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CHAPTER 1 INTRODUCTION

1.1 Motivation

Consensus modeling is an important topic which deals with assembling a committee of

experts for a given problem and then obtaining a consensus among their votes to arrive at

the final prediction. This has been applied to predictive analytics problems such as classi-

fication, ensemble modeling and active learning where a committee of models are created

to cast their individual votes on a test case. Multiple Classifier Fusion is an application of

consensus modeling where multiple classifiers are integrated within a single framework [1].

The effectiveness of consensus modeling in such scenarios like classification and active learn-

ing relies on the mechanism used to build the committee of models. Query by Committee is

also a well studied topic in the context of active learning, where consensus modeling is used

to determine the instance whose label must be queried [2, 3]. Consensus modeling can be

extended to the field of regularization in the context of regression which is described to be

the consensus regularization problem in this thesis.

Consensus regularization is the problem of identifying an optimal regularizer for a given

regression problem among a set of regularized models by obtaining a consensus among all

these models. The consensus among all the models is obtained using a pre-defined criterion,

which assesses each of the candidate regularizers separately and decides the best candidate

regularizer for prediction. Solving such a problem is non-trivial, as it is not easy to integrate

multiple regularizers within a single framework. This is because the regularizers differ in

their degree of complexity and how they interpret the inherent data structure which makes

this problem of integration highly cumbersome. Optimization methods such as proximal

algorithms [4] also cannot be universally applied to solve multiple regularization problems, as

the cost of obtaining the proximal operator associated with each regularizer may significantly

differ [5]. Finally, ensuring diversity of regularizers within a multiple regularizer framework is

not always guaranteed. This is the reason why the problem of unifying multiple regularizers

has not received much attention in the data mining community.
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To efficiently solve this problem, in this thesis, we propose a two-step algorithm. The

first step generates a committee of regularization models. Each model in this committee

differs from the others, but the solution for each one of them can be expressed using a

unique generalized thresholding operator [6–8]. The advantage of our approach is that this

generalized thresholding operator can be computed efficiently for each individual model. In

addition, to promote robustness in the model to capture sparsity more efficiently, we use

non-convex regularizers within our approach. Non-convex regularizers have certain unique

advantages of unbiased feature selection and consistent results which make them a better

choice compared to the prominent sparsity promoting convex regularizers such as the Lasso.

We choose a non-convex regularizer called the minimax concave plus (MC+) penalty for the

model proposed in this thesis which is explained in Chapter 2.

The second stage of our approach involves using a consensus criterion among all these

candidate regularizers to obtain the final model for prediction. A major advantage of our

approach is that an expert can design an arbitrary consensus criterion and integrate it with

this approach to obtain an optimal model for prediction. This is particularly important

while building prediction models on real-world data where an expert aims at optimizing the

model performance for domain-specific metrics.

We conduct exhaustive empirical evaluation of this Consensus RegularIzed Selection

based Prediction framework (CRISP) algorithm on electronic health records (EHRs) col-

lected from a large hospital consisting of 8,000 patient records and various synthetic datasets.

Our extensive set of experiments indicate that CRISP outperforms several state-of-the-art

methods such as additive models and other competing non-convex regularized linear regres-

sion methods. In addition, we establish the clinical relevance of CRISP on EHR datasets

by comparing it with four widely used clinical models which affirms the importance of this

approach.
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1.2 Related Literature

In this section, we review the existing works related to the topics of non-convex regularized

linear regression, additive and interactions based methods. We briefly mention how the

contributions in this thesis are distinctly different from these algorithms that are available

in the literature.

1.2.1 Non-convex Regularized Linear Regression Models

Usually, the problem of recovering a sparse signal representation according to a signal

dictionary can be formalized as a penalized least-squares problem in which sparsity is usually

induced by a convex penalty on the coefficients, including the `1 norm, `2 norm and the elastic

net penalty functions. Based on some empirical studies, these approaches perform well in

most scenarios, however, it has also been observed that they are not perfect in capturing

sparsity. In contrast, methods with non-convex penalties can recover sparsity more efficiently

and are being actively pursued by researchers recently [9–11]. Table 1.1 and Figure 1.1 give

an overview of some well known non-convex penalties commonly used in the literature. MC+

penalty is the non-convex penalty used in our work and will be discussed in detail in Chapter

3.

Table 1.1: Commonly used Non-Convex penalties.

Name P (βi)

SCAD λ
∫ |βi|
0

min(1, [γλ−x]+
(γ−1)λ )dx (γ > 2)

LSP λlog(1 + |βi|/γ) (γ > 0)
Capped-`1 λmin(|βi|, γ) (γ > 0)

Smoothly Clipped Absolute Deviation (SCAD), proposed by Fan and Li [12], corresponds

to a quadratic spline function with knots at λ and γλ. This penalty function leaves large

values of βi not excessively penalized and makes the solution continuous. Log-Sum Penalty

(LSP) has slope at the origin that grows roughly as 1/γ when γ → 0, which allows a relatively

large penalty to be placed on small nonzero coefficients and more strongly encourages them

to be set to zero [13]. In other words, LSP has the potential to guarantee more sparsity
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than the `1 norm. Capped-`1 penalty, which is a simpler but less smooth version of the

SCAD regularization, is a good approximation to `0 as γ → 0 [14]. This means that its

regularization condition is equivalent to `0 regularization up to a rescaling of λ. Capped-`1

penalty treats βi equally, if |βi| is bigger than γ, which makes it more robust to outliers than

the `1 norm.

Figure 1.1: Plots of commonly used Non-Convex penalties when λ = 1 and γ = 3.

In order to efficiently solve methods with these non-convex penalties efficiently, optimiza-

tion methods such as Difference of Convex Functions (DC) [15] programming, Alternating

Direction Method of Multipliers (ADMM) [16] and proximal algorithms [4] are popular

choices.

1.2.2 Additive Models

Generalized Additive Models (GAM), which usually model the dependent variable y as

a sum of univariate models of each feature xi, have the form of

g(E[y]) =
∑

fi(xi) = F (x) (1.1)

where g(·) is the link function. Individual terms in GAM can be represented by a variety

of functions, including splines, regression trees, or tree ensembles [17]. We want to find the
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best model F (x) that minimizes the following objective function:

minFE[L(y, F (x))] (1.2)

where L(·, ·) is a non-negative convex loss function. There are two popular methods of fitting

GAM: Backfitting and gradient boosting [17]. GAM have the ability to capture non-linear

relationship between individual features and the response, however, it does not perform as

well as the full complexity models since it does not model any interactions between features.

To overcome the disadvantage of GAM, generalized additive models plus interactions

(GA2M), adding selected terms of interacting pairs of features to GAM, is proposed as

follows:

g(E[y]) =
∑

fi(xi) +
∑

fij(xi, xj) (1.3)

In other words, GA2M consist of both univariate terms and a small number of pairwise

interaction terms. The interaction terms set can be determined by a greedy forward selection

strategy [18] for low-dimensional data and FAST interaction detection can be used for large

high-dimensional data [17, 19, 20].

