALD processes. 

To demonstrate initial evidence of metal formation in solution, transition metal 

diazadiene complexes were treated with volatile reducing agents in solution to demonstrate 

viable reduction to the metal. In these studies, 500 mg of the transition metal diazadiene 

complex was dissolved in 10 mL of THF under inert conditions. Subsequently, the respective 

reducing agent was added in excess (5 molar equivalents) slowly upon vigorous stirring. 

Initial evidence of metal formation would involve violent gas evolution and formation of a 

black, non-soluble metallic precipitate. If metal or gas formation was not initially evident, the 
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solutions were placed under refluxing conditions for 5 h. The solutions then would be cooled 

down to ambient temperature, filtered and precipitate collected. Retrieved residues then 

would be subject to powder XRD studies to verify the presence of metal. The summary of 

these results can be seen in Table 5. 

Table 5. Solution reaction results of complexes 1-5. 

Reducing 

Agent: 
1 2 3 4 5 

H3B·NEt3 
No 

 reaction 

No  

reaction 

No  

reaction 

No  

reaction 

No  

reaction 

H3B·NHM

e2 

No 

 reaction 

No  

reaction 

No  

reaction 

No  

reaction 

No 

 reaction 

H3B·SMe2 
No  

reaction 

Color 

Change; No 

precipitate 

No  

reaction 

No  

reaction 

No  

reaction 

AlMe3 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

AlEt3 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

ZnEt2 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

Gray 

Precipitate; 

Amorphous 

HSiEt3 
No 

 reaction 

No  

reaction 

No  

reaction 

No  

reaction 

No  

reaction 

H2SiEt2 
No 

 reaction 

No  

reaction 

No  

reaction 

No  

reaction 

No  

reaction 

H2NNMe2 

Color 

Change;  No 

precipitate 

Color 

Change; No 

precipitate 

Color 

Change; No 

precipitate 

Color 

Change; No 

precipitate 

Color 

Change; No 

precipitate 

Aqueous 

N2H4 

Color 

Change;  No 

precipitate 

Color 

Change; No 

precipitate 

Color 

Change; No 

precipitate 

Color 

Change; No 

precipitate 

Color 

Change; No 

precipitate 

  

In summary, no reaction combination resulted in metal formation. In particular, 

amine-borane complexes (H3B·NEt3, H3B·NMe2, H3B·SMe2) and silanes (HSiEt3, H2SiEt2) 

did not induce color change or precipitate formation upon addition. The main-group metal 
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alkyl complexes (AlMe3, AlEt3, ZnEt2) upon addition produced a gray precipitate followed 

by total loss of color to the reaction mixture. Powder XRD analysis of residues in this series 

revealed a complex sequence of reflections suggestive of oxide formation or metal alloying 

with Zn or Al. Reduction reactions involving hydrazine (N2H4) and 1,1-dimethylhydrazine 

(H2NNMe2) lead to an immediate color change to the precursor with no precipitate observed 

suggesting hydrazine adduct formation. These newly formed adducts are stable under 

refluxing conditions as there was no evidence of darkening or metal formation after 5 h. 

Failure to demonstrating metal reduction through the above scouting reactions is presumably 

due to the lack of reducing power of the selected reducing agents. 

Evaluation of Precursor Properties. Complexes 1-5 sublime at 85 (1) and 115-120 

°C (2-5) with low nonvolatile residues, have high solid state decomposition temperatures, 

and are highly reactive toward ambient atmosphere. Additionally, 1 and 3-5 decompose to 

the metals upon thermolysis, and 2 may afford manganese metal upon thermolysis. These 

complexes thus have useful properties for applications as film growth precursors by ALD 

and CVD. Complexes 1 and 3-5 decompose thermally between 230 and 295 °C to afford the 

metals, and 2 decomposes at 325 °C possibly to afford manganese metal. Since 1-5 evaporate 

with low residues between 85 and 120 °C, they are highly likely to be useful CVD precursors 

to films of the metals. ALD precursors must be thermally stable at the film growth 

temperatures, or the self-limited ALD growth mechanism is lost and CVD-like growth 

occurs.
10

 Complexes 1-5 also have properties that may be useful in ALD film growth, 

especially since they have high thermal decomposition temperatures compared to other 

available precursors for each metal. For example, the amidinate complex 

Ni(iPrNC(Me)NiPr)2 decomposes at about 180 °C,
65a

 compared to a solid state 
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decomposition temperature of 235 °C for nickel complex 5. The amidinate complexes 

Fe(tBuNC(Me)NtBu)2 and Co(iPrNC(Me)NiPr)2 exhibited single step weight loss events in 

the TGA traces, but had 12 and 9% nonvolatile residues, respectively, upon reaching 225 

(Fe(tBuNC(Me)NtBu)2) and 200 °C (Co(iPrNC(Me)NiPr)2).
90a

 These nonvolatile residues 

are higher than those observed in the TGA traces of 1-5 (< 3.6%), again suggesting that our 

new complexes have higher thermal decomposition temperatures than the analogous 

amidinate complexes. The increased thermal stabilities of 1-5 could allow wider temperature 

ranges of self-limited ALD film growth, relative to amidinate and other precursors with 

lower decomposition temperatures.  

2.3 Conclusions 

Transition metal complexes containing radical-anion diazadienyl ligands have been 

synthesized and structurally characterized, and their volatilities and thermal stabilities were 

assessed. Complexes 1 and 3-5 were structurally characterized, and exist as tetrahedral 

monomers in the solid-state. X-ray crystal structures and magnetic measurements are 

consistent with the ligand existing in the radical anion form. All complexes exhibit high 

thermal stabilities and volatilities, as demonstrated by the TGA traces, preparative 

sublimations, and melting point/decomposition determinations. Furthermore, all complexes 

decompose into metal powders upon decomposition, demonstrating promise as CVD film 

growth precursors. 
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2.4 Experimental Section 

General Considerations. All manipulations were carried out under argon using 

either Schlenk or glove box techniques. Tetrahydrofuran was distilled from sodium 

benzophenone ketyl, and hexane was distilled from P2O5. Lithium metal was obtained from 

Acros Organics. Anhydrous transition metal chlorides (CrCl2, MnCl2, FeCl2, CoCl2, and 

NiCl2) were obtained from Strem Chemicals Inc. and used as received. Manganese metal 

powder and Mn3O4 were obtained from Aldrich Chemical Company. NiCl2·CH3CN
91

 and
 

1,4-di-tert-butyl-1,3-diazabutadiene
92

 were prepared according to literature procedures. 

1
H and 

13
C{

1
H} NMR spectra were obtained at 400 and 100 MHz respectively in 

benzene-d6 and were referenced to the residual proton and the 
13

C resonances of the solvent. 

