
Journal of Modern Applied Statistical
Methods

Volume 3 | Issue 1 Article 26

5-1-2004

JMASM10: A Fortran Routine For Sieve Bootstrap
Prediction Intervals
Andrés M. Alonso
Universidad Autónoma de Madrid, andres.alonso@uam.es

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Algorithms and Code is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been
accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
Alonso, Andrés M. (2004) "JMASM10: A Fortran Routine For Sieve Bootstrap Prediction Intervals," Journal of Modern Applied
Statistical Methods: Vol. 3 : Iss. 1 , Article 26.
DOI: 10.22237/jmasm/1083371160
Available at: http://digitalcommons.wayne.edu/jmasm/vol3/iss1/26

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol3?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol3/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol3/iss1/26?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol3/iss1/26?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol3%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Modern Applied Statistical Methods Copyright © 2004 JMASM, Inc.
May, 2004, Vol. 3, No. 1, 239-249 1538 – 9472/04/$95.00

239

JMASM Algorithms and Code
JMASM10: A Fortran Routine For Sieve Bootstrap Prediction Intervals

Andrés M. Alonso

Department of Mathematics
Universidad Autónoma de Madrid

A Fortran routine for constructing nonparametric prediction intervals for a general class of linear
processes is described. The approach uses the sieve bootstrap procedure of Bühlmann (1997) based on
residual resampling from an autoregressive approximation to the given process.

Key words: Sieve bootstrap, prediction, time series

Introduction

When studying a time series, one of the goals is
the estimation of forecast confidence intervals
based on an observed trajectory of the process.
The traditional approach of finding prediction
intervals for a linear time series assumes that the
distribution of the error process is known. Thus,
these prediction intervals could be adversely
affected by departures from the true underlying
distribution.

Some bootstrap approaches have been
proposed as a distribution free alternative to
compute prediction intervals. Stine (1987)
proposed a bootstrap method to estimate the
prediction mean squared error of the estimated
linear predictor of an AR(p) where p is known.
Also, for an AR(p) process with known p, and
relaxing the assumptions of Stine (1987),
Thombs and Schucany (1990) propose a
backward then forward bootstrap method to
estimate prediction intervals. Cao et al. (1997)
study a conditional bootstrap method alternative
to Thombs and Schucany's proposal, which is
computationally faster. Pascual et al. (2001)
generalize this conditional bootstrap to
ARMA(p, q) processes with known p and q and

Andrés M. Alonso is Assistant Professor of
Statistics. Department of Mathematics,
Universidad Autónoma de Madrid, 28049
Madrid, Spain. His areas of research interest are
statistical computing, resampling methods and
biostatistics. E-mail at: andres.alonso@uam.es.

also include the parameter estimation variability.
 This article describes a bootstrap

method to construct nonparametric prediction
intervals for a class of linear processes that can
be written as a one-sided infinite-order moving
average process with at most a polynomial decay
of the coefficients { }+∞

=0jjψ . This class includes

the stationary and invertible ARMA(p,q)
processes. This approach uses the sieve
bootstrap of Bühlmann (1997) based on residual
resampling from a sequence of approximating
autoregressions for { } Z∈ttX with order p = p(n)
that increases as a function of the sample size n.

This sieve bootstrap has a nice
nonparametric property, being model-free within
the considered class of linear processes. Thus,
the proposed bootstrap prediction intervals could
be applied to this more general class of linear
models without specifying a finite dimensional
model as in previous bootstrap proposals.
Alonso et al. (2002) and (2003) studied the
consistency and the finite sample properties of
this sieve bootstrap.

Methodology

Let { } Z∈ttX be a real valued, stationary process
with expectation [] XtXE µ= that admits a

MA(∞) representation with ∑+∞

=
∞<

0
2

j jψ .

Under the additional assumption of invertibility
{ } Z∈ttX can be represented as a one-sided
infinite-order autoregressive process:

A FORTRAN ROUTINE FOR SIEVE BOOTSTRAP 240

∑+∞

= − ∈==−
0 0 ,1,)(

j tXjtj tX Zφεµφ

 (1)

with coefficients { }+∞

=0jjφ satisfying

∑+∞

=
∞<

0
2

j jφ . This AR(∞) representation

motivates Bühlmann's sieve bootstrap. The
method proceeds as follows:

1. Given a sample { }nXXX ,,, 21 … ,
select the order p = p(n) of the autoregressive
approximation by AICC criterion: AICC =

)2/()1(2)log(2 −−++− pnnpn σ , (cf.
Section 9.3 of Brockwell &Davis, 1991).

