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CHAPTER 1 

 

INTRODUCTION 

 Parts of this chapter have been published in Biochemica et Biophysica 

Acta 1793, 212-218, 2009. 

  

Eukaryotic cells require mitochondria to play a vital role in producing 

cellular energy and in the metabolism of amino acids, lipids, heme and iron. 

Mitochondria are surrounded by outer and inner membranes, which are made 

up of a phospholipid bilayer of unique composition and proteins anchored into 

the membrane. Besides acting as glue for the membrane proteins, the 

phospholipids play an important role in providing shape to the mitochondria. 

Cardiolipin (CL) is the signature phospholipid of mitochondria, which is 

synthesized and is predominantly present in the inner membrane. The work in 

this thesis identifies key roles of CL in mitochondrial protein import, 

mitochondrial fusion and metabolic pathways including the TCA cycle, 

glyoxylate cycle and β-oxidation.  

 

1. Structural and physiological role of cardiolipin 

Cardiolipin (CL) (1,3 diphosphatidyl-sn-glycerol) is a unique and ubiquitous 

anionic phospholipid that, in eukaryotes, is localized primarily in the 

mitochondrial inner membrane. CL was first isolated from beef heart, hence 

its name (Pangborn, 1948). While it is most abundant in the heart, CL is found 

in all mammalian tissues. Unlike the other membrane phospholipids, it has a 
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dimeric structure in which two phosphatidyl moieties are linked by a glycerol 

(Figure 1.1) (Lecocq and Ballou, 1964). As a result, CL is hydrophobic by 

virtue of four fatty acyl groups and acidic due to two phosphates. CL interacts 

with a wide variety of mitochondrial proteins by both hydrophobic and 

electrostatic interactions (Hoch, 1992; Schlame et al., 2000), and stabilizes 

proteins in the mitochondrial respiratory chain (Fry and Green, 1981). CL 

molecules can form lamellar or inverted hexagonal structures. The hexagonal 

phase is favored in the presence of divalent cations (Vasilenko et al., 1982). 

Although the biological relevance of these structures is not known, it is 

plausible that CL is involved in the formation of local non-bilayer structures 

within biological membranes. Such structures are believed to be involved in 

membrane fusion and in trans-bilayer movement of solutes (de Kruijff et al., 

1985). The finding that mitochondrial biosynthesis of the non-bilayer forming 

phospholipid phosphatidylethanolamine is essential for the viability of yeast 

mutants lacking CL suggests a critical role of CL in the formation of these 

structures (Gohil et al., 2005), although it should be noted that these 

structures have not been convincingly demonstrated in vivo. 

The fatty acid composition of CL plays an important role in the function of the 

lipid, as aberrant CL remodeling (replacing one fatty acid with another) 

underlies the genetic disorder Barth syndrome (BTHS) (Schlame et al., 2005). 

However, no single species of fatty acid is required for function, as the acyl 

species of CL from different organisms vary considerably. Bacterial CL 

contains saturated and mono-unsaturated fatty acyl chains 14-19 carbons in 

length (Kito et al., 1972). Mitochondrial CL is mainly composed of  
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Figure 1.1: Structure of cardiolipin (CL): R1, R2, R3, R4 represent fatty 

acyl chains.  
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monounsaturated and diunsaturated fatty acyl chains of 16-18 carbons in 

length, resulting in a much higher unsaturation index than that of bacterial CL.  

In mammals and higher plants, the predominant species is linoleic acid, 

whereas oleic acid and palmitoleic acid species exist in yeast (Schlame et al., 

1993). In humans, CL acyl species vary with tissue type, although the 

predominant species in heart is tetralinoleoyl CL. This species is absent from 

BTHS cells (Barth et al., 1999b). While specific CL acyl species vary among 

eukaryotic cardiolipin, the feature shared by different organisms is that the 

dominant species of CL contains only one or two types of fatty acid. This 

leads to symmetry and structural uniformity among CL species (Schlame et 

al., 2005). 