Infrared spectra were obtained using Nujol as the medium. Magnetic moments were 

determined in the solid state using a Johnson Mathey magnetic susceptibility apparatus, and 

in benzene solution using the Evans method.
93

 Melting points were determined on a Thermo 

Scientific Mel-Temp 3.0 melting point apparatus and are uncorrected. X-ray quality crystals 

of 1 and 3-5 were grown from hexane at -23 °C. Preparative sublimations and solid state 

decomposition temperatures were determined using previously described procedures.
83e

 

Thermogravimetric analyses were performed in a nitrogen filled glovebox on a TA 

Instruments Q500 equipped with an evolved gas analysis furnace with samples heated at a 

rate of 10 °C/min. Elemental analyses were performed by Midwest Microlab, Indianapolis, 

Indiana. Powder X-ray diffraction data was acquired on a Rigaku RU200B diffractometer 

with a Cu Kα rotating anode. Crystalline phases were identified by comparison of the 

experimental patterns with the powder diffraction files of the International Center of 

Diffraction Data using the Jade 5.0 software package. 
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Preparation of Bis(1,4-di-tert-butyl-1,3-diazabutadienyl)chromium(II) (1). A 100 

mL Schlenk flask, equipped with a magnetic stir bar and a rubber septum, was charged with 

1,4-di-tert-butyl-1,3-diazabutadiene (1.000 g, 5.94 mmol) and tetrahydrofuran (20 mL). To 

this stirred solution at ambient temperature was slowly added freshly cut lithium metal (0.042 

g, 6.000 mmol) and the resultant dark brown solution was stirred for 6 h. This solution was 

then added dropwise by cannula over a 30 min period to a stirred suspension of anhydrous 

chromium(II) chloride (0.365 g, 2.970 mmol) in tetrahydrofuran (40 mL). The resultant deep 

purple solution was stirred for 6 h at ambient temperature. The volatile components were 

then removed under reduced pressure and the resultant dark purple powder was dissolved in 

toluene (50 mL). The solution was filtered through a 1-cm pad of Celite on a coarse glass frit, 

and toluene was then removed under reduced pressure. Dark purple crystals of 1 were 

obtained by sublimation at 85 °C/0.05 Torr (0.442 g, 38%): mp 95-97 °C; IR (Nujol, cm
-1

) 

1704 (w), 1628 (w), 1538 (w), 1246 (m), 1209 (s), 1132 (m), 1104 (m), 1034 (m); μeff = 2.83 

and 2.84 BM in the solid state and in benzene solution, respectively. Anal. Calcd for 

C20H40CrN4: C, 61.82; H, 10.38; N, 14.42. Found: C, 61.71; H, 10.06; N, 14.37. 

Preparation of Bis(1,4-di-tert-butyl-1,3-diazabutadienyl)manganese(II) (2). In a 

fashion similar to the preparation of 1, treatment of anhydrous MnCl2 (0.371 g, 2.970 mmol) 

in tetrahydrofuran (40 mL) with a solution of Li
tBu2

DAD (prepared from 1,4-di-tert-butyl-

1,3-diazabutadiene (1.000 g, 5.940 mmol) and freshly cut lithium metal (0.042 g, 6.000 

mmol) in tetrahydrofuran (20 mL)) for 6 h at ambient temperature afforded 2 (0.942 g, 81%) 

as black crystals upon sublimation at 120 °C/0.05 Torr: mp 155-157 °C; IR (Nujol, cm
-1

) 

1716 (m), 1610 (m), 1558 (w), 1364 (s), 1254 (s), 1210 (s), 1007 (m), 929 (m), 759 (s); 
1
H 

NMR (C6D6, 23 °C, δ) 8.06 (s, broad, CH), 1.10 (s, very broad, C(CH3)3); μeff = 3.85 and 
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3.85 BM in the solid state and in benzene solution, respectively. Anal. Calcd for 

C20H40MnN4: C, 61.36; H, 10.30; N, 14.31. Found: C, 60.99; H, 9.96; N, 14.01. 

Preparation of Bis(1,4-di-tert-butyl-1,3-diazabutadienyl)iron(II) (3). In a fashion 

similar to the preparation of 1, treatment of anhydrous FeCl2 (0.377 g, 2.970 mmol) in 

tetrahydrofuran (40 mL) with Li
tBu2

DAD (prepared from 1,4-di-tert-butyl-1,3-diazabutadiene 

(1.000 g, 5.940 mmol) and freshly cut lithium metal (0.042 g, 6.000 mmol) in 

tetrahydrofuran (20 mL)) for 6 h at ambient temperature afforded 3 (0.544 g, 47%) as dark 

brown crystals upon sublimation at 110 °C/0.05 Torr: mp 132-134 °C; IR (Nujol, cm
-1

) 1703 

(w), 1606 (w), 1525 (w), 1359 (s), 1254 (s), 1208 (s), 1022 (m), 1002 (m), 926 (m), 762 (s); 

μeff = 2.88 and 2.68 BM in the solid state and in benzene solution, respectively. Anal. Calcd 

for C20H40FeN4: C, 61.22; H, 10.27; N, 14.16. Found: C, 61.39; H, 10.03; N, 14.16. 

Preparation of Bis(1,4-di-tert-butyl-1,3-diazabutadienyl)cobalt(II) (4). In a 

fashion similar to the preparation of 1, treatment of anhydrous CoCl2 (0.386 g, 2.970 mmol) 

in tetrahydrofuran (40 mL) with Li
tBu2

DAD (prepared from 1,4-di-tert-butyl-1,3-

diazabutadiene (1.000 g, 5.940 mmol) and freshly cut lithium metal (0.042 g, 6.000 mmol) in 

tetrahydrofuran (20 mL)) for 6 h at ambient temperature afforded 4 (0.418 g, 36%) as dark-

blue crystals upon sublimation at 110 °C/0.05 Torr: mp 173-174 °C; IR (Nujol, cm
-1

) 1698 

(m), 1605 (m), 1527 (m), 1362 (s), 1260 (s), 1210 (s), 1008 (s), 933 (m), 763 (s); μeff = 1.75 

and 1.83 BM in the solid state and in benzene solution, respectively. Anal. Calcd for 

C20H40CoN4: C, 60.74; H, 10.19; N, 14.17. Found: C, 60.84; H, 10.01; N, 14.29. 

Preparation of Bis(1,4-di-tert-butyl-1,3-diazabutadienyl)nickel(II) (5). In a 

fashion similar to the preparation of 1, treatment of NiCl2•CH3CN (0.507 g, 2.970 mmol) in 

tetrahydrofuran (40 mL) with LitBu2DAD (prepared from 1,4-di-tert-butyl-1,3-
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diazabutadiene (1.000 g, 5.940 mmol) and freshly cut lithium metal (0.042 g, 6.000 mmol) in 

tetrahydrofuran (20 mL)) for 6 h at ambient temperature afforded 5 (0.482 g, 41%) as 

dichroic red-green crystals upon sublimation at 110 °C/0.05 Torr: mp 184-185 °C; IR (Nujol, 

cm
-1

) 1715 (w), 1625 (w), 1547 (w), 1493 (s), 1264 (s), 1212 (s), 934 (m), 764 (s); 
1
H NMR 

(C6D6, 23 °C, δ) 8.95 (s, 2H, CH), 1.93 (s, 18H, C(CH3)3); 
13

C{
1
H} NMR (C6D6, 23 °C, 

ppm) 129.88 (s, CH), 64.61 (s, C(CH3)3), 30.61 (s, C(CH3)3). Anal. Calcd for C20H40N4Ni: C, 

60.77; H, 10.20; N, 14.85. Found: C, 60.89; H, 9.88; N, 14.61. 