1.2.3 Interactions based Models

Additive models which only consider the main effects of the features are ineffective in

many situations when predicting an outcome of interest [21]. Considering the application

in medical diagnosis, the co-occurrence of two symptoms may be more helpful for when

two symptoms are considered together, it will be highly predictive of the disease than the

situation in which only one symptom presents. In this case, the interaction between these

two symptom variables are positive. On the other hand, if both of the variables provide

redundant information about the disease to the doctor, there will be a negative interaction

between them. In this situation, knowing both symptoms does not provide more information

about the status of the disease than knowing only one of them. In such application, it is

desirable to identify the main factors which lead to the disease.

Regression models with interactions, which consider the effect of different features on the
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response variable except for the main effects, are more effective than the additive models.

It should be noted that interactions between two variables are different from the correlation

between them. Correlation [22] between two variables means that the values of one variable

is related in some way to the values of the other. It indicates that the values of one variable

will generally co-occur with some certain values of the other. While interaction [23] between

two variables means that the effect of one variable on the response variable differs at different

values of the other. Whether two variables interact on the response variable says nothing

about whether they are correlated, and vice versa. However, it is challenging to fit regression

models with interactions when one has even a moderate number, m, of measured features,

since there are
(
m
k

)
interactions of order k. Hiernet method considers the pairwise (k = 2)

intersection in the model.

The regression model in hiernet method [21], with pairwise interactions between features,

has the form of

Y = β0 +
∑
j

βjXj +
1

2

∑
j 6=k

ΘjkXjXk + ε (1.4)

where ε ∼ N(0, σ2), β ∈ Rm, and Θ = [Θjk] ∈ Rm×m is the interaction coefficients matrix. In

these models, the linear component represents the main effect terms and the quadratic part

corresponds to the interaction terms. In general, not all of the main effects and interactions

are of interest, thus it is critical to select the variables of high significance. In statistics, a

hierarchical structure between the main effects and interaction effects has been shown to be

very effective in constraining the search space and identifying important individual features

and interactions. Specifically, the hierarchical constraint requires that an interaction term

is selected in the model only if the main effects are included.

The goal of hiernet method is to estimate β and Θ, which satisfies Θ = ΘT and Θjj = 0.

The factor of one half in front of the interaction part is to deal with the symmetric matrix

Θ of interactions. Strong theoretical properties have been established for such hierarchical

models [21]. In Statistics, there are two types of restrictions on the interaction terms: strong

hierarchy (Θ̂jk 6= 0⇒ β̂j 6= 0 and β̂k 6= 0) and weak hierarchy (Θ̂jk 6= 0⇒ β̂j 6= 0 or β̂k 6= 0).
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We refer to these algorithms which model strong and weak interactions, in this thesis, as

hiernet-strong and hiernet-weak, respectively.

In the hiernet model, the number of main effect are m and the number of interaction

variables are m(m− 1)/2. The goal is to select a subset, which is predictive of the outcome,

from the main effect and interaction terms and to estimate the values for the nonzero param-

eters of the model. The convex optimization problem using lasso to estimate the parameters

will be as follows.

minβ,φ
1

2
‖ y − β01− X̃φ ‖2 +λ ‖ φ ‖1 (1.5)

where 1 ∈ Rn is the vector of ones, φT = [βT , vec(Θ)T ]. Hiernet method uses a lasso-like

procedure which adds a set of convex constraints to the lasso and produces sparse estimates

of β and Θ while satisfying the strong and weak hierarchy constraints [21].

In contrast to these methods, our CRISP approach uses a non-convex penalty generating

multiple candidate models in the process, and selects an optimal model using a consensus

criterion among these candidate models for the final prediction.

1.3 Contributions

In order to build predictive models with lower variance and better generalization, we build

a committee of regularized linear regression models by considering a non-convex regulerizer

in the model and integrates them with a consensus criterion to select the best model for final

prediction. Thus the main contributions of this thesis can be summarized as follows.

• Propose a Consensus RegularIzed Selection based Prediction framework (CRISP) which

builds a committee of non-convex regularized linear regression candidate models and

integrates them with a consensus criterion to obtain the optimal model for prediction.

• Develop an efficient cyclic coordinate descent based solution for the optimization prob-

lem being solved while learning each candidate model in CRISP. We also provide the

proof of convergence.

• Evaluate CRISP using state-of-the-art additive, interactions, and non-convex regu-
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larized linear regression models using metrics such as AUC, MSE and R2. We also

conduct experiments to assess the performance of CRISP on high-dimensional syn-

thetic datasets. In addition, we evaluate the performance of the CRISP algorithm on

Electronic Health Records (EHR) datasets with respect to four widely used clinical

models to establish its clinical relevance.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 1 introduces the motivation of the thesis

and provides a brief review of the related work on additive, hierarchical and non-convex

regularized regression models. In Chapter 2, first we provide the notations that are necessary

for understanding the proposed CRISP model along with a brief overview of regularization

theory. In addition, we present the details of the CRISP model including the minimax

concave plus (MC+) penalty, the generalized thresholding operator and the corresponding

cyclic coordinate descent algorithm employed to optimize the CRISP method. In Chapter 3,

we evaluate the performance of CRISP using various additive, interactions and non-convex

regularized linear regression methods on both EHR dataset and synthetic datasets. Finally,

we conclude our discussion and provide directions for future work in Chapter 4.
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CHAPTER 2 PROPOSED APPROACH

In this chapter we introduce our proposed consensus regularized selection based prediction

method. As discussed in previous chapter, the problem of obtaining a consensus among such

diverse regularizers is extremely important in order to determine the optimal regularizer

for the model. Therefore, the main objective of this chapter is to build a committee of

regularized linear regression models by considering a non-convex regulerizer in the model

and integrates them with a consensus criterion to select the best model for final prediction.

Before we discuss the algorithm in detail, the preliminaries of the proposed method will be

briefly presented.

2.1 Preliminaries

This section introduces the preliminaries required to comprehend the proposed approach.

First, the notations used in our work are presented in Table 2.1. We then review the concepts

associated with regularized linear regression models followed by introducing the thresholding

operators used in our CRISP algorithm.

We now consider the basic linear regression model

Table 2.1: Notations used in this thesis.

Name Description
n number of instances.
m number of features.
X Rn×m feature vector matrix.
Y Rn response variable.
β Rm regression coefficient vector.
λ scalar regularization parameter.
Λ a vector of regularization parameters.
γ scalar non-convexity parameter.
Γ a vector of non-convexity parameters.
L length of regularization vector Λ.
K length of non-convexity vector Γ.
η consensus matrix ∈ RL×K entries.

P (|β|, λ, γ) a family of penalty functions.

S(β̃, λ) soft-thresholding operator.

H(β̃, λ) hard-thresholding operator.
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Y = f(X) = Xβ + ε. (2.1)

which aims at estimating the relationship between the features X = (x1, x2, ..., xn)T and

the corresponding response variable Y = (y1, y2, ..., yn)T , where xi ∈ Rm and yi ∈ R for

i = 1, . . . , n. In high-dimensional data, m is much greater than n. This motivates the use of

a relatively small number of predictors to accurately predict the outcome. Fitting regression

models for all subsets of predictors and then selecting the best one is challenging when there

are even a moderate number of predictors, since the total number of all the possible subsets

is
∑m

k=1

(
m
k

)
. Most of the existing methods aim at learning the parameters of the model and

selecting the variables simultaneously by solving the following minimization problem.

β̂ = arg min
β∈Rm

1

2

n∑
i=1

(yi − f(xi))
2 + λP (β) (2.2)

where λ is the penalty coefficient which controls the degree of regularization and P (β) is a

penalty function.