The AICC criterion is a bias-corrected
version of AIC (Akaike, 1973), and it has a more
extreme penalty for large-order models which
counteracts the overfitting nature of AIC. Other
order selection criteria (such as BIC) could be
used, but AICC is preferred assuming the view
that the true model is complex and not of finite
dimension, and also because the AICC is
asymptotically efficient for autoregressive
models, i.e., it chooses an AR model which
achieves the optimal rate of convergence of the
mean-square prediction error.
2. Construct some estimators of the
autoregressive coefficients: ()pφφφ ˆ,,ˆ,ˆ

21 … .
Following Bühlmann (1997) the Yule-Walker
estimates are taken.
3. Compute the residuals for t ∈ (p+1,p+2,
…, n) by:

.1ˆ),(ˆˆ

0 0∑ = − =−=
p

j jtjt XX φφε

(2)

4. Define the empirical distribution
function of the centered residuals:

{ }∑ +=

− ≤−=
n

pt t xpnxF
1

1
~ ,~1)()(ˆ εε

(3)

where)(ˆˆ~ •−= εεε tt and

 ∑ +=

−• −=
n

pt tpn
1

1)(.ˆ)(ˆ εε

5. Draw a resample *
tε of i.i.d.

observations from ε~F̂ .

6. Define *
tX by the recursion:

∑ = − =−
p

j tjtj XX
0

** ,)(εφ (4)

where the starting p observations are equal to
.X

In practice an AR(p) resample is
generated using (4) with sample size equal to n
+ 100 and then discard the first 100
observations. Up to this step, the resampling
plan coincides with the sieve bootstrap, and is
valid for bootstrapping some statistics defined as
a functional of a m-dimensional distribution
function (see details in Section 3.3 of Bühlmann,
1997). However, it is not effective for bootstrap
prediction, because it does not replicate the
conditional distribution of hnX + given the
observed data. But, proceeding as do Cao et al.
(1997) by fixing the last p observations
resamples of the future values can be obtained

*
hnX + given ,1

*
1 +−+− = pnpn XX

.,, *
2

*
2 nnpnpn XXXX == +−+− …

7. Compute the estimation of the
autoregressive coefficients: ()**

2
*

1
ˆ,,ˆ,ˆ

pφφφ … as
in step 1.
8. Compute the future bootstrap
observations by the recursion:

∑ = −+ +−−=
p

j tjtjhn XXXX
1

**** ,)(ˆ εφ (5)

where h > 0, and tt XX =* , for .nt ≤

Finally,)(*
* xF

hnX +
 the bootstrap

distribution of *
hnX + is used to approximate the

unknown distribution of hnX + given the
observed sample. As usual, a Monte Carlo
estimate)(ˆ *

* xF
hnX +

 is obtained by repeating the

steps 5 to 8 B times. The (1-α)% prediction
interval for hnX + is given by

[])2/1(),2/(** αα −QQ , where =(.)*Q

(.)ˆ *
*

hnX
F

+
 are the quantiles of the estimated

bootstrap distribution.

ANDRÉS M. ALONSO

241

Fortran routines

Module TimeSeriesRoutines
 In the module TimeSeriesRoutines are
presented some routines required for the sieve
bootstrap procedure: subroutine
AutoCovarianceVector, subroutine YuleWalker,
and subroutine AICCSelection.

SUBROUTINE AutoCovarianceVector(
ACVector, XSeries,MaxLag,Positions)
IMPLICIT NONE
REAL (KIND=8), DIMENSION(0:),
INTENT(OUT) :: ACVector
REAL (KIND=8), DIMENSION(:),
INTENT(IN) :: XSeries
INTEGER, INTENT(IN) :: MaxLag
INTEGER, DIMENSION(:), INTENT(IN),
OPTIONAL :: Positions

This routine estimates the
autocovariances of the XSeries for the orders
from 0 to MaxLag. Notice that the
implementation allows possible missing
observations in the specified Positions. The
expression for the autocovariance estimates is
given by:

1
1

ˆ ()(),n k
k t t k t t kn m t

w w X X X X−

+ +− =
γ = − −∑ (6)

where m is the number of missing observations,

∑ =
−−=

n

t tt XwmnX
1

1)(and wt is equal 0 if

the observation t is missing and otherwise is
equal to 1.