Solid State Thermolyses of 1-5. Thermolysis experiments were performed on 

analytically pure samples of 1-5 to assess their solid state thermal decomposition products. A 

20-cm long, 2.5-cm diameter quartz tube, equipped with female 24/40 joints on each end, 

was fitted with two flow control valves that were attached to male 24/40 joints. A 6-cm long, 

1-cm diameter glass vial was charged with 1.00 g of the sample in a glove box. The vial was 

placed in the center of the quartz tube. This apparatus was placed into a tube furnace and a 50 

sccm flow of argon was established. The sample was then heated to 500 °C for 1 h and was 

allowed to cool to room temperature under argon flow. Subsequently, the powder residues 

were collected from the inside of the quartz tube and subjected to X-ray powder diffraction 

analyses as described in the text. 

 X-ray Crystallographic Structure Determinations. Diffraction data were measured 

on a Bruker X8 APEX-II kappa geometry diffractometer with Mo radiation and a graphite 

monochromator. Frames were collected at 100 K with the detector at 40 mm and 0.3-0.5° 

between each frame. The frames were recorded for 3-5 s. APEX-II
94

 and SHELX
95

 software 

were used in the collection and refinement of the models. All structures contained discrete 

neutral complexes without ions or solvent. Complex 1 crystallized with two independent but 
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chemically equivalent molecules in the asymmetric unit. Complexes 3-5 are all isostructural, 

with one-half molecule in the asymmetric unit. The iron, cobalt and nickel atoms all occupy a 

crystallographic mirror plane. 

Preparative Sublimation Studies. For the sublimation experiments, 2.5 cm 

diameter, 30 cm long glass tubes were employed. One end of the tube was sealed and the 

other end was equipped with a 24/40 male glass joint. In an argon-filled glove box, the 

compound to be sublimed (0.5-1.0 g) was loaded into a 1.0 x 4.0 cm glass tube and this tube 

was placed at the sealed end of the glass sublimation tube.  The sublimation tube was fitted 

with a 24/40 vacuum adapter, and then was inserted into a horizontal Büchi Kugelrohr oven 

such that about 15 cm of the tube was situated in the oven. A vacuum of 0.05 Torr was 

established, and the oven was heated to the indicated temperature. The compounds sublimed 

to the cool zone just outside of the oven. The percent recovery was obtained by weighing the 

sublimed product. The percent nonvolatile residue was calculated by weighing the 1.0 x 4.0 

cm glass tube at the end of the sublimation. Data are given in the above text and are included 

in Table 4. 
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CHAPTER 3 

Atomic Layer Deposition of Nickel Nitride Thin Films from a Volatile and Thermally 

Stable Nickel Diazadienyl Precursor 

 

3.1 Introduction 

Transition metal nitrides have received considerable attention recently due to their 

potential uses as diffusion barriers, electrical contacts, optical coatings, and corrosion 

inhibitors.
96

 Nickel nitride (Ni3N) in particular is recognized as a useful material due to its 

inherit magnetic and electrical properties.
97 

Ni3N is also used as an intermediate material to 

the formation of metallic nickel and nickel silicide.
60

 Thermogravimetric analysis of Ni3N 

powders under reducing atmosphere was studied and nickel metal was reported as the final 

decomposition product at 160 °C.
98 

A subsequent study revealed that the decomposition 

temperature of Ni3N to depends upon the atmosphere under which decomposition is 

occurring.
99

 Ni3N is shown to decompose around 150 °C under reducing conditions and 

upwards of 300 °C under inert atmospheres.
98,99

 Thin films of Ni3N have been produced 

using chemical vapor deposition,
60,53d,100a 

physical vapor deposition,
100b-e

 and ion beam 

implantation.
99,100f,100g

 

In this chapter, the first ALD growth study of Ni3N is presented. Films were grown 

using a volatile and thermally stable nickel diazadienyl precursor mentioned in the previous 

chapter, bis(1,4-di-tert-butyl-1,3-diazabutadienyl)nickel(II) (5) and 1,1-dimethylhydrazine as 

the coreactant. Complex 1 undergoes solid state decomposition at 230 °C and sublimes on a 

preparative scale at 115 °C/0.05 Torr with a sublimed recovery of 92.3% and nonvolatile 

residue of 6.9% as mentioned in Chapter 2. Hence, 1 has potential properties as an ALD 

precursor. This process exhibits an ALD window between 225 and 240 °C and affords high 
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quality NixN (x = 2-4.6) with low impurity concentration on thermal SiO2 substrates. The 

scheme for this process is illustrated in Figure 23. 

Figure 23. General scheme for the ALD growth of NixN from 5. 

 

3.2 Results and Discussion 

ALD growth of Ni3N on 500 nm thick thermal SiO2 was investigated using 1 and 

anhydrous 1,1-dimethylhydrazine. The growth of Ni3N was evaluated by varying substrate 

temperatures, precursor pulse lengths, and the number of deposition cycles. The study of 

growth rate as a function of the pulse length of 5 was carried out at a substrate temperature of 

225 °C (Figure 24). The 1,1-dimethylhydrazine pulse length, purge time between each 

reactant, and the number of deposition cycles were held constant at 0.2 s, 3.0 s, and 1000 

cycles, respectively. The source temperature was kept at 150 °C to allow for sufficient 

consumption of the precursor over the deposition period. In order to display that film growth 

is occurring by a self-limited ALD mechanism, film saturation must be demonstrated. In the 

event of surface saturation, all available surface sites are occupied with adsorbed precursor 

molecules, which in turn remain on the film surface awaiting the introduction of a second co-

reactant. Once this condition is met, a constant growth rate is observed even in cases of 

excess precursor dose, given that neither precursor undergoes thermal decomposition. Self-

limited film growth was achieved with 1 pulse lengths ≥ 4.0 s as demonstrated by a constant 

growth rate of 0.70 Å/cycle. Shorter pulse lengths of 5 (< 4 s) may lead to sub-saturative 

growth and loss of the self-limited ALD mechanism. For the studies described herein, a pulse 
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length of 4.0 s for 5 was used to guarantee self-limited film growth. A plot of growth rate 

versus 1,1-dimethylhydrazine pulse length exhibited similar saturative behavior at pulse 

lengths ≥ 0.2 s (Figure 25). 

 

 

 

Figure 24. Growth rate as a function of the pulse length of 5 at a substrate temperature of 

225 °C.  
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Figure 25. Growth rate as a function of the pulse length of 1,1-dimethylhydrazine at a 

substrate temperature of 225 °C.  