The most exciting finding pertaining to CL in the last few years is that 

this phospholipid plays an important role not only in mitochondrial 

bioenergetics, which is not unexpected given the interaction of CL with 

mitochondrial proteins, but also in essential cellular functions not generally 

associated with respiratory function. Some of these include mitochondrial 

protein import, mitochondrial fusion, vacuolar functions, cell wall biogenesis, 

translational regulation of electron transport chain (ETC) components, aging, 

and apoptosis, and it is likely that this list will be longer in a few years. The 

importance of CL in these and other processes is underscored by the finding 

that mutations in tafazzin, the CL remodeling enzyme, lead to BTHS. This 

chapter focuses on CL biosynthesis and remodeling, cellular functions of CL 

and its relevance to BTHS. 
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2. CL biosynthesis and remodeling 

All of the enzymes for de novo synthesis of CL are present in the 

mitochondria. As seen in Figure 1.2, phosphatidylglycerolphosphate (PGP) 

synthase (Pgs1p) catalyzes the committed step, forming PGP from CDP-DG 

and glycerol-3-phosphate (G-3-P) (Chang et al., 1998a). PGP is then 

dephosphorylated to PG by PGP phosphatase Gep4p (PTPMT1 in mammals) 

(Osman et al., 2010; Zhang et al., 2011). CL synthase (Crd1p) catalyzes an 

irreversible condensation reaction in which CDP-DG is linked to PG via 

cleavage of a high-energy anhydride bond to form CL (Chang et al., 1998b; 

Hostetler et al., 1971; Hostetler et al., 1972; Jiang et al., 1997; Schlame et al., 

1993; Tamai and Greenberg, 1990; Tuller et al., 1998). CL then undergoes 

remodeling in which deacylation by the CL specific deacylase Cld1p leads to 

the formation of monolysocardiolipin (MLCL) (Beranek et al., 2009). In rat 

liver, mitochondria associated phospholipase A2 was shown to catalyze the 

deacylation step to form MLCL (Hauff and Hatch, 2006). MLCL is then 

reacylated with another fatty acid (Schlame and Rustow, 1990), which  is 

catalyzed by tafazzin (Taz1p) (Gu et al., 2004). Schlame et al. demonstrated 

that tafazzin is a CoA-independent transacylase that transfers acyl chains 

preferentially from phosphatidylcholine (PC) to CL (Schlame and Ren, 2006).  

In a study comparing CL species from a wide variety of organisms, Schlame 

and co-workers showed that the most abundant species of CL contained only 

one or two types of fatty acids, which results in a high degree of structural 

uniformity and molecular symmetry in cardiolipin (Schlame et al., 2005). In 

contrast, tafazzin-deficient cells were characterized by multiple species of CL. 
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Figure 1.2: Biosynthesis and remodeling of CL: PGS1 encodes 

phosphatidylglycerol phosphate (PGP) synthase, which converts glycerol-3-

phosphate (G-3-P) and CDPdiacylglycerol (CDP-DAG) to PGP. PGP is 

dephosphorylated to phosphatidylglycerol (PG) by GEP4, which encodes a 

PGP phosphatase. CRD1 encodes CL synthase, which converts CDP-DAG 

and phosphatidylglycerol (PG) to CL. In the remodeling part of the pathway, 

CL is deacylated to monolysocardiolipin (MLCL) by the CL specific 

phospholipase Cld1p. MLCL is then reacylated to mature CL by the TAZ1-

encoded tafazzin. 
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The accumulation of MLCL in yeast and human tafazzin-deficient cells 

(Claypool et al., 2006; Gu et al., 2004; Valianpour et al., 2005; Vaz et al., 

2003) is consistent with the two-step pathway of remodeling shown in Figure 

1.2. BTHS patients display reduced CL, accumulation of MLCL, and aberrant 

CL species (Hauff and Hatch, 2006). The importance of remodeling is 

underscored by its role in BTHS, a rare X-linked disorder caused by mutations 

in tafazzin.  

 

3. CL and BTHS 

The CL pathway is crucial for mitochondrial bioenergetics and for essential 

cellular functions not generally associated with respiration. It is, therefore, not 

surprising that perturbation of this pathway in humans leads to deleterious 

consequences. As discussed above, BTHS is a disorder resulting from loss of 

the CL remodeling enzyme tafazzin. About ten years after the first description 

of BTHS, the locus was mapped to Xq28 (Bolhuis et al., 1991) and mutations 

were identified in G4.5, the tafazzin gene (Bione et al., 1996). The link 

between CL and BTHS was first reported by Peter Vreken and colleagues, 

who demonstrated that fibroblast cultures from BTHS patients contain less CL 

than control cultures (Vreken et al., 2000). Furthermore, BTHS cells were 

defective in acylation of CL and PG with unsaturated fatty acids. Subsequent 

analysis showed that BTHS cells contained a decrease in total CL content 

(Vreken et al., 2000) and an accumulation of MLCL (Valianpour et al., 2005). 