SUBROUTINE YuleWalker(XSeries,
ACMatrix,YWPhi,Residuals)
USE Msimsl
USE Imslf90
IMPLICIT NONE
REAL (KIND=8), DIMENSION(:),
INTENT(IN) :: XSeries
REAL (KIND=8), DIMENSION(:,:),
INTENT(IN) :: ACMatrix
REAL (KIND=8), DIMENSION(:),
INTENT(OUT) :: YWPhi
REAL (KIND=8), DIMENSION(:),
INTENT(OUT) :: Residuals

This routine calculates the Yule-Walker
estimates of the autoregressive coefficient
required in the steps 2 and 7 of sieve bootstrap
procedure. It also calculates the residuals for the
estimated model. The Yule-Walker estimators
can be obtained from the following relation (cf.
Section 8.1 of Brockwell and Davis (1991)):

,ˆˆˆ
pp γφΓ =p (7)

where pΓ̂ is the estimated autocovariance

matrix []p
jiji 1,

ˆ
=−γ ,)'ˆ,,ˆ,ˆ(ˆ 21 pγγγ …=pγ and

)'ˆ,,ˆ,ˆ(ˆ 21 pφφφ …=pφ is the coefficients vector.
Using (2), the estimated residuals were obtained.

SUBROUTINE AICCSelection(XSeries,
ACVector,PMax,PHat)
IMPLICIT NONE
REAL (KIND=8), DIMENSION(:),
INTENT(IN) :: XSeries
REAL (KIND=8), DIMENSION(0:),
INTENT(IN) :: ACVector
INTEGER, INTENT(IN) :: PMax
INTEGER, INTENT(OUT) :: PHat

This routine implements the AICC
method for selecting the order of the
autoregressive model for XSeries. It considers
models from p = 0 to p = PMax. Instead of using
the subroutine YuleWalker for the different
values of p, it uses the Durbin-Levinson
algorithm (cf. Section 8.2 of Brockwell and
Davis (1991)) which avoids the matrix inversion
required in the direct computation of pφ̂ . The
Durbin-Levinson algorithm uses the following
recursions:

,ˆ/)ˆˆˆ(ˆ
1

1

1 ,1, −
−

= −−∑−= m
m

j jmjmmmm vγφγφ (8)

,

ˆ

ˆ
ˆ

ˆ

ˆ

ˆ
ˆ

ˆ

ˆ
ˆ

1,1

2,1

1,1

,

1,1

2,1

1,1

1,

2,

1,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−

−−

−

−

− m

mm

mm

mm

mm

m

m

mm

m

m

φ

φ
φ

φ

φ

φ
φ

φ

φ
φ

###

(9)

and
),ˆ1(ˆˆ 2

,1 mmmm vv φ−= − (10)

A FORTRAN ROUTINE FOR SIEVE BOOTSTRAP 242

with the following initial values: 011,1 ˆ/ˆˆ γγφ =

and).ˆ1(ˆˆ 2
1,101 φγ −=v

Notice that the subroutine
AICCSelection can be easily modified in order
to use other information criterion as AIC or BIC.
Only the two following sentences required some
minor changes:

MinimumAIC =
RXSize*LOG(ACVector(0)) +
2.0D0*(REAL(I,KIND=8)+1.0D0)
*RXSize/(RXSize - REAL(I+2,KIND=8))

WorkAIC =
RXSize*LOG(VarianceVector(I))
+2.0D0*(REAL(I,KIND=8)+1.0D0)
*RXSize/(RXSize - REAL(I+2,KIND=8))

Routine FESieves
 Here are described the subroutine
FESieves which implements the steps 2 to 8 of
the sieve bootstrap procedure. Notice that the
step 1 is implemented by subroutine
AICCSelection.