 

The effect of substrate temperature upon growth rate was also investigated (Figure 

26). Film depositions were carried out using 5 and 1,1-dimethylhydrazine pulse lengths of 

4.0 s, 0.2 s, and 1000 deposition cycles. Nitrogen purge times of 3.0 s were used between 

each reactant pulse. A constant growth rate of 0.70 Å/cycle was observed between 225 and 

240 C. Such a region of constant growth rate over a specified temperature range is called the 

“ALD window” and is further evidence of a self-limited ALD process.
2,10,73

 Interestingly, the 

observed ALD window extends up to 240 °C, which lies slightly beyond the decomposition 

temperature of 5 (230 °C). At substrate temperatures ≥ 240 °C, the growth rate increases, 

presumably due to precursor decomposition. NixN growth rates of 0.15 and 0.95 Å/cycle 

were observed at substrate temperatures of 200 and 250 °C, respectively, which lie outside of 

ALD window. 
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Figure 26. Growth rate as a function of deposition temperature. An ALD window is 

observed between 225 and 240 °C. 

 

 

The influence of the number of deposition cycles upon the film thickness of NixN was 

subsequently investigated. In these experiments, 5 and 1,1-dimethylhydrazine pulse lengths 

were kept at 4.0 and 0.2 s, respectively, with a 3.0 s inert gas purge between each reactant 

pulse. The substrate temperature was held at 225 °C. As expected, a linear relationship exists 

between film thickness and the number of ALD cycles (Figure 27). A trend-line that 

demonstrates a best fit for the data points collected has a y-intercept of 4.45 nm. In principle, 

the y-intercept should be zero or negative which would indicate an incubation period. In this 

case, the positive y-intercept value could be attributed to experimental error. 
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Figure 27. Film thickness as a function of the number of deposition cycles at a growth 

temperature of 225 °C. 

 

 

X-ray photoelectron spectroscopy was performed on a representative NixN film 

deposited at 225 °C to assess the elemental composition and presence of impurities (Figure 

28). The surface of the as-deposited film showed the expected ionizations arising from Ni, as 

well as small ionizations from oxygen, nitrogen, and carbon. A high-resolution scan of the Ni 

2p region, as shown in Figure 29, shows evidence for Ni
2+

 as illustrated by the presence of Ni 

shake-up satellite ionizations. This is a strong indication that the film surface is undergoing 

oxidation when exposed to ambient atmosphere. Covered samples were stored in open air for 

48 h before analysis. Upon 45 s of Ar-ion sputtering all shake-up ionizations disappear, 

indicating the presence of Ni
0
. Before sputtering, nitrogen atomic concentrations were 

between 2 and 3 at % which were much lower than anticipated; unexpected low N is likely 

due to film oxidation. After argon ion sputtering, a constant composition of 86.5 at % nickel, 
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1.2 at % carbon, 10.3 at % oxygen, and 2.0 at % nitrogen was observed. The Ni 2p1/2 and Ni 

2p3/2 ionizations appeared at 869.6 and 852.2 eV. It is presumed that the Ar-ion sputter gun is 

inducing film reduction resulting in preferential nitrogen loss or nitrogen off-gassing, which 

may explain the presence of Ni
0
 and low observed nitrogen values.  

 

Figure 28. XPS spectra of NixN films deposited at 225 °C/1000 cycles. 
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Figure 29. High-resolution XPS multiplex of Ni 2p region. 

 

TOF-ERDA was performed on as-deposited films grown at 225, 230, 240, and 400 

°C to probe the elemental compositions (Table 6). The atomic compositions of the films 

ranged from 53.5 to 55.5% nickel, 1.7-2.6% carbon, 32.6-41.0% oxygen, 0.7-4.2% nitrogen, 

and 3.1-6.6% hydrogen. Again, it is presumed that the presence of elevated carbon, oxygen, 

and hydrogen impurities may arise from post-deposition exposure to the ambient atmosphere. 

The oxidation process may be evolving volatile nitrogen compounds giving the resulting 

oxidized surface with high oxygen and low nitrogen content. Samples were analyzed six 

months after deposition due to unexpected instrument maintenance in Dresden, Germany. 

While care was taken to secure the shipment under argon, the delayed analysis undoubtedly 

led to loss of inert conditions and further oxidation. 
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Table 6. Atomic concentrations of Ni, O, N, C, and H obtained by TOF-ERDA. 

 

Deposition 

Temperature (°C) 
at % Ni at % O at % N at % C at % H 

215 55.1 ± 0.5 32.6 ± 0.7 4.2 ± 0.3 2.5 ± 0.2 5.7 ± 0.2 

225 53.5 ± 0.5 33.3 ± 0.8 4.0 ± 0.3 2.6 ± 0.3 6.6 ± 0.2 

235 55.5 ± 0.5 33.0 ± 0.8 4.1 ± 0.3 1.7 ± 0.2 5.8 ± 0.3 

245 53.4 ± 0.5 41.0 ± 0.7 0.7 ± 0.1 1.9 ± 0.2 3.1 ± 0.3 

 

To assess possible preferential sputtering of nitrogen in XPS, fresh samples were 

deposited, sealed carefully under inert conditions, and submitted for Rutherford 

backscattering (RBS) and nuclear reaction analyses (NRA). These studies were employed to 

obtain accurate Ni:N ratios. Representative films deposited at 1000 cycles at temperatures of 

215, 225, 235, and 245 °C were used to quantify how the Ni:N ratio will vary with deposition 

temperature. As shown on Table 7, the values of x in NixN vary independently as a function 

of temperature with x ranging from 2.0 to 4.6 at 235 and 215 °C respectively. These results 

showed that nitrogen is retained in the sample, which XPS and XRD could not verify. The 

labile nature of nitrogen in the film may indicate the sudden increase of Ni in the film 

deposited at 245 °C. Loss of nitrogen and reduction to Ni metal at this temperature is well 

documented, as previously mentioned.
98,99

 This process was verified to yield metallic Ni by 

powder XRD analysis when deposited at 250 °C as shown in Figure 30. 

Table 7. Ni:N ratio as a function of deposition temperature determined by RBS/NRA. 

Deposition Temperature (°C) Ni:N ratio 

215 4.6 : 1 

225 3.5 : 1 

235 2.0 : 1 

245 3.9 : 1 
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Figure 30. Powder XRD scan of a NixN film deposited at 250 °C. 

 

Surface morphology was examined using atomic force microscopy (AFM) and 

scanning electron microscopy. The AFM image of a 70 nm thick film grown at 225 °C is 

shown in Figure 31. The rms surface roughness of a 2 μm x 2 μm area was 10.87 nm and the 

surface contains various sized granules. An AFM study of the surface roughness at different 

substrate temperatures indicates a large gain in rms surface roughness from 225 (10.9 nm) to 

250 °C (16.0 nm). This increase can be attributed to particle agglomeration and self-

decomposition of 5 to nickel metal at temperatures ≥ 240 °C. In fact, a powder X-ray 

diffraction (XRD) scan of a film deposited at 250 °C displayed weak reflections that 

correspond to nickel metal (JCPDS file number 04-0850) Figure 30. Scanning electron 

micrograph images of films grown under identical conditions showed film surfaces that were 
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free of cracks and pinholes and contained similar surface features to those observed using 

AFM. In addition, powder XRD experiments showed that all films were amorphous as 

deposited at temperatures within the ALD window. 
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Figure 31. AFM images of NixN films deposited at (a) 225 °C (70 nm thick; RMS 

roughness = 10.9 nm), (b) 235 °C (70 nm thick; RMS roughness = 13.6 nm), and           

(c) 250 °C (95 nm thick; RMS roughness = 16.0 nm). 
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3.3 Conclusions 

The study documented herein demonstrates the first ALD growth of Ni3N thin films. 