A number of variable selection methods with convex penalty functions and the corre-

sponding optimization methods have been proposed in the literature [24–26]. A popular

choice is to use the family of `p-norm penalty functions. Generally, if we use the `p penalty

with p > 1, the solution is not sparse. When p < 1 the solution is sparse, but the cor-

responding problem is non-convex. Lasso [26, 27] with the `1 penalty function is convex

and non-smooth which produces models with good prediction accuracy when the underlying

model is reasonably sparse. The lasso penalty is often considered as the convex surrogate

for the best-subset selection with the `0 penalty, ‖ β ‖0=
∑m

i=1 I(|βi| > 0), which penalizes

the number of non-zero coefficients in the model, where I represents the indicator function.

However, there are two disadvantages for the lasso model. One is that some experimen-

tal results show that the `1 penalty tends to generate biased estimates for large coefficients,

which may prevent its consistent variable selection. In addition, lasso is effective at giving

sparse solutions but when variables are correlated, it excludes many correlated variables

once a strong variable is included and fully fitted in the model. Also, when the regularity
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conditions are violated, the lasso can be sub-optimal in variable selection, which means it

can fail as a variable selector. In order to include the full effect of a variable in the model,

we have to relax the penalty to allow the other redundant but possibly correlated features.

Fan and Li [12] suggested some desirable properties of the penalization function, such as

sparsity, continuity and unbiasedness of the estimated parameters. In order to satisfy all the

good properties of the penalty function, some non-convex penalty functions, which bridge

the gap between `1 and `0 penalty, have been considered.

β̂ = arg min
β∈Rm

1

2

n∑
i=1

(yi − f(xi))
2 + λP (β; γ) (2.3)

where P (β; γ) defines a family of penalty functions concave in |β|, where |β| represents a

vector consisting of the absolute values of the regression coefficient vector β and γ is a

scalar user given non-convexity parameter. In the optimization problem shown in Eq. (2.3),

both λ and γ are user parameters and they control the degree of the regularization and

non-convexity, respectively. In other words, for a fixed λ, there will be a family of penalty

functions, each of which corresponds to an optimization problem. This means that the

penalty function P (β; γ) can be updated to be P (β;λ, γ) if we also consider λ as a parameter

of the model. In addition, due to the fact that the penalty function is separable for the

parameters β = (β1, ..., βm)T , the optimization problem in Eq. (2.3) can be updated as

follows after adding λ in the penalty function.

β̂ = arg min
β∈Rm

1

2

n∑
i=1

(yi − f(xi))
2 +

m∑
i=1

P (|βi|;λ; γ) (2.4)

In this optimization problem described in Eq. (2.4), for a fixed λ, the value of the pa-

rameter γ varies in the range of [1+,∞] where 1+ represents values greater than 1. Each

variation of γ corresponds to a separate problem. A family of threshold operators called the

generalized thresholding operator [6–8], with soft-thresholding (ST) and hard-thresholding

(HT) as its two extremes, will be obtained by solving all the optimization problems using

the cyclic-coordinate descent method [28].
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Also, the regularization parameter λ can vary, which generates different families of thresh-

old operators. Each threshold operator corresponds to a solution of an optimization model

with a specific λ and γ values. This means a consensus matrix η will be obtained based on

the family of threshold operators obtained by varying λ and γ. This matrix captures the

information across all the different regularization models in the committee. Subsequently,

we use a consensus criterion to select the best set of model parameters from this matrix.

We now present the optimization involved in the CRISP algorithm along with its proof of

convergence and a discussion of the algorithm complexity in the next section.

2.2 Consensus Regularized Selection based Prediction Method

In this section, we introduce the properties of the minimax concave plus (MC+) penalty

function used in CRISP first. We then propose a consensus regularized selection based pre-

diction method which generates a committee of regularized models and among them selects

the best model. The selection among these different models is done using a decision rule

which is different from the standard majority voting based methods employed in the classifi-

cation literature. Majority voting is a binary decision rule and it selects the candidate which

obtains the highest number of votes. In other words, majority voting takes all the different

choices into consideration by counting the occurrence when making decisions. However, in

our method, we conduct an explicit search for the optimal model parameters (λ∗, γ∗) among

all the entries in the consensus matrix η which effectively captures the information across all

the different models.

The non-convex penalty used in our work is the minimax concave plus (MC+) penalty

which is a fast, continuous, nearly unbiased and accurate method for penalized variable

selection in linear regression [10]. The minimax concave plus (MC+) penalty is defined by

P (β;λ; γ) = λ

∫ |β|
0

(1− x

γλ
)+dx (2.5)

= λ(|β| − β2

2λγ
)I(|β| < λγ) +

λ2γ

2
I(|β| ≥ λγ)

For each value of λ > 0, there will be a continuum of penalties and threshold operators when
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γ varies from ∞ to 1. (·)+ represents the positive component. The threshold operators for

the MC+ penalty will form a continuum between the soft- and hard-thresholding functions,

which generates a natural and smooth transition across the set of solutions. In addition,

we can also vary the value of λ, which will determine a specific model along with the non-

convexity parameter γ. Thus, using the MC+ penalty we will develop a committee of

prediction models to be used in our CRISP model.

By using the MC+ penalty, we can consider different combinations of the regularization

parameter (λ) and the non-convexity parameter (γ), which will be helpful to avoid obtaining

sub-optimal solutions. In other words, the MC+ penalty ensures a family of models for a

fixed λ by interpolating between the `0 norm and `1 norm, which provides more candidates for

approximation of the `0 norm. In addition, it also generates a series of thresholding operators

with soft-thresholding operator and hard-thresholding operator as its two extremes. Thus,

we can conclude that the MC+ penalty has the necessary and meaningful properties for

capturing sparsity more efficiently.

Non-convex penalties such as the MC+ penalty perform better feature selection. When

we use the MC+ penalty in the objective function in Eq. (2.6), the univariate penalized least

squares objective function will be strictly convex, which ensures the descent property with

coordinate descent method and the solution converges to a stationary point [10, 29]. We will

now discuss our CRISP algorithm and provide the proof of convergence as well.

The objective function in Eq. (2.4) with the MC+ penalty is separable, which enables us

to optimize the univariate case which is one-dimensional with the form

Q(1)(β) =
1

2
(β − β̃)2 + λ

∫ |β|
0

(1− x

γλ
)+dx (2.6)

using the standard coordinate-decent approach. If β > 0, the derivative of Q(1)(β) with

respect to the β can be calculated as

dQ(1)(β)

dβ
= β − β̃ + λ(1− β

γλ
)+ (2.7)
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A similar expression can be calculated for the case β < 0. Thus, the threshold operator for

the MC+ penalty will be given by

Sγ(β̃, λ) = arg min
β
Q(1)(β) (2.8)

=


0 |β̃| ≤ λ

sgn(β̃)( |β̃|−λ
1− 1

γ

) λ < |β̃| ≤ λγ

β̃ |β̃| > λγ

For a fixed λ, as γ varies, this generates a family of threshold operators Sγ(·, λ) : R→ R, with

the soft and hard threshold operators as its two extremes. The soft-thresholding operator

when γ →∞ is given by

Sγ(β̃, λ)→ S(β̃, λ) (2.9)

= arg min
β
{1

2
(β − β̃)2 + λ|β|}

= sgn(β̃)(|β̃| − λ)+

and the hard-thresholding operator when γ → 1+ for the one-dimensional optimization

problem is in the form of

Sγ(β̃, λ)→ H(β̃, λ) (2.10)

= arg min
β
{1

2
(β − β̃)2 + λI(|β| > 0)}

= β̃I(|β̃| > λ)

Eq. (2.10) indicates that the hard-thresholding operator, which is conventionally used for the

non-convex `0 penalty problem, can also be obtained as the limit of a sequence of Sγ(β̃, λ)

as γ → 1+. Since soft and hard thresholding functions are often used in the optimization

problems with `1 and `0 penalty, we assume γ`1 = ∞ and γ`0 = 1+ for `1 and `0 norms,

respectively.

