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Clinicians see Bayesian and frequentist analysis in published research papers, and need a basic 
understanding of both. A repeated measures data set was analyzed using both approaches. Assumptions 
underlying each  method and conclusions reached were contrasted. The Bayesian approach is a viable 
alternative to frequentist statistical analysis for many clinical projects. 
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Introduction 
 
Classical or frequentist statistics is the standard 
method of analysis in clinical research. There is 
another statistical option, Bayesian analysis, 
with advocates arguing that it can be equally or 
more suited to the analysis of clinical research 
problems. In recent years increasing numbers of 
studies have appeared using Bayesian analysis 
or a combination of Bayesian and frequentist 
analyses, making it likely that health care 
clinicians will encounter papers written using a 
Bayesian approach, and that students will need 
some exposure to both methods. The purpose of 
this article is to compare the analysis and 
interpretation of a simple clinical data set using 
Bayesian and frequentist approaches as a 
simplified introduction to the Bayesian approach 
for clinicians without a background in statistics.  
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Methodology 
 

Bayesian analysis has developed from the work 
of Thomas Bayes, an eighteenth century British 
Presbyterian minister with an interest in 
probability theory (Brooks, 2001). His theorem 
is used in predicting probability. In itself, it is 
uncontroversial and commonly used in areas 
such as Mendelian genetics and computerized 
diagnosis (Lilford & Braunholtz, 1996). For 
such purposes it is used by statisticians of all 
backgrounds (Lee, 1989/1992). The application 
of Bayesian analysis in a broader sense is the 
source of debate and controversy. An 
explanation of some of the basic assumptions in 
these cases may help clarify why there is such 
heated debate. 

Bayesian methods essentially construct 
probability distributions for unknown quantities 
of interest given the data, for example the 
probability that a particular Treatment A is 
superior to Treatment B given data from a trial. 
This probability is termed the posterior 
distribution and then used to reach conclusions 
about the research question. But in Bayesian 
analysis researchers are required to estimate a 
prior distribution for the event of interest in 
order to run the analysis of a data set. This prior 
distribution may be based on a variety of 
external evidence that includes controlled and 
uncontrolled studies, case reports, and expert 
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opinions. When comparing the two treatments 
mentioned above, the prior distribution is the 
probability that Treatment A is superior to 
Treatment B based on available information 
before data is collected. The actual data gathered 
in the study is considered the likelihood. 

To state the application of Bayes 
Theorem in simplistic terms, the posterior 
probability distribution is proportional to the 
likelihood of the collected data multiplied by the 
prior distribution. The likelihood function and 
the prior function are combined into a 
distribution summing to 1 to create the posterior 
probability. All inferences about treatment 
difference are based on the posterior 
distribution. With continued data collection, it is 
possible later to revise the analysis and 
determine a new (and hopefully more precise) 
posterior distribution to use in conclusions 
regarding the superiority of Treatment A. 
Logically, accumulating evidence would 
ultimately also change the prior - moving it to a 
more realistic representation of reality. This 
updating of the prior distribution occurs as 
understanding of the phenomenon of interest 
changes in light of the evidence gathered. 

Described in these terms the Bayesian 
approach has a commonsense appeal: it is 
possible to give probabilities, integrate 
information from multiple sources, and revise 
conclusions in light of new information. The 
process follows the classical model of scientific 
thinking and experimentation and is 
consequently attractive to those trained in the 
scientific method. Proponents of Bayesian 
analysis in clinical trials have argued that this 
makes it flexible and ethical, well suited for 
subgroup analysis, and offers a good option for 
ongoing analysis over the course of a trial 
(Spiegelhalter, Myles, Jones, & Abrams, 1999). 

But an acceptable determination of prior 
distribution is one of the hardest things to do in 
complex situations, for example when there are 
conflicting opinions or studies or multiple 
subgroups to be considered. The incorporation 
of prior distributions is simultaneously 
considered the greatest flaw and greatest 
strength of Bayesian analysis, depending on 
one’s perspective (O’Hagen, Luce & Fryback, 
2003; Spiegelhalter et al. 1999). Bayesian 
calculations have also typically required 

complex statistical computation power not 
readily accessible to most clinical researchers. 

Bayesian statisticians are working on 
guidelines for weighting the prior distribution, 
with skeptical priors being useful if there are 
important reasons for caution (such as risks or 
costs of the new treatment), weak priors used 
when little is known, and optimistic priors being 
used at selected other times. Guidelines for prior 
specification are beginning to appear (Kadane, 
& Wolfson, 1996; Spiegelhalter et al. 1999). It is 
also possible to use a non-informative or 
uniform prior which essentially lets the data 
speak for itself (Box & Taio, 1973; Lee, 
1989/1992).  The data can of course be analyzed 
with a variety of priors for subsequent decision 
making, and indeed data can be collected before 
knowing the prior, but this demonstrates 
somewhat sloppy and unscientific thinking. If 
well done the process should follow the 
scientific model - the different priors resemble 
competing hypotheses which are to be tested by 
examining the data. 