The predominant acyl species, tetralinoleoyl-CL is absent from BTHS cells 

(Barth et al., 1999b). 
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Lymphoblast mitochondria from patients with BTHS exhibit 

hyperproliferation, impaired coupling, and abnormalities in energy metabolism 

(Xu et al., 2005) consistent with studies in tafazzin deficient yeast (Ma et al., 

2004). Due to the adhesion of opposing membranes, the intracrista space in 

BTHS mitochondria appears to be deformed (Acehan et al., 2007), which may 

explain the decrease in mitochondrial membrane potential in BTHS (Xu et al., 

2005) and in yeast taz1∆ (Ma et al., 2004). 

Approximately 28 different mutations resulting in single amino acid 

changes in tafazzin have been identified in BTHS patients (Schlame and Ren, 

2006). The mutations result in a complete loss of tafazzin or in expression of a 

severely truncated protein (Claypool et al., 2006). Interestingly, the clinical 

presentation of BTHS varies a great deal, from those who have severe 

incapacitating disease to those who are nearly asymptomatic, even among 

patients with identical mutations. This variation indicates that physiological 

modifiers play a significant role in the BTHS phenotype. Thus, while it is clear 

that tafazzin is a CL transacylase, the cellular consequences of defective 

tafazzin and the molecular basis underlying the pathologies observed in 

BTHS patients are not understood. Homologues of human tafazzin are 

present throughout eukaryotic species from yeast to mammals, and yeast 

(Claypool et al., 2006; Gu et al., 2004; Vaz et al., 2003), Drosophila (Xu et al., 

2006a), zebrafish (Khuchua et al., 2006) and mouse (Acehan et al., 2011) 

models of BTHS have been characterized. Genetic studies in these model 

systems will help to elucidate the mechanisms linking tafazzin to the cellular 
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defects in BTHS, and to identify the physiological modifiers of the BTHS 

phenotype. 

 

4. Yeast as a model system to elucidate the cellular role of CL 

The power of the yeast system in elucidating the function of CL derives from 

the characterization of the yeast genes that encode Pgs1p, Crd1p, and Taz1p 

and the availability of null mutants of these genes (Chang et al., 1998a; 

Chang et al., 1998b; Claypool et al., 2006; Gu et al., 2004; Jiang et al., 1997; 

Tuller et al., 1998; Vaz et al., 2003). These mutants are powerful molecular 

tools to elucidate the role of CL in vivo. The yeast taz1Δ null mutant exhibits 

biochemical defects similar to those observed in BTHS (Gu et al., 2004; Li et 

al., 2007; Schlame et al., 2002; Valianpour et al., 2003; Vreken et al., 2000). 

These defects are complemented by expression of the human tafazzin gene 

in the taz1Δ mutant (Ma et al., 2004). Many studies with the yeast mutants 

have shown that the CL pathway is required for optimal mitochondrial 

function, as discussed below (section 5). The mutants exhibit growth defects 

with varying degrees of severity on non-fermentable carbon sources. The 

taz1Δ mutant grows poorly on ethanol at elevated temperature (Gu et al., 

2004; Jiang et al., 2000), crd1∆ exhibits growth defects at elevated 

temperature on several carbon sources (Jiang et al., 1999; Jiang et al., 2000; 

Zhong et al., 2004), and pgs1∆ cannot grow at all on non-fermentable carbon 

sources (Chang et al., 1998a; Dzugasova et al., 1998). Interestingly, pgs1Δ 

and crd1Δ exhibit growth defects even on glucose, suggesting that the CL 

pathway is required for essential cellular processes not directly associated 
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with respiration. The crd1Δ mutant exhibits a strain dependent inability to form 

colonies at elevated temperature on glucose medium, and pgs1Δ cannot grow 

at all at 37oC on glucose unless supplemented with sorbitol (Jiang et al., 

1999; Zhong et al., 2004). Moreover, pgs1Δ also loses mitochondrial DNA, 

which may account to some degree for the inability of the mutant to grow on 

non-fermentable carbon sources. The studies summarized in section 5 

describe cellular functions that are perturbed when CL synthesis is blocked.  