Each coefficient in Eq. (2.6) can be estimated by the generalized thresholding operator in
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Eq. (2.8) for the univariate problem. In each iteration, all of the m coefficients are repeatedly

updated until convergence. In this case, all the solutions when varying λ and γ will form a

two-dimensional solution surface whose coordinates can be represented as the matrix η. The

goal of our work is to find optimal parameters (λ∗, γ∗) corresponding to the best solution.

In order to find the best solution, our method will evaluate each solution. We now present

the consensus criterion used in our CRISP algorithm.

Consensus criterion: Squared error (se) of an estimator measures the square of the

errors or deviations and assesses the quality of an estimator. It is used for assessing the

performance of an estimator or a predictor. Generally, for the ith training instance (xi, yi)

and a linear fit f̂λ`,γk(xi) = xiβ̂λ`,γk , when the values of λ` and γk are fixed, the squared error

of the predictor will be given below.

ηλ`,γk = se(f̂λ`,γk) =
n∑
i=1

(f̂λ`,γk(xi)− yi)2 (2.11)

Using this formulation of the consensus criterion, we can evaluate the performance of each

model for different pairs of (λ`, γk). We now present the CRISP algorithm which generates

a family of solutions β̂λl,γk to Eq. (2.4) and selects the best one using this criterion based

on the squared error of deviances. We assume that the matrix X is standardized with each

column with zero mean and unit `2 norm. When γ = ∞, the exact solution path for Q(β)

using coordinate-descent method will be used as a warm start for the minimization of Q(β)

with a non-convex penalty function.

The value of γ is decreasing until we have the solution path across a grid of values for

γ [29]. The details of our approach are given in Algorithm 1. The univariate sub-problem in

Eq. (2.6) will be optimized using coordinate descent method [28], which is a widely used non-

derivative optimization algorithm. In each iteration of the coordinate descent method for

the objective function, arg minβ Q(β1, β2, . . . , βm), it performs search along one coordinate

direction at the current point and cyclically iterates through the other directions. In other

words, in each iteration, the algorithm solves the optimization problem as shown in Eq.(2.12)



16

for each variable βi(i = 1, 2, ...,m) of the problem.

βk+1
i = arg min

u∈R
Q(βk+1

1 , ..., βk+1
i−1 , u, β

k
i+1, ..., β

k
m) (2.12)

That is, in each iteration of the optimization problem, each variable βi(i = 1, 2, ...,m) will be

updated until convergence. Coordinate descent method minimizes a multivariable objective

function by solving a series of univariate optimization problems in a loop.

2.3 Optimization

In this section, we discuss the optimization involved in the CRISP algorithm and also

provide a detailed algorithmic description. We begin by providing the proof of convergence.

The convergence of CRISP algorithm cannot directly follow the convergence property of

coordinate-descent for functions with the form of the sum of a smooth loss function and a

separable non-smooth convex penalty function due to its non-convex formulation. The coor-

dinate decent method updates the variables using Eq. (2.12) until convergence is observed.

CRISP algorithm always converges to a minimum of the objective function under certain

conditions which will be discussed below.

Consider the criterion in Eq. (2.4), where the data (X, Y ) lies on a compact set and

no column of the features in X is a multiple of the unit vector. Also, suppose that the

penalty function P (β;λ; γ) is symmetric around 0, which means that it satisfies P (β;λ; γ) =

P (−β;λ; γ); the first derivative of P (β) with respect to β, P
′
(|β|), is non-negative, uniformly

bounded and the second derivative P
′′
(|β|) satisfies infβP

′′
(|β|) > −1; the sequence gener-

ated {βk}k is bounded; for all the subsequences {βnk}k of {βk}k, the successive differences,

i.e. (βnk − βnk−1) converges to 0.

Theorem 1 The univariate problem in Eq. (2.6) is strictly convex and the sequence of

coordinate-updates {βk}k converge to a minimum solution of Eq. (2.4).

Proof. It should be noted that the MC+ penalty used in our work can meet all the required

properties mentioned above. In addition, the assumption on data (X, Y ) is used to ensure

that the variables can be standardized and the non-degeneracy assumption on X means that
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all the columns are identically non-zero.

For a fixed i and (β1, · · · , βi−1, u, βi+1, · · · , βm), we denote Q(u) as

Q(u) = Qi
(β1,··· ,βi−1,u,βi+1,··· ,βm)

= l(β1, · · · , βi−1, u, βi+1, · · · , βm) + P (|u|)
(2.13)

where l(·) is the loss function. Then, based on the Taylor’s series expansions on f and

penalty function P (|u|), the sub-gradient at u will be

∂Q(u) = Q(u+ δ)−Q(u) (2.14)

= Oil(β1, · · · , βi−1, u, βi+1, · · · , βm) + P
′
(|u|)sgn(u)

= l(β1, · · · , βi−1, u+ δ, βi+1, · · · , βm)

− l(β1, · · · , βi−1, u, βi+1, · · · , βm)

+ P (|u+ δ|)− P (|u|)

= Oil(β1, · · · , βi−1, u, βi+1, · · · , βm)δ +
1

2
δ2O2

i l

+ P
′
(|u|)(|u+ δ| − (|u|)) +

1

2
P
′′
(|u∗|)(|u+ δ| − |u|)2

where δ ∈ R and O2
i l = 1 since it is the second derivative of the function f with respect

to the ith coordinate. |u∗| is some number between |u + δ| and |u|. Assume that u0 is the

optimal value for F (u), based on Eq. (2.14), we can have

Q(u0 + δ)−Q(u0) (2.15)

≥ 1

2
δ2O2

i l +
1

2
P
′′
(|u∗|)(|u0 + δ| − |u0|)2

≥


1
2
δ2O2

i l + 1
2
P
′′
(|u∗|)δ2 if P

′′
(|u∗|) ≤ 0

1
2
δ2O2

i l + 0 if P
′′
(|u∗|) ≥ 0

≥ 1

2
δ2(O2

i l +min{P ′′(|u∗|), 0})
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Since for the MC+ penalty, infβP
′′
(|β|) = − 1

γ
with γ > 1, O2

i l + infxP
′′
(|x|) > 0. Then

there exists a positive value θ = 1
2
δ2(O2

i l +min{infxP
′′
(|x|), 0}) such that

Q(u0 + δ)−Q(u0) ≥ θδ2 (2.16)

Based on the analysis above, the boundedness of the sequence βt for t > 1 will be

Q(βt−1i )−Q(βt−1i+1) ≥ θ(βt−1i+1 − βti+1)
2 (2.17)

= θ ‖ βt−1i − βt−1i+1 ‖22

where βt−1i = (βt1, · · · , βti , βt−1i+1 , · · · , βt−1m ). Using this boundedness for each coordinate, for

every t, we will have

Q(βt+1)−Q(βt) ≥ θ ‖ (βt+1 − βt) ‖22 (2.18)

From Eq. (2.18), we can see that the decreasing sequence Q(βt) converges. The sequence

βk cannot cycle without convergence and it must have a unique limit point. This completes

the proof of convergence for βk.