SUBROUTINE
FESieves(EDF,XSeries,PHat)
USE Msimsl
USE Imslf90
USE TimeSeries
IMPLICIT NONE
REAL (KIND=8), DIMENSION (:,:),
INTENT(OUT) :: EDF
REAL (KIND=8), DIMENSION (:),
INTENT(IN) :: XSeries
INTEGER, INTENT(IN) :: PHat

The inputs of subroutine FESieves are:
the sample XSeries = { }nXXX ,,, 21 … and the
selected order, PHat. The output is a MaxLag ×
B matrix, where MaxLag is the maximum
prediction horizon to be considered and B is the
number of resamples.

Step 2 and 7 are implemented by the

following sentences:

CALL YuleWalker(XSeries,
ACMatrix(1:PHat+1, 1:PHat+1),
YWPhi, Residuals)

CALL YuleWalker(WSeries(101:XSize +
100), WACMatrix(1:PHat+1,
1:PHat+1), WYWPhi, YWResiduals)

where the WSeries are the resample obtained
using recursion (4). The estimates YWPhi are
used in recursion (4) and the bootstrap estimates
WYWPhi are used in recursion (5). Also, in the
first call to subroutine YuleWalker, the step 3 is
performed. As mentioned in the previous
section, a bootstrap resample was generated
using (4) with sample size equal to XSize+100
and then discard the first 100 observations by
WSeries(101:XSize + 100).

The resamples of step 5 are obtained by
sampling with replacement from the vector of
centered residuals, WResiduals = WResiduals -
SUM(WResiduals) / REAL(XSize - PHat,
KIND=8):

DO I = 1, XSize + 100 + MaxLag ! a
resample of centered residual
 CALL RNUND(1, XSize-PHat,
 RandomIndex)
 RResiduals(I)=
 WResiduals(RandomIndex)
END DO

Because recursions (4) and (5) are
similar, here, it is only described the prediction
recursion:

DO I = XSize+101, XSize+100+MaxLag
 WSeries(I) = RResiduals(I)
 DO Ip = 1, PHat
 WSeries(I) = WSeries(I) +
 WYWPhi(Ip)*WSeries(I-Ip)
 END DO
END DO
EDF(1:MaxLag,J)=WSeries(XSize+101:
XSize+100+MaxLag) + XMean

ANDRÉS M. ALONSO

243

Notice that in (5) the bootstrap

autoregressive coefficient is used, WYWPhi,
this allows us to incorporate the parameter
estimation variability in the prediction intervals.

Finally, the α/2 and (1-α/2) quantiles of
the empirical density of forecasts, EDF,
constitutes the prediction interval.

Results

In this section are briefly described the results of
a simulation experiment using the Fortran
subroutine presented in the previous section. The
following models are used:
• Model 1: Xt = 0.75 Xt-1 – 0.5 Xt-2 + εt,
where εt are i.i.d. N(0,1).
• Model 2: Xt = εt – 0.3 εt-1 + 0.7 εt-2,
where εt are i.i.d. N(0,1).

Table 1. Simulation results for Model 1.

Lag Sample size Method Coverage (se) Cov. (below /above) Length (se)
h n Theoretical 95% 2.50% / 2.50% 3.92
1 25 Bootstrap 89.03 (0.82) 4.44 / 6.53 3.74 (0.07)
 50 92.59 (0.52) 4.25 / 3.16 3.86 (0.05)
 100 93.77 (0.33) 3.25 / 2.98 3.90 (0.04)
h n Theoretical 95% 2.50% / 2.50% 4.92
3 25 Bootstrap 87.50 (0.86) 5.41 / 7.09 4.30 (0.08)
 50 92.08 (0.49) 3.97 / 3.95 4.69 (0.05)
 100 93.21 (0.38) 3.53 / 3.26 4.77 (0.05)

Table 2. Simulation results for Model 2.

Lag Sample size Method Coverage (se) Cov. (below /above) Length (se)
h n Theoretical 95% 2.50% / 2.50% 3.93
1 25 Bootstrap 89.53 (0.85) 5.72 / 4.75 4.12 (0.08)
 50 92.06 (0.62) 3.63 / 4.31 3.98 (0.06)
 100 93.31 (0.43) 3.49 / 3.20 3.96 (0.04)
h n Theoretical 95% 2.50% / 2.50% 4.93
3 25 Bootstrap 89.19 (0.79) 5.15 / 5.66 4.52 (0.09)
 50 91.50 (0.58) 3.85 / 4.65 4.62 (0.06)
 100 92.49 (0.39) 3.19 / 4.32 4.68 (0.05)

Table 3. Simulation results for Model 3.