 

5. Cellular functions of CL 

As discussed above, the loss of CL in yeast leads to growth defects not only 

in non-fermentable but also in fermentable media, indicating that CL is 

required for non-mitochondrial functions. Both mitochondrial and non-

mitochondrial functions of CL in yeast (Figure 1.3) are discussed in this 

section. 

 

5.1 CL and mitochondrial bioenergetics: CL is highly enriched in 

membranes designed to generate an electrochemical gradient for ATP 

synthesis, such as the bacterial plasma membrane (Dowhan, 1997)  and the 

inner mitochondrial membrane (Daum, 1985). This ubiquitous and intimate 

association between CL and energy transducing membranes suggests an 

important role for CL in bioenergetic reactions. CL modulates the catalytic 

activities of interacting proteins, such as the ADP–ATP carrier (Beyer and 

Klingenberg, 1985) and/or provides stability, as reported for complex III (Fry 

and Green, 1980) and complex IV (Sedlak and Robinson, 1999). In vivo  
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Figure 1.3: Cellular functions of CL in yeast. 
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studies have shown that loss (crd1Δ) and/or decreased CL (taz1Δ) results in 

unstable respiratory chain supercomplexes (McKenzie et al., 2006; Pfeiffer et 

al., 2003; Xu et al., 2010; Zhang et al., 2005). Unstable supercomplex leads to 

leakage of electrons that react with oxygen to form reactive oxygen species 

(ROS). Thus, it is possible that an unstable supercomplex increases oxidative 

stress that might contribute to the pathogenesis of BTHS. Indeed, during 

growth on ethanol as sole source of carbon, both crd1Δ and taz1Δ exhibit an 

increase in protein carbonylation, an indicator for increased ROS (Chen et al., 

2008a). 

 

5.2 CL and mitochondrial protein import: More than 98% of mitochondrial 

proteins are encoded in the nucleus and synthesized as precursors in the 

cytosol. These preproteins are imported into the mitochondria via 

translocases present in the outer and inner mitochondrial membrane (Pfanner 

et al., 1994). The preproteins are targeted to receptor proteins on the outer 

mitochondrial membrane and to general import proteins of the TOM complex 

(Lill and Neupert, 1996). Transport across the inner membrane is mediated by 

the TIM complex (Lill and Neupert, 1996).  

A role for CL in protein import was first suggested by the finding that 

protein import was blocked when yeast cells were treated with the CL-binding 

compound doxorubicin (Eilers et al., 1989). Subsequent studies with the 

crd1Δ mutant indicated that the absence of CL leads to a reduced membrane 

potential and decreased protein import (Jiang et al., 2000). More recently, a 

reconstitution study indicated that the membrane integration of mitochondrial 



13 
 

 
 

preproteins is most efficient when a presequence translocase is reconstituted 

in CL-containing membranes (van der Laan et al., 2007). The import defect 

was greater for a preprotein that required a membrane potential.  

A link between BTHS and protein import was suggested by the finding 

that a BTHS-like illness known as dilated cardiomyopathy with ataxia (DCMA) 

syndrome is caused by mutations in the protein import gene DNAJC19/TIM14 

(Davey et al., 2006). Like BTHS, DCMA syndrome is characterized by 

cardiomyopathy, neutropenia and elevated 3-methylglutaconic acid. The 

DNAJC19 protein shares sequence similarity with Tim14p, a protein that is 

associated with the inner mitochondrial membrane motor complex of Tim23p. 

Because the clinical presentation of DCMA is very similar to that of BTHS, it is 

interesting to speculate that the defect in BTHS may be caused or 

exacerbated by defective mitochondrial protein import. Studies discussed in 

Chapter 2 provide evidence that CL is required for assembly of outer 

membrane protein translocases (TOM) (Gebert et al., 2009). 

 

5.3 CL is associated with apoptosis and aging: CL binds specifically and 

irreversibly to cytochrome c (Rytomaa and Kinnunen, 1994), limiting the 

soluble pool of the protein. Therefore, it may play an important regulatory role 

in cytochrome c release, which triggers the downstream events in apoptosis 

(Kagan et al., 2005). A role for CL has been implicated in the inter-related 

processes of aging and apoptosis (Iverson and Orrenius, 2004; McMillin and 

Dowhan, 2002; Pollack and Leeuwenburgh, 2001). Loss of CL in yeast leads 

to decreased replicative life span. These defects were rescued by down 
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regulating the high osmolarity glycerol stress response pathway or by 

promoting cell integrity, suggesting that stress response is perturbed in cells 

lacking CL (Zhou et al., 2009).  