We now provide a stepwise description of the CRISP algorithm. Algorithm 1 outlines

the CRISP algorithm for selecting the best estimates among a family of solutions β̂λ`,γk to

Eq. (2.4). A grid of increasing Λ = {λ1, λ2, · · · , λL, λL+1} and Γ = {γ1, γ2, · · · , γK} values

are used for traversing different combinations of λ and γ and generating different candidate

models in the ensemble. Here, the additional λL+1 values is used for the warm start of CRISP

algorithm by Lasso.

In lines 2-3, we initialize the estimator using the solution from Lasso for the minimization

of Q(β) at a smaller value of γ corresponding to a more non-convex penalty. In lines 4-8,

each element of the coefficient vector is updated using the coordinate-wise update as shown

in Eq. (2.8) until the solutions converge to the solution for Eq. (2.4) when λ = λ` and

γ = γk. In line 10, we evaluate each model by obtaining the value of the squared error se
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and populate a L×K consensus matrix η, in which ηλ`,γk = se(f̂λ`,γk) for ` = 1, 2, · · · , L and

k = 1, 2, · · · , K. Here L and K represent the number of elements in Λ and Γ, respectively.

In Line 13, according to the value of the se, the best model parameters which has the

minimum se value among the LK entries in η will be selected as the final model parameters.

Subsequently, the model β∗ corresponding to these paramaters (λ∗, γ∗) will be used for

prediction. It should be noted that the model selection in CRISP algorithm is done based

on the training data.

Algorithm 1: CRISP Algorithm

Input: Predictor matrix (X); response variable (Y ); regularization parameter vector
(Λ); non-convexity parameter vector (Γ), length of Λ(L), length of Γ(K).

Output: Optimal model parameters (λ∗, γ∗) and regression coefficient vector (β∗).

1 for ` = L, · · · , 2, 1 do

2 Use Lasso solution β̂λ`+1,γK as warm start;

3 Initialize β̃ ← β̂λ`+1,γK ;
4 for k = K, · · · , 2, 1 do
5 repeat
6 for i = 1, 2, · · · ,m do

7 β̃i ← Sγk(β̃, λ`) using Eq. (2.12);
8 end

9 until β̃ converges to β̂λ`,γk ;

10 Estimate ηλ`,γk using Eq. (2.11) for β̂λ`,γk ;

11 end

12 end
13 (λ∗, γ∗)← arg minλ`,γk∈R η ;
14 Select final model β∗ corresponding to (λ∗, γ∗) ;

In Figure 2.1, we provide an illustration of our CRISP algorithm applied on Electronic

Health Records (EHRs) to predict the readmission risk of patients [30, 31]. The algorithm

initially learns a soft-thresholding based solution (Lasso) to begin the process of creating

an ensemble of non-convex models by varying the non-convexity parameter γ and the reg-

ularization parameter λ to generate a two-dimensional surface of solutions. As γ is varied,

we obtain a unique non-convex model. These models are then integrated using a consensus

criterion which determines the best pair of regularization (λ) and non-convexity (γ) param-
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Figure 2.1: Illustration of CRISP Algorithm applied on EHRs.

eters. The consensus criterion is a user-defined criterion and it helps to optimize the search

space among different models to choose the best model for prediction. Once the final set of

parameters are obtained the corresponding model is chosen as the final model for prediction.

2.4 Complexity Analysis

CRISP uses a cyclic coordinate descent based method to generate a committee of regu-

larized models. The selection procedure using the squared error criterion for different (λ`, γk)

values takes linear time in general, as we have to find the minimum entry among a set of LK

entries in the consensus matrix η. Filling up each entry of the matrix η constitutes O(m)

time. When (λ∗, γ∗) are selected, these model parameters are used for the final prediction.

Hence, the overall time complexity of the CRISP algorithm is O(nm).
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CHAPTER 3 EXPERIMENTAL RESULTS

In this chapter, we conduct different experiments to evaluate the performance of the

CRISP algorithm. We evaluate the goodness of prediction, parameter sensitivity and scal-

ability of CRISP by comparing it with various state-of-the-art algorithms. In addition, the

CRISP algorithm is also compared with the clinical models in practice on Electronic Health

Records (EHRs) datasets to assess its clinical relevance, and our results demonstrate the

superior performance of the CRISP algorithm. Finally, we show the risk calibration plots

which illustrate the agreement between predicted and observed risks on EHR datasets.

3.1 Experimental Setup

We evaluate the performance of our CRISP algorithm using real-world EHRs and syn-

thetic datasets which are summarized in Table 3.1.

Table 3.1: Description of the EHRs and synthetic datasets used in our experiments.

Datasets # Features #Instances
HF-cohort 77 8132
EHR-0 73 4416
EHR-1 72 3409
EHR-2 72 2748
EHR-3 72 2208
EHR-4 71 1800
Syn-1 1000 500
Syn-2 5000 500
Syn-3 10000 500

3.1.1 Electronic Health Records (EHRs)

The EHRs used in this thesis were obtained from Henry Ford Health System in Detroit,

Michigan in United States for patients admitted with chronic heart failure (CHF) condition

over a period of 10 years. In Figure 3.1, we depict the class distribution for these EHRs. The

y-axis represents the % of readmissions (positive class) for 30-day and 365-day readmission.

The x-axis represents the indices of the EHRs. These EHRs were procured over successive

readmissions of patients. The suffix next to EHR represents the index of readmission, for

example EHR-i represents all sets of patients readmitted for the ith time. It can be observed
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that the number of patients in each of the longitudinal EHRs decreases with successive

readmissions. In addition to the readmission datasets, we also use a basic cohort dataset (HF-

cohort) which represents an aggregated dataset summarizing the readmission information for

all individuals over 10 years.

Figure 3.1: Class distribution in EHR datasets.

The feature groups that were included for our evaluation include medications, procedures,

labs, demographics and comorbidities [32]. Here, we summarize the main data pre-processing

methods[33, 34] used when generating the EHR dataset. We create binary variables from

the procedures and medications list which indicate the presence or absence of that particular

procedure or medication for the patient. For the labs, we apply the logarithm transformation

to make the data follow a normal distribution. For each distinct lab variable, we compute

the maximum, minimum and average values and create separate variables for each of them.

We also create a new feature which signifies the percentage of abnormal labs for a patient.

For our experiments, since we deal with the readmission risk prediction problem at two

different thresholds, i.e 30 days and 365 days, we determine the labels for each of these cases

by calculating the difference between the readmission date and its preceding discharge date.

In the case of 30-day readmission, if the difference is less than 30 days, we assign a label of 1
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and if the difference is greater than 30 days, we assign 0. Following the same procedure for

the 365-day readmission problem, we create two unique sets of binary prediction problems

for each of the EHRs.

3.1.2 Synthetic Datasets

We now explain the generation of synthetic datasets for evaluating the CRISP model.