The approach in frequentist statistics is 
philosophically quite different. Probability is 
viewed as “a limiting ratio in a sequence of 
repeatable events . . . the ratio becoming ever 
more exact as the series is extended” (Howie, 
2002, p. 1). Data is interpreted using statistical 
models based on frequencies, with the p-value 
being a measure of “discrepancy between the 
data and the null hypothesis” (Goodman, 1999, 
p. 997).  This is very different from the Bayesian 
view of probability being a degree of belief or 
knowledge about the unknown. Contrary to 
common misinterpretations, the p-value does not 
give the probability of Treatment A being 
superior to Treatment B, but instead a 
predetermined level of significance test, set by 
balancing Type I and Type II errors, that allows 
acceptance or rejection of the data set based on 
its compatibility with the null hypothesis. The 
data are analyzed independently, without the 
influence of previous knowledge in the analysis, 
although previous knowledge is of use in 
planning the data collection. In other words, the 
classical inference methods treat parameters as 
constants, while Bayesian methods treat them as 
random variables. 

A frequentist statistician would argue 
that the introduction of the prior in Bayesian 
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analysis introduces an element of subjectivity 
that is unacceptable. A Bayesian may counter 
that the decision to rank Type II errors as less 
important than Type I and to arbitrarily select a 
significance level is unscientific. A frequentist 
statistician may weight multiple tests of 
variables to reduce the risk of Type I error, 
selecting a technique for this from a variety of 
more or less accepted methods. A Bayesian 
would view an analysis that is more skeptical of 
Treatment A because you are also looking at 
other treatments or subgroups as ridiculous. It 
also could be argued that in frequentist analysis 
based on sampling, the analysis is only of value 
if the researcher has chosen the appropriate 
statistical model and if the data set fits all the 
assumptions of the chosen model.  

If these conditions are not met, classical 
analysis can act to distort interpretation and the 
restrictions imposed by the model can exclude 
relevant information. Goodwin (1999) gave an 
excellent summary and explanation of issues 
relating to the use of frequentist and Bayesian 
analyses in health research. 

The result of either type of analysis in 
uncomplicated situations where model 
assumptions are similar and where non-
informative priors are used often leads to 
conclusions that are not much different, but at 
other times this may not be true. It is possible to 
reach very different conclusions from the same 
data set. For a general discussion of Bayesian 
and frequentist statistics with an emphasis on 
medical research see Matthews (2001a) and 
related discussion and response (Berger, 2001; 
Lindley, 2001; Matthews, 2001b; Sasieni, 2001), 
and an editorial and related articles in the Annals 
of Internal Medicine (Davidoff, 1999; Goodman, 
1999). Specific illustrations of how Bayesian 
analysis can be useful in clinical trials are also 
readily located (Johns & Anderson, 1999; 
Lilford, 1999; Simon, 1999). 
 
Problem to be Analyzed 

The data set used in this article was 
generated as part of a student research project. 
As such it has been analyzed conventionally and 
prepared for journal submission. This exercise 
will not give study details but merely use the 
data set to illustrate Bayesian and frequentist 
approaches to data analysis and interpretation. 

The study examined the short-term 
effect of a single stretching session on joint 
range of motion (ROM). Fifteen experimental 
group subjects were given the treatment 
(stretch). Measurements were taken at baseline, 
and at 1, 3,6,15 and 30 minutes post-stretch. 
Fifteen control group subjects were measured at 
similar time periods but not subjected to the 
treatment. 

The question of interest was whether the 
stretching procedure altered the ROM at each of 
these time points and, if so, whether the stretch 
altered it more than the process of being 
measured.  It was expected that the six 
measurements of ROM required in the protocol 
would affect ROM of the control group, but to a 
lesser extent. A comparison of the control and 
experimental groups would therefore be 
expected to show whether the stretch had any 
additional effect on ROM. Although Bayesian 
analysis has analogs to frequentist tests that 
produce p-values, it was decided to examine 
90% confidence intervals and their analogous 
Bayesian probability intervals. 

 
Results 

 
SPSS for Windows, version 10.1 was used. For 
each group the baseline was used as an initial 
reference point with subsequent measures 
expressed as the difference from this point with 
the baseline measured being zero. A repeated 
measures General Linear Model (GLM) analysis 
was performed with time of measurement as the 
within subjects factor and group assignment 
(control vs. experimental) as between subject 
factor. This analytical model assumes that the 
measurements are drawn from a normally 
distributed population and that the different 
groups have homogeneous variances.  