Lag Sample size Method Coverage (se) Cov. (below /above) Length (se)
h n Theoretical 95% 2.50% / 2.50% 3.79
1 25 Bootstrap 89.45 (0.66) 4.73 / 5.82 3.54 (0.06)
 50 92.44 (0.45) 4.19 / 3.37 3.62 (0.04)
 100 93.77 (0.36) 3.38 / 2.85 3.74 (0.04)
h n Theoretical 95% 2.50% / 2.50% 3.93
3 25 Bootstrap 89.20 (0.65) 4.90 / 5.90 3.58 (0.06)
 50 92.79 (0.39) 3.68 / 3.53 3.75 (0.05)
 100 93.84 (0.34) 3.03 / 3.13 3.88 (0.04)

A FORTRAN ROUTINE FOR SIEVE BOOTSTRAP 244

• Model 3: Xt is a Gaussian process with
autocovariance generating function equal to

∑+∞

−∞=
=

k
k

k zzG γ)(, where .)1|(| 3−+= kkγ

The autoregressive model was
considered by Cao et al. (1997), the moving
average model 2 by Pascual et al. (2001) and the
model 3 by Alonso et al. (2002). Notice that
neither model 2 nor model 3 admit a finite AR
representation. Moreover, model 3 does not have
an ARMA representation.

To evaluate the prediction intervals,
their mean coverage and length are used and the
proportions of observations lying out to the left
and to the right of the interval. These quantities
are estimated as follows:
a) For a combination of model, sample size
and error distribution, simulate a series, and
generate R = 1000 future values Xn+h.
b) For the bootstrap procedure obtain the
(1-α) prediction interval based on B = 1000
bootstrap resamples.
c) The coverage is estimated as

{ } RQXQC r
hn /)2/1()2/(# ** αα −≤≤= + ,

where r
hnX + with r = 1,2,…,R are the R future

values generated in step a).
In steps a) and b) the “theoretical” and

bootstrap interval lengths are obtained using

⎡ ⎤ ⎡ ⎤2/)2/1(αα R
hn

R
hnT XXL +
−

+ −=
and

),2/()2/1(** αα QQLB −−=

respectively. Finally, the steps a) – c) are
repeated 100 times.

The results are presented in Tables 1 –
3, using three sample sizes n = 25, 50 and 100,
nominal coverage 95% and the prediction lag h
= 1 and 3. Essentially, similar results are
obtained in all cases. Sieve bootstrap performs
reasonably well in all considered models since
the mean coverage and length tend to the
nominal values as the sample size grows. Notice
that for models 2 and 3 the sieve bootstrap never
uses the correct model. The running time for
these three experiments (using a Pentium 4,
running at 2.66GHz) was 22.92, 24.40 and 27.82
seconds, respectively.

Conclusion

It has been shown by Alonso et al. (2002) and
(2003) that, for general linear process, if an AR
approximation that grows with the sample size is
used, it can derive a bootstrap for building
prediction intervals that has the two following
properties: first, the procedure is consistent, that
is, it generates as prediction a random variable
that converges in conditional distribution to the
concerning variable; second, Monte Carlo
simulations show that the proposed procedure
provides better coverage results than previous
methods in general cases. This article describes
a Fortran routine that implement this sieve
bootstrap prediction procedure. Additional
simulation experiments confirm the correct
behavior of the proposed procedure in finite
samples.

References

Akaike, H. (1973). Information theory

and an extension of the maximum likelihood
principle, In: 2nd International Symposium on
Information Theory, B.N. Petrov, and F. Csaki,
Eds., Akademiai Kiado, Budapest, 267-281.

Alonso, A. M., Romo, J. & Peña, D.
(2002). Forecasting time series with sieve
bootstrap. Journal of Statistical Planning and
Inference, 100, 1-11.

Alonso, A. M., Romo, J. & Peña, D.
(2003). On sieve bootstrap prediction intervals.
Statistics and Probability Letters, 65, 13-20.

Brockwell, P. J. & Davis, R. A. (1991).
Time Series: Theory and Methods, Springer-
Verlag, New York.