Based on a regression model y = Xβ∗ + ε, where β∗ ∈ Rm and ε ∼ N(0, σ2I), we consider

three different scenarios and generate the synthetic datasets. These datasets are generated

as per the guidelines given in this paper [35] to encourage grouping and sparsity among the

features. X ∼ N(0, C), where C = [cij] is the covariance matrix, and the original feature

coefficient values are given as follows.

1. In Syn-1, n = 500 and there are m = 1000 predictors. The parameters are generated

as

β∗ = [3, · · · , 3︸ ︷︷ ︸
0.1m

, 2, · · · , 2︸ ︷︷ ︸
0.1m

, 1.5, · · · , 1.5︸ ︷︷ ︸
0.1m

, 0, · · · , 0︸ ︷︷ ︸
0.7m

]T

and σ = 3, with covariance cij = 0.7|i−j|.

2. In Syn-2, n = 500 and there are m = 5000 predictors. The parameters are generated

as

β∗ = [3, · · · , 3︸ ︷︷ ︸
0.1m

, 0, · · · , 0︸ ︷︷ ︸
0.3m

, 1.5, · · · , 1.5︸ ︷︷ ︸
0.1m

, 0, · · · , 0︸ ︷︷ ︸
0.4m

, 2, · · · , 2︸ ︷︷ ︸
0.1m

]T

3. In Syn-3, n = 500 and there are m = 10000 predictors. The parameters are generated

as

β∗ = [0.85, 0.85, · · · , 0.85]T

These synthetic data have been commonly used in the sparse learning literature [27, 36] to

compare the performance of different models systematically. The purpose of this simulation

is to show the good performance and scalability of CRISP algorithm.
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3.2 Evaluation Metrics

The performance of the proposed CRISP method is evaluated using state-of-the-art ad-

ditive, interactions, and non-convex regularized linear regression models using metrics such

as AUC, MSE and R2.

3.2.1 AUC

AUC is the area under the receiver operating characteristic (ROC), which is a graphical

technique used to measure and visualize the performance of a prediction model over the

entire range of possible cutoffs [37]. In an ROC curve, the x-axis is the false positive rate

(FPR) and the y-axis is the true positive rate (TPR). The cutoff varies from the highest

possible value, where all subjects are predicted as negative (TPR = 0, FPR = 0), to the

lowest possible value, where all subjects are predicted as positive (TPR = 1, FPR = 1). In

each possible cutoff, both FPR and TPR are calculated based on the corresponding confusion

matrix [37] as shown in Table 3.2.

Table 3.2: Confusion matrix for a binary-class problem.

Predict positive Predict negative
Actual positive TP FN
Actual negative FP TN

In the confusion matrix for a binary-class problem shown in Table 3.2, each of the com-

ponents can be separately defined as:

True positive (TP ): The number of positive individuals correctly predicted as positive.

False positive (FP ): The number of negative individuals incorrectly predicted as pos-

itive.

False negative (FN): The number of positive individuals incorrectly predicted as

negative.

True negative (TN): The number of negative individuals correctly predicted as nega-

tive.

Based on the confusion matrix, both TPR and FPR can be derived from the four com-
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ponents. True Positive Rate (TPR), also known as sensitivity or recall, measures the ratio

of actual positives which are correctly identified. The formal definition of TPR is

TPR =
TP

TP + FN
(3.1)

False Positive Rate (FPR) measures the ratio of actual negatives which are incorrectly

identified, which is formalized as:

FPR =
FP

TN + FP
(3.2)

The area under the ROC curve (AUC)[38] will be equal to 1 for an ideal model since

TPR = 1 and FPR = 0. AUC can be used to estimate the probability that a binary

classifier will give an arbitrary positive record a higher score than an arbitrary negative

record, conditional on the assumption that the positive individual should receive a higher

score than the negative one [39]. A random classifier’s AUC is 0.5; when AUC is higher than

0.5, the higher the AUC value, the better the prediction model [40].

3.2.2 MSE

The mean square error (MSE) is a good measure of how accurately the model predicts

the outcome, and is one of the most important criterion for fit. Lower values of MSE indicate

better fit. It is the estimation of the deviation between the observed outcome values and the

predicted values in the form of

MSE =
1

n

n∑
i=1

(f̂(xi)− yi)2 (3.3)

where f̂(xi) and yi is the estimated outcome value and the actual outcome value for the ith

instance, respectively. From Eq. (3.3), we can see that MSE is the mean of the squared error

shown in Eq. (2.11).
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3.2.3 R2

The R2 [41] is used to measure the performance of regression models, which can be

formalized as:

R2 = 1− RSS(Ŷ )

V ar(Y )
(3.4)

where RSS(Ŷ ) is the residual sum of squares, and V ar(Y ) is the variance of actual outcomes.

For a dataset with n instances, these two terms can be mathematically defined as:

RSS(Ŷ ) =
n∑
i=1

(yi − ŷi)2, and V ar(Y ) =
n∑
i=1

(yi − ȳ)2 (3.5)

where ȳ is the mean value of the actual outcomes. For the ith instance, yi is the actual

outcome, and ŷi = f̂(xi) is the estimated outcome. According to Eq. (3.4), a good prediction

model provides a small RSS(Ŷ ). In other words, the closer the R2 is to 1, the better the

prediction will be [40].

3.3 Implementation Details

In this section, we explain our experimental setup used for evaluating the CRISP algo-

rithm. The CRISP algorithm was implemented using the R programming language. All

the machine learning models used for comparison in our work were also implemented in R.

Elastic net was implemented using the glmnet R package for both the linear and logistic loss

functions. Sparse Group Lasso (SGL) was implemented using the corresponding R package

available in [42]. We implemented the hiernet-weak and hiernet-strong algorithms using the

R package hierNet [21]. GAM and GA2M were implemented using the open source Java

code available on github1, and in the implementation of GA2M model, only the top 50 inter-

actions with lowest contribution to the overall error rate were considered for model building.

We choose 50 as per the guidelines given in this paper [20]. L1- and L2- SVR correspond to

the L2-regularized Support Vector Regression with the L1 and L2 loss functions, respectively.

These were implemented using the LibLinear2 R package.

1https://github.com/yinlou/mltk
2https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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We used the SPAMS 3 package to implement the L0 and L∞ models which are used to

compare MSE and R2 values for all the three synthetic datasets. The performance results

of all the models reported here are obtained using five-fold cross-validation. The model pa-

rameters (λ, γ) are tuned over the validation data to reduce overfitting, and the evaluation

results are based on the test data. The results and their corresponding standard deviation

values are being reported. The R package pROC is used to calculate AUC values for all

the models discussed in this thesis, and to calculate the MSE we used the Metrics4 package.

We now describe the procedure we used to select λ and γ values which generate different

candidate models in our CRISP algorithm. In our experiments, while doing the parameter

tuning, we generated a sequence of values for the regularization parameter λ and the non-

convexity parameter γ and selected the model corresponding to the optimal values (λ∗, γ∗)

which were then used for prediction on the test data.