 

5.4 Mitochondrial anionic phospholipids and cell wall biogenesis: 

Experiments to isolate suppressors of the pgs1Δ temperature sensitivity 

phenotype led to the identification of a loss of function mutant of KRE5, a 

gene involved in cell wall biogenesis (Zhong et al., 2005). Suppression of 

pgs1Δ temperature sensitivity by kre5Δ suggested a connection between the 

CL pathway and cell wall biogenesis (Zhong et al., 2005), consistent with the 

finding of Lussier et al. that disruption of the PGS1 promoter leads to 

hypersensitivity to cell wall perturbing agents such as zymolyase, calcofluor 

white, papulacandin and caffeine (Lussier et al., 1997). Biochemical analysis 

of the cell wall of pgs1Δ indicated that the mutant has reduced levels of β-1,3-

glucan (Zhong et al., 2005). Consistent with this, cytological studies revealed 

that pgs1Δ cells exhibited the enlarged cell phenotype characteristic of cell 

wall mutants. Levels of β-1, 3-glucan were increased in the kre5 suppressor 

mutant, and the phenotypes of temperature sensitivity and enlarged spherical 

morphology were suppressed by kre5. What are the mechanisms linking 

mitochondrial anionic phospholipids to the cell wall, from which these lipids 

are absent? A clue to this question comes from the finding that cell wall 

defects in the pgs1Δ mutant are associated with perturbation of the cell 

integrity pathway (Zhong et al., 2007). In this pathway, activation of Pkc1p in 

response to cell wall stress results in activation of a cascade of proteins in the 
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Mpk1/ Slt2 mitogen activated protein kinase (MAPK) pathway, culminating in 

the activation/dual phosphorylation of Slt2. The dual phosphorylated Slt2p 

activates transcription factors that up-regulate genes involved in cell wall 

synthesis (Jung and Levin, 1999; Terashima et al., 2000). Interestingly, the 

pgs1Δ mutant exhibits defective Slt2p activation, which is restored by the kre5 

suppressor (Zhong et al., 2007). The mechanism linking PG/CL to the Slt2 

pathway is not known.  

 

5.5 CL, inositol sphingolipid phospholipase C (Isc1p), and translational 

regulation of electron transport chain (ETC) components: Dowhan et al. 

made the surprising observation that pgs1Δ exhibits defective translational 

regulation of several mitochondria-encoded ETC components and of Cox4p, a 

nuclear-encoded component of the ETC (Ostrander et al., 2001). The 

translational defect resulted from the lack of PG/CL in the mitochondrial 

membrane, as re-introduction of PGS1 on a high copy plasmid restored 

expression of Cox4p. RNA levels were not affected, and in vitro studies 

indicated that the defect was not due to decreased protein import but rather to 

a failure of translation (Su and Dowhan, 2006). Deletion analysis of the 

upstream non-coding region of COX4 suggested that a cis-acting sequence 

with two stem-loops in the 5′ UTR appeared to be responsible for inhibition of 

COX4 translation. Trans-acting factors that bind to this region have not been 

identified; however, binding of a protein factor(s) to this sequence was 

observed with cytoplasm from pgs1Δ but not wild type PGS1 cells, and loss of 

function mutants that allowed expression of reporter constructs under control 
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of the COX4 promoter were isolated. These findings identify a novel cross talk 

pathway between mitochondria and the nucleus, in which translation of 

nuclear-encoded proteins destined for the mitochondrial membrane respond 

to a deficiency of mitochondrial anionic lipids PG and/or CL (Su and Dowhan, 

2006).  

Defective translation of Cox4p was also seen with the loss of inositol 

phosphosphingolipid phospholipase C (Isc1p), a member of the family of 

neutral sphingomyelinases that regulate ceramide synthesis. Isc1p is 

localized to the mitochondrial outer membrane. Its activity is impaired in the 

pgs1Δ mutant, suggesting that PG/CL is required for activation of this enzyme 

(Vaena de Avalos et al., 2005). Interestingly, the phenotypic defects of isc1Δ 

and pgs1Δ are similar, which suggests that these genes may have 

overlapping functions. These findings led to the speculation that PG regulates 

translation of the ETC proteins indirectly by activation of Isc1p. 