Bühlmann, P. (1997). Sieve bootstrap
for time series, Bernoulli, 3, 123-148.
 Cao, R., Febrero-Bande, M., González-
Manteiga, W., Prada-Sánchez, J. M. & García-
Jurado, I. (1997). Saving computer time in
constructing consistent bootstrap prediction
intervals for autoregressive processes,
Communications in Statistics. Theory and
Methods, 26, 961-978.

Pascual, L., Romo, J. & Ruiz, E. (2001).
Effects of parameter estimation on prediction
densities: a bootstrap approach, International
Journal of Forecasting, 17, 83-103.

ANDRÉS M. ALONSO

245

Stine, R. A. (1987). Estimating
properties of autoregressive forecasts, Journal of
the American Statistical Association, 82, 1072-
1078.

Thombs, L. A. & Schucany, W. R.
(1990). Bootstrap prediction intervals for
autoregression, Journal of the American
Statistical Association, 85, 486-492

Appendix I – Module TimeSeriesRoutines

MODULE TimeSeriesRoutines
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: ZSeries
 INTEGER :: p, d, q, ps, ds, qs, season

CONTAINS

SUBROUTINE AutoCovarianceVector(ACVector,XSeries,MaxLag,Positions)
 IMPLICIT NONE
 REAL (KIND=8), DIMENSION(0:), INTENT(OUT) :: ACVector
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: XSeries
 INTEGER, INTENT(IN) :: MaxLag
 INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL :: Positions
 ! Local variables
 INTEGER :: K, I, J, XSize, NMissings
 REAL (KIND=8) :: RXSize, XMean
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: Weights

 ! First executable statement

 XSize = SIZE(XSeries, 1)
 ALLOCATE(Weights(XSize))
 Weights = 1.0D0

 IF (PRESENT(Positions)) THEN
 Weights(Positions) = 0.0D0

NMissings = SIZE(Positions, 1)
 RXSize = REAL(XSize - NMissings, KIND=8)
 ELSE
 RXSize = REAL(XSize, KIND=8)
 END IF

 XMean = SUM(XSeries*Weights)/RXSize
 DO K = 0, MaxLag
 ACVector(K) = DOT_PRODUCT(&
 (XSeries((K+1):XSize) - XMean)*Weights((K+1):XSize), &
 (XSeries(1:(XSize-K)) - XMean)*Weights(1:(XSize-K)))/RXSize
 END DO

 DEALLOCATE(Weights)
END SUBROUTINE AutoCovarianceVector

SUBROUTINE AutoCovarianceMatrix(ACMatrix,XSeries,MaxLag,MSize)
 IMPLICIT NONE
 REAL (KIND=8), DIMENSION(:,:), INTENT(OUT) :: ACMatrix
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: XSeries
 INTEGER, INTENT(IN) :: MaxLag, MSize
! Local variables
 INTEGER :: K, I, J, XSize
 REAL (KIND=8) :: RXSize, XMean

A FORTRAN ROUTINE FOR SIEVE BOOTSTRAP 246

 REAL (KIND=8), DIMENSION(0:MSize) :: ACVector

 ! First executable statement

 XSize = SIZE(XSeries, 1)
 RXSize = REAL(XSize, KIND=8)
 XMean = SUM(XSeries)/RXSize
 DO K = 0, MaxLag+1
 ACVector(K) = DOT_PRODUCT(XSeries((K+1):XSize) - XMean, &
 XSeries(1:(XSize-K)) - XMean)/RXSize
 END DO
 DO I = 1, MaxLag+1
 DO J = 1, MaxLag+1
 ACMatrix(I,J) = ACVector(ABS(I-J))
 END DO
 END DO
END SUBROUTINE AutoCovarianceMatrix

SUBROUTINE YuleWalker(XSeries,ACMatrix,YWPhi,Residuals)
 USE Msimsl
 USE Imslf90
 IMPLICIT NONE
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: XSeries
 REAL (KIND=8), DIMENSION(:,:), INTENT(IN) :: ACMatrix
 REAL (KIND=8), DIMENSION(:), INTENT(OUT) :: YWPhi
 REAL (KIND=8), DIMENSION(:), INTENT(OUT) :: Residuals
 ! Local variables
 INTEGER :: MSize, XSize, I, J
 REAL (KIND=8), DIMENSION(:,:), ALLOCATABLE :: A
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: B
 INTEGER :: M, N, IERR, IOPT, IA, IB