An ALD window was observed between 225 and 240 °C. The upper limit of ALD growth is 

due to the decomposition of 5 to nickel metal as determined by XRD. The affinity for nitride 

formation in this process is likely due to the use of 1,1-dimethylhydrazine. However, it 

appears that nitrogen incorporated in the film is easily displaced by film oxidation or through 

Ar-ion sputtering as verified by XPS studies. In addition, it was found that the films begin to 

decompose thermally to Ni metal at 250 °C as shown by XRD. This observation supports 

previous documented examples of incidences involving Ni3N decomposition under similar 

conditions.
98,99

 While little documented evidence exists explaining the air-sensitive nature of 

Ni3N, it is proposed that the high roughness of the surface plays an important role. The high 

surface area exposed may allow for quick and thorough oxidation of Ni3N deposited by this 

process. Future studies employing 5 and other transition metal analogs should avoid use of 

nitrogen-based co-reactants to prevent unwanted nitride formation in the pursuit for metallic 

films. 

3.4 Experimental Section 

A Picosun R-75BE ALD reactor was used for thin film deposition experiments. The 

ALD reactor was operated under a constant stream of nitrogen (99.9995%) at a pressure of 

8–12 mbar. The deposition of NixN thin films by ALD was studied employing 5, and 

anhydrous 1,1-dimethylhydrazine (SAFC-Hitech). In initial growth trials, the sublimation 

temperature for 1 was found to be optimum at 150 °C under the reactor pressure. The 

substrate temperatures were held between 200 and 250 °C. Nitrogen was used as both the 

carrier and purge gas and was purified from ambient air using a Texol GeniSys 
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nitroGenerator. Film growth experiments were performed using a range of pulse lengths for 1 

and anhydrous 1,1-dimethylhydrazine to determine the degree of surface saturation. NixN 

films were deposited on thermal SiO2 substrates (500 nm thick) obtained from Noel 

Technologies. One substrate, a 3 cm x 3 cm square coupon, was used in each deposition 

experiment. Film thicknesses were determined using cross-sectional SEM collected on a 

JEOL-6510LV scanning electron microscope. The film growth rate was determined by 

dividing the measured film thickness by the number of deposition cycles. Powder X-ray 

diffraction experiments were performed on a Rigaku R200B 12 kW rotating anode 

diffractometer, using Cu Kα radiation (1.54056 Å) at 40 kV and 150 mA. AFM images were 

obtained using a MultiMode nanoscope IIIa (Digital Instruments, VEECO). The samples 

were measured using the tapping mode in air with an E scanner with a maximum scanning 

size of 12 µm at a frequency of 1 or 2 Hz. The tip employed was a Tap150AI-G with a 

resonance frequency of 150 kHz and a force constant of 5 N/m. Surface roughness was 

calculated as rms values. XPS analyses were performed using a Perkin-Elmer 5500 XPS 

system using monochromatized Al Kα radiation using AugerScan v3.2 as the analyses 

software. RBS experiments were carried out by using a 2 MeV He
2+

 ion beam at a 

backscattering angle of 165° to quantify nitrogen content in the films. Quantitative 

determination of nickel was made by NRA using 1.25 MeV deuterium beam. A thin foil of 

mylar was placed in front of the silicon particle detector to filter out the backscattered ions. 

Sputtered samples of Au and TiN upon silicon substrates were used as calibration standards 

for RBS and NRA experiments. RBS and NRA composition values were compared to 

evaluate the Ni:N ratios. SIMNRA 6.0 was used as the RBS/NRA analysis software. TOF-

ERDA was performed using a 35 MeV Cl
7+

 ion beam. The angle between the sample normal 
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and the incoming beam is 75°, the scattering angle is 31°. The analyzed area was 1.5 x 1.5 

mm². The recoil ions were detected with a Bragg Ionization Chamber using a full energy 

detection circuit and a fast timing circuit to obtain a Z dependent signal to separate ion 

species. Hydrogen was detected with a separate solid state detector at a scattering angle of 

38° preceded by a Mylar foil to stop other scattered and recoiled ions. 
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CHAPTER 4 

 

Low Temperature Growth of High Purity, Low Resistivity Copper Films by          

Atomic Layer Deposition 

 

 

4.1 Introduction 

In this chapter, a new low temperature copper ALD process is described that employs 

a three precursor sequence entailing Cu(dmap)2 (6), formic acid, and hydrazine. In this 

process, 6 is unreactive toward hydrazine but is transformed to copper(II) formate, which is 

then readily reduced to copper metal by the hydrazine pulses. The work described in this 

chapter therefore addresses a central problem with the ALD growth of metal thin films: low 

reactivity of the metal precursors towards common reducing co-reagents. Analogous three-

step processes comprising a metal precursor, a strong acid, and a reducing agent should allow 

the low temperature ALD growth of many transition metal thin films. 

Multi-step approaches in developing ALD processes are not unprecedented and have 

been used previously in the growth of metal films. Other multi-step routes to copper films 

have included reduction of ALD CuO by isopropanol,
71

 reduction of ALD Cu3N with H2,
72

 

and reduction of ALD Cu2O by formic acid in conjunction with a ruthenium seed layer.
73 

Examples of direct copper ALD processes include CuL2/ZnEt2 at 100-150 °C (L = 

OCHMeCH2NMe2, -ketiminate, -diketiminate),
62,63

 Cu(thd)2/H2 at 190-260 °C (thd = 

2,2,6,6-tetramethyl-3,5-heptanedionate),
64

 [Cu(sBuNCMeNsBu)]2/H2 at 150-250 °C,
65

 

Cu(hfac)2/alcohol at 300 °C (hfac = 1,1,1,5,5,5-hexafluoro-3,5-pentanedionate),
66

 CuCl/H2 at 

360-410 °C,
67

 and CuCl/Zn at 440-500 °C.
68

 ALD growth of copper thin films was claimed 
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from a copper(I) -diketiminate precursor and diethylsilane,
69

 but a later study showed that 

this process proceeds by a CVD mechanism.
70

 

4.2 Results and Discussion 

Growth of copper metal films by ALD was carried out using 6, formic acid, and 

anhydrous hydrazine as precursors on Si(100) substrates with the native oxide. Precursor 6 

has been previously reported
101,102

 and is commercially available.
103

 Initial ALD growth 

studies performed with 6 and formic acid at 120 °C afforded green-colored films that washed 

off of the substrate upon rinsing with deionized water. Presumably, this film corresponded to 

copper(II) formate, which is stable at the 120 °C deposition temperature. Thermogravimetric 

analysis of commercially available copper(II) formate tetrahydrate revealed a two-step 

weight loss event from 50 to 300 °C (Figure 31). The first step corresponds to dehydration of 

two water molecules confirmed by the sharp endotherm in the DTA scan. Two equivalents of 

water were lost before approaching 50 °C for a total of four evolved equivalents after 100 °C. 