 

5.6 CL and the vacuole: Recent studies provide interesting evidence that the 

loss of CL affects vacuolar function. The loss of CL leads to vacuolar defects, 

including swollen vacuolar morphology and loss of vacuolar acidification at the 

non-permissive temperature (Chen et al., 2008b). Consistent with this, the 

crd1Δ mutant showed decreased vacuolar H (+)-ATPase activity and proton 

pumping. Deletion of NHX1, which is required for Na+ and K+ ion exchange, 

and for vacuolar fusion, alleviates the temperature sensitive (ts) phenotype of 

crd1Δ, suggesting that vacuolar function is essential for survival of crd1Δ. 

Interestingly, deletion of RTG2, a sensor for mitochondrial dysfunction, also 
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rescues the ts phenotype and defects in vacuolar morphology of crd1Δ mutant 

cells (Chen et al., 2008b). The role of CL in the cross talk between vacuole 

and mitochondria is yet unknown.  

 

5.7 CL and the cell cycle: The loss of mitochondrial DNA in cells lacking CL 

leads to elevated expression of the morphogenesis checkpoint protein Swe1p 

(Chen et al., 2010b). The elevated expression of Swe1 is most likely due to 

activation of the retrograde pathway, as deletion of RTG2 and RTG3 rescues 

the elevated expression of Swe1. In addition, deletion of Swe1 in rho0 cells of 

the crd1Δ mutant rescues the cell cycle defect (Chen et al., 2010b). The 

mechanistic link between CL and the cell cycle has not been elucidated.  

 

6. Project outline 

 The objective of the studies described in this thesis is to understand 

the cellular functions of CL that may identify physiological modifiers of BTHS. 

Utilizing power of yeast genetics, I showed that CL is required for 

mitochondrial protein import (Chapter 2), mitochondrial fusion (Chapter 3), 

and the mitochondrial retrograde pathway (Chapter 4).   

 As discussed above, BTHS is caused by mutations in tafazzin. BTHS 

patients exhibit a wide range of clinical symptoms, indicating that 

physiological modifiers influence the BTHS phenotype. Based on these 

observations, I hypothesized that the identification of synthetic lethal 

interactions with CL mutants will identify potential physiological modifiers. 

Using yeast as my model system, a targeted synthetic lethality screen was 
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performed with the CL mutants to identify genes that share common 

pathway/functions with CL. These studies showed that CL mutants genetically 

interacted with several mutants of mitochondrial protein import and 

mitochondrial morphology. Studies in Chapter 2 describe the role of CL in 

protein import and in the maintenance of mitochondrial morphology.  

 Previous findings have reported that cells lacking both CL and 

mitochondrial PE are inviable, suggesting an overlapping role of these 

phospholipids. Because these lipids affect membrane curvature, I 

hypothesized that they have overlapping roles in mitochondrial fusion. The 

studies in Chapter 3 show that the loss of both CL and mitochondrial PE leads 

to highly fragmented mitochondria caused by defective mitochondrial fusion. 

These results strongly suggest that CL and mitochondrial PE have 

overlapping functions in mitochondrial fusion and are required to maintain 

tubular mitochondrial morphology. Thus, Chapter 3 identifies a specific role of 

CL in mitochondrial fusion, which could be a modifier of tafazzin deficiency in 

BTHS. 

 Chapter 4 identifies a role of CL in essential metabolic pathways, 

including the TCA cycle, β-oxidation pathway and the glyoxylate cycle. Recent 

findings from the Greenberg lab showed that the loss of CL leads to 

decreased activities of TCA cycle enzymes aconitase and succinate 

dehydrogenase (Vinay Patil, unpublished). A block in the TCA cycle leads to 

activation of the mitochondrial retrograde (RTG) pathway in WT cells. The 

studies in Chapter 4 test my hypothesis that crd1Δ exhibits defective 

activation of the RTG pathway at elevated temperature. Consistent with this 
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prediction, I report that the loss of CL leads to metabolic defects that are not 

alleviated due to defect in activation of the RTG pathway. 

 While the studies described here identify fascinating cellular functions 

of CL, many questions remain unanswered. Future studies to elucidate the 

mechanisms whereby CL affects these functions are suggested in Chapter 5.  
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CHAPTER 2 

 

GENETIC SCREEN TO IDENTIFY PHYSIOLOGICAL MODIFIERS THAT 

EXACERBATE THE LOSS OF CARDIOLIPIN IN S. CEREVISIAE 

 

Parts of this chapter have been published in Current Biology 19(24): 2133-9, 

2009.  I thank Gnanada Kulkarni and Naomi Fei for assistance with tetrad 

dissection.  