3.4 Goodness of Prediction

In this section, we compare the performance of CRISP with various competing models

for the 30-day readmission problem on all the longitudinal EHRs. Table 3.3 summarizes the

performance comparison results using AUC metric. The AUC values for CRISP algorithm

in Table 3.3 are obtained from the optimal model parameters selected after applying the

consensus criterion. For all of the datasets described in Table 3.1, our results for AUC

evidently demonstrate that the proposed method CRISP provides significantly better results

compared to the other methods. We also provide the P-values for CRISP to confirm the

statistical significance of our results here. The P-value is calculated using Delong test method

described in paper [43]. The null hypothesis is that the difference in AUC values between

CRISP algorithm and the second best model is equal to zero. It should be noted that a result

with a P-value of less than 0.05 is considered to be statistically significant and is interpreted

as being small enough to justify the superiority over the methods used for comparison. Thus,

these results given in Table 3.3 confirm that CRISP builds the most discriminative models

3http://spams-devel.gforge.inria.fr/
4https://cran.r-project.org/web/packages/Metrics/
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Table 3.3: Performance comparison of CRISP with different models using AUC ± std for
30-day readmission problems on longitudinal EHRs.

Model HF-cohort EHR-0 EHR-1 EHR-2 EHR-3 EHR-4
Logit 0.5700±0.012 0.6060±0.013 0.5270±0.027 0.5490±0.013 0.6000±0.024 0.5960±0.035
GAM 0.6274±0.016 0.5944±0.015 0.5778±0.010 0.5990±0.040 0.6027±0.022 0.5728±0.019
GA2M 0.6192±0.013 0.5719±0.012 0.5546±0.032 0.5743±0.017 0.5894±0.015 0.5514±0.018
hiernet-weak 0.5980±0.011 0.5735±0.022 0.5657±0.010 0.5718±0.013 0.6163±0.038 0.5549±0.021
hiernet-strong 0.5887±0.010 0.5706±0.021 0.5628±0.026 0.5690±0.030 0.6055±0.041 0.5590±0.035
EN-linear 0.6181±0.009 0.6129±0.014 0.6185±0.026 0.6103±0.021 0.6351±0.025 0.6201±0.018
EN-logit 0.6184±0.021 0.6138±0.029 0.6192±0.018 0.6109±0.010 0.6350±0.050 0.6199±0.031
SGL 0.6233±0.010 0.6117±0.028 0.6095±0.016 0.5991±0.030 0.6222±0.050 0.5980±0.011
L1-SVR 0.5171±0.016 0.5157±0.008 0.5070±0.018 0.5189±0.014 0.5919±0.013 0.5822±0.057
L2-SVR 0.6269±0.017 0.6075±0.016 0.5892±0.013 0.6041±0.031 0.6258±0.033 0.5939±0.014
CRISP 0.6504±0.008 0.6224±0.017 0.6194±0.025 0.6366±0.019 0.6433±0.033 0.6428±0.043
(p-value) (0.0013) (7.85e-08) (0.0003) (5.725e-07) (0.0031) (0.0012)

Table 3.4: Performance comparison of CRISP with machine learning models using MSE ±
std for the 30-day readmission problem on longitudinal EHRs.

Model HF-cohort EHR-0 EHR-1 EHR-2 EHR-3 EHR-4
Logit 0.2103±0.008 0.2056±0.004 0.2333±0.006 0.2254±0.010 0.2194±0.008 0.2283±0.011
GAM 0.1811±0.005 0.2122±0.010 0.2197±0.004 0.2246±0.009 0.2308±0.011 0.2488±0.014
GA2M 0.2238±0.010 0.2736±0.023 0.3154±0.048 0.3177±0.028 0.3089±0.038 0.3302±0.019
hiernet-weak 0.1914±0.008 0.2232±0.010 0.2226±0.002 0.2293±0.004 0.2309±0.010 0.2551±0.002
hiernet-strong 0.1933±0.007 0.2256±0.007 0.2297±0.005 0.2335±0.009 0.2250±0.008 0.2559±0.019
EN-linear 0.1832±0.003 0.2059±0.001 0.2075±0.002 0.2152±0.004 0.2145±0.004 0.2263±0.001
EN-logit 0.1833±0.006 0.2061±0.008 0.2077±0.009 0.2153±0.002 0.2146±0.004 0.2265±0.004
SGL 0.1816±0.003 0.2050±0.004 0.2065±0.008 0.2149±0.007 0.2151±0.009 0.2272±0.009
L1-SVR 0.7166±0.022 0.9585±0.037 0.9756±0.027 1.0635±0.041 1.0861±0.053 1.0814±0.107
L2-SVR 0.2402±0.007 0.2985±0.016 0.3104±0.026 0.3333±0.028 0.3441±0.049 0.3980±0.016
CRISP 0.1775±0.002 0.2030±0.003 0.2050±0.003 0.2110±0.003 0.2083±0.004 0.2202±0.003

compared to other methods. In Table 3.4, the mean squared error (MSE) along with the

standard deviations for the 30-day readmission problem on all the datasets are provided.

We observe that CRISP model outperforms all the other methods used in our comparisons.

We can also observe that the standard deviation values of the results obtained from CRISP

algorithm are significantly lower across all of the datasets compared to the other methods.

This shows the robustness of our method.

In Table 3.5 and Table 3.6, we show the MSE along with standard deviations and the R2

values for the three synthetic datasets using different regression models which are applicable

to them. It can be observed that CRISP algorithm performs better when compared with

other regression models using MSE and R2 on all the synthetic dataset except two cases:

SGL method performs better with smaller MSE on Syn-3 and L∞ fits better than CRISP
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Table 3.5: Performance comparison of CRISP with machine learning models using MSE ±
std on synthetic datasets.

Model Syn-1 Syn-2 Syn-3
L0 0.3677±0.030 0.9598±0.156 1.0391±0.087
L∞ 0.2439±0.032 0.8806±0.140 1.0214±0.070
EN-linear 0.1892±0.032 0.7832±0.087 1.0020±0.138
SGL 0.1744±0.030 0.8392±0.097 0.9028±0.059
CRISP 0.0861±0.012 0.7698±0.179 1.0015±0.188

Table 3.6: Performance comparison of CRISP with machine learning models using R2 on
synthetic datasets.

Model Syn-1 Syn-2 Syn-3
L0 0.6269 0.1539 0.1602
L∞ 0.6197 0.2510 0.1269
EN-linear 0.8093 0.2064 0.1181
SGL 0.5046 0.1682 0.1038
CRISP 0.9124 0.2215 0.2057

with greater R2 on Syn-2. However, CRISP algorithm is the second best model in both

cases. This better performance of our method is attributed to the fact that in addition to

using a sparse and efficient non-convex regularizer within CRISP, the algorithm generates

several candidate models, and then selects the best model using training data for prediction

which gives a final model with good predictive ability.

In Figure 3.2, we show the AUC values of CRISP model compared to other regression

models using bar plots for the 365-day readmission problem on EHR datasets. One can

observe that CRISP gives better performance compared to other regression models on all

the EHRs.
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(a) HF-cohort (b) EHR-0

(c) EHR-1 (d) EHR-2

(e) EHR-3 (f) EHR-4

Figure 3.2: Performance comparison of CRISP with various state-of-the-art methods for the
365-day readmission problem on longitudinal EHR datasets.

3.5 Scalability Experiments

In this section, we perform experiments to evaluate the scalability of the MC+ penalty

which is used within CRISP along with other well known non-convex penalties mentioned in

Table 1.1. We use the Matlab package called Generalized Iterative Shrinkage and Threshold-

ing (GIST5) to fit these non-convex regularized linear regression models. These experiments

were performed on a machine which has a main memory of 12 GB and a quadcore CPU.