 ! First executable statement

 MSize = SIZE(ACMatrix, 1)
 XSize = SIZE(XSeries)

 ! Initializing LSLDS variables
 ALLOCATE(A(MSize-1, MSize-1), B(MSize-1))
 A = ACMatrix(1:(MSize-1), 1:(MSize-1))
 B = ACMatrix(2:MSize, 1)
 M = MSize-1

 ! Solving the Yule-Walker equations
 CALL DLSLDS (M, A, M, B, YWPhi)

 ! Calculating the YW residuals
 Residuals = 0
 DO I = (MSize+1), XSize
 Residuals(I) = XSeries(I)
 DO J = 1, MSize-1
 Residuals(I) = Residuals(I) - YWPhi(J)*XSeries(I-J)
 END DO
 END DO

 DEALLOCATE(A, B)
END SUBROUTINE YuleWalker

ANDRÉS M. ALONSO

247

SUBROUTINE AICCSelection(XSeries,ACVector,PMax,PHat)
 IMPLICIT NONE
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: XSeries
 REAL (KIND=8), DIMENSION(0:), INTENT(IN) :: ACVector
 INTEGER, INTENT(IN) :: PMax
 INTEGER, INTENT(OUT) :: PHat
 ! Local variables
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: VarianceVector
 REAL (KIND=8), DIMENSION(:,:), ALLOCATABLE :: PPhi
 REAL (KIND=8) :: VWork, WorkAIC, MinimumAIC, RXSize
 INTEGER :: XSize, WorkP, I, J

 ! First executable statement

 ALLOCATE(VarianceVector(PMax))
 ALLOCATE(PPhi(PMax, PMax))
 XSize = SIZE(XSeries)
 RXSize = REAL(XSize, KIND=8)

 ! Durbin-Levinson Algorithm

 PPhi = 0.0D0
 PPhi(1, 1) = ACVector(1)/ACVector(0)
 VarianceVector(1) = ACVector(0)*(1.0D0 - PPhi(1, 1)**2)

 DO I = 2, PMax
 VWork = 0
 DO J = 1, I-1
 VWork = VWork + PPhi(I-1, J)*ACVector(I-J)
 ENDDO
 PPhi(I, I) = (ACVector(I) - VWork)/VarianceVector(I-1)
 DO J = 1, I-1
 PPhi(I, J) = PPhi(I-1, J) - PPhi(I, I)*PPhi(I-1, I-J)
 ENDDO
 VarianceVector(I) = VarianceVector(I-1)*(1.0D0 - PPhi(I, I)**2)
 ENDDO

 I = 0
 MinimumAIC = RXSize*LOG(ACVector(0))+2.0D0*(REAL(I, KIND=8)+1.0D0)* &
 RXSize/(RXSize - REAL(I+2, KIND=8))
 WorkP = 0
 DO I = 1, PMax
 WorkAIC = RXSize*LOG(VarianceVector(I))+2.0*(REAL(I, KIND=8) &

 +1.0)*RXSize/(RXSize - REAL(I+2, KIND=8))
 IF (WorkAIC < MinimumAIC) THEN
 MinimumAIC = WorkAIC
 WorkP = I
 END IF
 END DO
 PHat = WorkP

 DEALLOCATE(PPhi, VarianceVector)
END SUBROUTINE AICCSelection

END MODULE TimeSeriesRoutines

A FORTRAN ROUTINE FOR SIEVE BOOTSTRAP 248

Appendix II – Routine FESieves

SUBROUTINE FESieves(EDF, XSeries, PHat)
 USE Msimsl
 USE Imslf90
 USE TimeSeries
 IMPLICIT NONE
 REAL (KIND=8), DIMENSION (:,:), INTENT(OUT) :: EDF
 REAL (KIND=8), DIMENSION (:), INTENT(IN) :: XSeries
 INTEGER, INTENT(IN) :: PHat
 ! Local variables
 INTEGER :: XSize, MaxLag, B
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: WSeries
 REAL (KIND=8), DIMENSION(:,:), ALLOCATABLE :: ACMatrix
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: Residuals
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: YWPhi
 REAL (KIND=8) :: XMean