The second weight loss event around 200 °C, corresponds to the thermal decomposition to 

Cu(II) formate to Cu metal. This process is illustrated in Figure 33. This temperature range is 

well above the thermal decomposition temperature of 6 (~175 °C). Hence, copper film 

growth at ≥ 225 °C from 6 in a two-step process would proceed by a CVD-like mechanism 

due to the thermal decomposition of 6 to Cu metal. In addition, using formic acid as the sole 

reducing agent will prove unworthy as the minimum deposition temperature to yield Cu 

metal from this process will be > 200 °C, a temperature deemed too high for the 

microelectronics industry. Therefore, an alternative route will need to be taken if Cu metal is 

to be deposited at low temperature.  

 



69 
 

 

 

Figure 32. TGA/DTA trace of Cu(II) formate tetrahydrate. 

 

Figure 33. Thermal decomposition of Cu(II) formate to Cu metal. 

 

Results in Figure 32 show that Cu(II) formate can be thermally reduced but at 

temperatures in excess of 200 °C, a temperature too high for a viable Cu ALD process. 

Efforts were further directed towards the reduction of Cu(II) formate with hopes of lowering 

the threshold reduction temperature. Chemical reduction of Cu(II) formate may provide a 

way to access a low temperature Cu metal ALD process. A previous report noted that 

aqueous solutions of transition metal(II) formates (manganese, cobalt, nickel, and cobalt) 
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undergo a variety of reactions upon treatment with hydrazine hydrate.
104

 Interestingly, the 

copper formate reaction mixture was not stable and resulted in a violent reaction with copper 

metal formation at room temperature. This result encouraged the exploration of analogous 

reactions towards developing a low temperature ALD process for Cu metal. Subsequently, 

the experiment was repeated under careful conditions using commercially available Cu(II) 

formate (Table 8). Under addition of a few drops of hydrazine hydrate or 1,1-

dimethylhydrazine, the blue aqueous Cu(II) formate solution instantly darkened and violently 

bubbled. After a few minutes of stirring, the opaque orange solution began to leave a Cu 

metal mirror on the surface of the Erlenmeyer flask (Figure 34). These reactions verify that 

hydrazine and hydrazine derivatives can chemically reduce Cu(II) formate to Cu metal. Of 

significance, these reactions occur at room temperature. 

Table 8. Solution reaction results of various Cu(II) salts and hydrazine derivatives. 

 

Figure 34. Picture of the product of Cu(II) formate and hydrazine. 

 

Complex Hydrazine 1,1-dimethylhydrazine 

Cu(II) Formate Copper metal Copper metal 

Cu(II) Acetate Copper metal Copper metal 
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 Accordingly, a three-step ALD process entailing 6, formic acid, and hydrazine was 

envisioned. Precursor 6 and formic acid leads to the formation of surface bound Cu(II) 

formate and subsequent exposures to hydrazine drive Cu metal film formation. To assess the 

growth behavior, precursor pulse lengths, substrate temperatures, and the number of cycles 

were varied. The growth rate was investigated as a function of the pulse length of 6 at a 

substrate temperature of 120 °C. The number of deposition cycles, lengths of the formic acid 

and hydrazine pulses, and length of the purges after each pulse were kept constant at 1000, 

0.2 s, 0.2 s, and 5.0 s, respectively.  As shown in Figure 35, pulse lengths for 6 of ≥ 3 s 

afforded a constant growth rate of about 0.50 Å/cycle. Similar experiments were used to 

explore the growth behavior as a function of the formic acid (Figure 36) and hydrazine pulse 

lengths (Figure 37), using 1000 cycles, 3.0 s pulses of 6, 5.0 s purges between precursor 

pulses, and a growth temperature of 120 °C. Plots of growth rate versus pulse length 

demonstrated saturative growth with formic acid and hydrazine pulse lengths of ≥ 0.1 s. 

These experiments demonstrate that the film growth at 120 °C proceeds by a self-limiting 

ALD growth mechanism. No copper metal film growth was observed at < 200 °C with 

processes employing 6 and formic acid or 6 and hydrazine. 
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Figure 35. Growth rate as a function of the pulse length of 6. 

 

 

Figure 36. Growth rate as a function of formic acid pulse length. 
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Figure 37. Growth rate as a function of hydrazine pulse length. 

 

 

The growth rate as a function of deposition temperature was also investigated (Figure 

38). The conditions in these depositions consisted of pulse lengths of 3.0 s, 0.2 s, and 0.2 s 

for 1, formic acid, and hydrazine, respectively, purge lengths of 5.0 s between pulses, and 

1000 deposition cycles. A constant growth rate of 0.47-0.50 Å/cycle was observed between 

100 and 170 °C (the ALD window). Lower growth rates occurred at 80, 180, and 200 °C. 
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Figure 38. Growth rate as a function of deposition temperature. An ALD window is 

observed between 110 and 160 °C. 

 

 

The dependence of the film thickness on the number of deposition cycles was 

investigated next (Figure 39). In these experiments, the pulse lengths of 6, formic acid, and 

hydrazine were 3.0 s, 0.2 s, and 0.2 s, respectively, with purge lengths of 5.0 s between 

pulses. The deposition temperature was 120 °C. The film thicknesses varied linearly with the 

number of cycles and the slope of the line (0.50 Å/cycle) equaled the saturative growth rate 

established in Figure 26. The line of best fit shows a y-intercept of 1.46 nm, which is within 

experimental error of zero and suggests efficient nucleation.  
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Figure 39. Film thickness as a function of the number of deposition cycles at a growth 

temperature of 140 °C. 

 

Time of flight-elastic recoil detection analysis (TOF-ERDA) was performed on 45-50 

nm thick films grown at 100, 120, 140, 160, and 180 °C to probe the elemental compositions 

(Table 9). The atomic compositions of the films range from 95.9-98.8% copper, 0.1-1.2% 

carbon, 0.5-1.0% oxygen, ≤ 0.4% nitrogen, and ≤ 2.0% hydrogen. In general, the films had 

the highest purity at 100 °C and the lowest purity at 180 °C. Growth at the latter temperature 

may include some precursor self-decomposition, however, the uncertainties in the 

compositions preclude more definitive conclusions. Depth profiling studies demonstrate that 

the majority of the impurities reside at the film surface and at the interface between copper 

and the silicon substrate (Figure 40). The carbon, oxygen, and hydrogen impurities may arise 

from post-deposition exposure to ambient atmosphere, or from traces of formate that remain 

in the film. 
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Table 9. Percentages of C, O, N, and H in copper films obtained by TOF-ERDA. 

Temp °C at % C at % O at % N at %H 

100 0.1 ± 0.1 0.5 ± 0.2 ≤ 0.1 < 0.5 

120 1.0 ± 0.3 0.5 ± 0.2 0.2 ± 0.1 1.2 ± 0.5 

140 0.5 ± 0.2 1.0 ± 0.3 0.15 ± 0.1 2.0 ± 0.5 

160 0.9 ± 0.3 0.8 ± 0.3 0.15 ± 0.1 0.9 ± 0.4 

180 1.2 ± 0.4 1.0 ± 0.3 0.4 ± 0.2 1.5 ± 0.5 

 

Figure 40. TOF-ERDA depth profile of a 50 nm thick Cu film deposited at 120 °C. 