The p-value for testing no difference in the 
mean change of ROM between the control and 
experimental groups is 0.000, which leads to the 
conclusion that there is a difference. Based on 
the 90% confidence intervals for the estimated 
mean changes over the time, it is clear that the 
experimental group performs better than the 
control group because none of the 90% intervals 
overlap between groups. These are expressed in 
Tables 1 and 2, and illustrated graphically in 
Figure 1.  
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Time of 
Measurement

Mean

Lower 
Bound

Upper 
Bound

Baseline 0 - -

One minute 10.27 8.25 12.28

Three minutes 12.33 10.08 14.59

Six minutes 14.93 12.42 17.44

Nine minutes 14.33 11.88 16.79

Fifteen minutes 12.53 9.66 15.4

Thirty minutes 13.73 10.95 16.52

90% Confidence 
Interval

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2: Experimental group change in 
measurement from Baseline (Frequentist). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is possible to state with reasonable 
confidence that that the data gathered represent 
the underlying state of affairs. Thus, it could be 
concluded that the stretch produced an alteration 
in range of motion that is greater than that 
caused by the measurement technique. 

There is, however, reason to be 
concerned about the analysis. The statistical 
model rests on a number of assumptions. If these 
assumptions are violated there is less faith in the 
conclusions. It is assumed subjects are a random 
sample from a pool of suitable subjects and that 

the raw scores for them (and so the error terms) 
are normally distributed. It is also assumed that 
that error terms have a mean of zero and a 
common variance, and that error terms between 
and within the groups are not related. These 
assumptions are based on random assignment of 
subjects.   
 

Figure 1: 90% Confidence Intervals Using 
Frequentist Analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In addition there is a complex 
assumption known as the sphericity assumption 
related to variances in the fixed factor of the 
design. The general linear model procedure tests 
for sphericity using Mauchley’s test. In this 
sample, the test concluded that the assumption 
was not met. This interpretation was based on 
using the conservative Greenhouse-Geiser 
adjustment.  
 
Analysis with Bayesian Statistics 

As with most Bayesian analyses, the 
choice of a prior distribution was critical. In this 
case there was limited previous evidence to use 
in creating a prior distribution. Published studies 
using the particular technique studied did not use 
the same joints, protocol or exact technique. 
Clinical experience suggested that there would 
be a modest increase in range in the 
experimental group that might or might not 
decline over the 30 minute period. Experienced 
clinicians could not offer more specific ideas 
about the effect of this single stretch treatment. 

Table 1: Control group change in measurement 
from Baseline (Frequentist). 

Time of 
Measurement Mean

Lower 
Bound

Upper 
Bound

Baseline 0 - -

One minute 1.33 -0.55 3.22

Three minutes 2.27 0.48 4.06

Six minutes 2.67 1.08 4.26

Nine minutes 2.67 0.94 4.39

Fifteen minutes 2.13 0.4 3.86

Thirty minutes 1.87 -0.46 4.2

90% Confidence 
Interval
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Time of 
Measurement Mean

Lower 
Bound

Upper 
Bound

Baseline 0.21 -1.25 1.64

One minute 1.28 0.13 2.47

Three minutes 2.07 0.9 3.26

Six minutes 2.45 1.32 3.62

Nine minutes 2.45 1.37 3.67

Fifteen minutes 2.19 1.04 3.32

Thirty minutes 1.96 0.53 3.38

90% Probability 
Interval

This limited evidence made it appropriate to use 
a non-informed prior distribution in the analysis. 

The analysis was done using Gibbs 
sampling, a technique commonly used in 
Bayesian analysis. Gibbs sampling is a variant 
of Markov chain Monte Carlo (MCMC) 
analyses. This computer intensive technique 
provides researchers with repeated random data 
points drawn form the statistical distribution of 
interest. Parameters of interest are estimated by 
repeated iterations of the process until estimates 
converge. Gibbs sampling helps compensate for 
small data sets such as those generated in this 
experiment.  For additional information on the 
Gibbs sampling technique see Casella and 
George (1992). 

WinBUGS version 1.3 was used in the 
analysis adapting a dynamic model used in 
repeated measure research and described in 
Congdon (2001). The software program is 
available through the Bayesian inference Using 
Gibbs Sampling (BUGS) project 
http://www.mrc-bsu.cam.ac.uk/bugs/). Again, 
baseline measures were converted to zero and 
subsequent measures to differences from 
baseline. Bayesian means and 90% probability 
intervals were calculated. These are presented in 
Tables 3 and 4 and Figure 2. 
 