5http://www.public.asu.edu/~jye02/Software/GIST
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Figure 3.3: Comparison of time taken in seconds for three different non-convex regularizers
compared to MC+ with increasing dimensionality of the features.

Two high-dimensional synthetic datasets, Syn-2 and Syn-3, described in Section 3.1.2

were used in this experiment. Figure 3.3 measures the computational time for the MC+

penalty compared to three competing non-convex regularizers. In this plot, the Y-axis

represents the time taken in seconds which was averaged over five runs. The X-axis represents

the dimensionality of the features.

The scalability plot in Figure 3.3 (a) for Syn-2 dataset indicates that the MC+ penalty
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based model runs faster compared to the other three models. LSP penalty based model

takes highest time and the other two penalties, namely, SCAD and Capped `1 norm based

models, are also slower than the MC+ penalty. Figure 3.3 (b) shows the scalability plot for

Syn-3 dataset, and it can be observed that even in this case the MC+ penalty runs faster

compared to the other models. This shows that our CRISP method which uses the MC+

penalty can perform efficiently on high-dimensional datasets.

3.6 Comparison with Clinical Models on EHRs

In this section, we conduct experiments to evaluate the clinical relevance of CRISP by

comparing the performance of CRISP against four widely used clinical prediction models.

Each of these models has been well studied in the clinical literature, therefore they serve

as good baselines for comparison and evaluation. Our results demonstrate the superior

performance of the CRISP algorithm.

3.6.1 Clinical Relevance

We now briefly introduce these four clinical models compared with the CRISP method.

• LACE [44]: This model assigns a score for each patient using the following risk

factors: the length of stay (L), acuity of admission (A), comorbidity index score (C),

and number of emergency hospital visits in six months before index admission (E).

• HOSPITAL [45]: This model assigns a score for each patient using the following risk

factors: Oncology service information for each patient, sodium level, procedures dur-

ing hospitalization, type of admission (planned or unplanned), number of admissions

during 1 year before index hospitalization, and length of stay.

• Risk-o-Meter (ROM) [46]: This is a Bayesian method for risk prediction and it

consists of two steps. Initially a clustering method is applied on the dataset and once

we haveK clusters, the data will be partitioned intoK different datasets. Subsequently,

a Naive Bayes classification algorithm is trained on all K datasets individually and each

model will be evaluated.
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• YALE [47]: This method uses a Hierarchical generalized linear model (HGLM) [48]

based formulation. It includes a number of feature processing steps where only the

patients with age ≥ 65 are considered. We include all the 154 clinically relevant

features as determined by the study. These features include age, gender, 97 CCS,

codes related to history of Percutaneous Coronary Intervention and history of Coronary

Artery Bypass Graft. Once the pre-processing steps are done, we use a feature selection

algorithm to determine important features. Finally, the accuracy of the model can be

obtained by applying the HGLM method.

All the clinical models used in our performance comparison were also implemented in

R. LACE [44] and HOSPITAL [45] models are score based, so for these models we only

determine the risk score for each of the patients based on the values of the clinically relevant

variables. Risk-o-meter (ROM) [46] was implemented using R, and the clustering in this

algorithm was done using Nbclust. In Yale model [47], the dataset we use is obtained by

considering only these patients with age ≥ 65 and the top 50 features selected using chi-

squared feature selection method. Then the Hierarchical generalized linear model (HGLM)

is applied on the filtered dataset to predict the risk.

Table 3.7 shows the AUC comparison of CRISP method with the four baseline clinical

models on the HF-cohort dataset for both 30-day and 365-day readmission problems. It

can be observed from this table that CRISP is performing better than all the other clinical

models. The better performance of CRISP is attributed to its ensemble formulation and the

non-convex regularized models being employed in the algorithm, which enables the method

to have a good predictive ability.

3.6.2 Risk Calibration Plots

In this section, we study the goodness of fit of the proposed CRISP model using the risk

calibration plots generated by the Hosmer-Lemeshow (HL) test statistic [49, 50]. Calibration

plots are used to visualize the similarity between observed and predicted events, where

predicted event risks are marked on X-axis and the observed event risks are marked on Y-
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Table 3.7: AUC comparison of our approach with clinical models for 30-day and 365-day
readmission problems on HF-cohort data.

Model 30-day 365-day
LACE 0.5607 0.5307
HOSPITAL 0.5516 0.5206
YALE 0.6411 0.6762
ROM 0.5910 0.6240
CRISP 0.6504 0.6830

axis. If there is perfect agreement between observed and predicted rates, then all the points

representing the corresponding subgroups should perfectly lie on the line drawn at 45◦.
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Figure 3.4: Calibration plots for CRISP on HF-cohort data for (a) 30-day, (b) 365-day
readmission problems.

Figure 3.4 shows the calibration plots for CRISP method on the HF-cohort dataset

for both 30-day and 365-day readmission problems. It is intuitive that the predicted and

observed risk values increase with time. However, we can observe from these plots that there

is a strong agreement between the observed and predicted event rates both cases, which

indicates that CRISP method is effective in predicting risks in the corresponding subgroups.

We attribute this better performance to the non-convex regularized models used in the
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CRISP algorithm and the consensus way of selecting the best model for prediction which

gives a final model with good predictive ability.
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CHAPTER 4 CONCLUSION AND FUTURE WORK

In this thesis, we presented a method called CRISP for solving the consensus regular-

ization problem for regression which has not been addressed in the literature. This method

generates a committee of non-convex regularized linear regression models using the minimax

concave plus (MC+) penalty, and it applies a consensus criterion to select the best model

for prediction. This method is effective because the problem of learning mutiple candidate

models within the committee is solved using a generalized thresholding operator employed

within a fast cyclic coordinate descent framework. We evaluated this model using longi-

tudinal EHRs from a large hospital and high-dimensional synthetic datasets using diverse

metrics such as AUC, MSE and R2. We also conducted experiments to assess the scalability

of CRISP. Our results indicate that CRISP obtains higher AUC values compared to various

other additive, interactions and sparse regression models. This work can be extended for

solving an active learning regression model by querying the labels for an instance chosen

after obtaining a consensus among multiple regularizers.
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Integrating regularization methods within a regression framework has become a popular

choice for researchers to build predictive models with lower variance and better general-

ization. Regularizers also aid in building interpretable models with high-dimensional data

which makes them very appealing. Regularizers in general are unique in nature as they cater

to data specific features such as correlation, structured sparsity, and temporal smoothness.

The problem of obtaining a consensus among such diverse regularizers is extremely impor-

tant in order to determine the optimal regularizer for the model. This is called the consensus

regularization problem which has not received much attention in the literature, due to the

inherent difficulty associated with building an integrated regularization framework. To solve

this problem, in this thesis, we propose a method to generate a committee of non-convex

regularized linear regression models, and use a consensus criterion to determine the optimal

model for prediction. Each corresponding non-convex optimization problem in the commit-

tee is solved efficiently using the cyclic-coordinate descent algorithm with the generalized

thresholding operator. Our Consensus RegularIzation Selection based Prediction (CRISP)

model is evaluated on electronic health records (EHRs) obtained from a large hospital for

the chronic heart failure readmission problem. We also evaluate our model on various syn-

thetic datasets to assess its performance. The results indicate that CRISP outperforms
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several state-of-the-art methods such as additive models and other competing non-convex

regularized linear regression methods.
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