 

X-ray photoelectron spectroscopy was performed on 50 nm thick copper films 

deposited at 140 °C to assess the composition of the films (Figure 41). The surface of the as-

deposited film showed the expected ionizations arising from metallic copper, as well as small 

ionizations from oxygen and carbon. Nitrogen concentrations were at or below the detection 

limit (< 1%). After argon ion sputtering, a constant composition of 95.1 at % copper, 1.2 at % 

carbon, 3.1 at % oxygen, and < 1 at % nitrogen was observed. The Cu 2p
1/2

 and Cu 2p
3/2
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ionizations appeared at 952.2 and 932.4 eV, which are exact matches for copper metal 

(Figure 42).
105 

Figure 41. XPS spectra of ALD Cu films deposited at 120 °C/1000 cycles.

 

 Figure 42. High-resolution XPS multiplex of Cu 2p region. 
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Powder X-ray diffraction experiments were performed on a 45 nm thick film 

deposited at 100 °C and on 50 nm thick films that were grown at 120, 140, 160, and 180 °C 

(Figure 43). All of the as-deposited films were crystalline, and showed reflections arising 

from the (111), (200), and (220) planes of copper metal (JCPDS file number 04-0836).  

Figure 43. Powder X-ray diffraction profile of a 50 nm thick Cu film grown at 120 °C. 

 

An AFM image of a 50 nm thick film grown at 120 °C had an RMS surface 

roughness of 3.5 nm (Figure 44). The SEM images of a film deposited under the same 

conditions showed no cracks or pinholes and a very uniform surface. The resistivities of 45-

50 nm thick copper films deposited at 100, 120, and 140 °C ranged from 9.6 to 16.4 µΩ·cm 

at 20 °C, compared to the bulk resistivity of copper of 1.72 µΩ·cm at 20 °C. For comparison, 
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sputtered 40-50 nm thick copper films on SiO2 substrates had resistivities of 3-6 µΩ·cm.
106

 

Hence, our resistivity values indicate high purity copper metal. Films grown at all 

temperatures passed the Scotch Tape test, demonstrating good adhesion. 

Figure 44. AFM image of ALD Cu film deposited at 120 °C/1000 cycles. 

(RMS roughness = 3.5 nm). 

 

 

To understand the surface morphology and sheet resistivity as a function of film 

thickness, Cu films were grown at 100, 200, 400, and 800 cycles at 100 °C (Figures 45-49). 

FE-SEM surface views show that electrically discontinuous metal island growth (~25 nm 

wide/5 nm tall) occurs in the first 100 ALD cycles. From 10-20 nm (200-400 ALD cycles), a 

secondary and electrically continuous underlying Cu layer is formed while the surface Cu 

seeds remain. The uncertainty in measuring film thickness or particle height needs to be 

considered as there are Cu islands of varying height at films < 400 cycles. Sheet resistivities 

measured for 10 and 20 nm thick Cu films were 160 ± 4 µΩ·cm, and 54 ± 7.5 µΩ·cm at 20 

°C, respectively. At thicknesses above 40 nm (> 800 cycles), the Cu films attains a densely-
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packed, highly granular morphology. The sheet resistivity at 20 °C for a 40 nm ALD Cu film 

was 16 ± 4 µΩ·cm. Cu island growth is due to poor nucleation on the substrate surface in the 

first few cycles. In order to improve Cu film quality at low thicknesses (low roughness and 

resistivity) advances in nucleation will need to occur.  

Figure 45. Surface SEM views of ALD Cu films grown at 100 °C upon thermal SiO2 after 

100 cycles (5 nm thick). 
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Figure 46. Surface SEM views of ALD Cu films grown at 100 °C upon thermal SiO2 after 

200 cycles (10 nm thick). 
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Figure 47. Surface SEM views of ALD Cu films grown at 100 °C upon thermal SiO2 after 

400 cycles (20 nm thick). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 
 

 

 

Figure 48. Surface SEM views of ALD Cu films grown at 100 °C upon thermal SiO2 after 

800 cycles (40 nm thick). 
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Figure 49. Measured sheet resistivity of ALD Cu films as a function of film thickness. 

 

 The best previous low temperature copper ALD process, entailing 6 and ZnEt2, is 

reported to afford high purity copper films within the 100-120 °C ALD window.
62

 However, 

a subsequent report documented a parasitic chemical vapor deposition (CVD) reaction of 

ZnEt2 that leads to Zn incorporation into the copper films at temperatures between 120 and 

150 °C.
63

 In the latter study, the copper(II) pyrrolylaldiminate precursor had a minimum 

deposition temperature of 120 °C, but zinc is likely deposited even at 100-120 °C in 

processes that employ ZnEt2. The process described herein avoids undesired elements in the 

precursors, and affords high purity, low resistivity copper metal at all growth temperatures 

that were examined. An SEM cross-sectional view illustrating the general scheme of film 

growth is given in Figure 50. Formic acid (pKa = 3.7
104

) is strongly acidic and should lead to 

very favorable protonation equilibria of the ligands in nearly all classes of commonly used 
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metal precursors. Hence, treatment of a surface-bound metal precursor with formic acid 

should lead to rapid and efficient ligand removal and formation of a surface-bound metal 

formate. Formic acid has been previously employed in ALD to reduce Cu2O films to copper 

metal,
73

 but a ruthenium seed layer was required to catalyze the elimination of carbon 

dioxide from the surface formate species. Use of formic acid as a co-reagent in the CVD 

growth of copper metal films was demonstrated,
105

 but films were deposited on ruthenium 

substrates that likely catalyze the decomposition of the surface formates. Preliminary 

experiments using acetic acid in place of formic acid also afforded copper metal with 6 and 

hydrazine, which implies that a range of other protic acids can be employed. If the film 

growth temperature is below the thermal decomposition point of the metal formate, then a 

subsequent hydrazine pulse leads to reduction to the metal, as exemplified by copper metal 

growth in the present work. Presumably, reducing co-reagents other than hydrazine can also 

be used. Metals such as ruthenium that can catalyze the low temperature elimination of 

carbon dioxide from formates may not require a reducing precursor. Recent results 

demonstrate that an analogous process entailing Ni(dmap)2, formic acid, and hydrazine leads 

to nickel nitride thin films at a substrate temperature of 175 °C.
108

 The reduction of the 

nickel(II) ion to nickel metal occurs at E° = -0.25 V,
84

 which implies that low temperature 

ALD growth of metal films may be achieved with a metal precursor, a strong acid, and 

optional reducing reagent (as noted above) for metal ions with electrochemical potentials 

greater than that of the nickel(II) ion. Metal ions in this category include silver, gold, 

palladium, platinum, rhodium, iridium, rhenium, tungsten, and others.
84

 ALD growth of 

many of these metals is well documented, but thermal ALD usually occurs at > 200 °C to 
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provide enough activation energy to drive the ligand combustion reactions that occur with the 

oxygen co-reagent.
109-111 

Figure 50. Cross-sectional FE-SEM image illustrating the general scheme of Cu film growth 

upon thermal SiO2. 
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CHAPTER 5 