 ! First executable statement

 XSize = SIZE(XSeries, 1)
 MaxLag = SIZE(EDF, 1)
 B = SIZE(EDF, 2)
 ALLOCATE(WSeries(XSize), Residuals(XSize))
 ALLOCATE(ACMatrix(PHat+1, PHat+1), YWPhi(PHat))
 XMean = SUM(XSeries)/REAL(XSize, KIND=8)
 WSeries = XSeries – Xmean

 ! Steps 2 – 3
 CALL AutoCovarianceMatrix(ACMatrix(1:PHat+1, 1:PHat+1), WSeries, &
 PHat, PHat+1)
 CALL YuleWalker(WSeries, ACMatrix(1:PHat+1, 1:PHat+1), YWPhi, &
 Residuals)

 ! Steps 4 – 8
 CALL ESievesBootstrap(EDF,XSeries,YWPhi, Residuals, PHat, MaxLag, B)

 DEALLOCATE(ACMatrix, YWPhi, WSeries, Residuals)

CONTAINS

SUBROUTINE ESievesBootstrap(EDF,XSeries,YWPhi,Residuals,PHat,MaxLag,B)
 USE Msimsl
 USE Imslf90
 USE TimeSeries
 IMPLICIT NONE
 REAL (KIND=8), DIMENSION(:,:), INTENT(OUT) :: EDF
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: XSeries
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: YWPhi
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: Residuals
 INTEGER, INTENT(IN) :: PHat, MaxLag, B
 ! Local variables
 INTEGER :: XSize, I, J, Ip, RandomIndex, NOUT, ISEED
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: WResiduals, RResiduals
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: WSeries, WYWPhi
 REAL (KIND=8), DIMENSION(:,:), ALLOCATABLE :: WACMatrix

ANDRÉS M. ALONSO

249

 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: YWResiduals
 REAL (KIND=8) :: XMean

 ! First executable statement

 XSize = SIZE(XSeries, 1)

 ALLOCATE(WSeries(XSize+100+MaxLag))
 XMean = SUM(XSeries)/REAL(XSize, KIND=8)
 WSeries(1:XSize) = XSeries - XMean

 ALLOCATE(WResiduals(XSize - PHat))
 WResiduals = Residuals(PHat+1:XSize)
 WResiduals = WResiduals - SUM(WResiduals)/REAL(XSize - PHat, KIND=8)

 ALLOCATE(RResiduals(XSize+100+MaxLag), WYWPhi(PHat), &

WACMatrix(PHat+1, PHat+1), YWResiduals(XSize))

 CALL UMACH (2, NOUT)
 CALL RNGET (ISEED)
 CALL RNSET (ISEED)

 DO J = 1, B
 ! Steps 4 – 5
 DO I = 1, XSize+100+MaxLag
 CALL RNUND(1, XSize - PHat, RandomIndex)
 RResiduals(I) = WResiduals(RandomIndex)
 END DO

 ! Step 6
 WSeries = RResiduals
 DO I = PHat+1, XSize+100
 DO Ip = 1, PHat
 WSeries(I) = WSeries(I) + YWPhi(Ip)*WSeries(I-Ip)
 END DO
 END DO

 ! Step 7
 CALL AutoCovarianceMatrix(WACMatrix(1:PHat+1, 1:PHat+1), &
 WSeries(101:XSize+100), PHat, PHat+1)
 CALL YuleWalker(WSeries(101:XSize + 100), &

WACMatrix(1:PHat+1, 1:PHat+1), WYWPhi, YWResiduals)

 ! Prediction. Step 8
 WSeries(101:XSize+100) = XSeries - XMean
 DO I = XSize+101, XSize+100+MaxLag
 WSeries(I) = RResiduals(I)
 DO Ip = 1, PHat
 WSeries(I) = WSeries(I) + WYWPhi(Ip)*WSeries(I-Ip)
 END DO
 END DO
 EDF(1:MaxLag, J) = WSeries(XSize+101:XSize+100+MaxLag) + XMean
 END DO
 DEALLOCATE(WSeries, Residuals, RResiduals, WYWPhi, YWResiduals, &
 WACMatrix)
END SUBROUTINE ESievesBootstrap
END SUBROUTINE FESieves

	Journal of Modern Applied Statistical Methods
	5-1-2004

	JMASM10: A Fortran Routine For Sieve Bootstrap Prediction Intervals
	Andrés M. Alonso
	Recommended Citation

	Microsoft Word - wilcox_keselman_invited.doc