 
Table 3: Control group change in measurement 
from Baseline (Bayesian). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: 90% Probability Intervals Using 
Bayesian Analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interpretation was done through 
examination of the plots and data. Again, there 
is no overlap in the intervals except at the 
baseline, where this is expected. The Gibbs 
sampling technique used produces a baseline 
estimation, making it possible to give a 
probability interval for this as well as for the 
repeated measurement points. The results for 
estimating the mean change of ROM are very 
similar to the GLM results but the probability 
intervals are smaller than the confidence 
intervals and none of the probability intervals, 
other than the baseline, contains zero. The 
Bayesian analysis, like the general linear model, 
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Table 4: Experimental group change in 
measurement from Baseline (Bayesian). 

Time of 
Measurement Mean

Lower 
Bound

Upper 
Bound

Baseline 0.6 -1.57 2.9

One minute 9.35 7.25 11.36

Three minutes 12.64 10.76 14.56

Six minutes 14.76 12.92 16.7

Nine minutes 14.29 12.47 16.09

Fifteen minutes 12.96 11.08 14.76

Thirty minutes 13.61 11.35 15.73

90% Probability 
Interval
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assumes random sampling, normally distributed 
raw scores for the subjects and a linear 
relationship between scores and group and time 
variables. It also makes the important 
assumption of a non-informative prior.  
 
Comparison of Analyses 

In this simple example the conclusions 
reached with both analytical techniques appear 
quite similar in terms of clinical interpretation of 
results and related treatment planning. With this 
data set and a non-informative prior this is not 
surprising. Both types of analyses would lead to 
the practical clinical conclusion that the stretch 
altered range of motion for at least thirty 
minutes. In addition there was the expected 
observation that the repeated measurements did 
have an effect on ROM, albeit a smaller effect 
than stretch and measurement combined. 

There are, however, some key 
differences in the interpretation of the results. In 
the frequentist analysis, the null hypotheses that 
were no differences in the mean change of ROM 
is rejected. This conclusion can be reached 
through the 90% confidence intervals for the 
mean change without considering any previous 
information about the mean change. On the 
other hand, in Bayesian analysis, the distribution 
of the mean change was estimated and the 
likelihood of the mean change in terms of the 
probability intervals calculated. With Bayesian 
analysis, it is allowed to utilize the previous 
knowledge about the distribution of parameters. 

There are a few differences apparent 
that may lead to a preference for the Bayesian 
analysis for this study. The data set is small and 
does violate some of the assumptions behind the 
general linear model with repeated measures 
used in the frequentist analysis. The effect of 
this is to weaken faith in the conclusions.  

The 90% confidence intervals with the 
general linear model are also wider in all but the 
one minute measurement in the experimental 
group analysis than the corresponding Bayesian 
90% probability intervals. The width of 
confidence intervals in conventional analysis 
gives an estimate of precision with narrower 
widths desirable (Brooks, 2003). None of the 
post-baseline Bayesian probability intervals 
includes zero while two of the frequentist 
confidence intervals do in the control group, 

despite an anticipated measurement effect. The 
smaller intervals in the Bayesian analysis reflect 
the strength of the sampling procedure and its 
ability to deal with small data sets. The Bayesian 
results are more compatible with clinical 
expectations based on muscle stretching 
theories. For these reasons the authors conclude 
that the Bayesian analysis seems to be the better 
analysis option with this particular data set.  

There are additional advantages for a 
clinician who wants to continue data collection 
on stretching techniques but lacks facilities for 
large scale experimentation. The posterior 
distributions determined from this study could 
be used as informed priors in subsequent 
research, refining estimates and improving 
accuracy with additional data collection. This 
approach mimics the classic model of scientific 
reasoning. Assuming the clinician has access to 
computing resources and programs for Bayesian 
analysis, a series of small clinical studies could 
incrementally add to the body of research on the 
subject. The reasoning process in Bayesian 
analysis also has its attractions. Ashby and 
Smith (2000) argue that the Bayesian approach 
is the natural one for use in evidence-based 
practice where information must be synthesized 
and used in individual decision-making. 

 
Conclusion 

 
As computing power increases and statistical 
packages become more readily available and 
usable, Bayesian analysis may be seen more 
often in the medical and health literature used to 
guide clinical practice. It is now not uncommon 
to see articles in clinical journals that use 
Bayesian analysis either alone or in combination 
with frequentist analysis. This article gives an 
illustration of Bayesian and classical analysis 
applied to a simple clinical problem and the 
interpretation of results. In the example used, the 
authors concluded that they would prefer the 
Bayesian approach for analysis. Future studies 
such as simulating the power of two types of 
analysis in detecting the mean change of ROM 
would help clinicians understand the advantage 
of using classical statistics and Bayesian 
statistics. 

Whatever approach is used in data 
analysis, it is important to recognize that there is 
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more than one approach. Bayesian analysis is 
being used in clinical studies to guide practice. 
In this paper Bayesian and frequentist statistical 
approaches are used to analyze a sample data set 
in order to contrast the two approaches and 
make clinicians aware of different approaches to 
data analysis. 
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