 

Conclusions 

 

 

A series of transition metal complexes containing radical anionic diazadienyl ligands 

has been synthesized, characterized, and their properties were investigated. These new 

complexes are volatile (sublimation temperatures of 80-120 °C/0.05 Torr), exceptionally 

thermally stable (decomposition temperatures of ≥ 230 °C), and thus could find use as viable 

CVD and/or ALD precursors. Mn(tBu2DAD)2 was shown to be the most thermally robust 

among the series, with a solid-state decomposition temperature of 325 °C and a sublimation 

temperature of 120 °C/0.05 Torr. X-ray crystal structure determinations revealed monomeric 

complexes that adopt tetrahedral coordination environments and ligand core bond lengths 

that were consistent with tBu2DAD radical anion coordination. Thermogravimetric traces of 

all complexes gave single-step weight loss events from 150 to 225 °C with final percent 

residues ranging from 1.5 to 3.6% at 500 °C. Thermolysis studies reveal that all complexes 

decompose into their respective crystalline metal powders under inert atmosphere. 

The study documented in Chapter 3 demonstrates the first account for the ALD 

growth of NixN thin films. Growth of nickel nitride thin films was accomplished from 

bis(1,4-di-tert-butyl-1,3-diazabutadiene) nickel(II) (Ni(tBu2DAD)2) and 1,1-

dimethylhydrazine. An ALD window was observed between 225 and 240 °C. The upper limit 

of ALD growth is due to the decomposition of 1 to nickel metal as determined by XRD. 

Films grown throughout the ALD window were moderately rough with RMS roughnesses 

ranging from 10.9-16.0 nm on films deposited from 225-250 °C. The affinity for nitride 
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formation in this process is likely due to the use of 1,1-dimethylhydrazine. Further attempts 

to obtain nickel metal from this precursor should avoid the use of reducing sources 

containing nitrogen such as hydrazines, amines, or ammonia. 

 A low temperature process for the ALD of copper metal thin films is reported in 

Chapter 4 using a three precursor sequence entailing Cu(dmap)2, formic acid, and hydrazine. 

A constant growth rate of 0.47-0.50 Å/cycle was observed on silicon wafers at process 

temperatures between 100 and 170 °C. Compositional analyses (XPS and TOF-ERDA) 

revealed copper films with low levels of carbon, oxygen, nitrogen, and hydrogen. Powder X-

ray diffraction spectra of all films showed polycrystalline copper that is preferentially 

oriented towards the (111) plane. The resistivities of films grown between 100 and 140 °C 

ranged between 9.6 and 16.4 µΩ·cm, demonstrating the growth of low resistivity copper 

films. Cu film growth suffers from island growth in the first 200 ALD cycles. Subsequently, 

the Cu islands begin to coalesce to form continuous, dense, and granular films. Nucleation 

strategies will need to be developed to avoid island growth and to achieve film continuity at 

thicknesses less than 10 nm. 
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The advancing complexity of advanced microelectronic devices is placing rigorous 

demands on currently used PVD and CVD deposition techniques. The ALD deposition 

method is proposed to meet the film thickness and conformality constraints needed by the 

semiconductor industry in future manufacturing processes. Unfortunately, there is a limited 

number of chemical precursors available that have high thermal stability, reactivity, and 

vapor pressure suitable for ALD film growth to occur. These properties collectively 

contribute to the lack of suitable transition metal precursors available for use in ALD. In this 

thesis, the discovery of a series of novel transition metal diazadienate precursors that 

promising properties deemed suitable for ALD is reported. The volatility and thermal 

stability of the new transition metal diazadienyl compounds were studied by preparative 

sublimation and capillary tube melting point/decomposition experiments. Thermogravimetric 

analyses (TGA) demonstrate precursor residues of less than 4% at 500 °C. In addition, 

sublimation data, melting points, and decomposition temperatures for all complexes are 

presented. The manganese diazadienyl complex has the highest decomposition temperature 

of the series of complexes produced (325 °C). During preparative sublimations, the product 
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recoveries of all transition metal diazadienyl complexes were greater than 92.0% with 

nonvolatile residues of less than 7.0%. This is an excellent indication that these complexes 

may be suitable candidates as metal precursors for ALD. 

Nickel nitride (NixN) films have been studied as an intermediate material for the 

formation of both nickel metal and nickel silicide using chemical vapor deposition. Herein, 

the ALD growth of nickel nitride thin films from bis(1,4-di-tert-butyl-1,3-diazabutadiene) 

nickel(II) (Ni(tBu2DAD)2) and 1,1-dimethylhydrazine, is described. An ALD window for the 

deposition of nickel nitride films on 500 nm thermal SiO2 substrates was observed between 

225 and 240 °C with a constant growth rate of 0.70 Å/cycle. X-Ray photoelectron 

spectroscopy (XPS) showed all expected ionizations with carbon concentrations below the 

detection limit after argon ion sputtering. Due to preferential nitrogen sputtering in XPS, 

Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) were 

performed and subsequently revealed Ni:N ratios between 2–4 for films deposited within the 

ALD window. AFM measurements revealed a RMS roughness value of 10.8 nm on an as-

deposited film at 225°C. All as-deposited films were amorphous as determined by X-ray 

diffraction. 

Copper is the primary interconnect material in microelectronics devices, due to its 

high conductivity and low affinity towards electromigration. With transistor gate lengths 

scheduled to reach 14 nm by 2014, there are severe demands upon the current film growth 

techniques used in device fabrication. The ALD film growth method is ideally suited for 

future microelectronics manufacturing, since it inherently provides highly conformal thin 

films, even in high aspect ratio nanoscale features, and allows sub-nanometer control over 

film thicknesses. In Chapter 4, the atomic layer deposition of high purity, low resistivity 
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copper metal thin films using a three precursor sequence entailing Cu(dmap)2, formic acid, 

and hydrazine, is presented. In this process, Cu(dmap)2 is unreactive towards hydrazine but is 

transformed to copper(II) formate, which is then readily reduced to copper metal by 

subsequent hydrazine exposure. The present work therefore addresses a central problem with 

the ALD growth of metal thin films: low reactivity of metal precursors toward common 

reducing agents. A constant growth rate of 0.47-0.50 Å/cycle upon prime grade Si(100) was 

observed at substrate temperatures between 100 and 170 °C. Compositional analyses (XPS 

and TOF-ERDA) revealed copper films with low levels of carbon, oxygen, nitrogen, and 

hydrogen. Powder X-ray diffraction spectra of all films showed polycrystalline copper. The 

resistivities of films grown between 100 and 140 °C ranged between 9.6 and 16.4 μΩ·cm, 

demonstrating the growth of high purity, low resistivity copper films. An AFM measurement 

revealed a RMS roughness value of 3.5 nm on an as-deposited 50 nm Cu film at 120 °C.  
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