 

INTRODUCTION 

 

Barth Syndrome (BTHS) is a rare X-linked disorder characterized by 

cardiomyopathy, skeletal myopathy, neutropenia, 3-methylglutaconic aciduria 

and growth retardation due to abnormal mitochondria and defective oxidative 

phosphorylation (Barth et al., 1981). Other metabolic abnormalities found in 

patients include elevated urinary excretion of 3-methylglutaconic acid 

(Cardonick et al., 1997) and hypocholesterolemia (Mazzocco et al., 2007). 

About ten years after the first description of BTHS, mutations were identified 

in G4.5, commonly referred to as tafazzin (TAZ1) (Bione et al., 1996). 

Mutations result in the complete loss of Taz1p or in expression of a severely 

truncated Taz1p (Bione et al., 1996). The characteristic symptoms of BTHS 

vary widely, even among patients with identical mutation, and there is 

considerable variation in the age of onset and in disease progression (Barth et 

al., 2004). Cardiomyopathy is a characteristic feature and primary cause of 
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death in BTHS patients (Barth et al., 1999a). Cardiomyopathy is a structural 

disease of the heart muscle that is marked by rigidity and loss of flexibility of 

the heart walls, leading to weakness and fatigue (Barth et al., 1983). Skeletal 

myopathy and cardiomyopathy lead to delayed motor development in some 

BTHS patients, and to changes in cardiac mitochondrial appearance (Xu et 

al., 2006a). Skeletal myopathy and cardiomyopathy are due to muscle 

weakness, which can be related to deficient oxidative phosphorylation (Barth 

et al., 1999b). Sudden neutropenia, an abnormally low number of neutrophils, 

is a major cause of death in BTHS patients due to bacterial infections (Barth 

et al., 2004). Neutropenia in BTHS is cyclic, and thus not always detectable, 

but it is a major cause of concern as it often leads to chronic bacterial 

infections. 3-methylglutaconic aciduria (3-MGA) in the urine of BTHS patients 

is caused by deficiency of the enzyme 3-methylglutaconyl-CoA hydratase, 

involved in the mitochondria localized leucine degradation pathway (Schmidt 

et al., 2004). 

 As mentioned, the clinical symptoms of BTHS vary among patients 

even those with identical mutations (Gonzalez, 2005). These range from 

severe incapacitating disease to those who are nearly asymptomatic 

(Gonzalez, 2005). The cellular function of Taz1p and the molecular basis 

underlying the pathologies observed in BTHS patients are not well 

understood. Peter Vreken and colleagues demonstrated that fibroblast 

cultures from BTHS patients contain less CL than control cultures (Vreken et 

al., 2000). Furthermore, BTHS cells were defective in acylation of CL and PG 

with unsaturated fatty acids. Subsequent analysis showed that BTHS cells 



22 
 

 
 

contained a decrease in total CL content (Vreken et al., 2000) and an 

accumulation of MLCL (Valianpour et al., 2005). The predominant acyl 

species, tetralinoleoyl-CL, is absent from BTHS cells (Schlame et al., 2003).  

The role of tafazzin is highly conserved from yeast to humans. To 

elucidate the role of tafazzin in BTHS, the Greenberg lab has developed a 

yeast model for the disorder (Gu et al., 2004). The taz1∆ mutant, a null mutant 

of tafazzin, has decreased CL, increased MLCL, and aberrant acyl species, 

similar to the biochemical profile in BTHS. These defects are complemented 

by expression of the human TAZ1 cDNA (Ma et al., 2004). Therefore, the 

yeast model for BTHS is a powerful tool for in vivo studies of tafazzin function. 

To elucidate the function of tafazzin and identify the physiological factors that 

exacerbate its loss, we used the powerful genetic tool of synthetic lethality. 

Synthetic lethal analysis exploits the possibility that two non-lethal mutations 

in genes that provide an essential function lead to an inviable cell when 

present together (Hartman et al., 2001). An example of this is demonstrated 

by previous studies in the lab, which have identified a synthetic lethal 

interaction between the genes for mitochondrial phosphatidylethanolamine 

(PE) synthesis and CL synthase (Gohil et al., 2005). This study indicated that 

mitochondrial biosynthesis of PE is essential for yeast crd1∆ cells, which lack 

CL.  

In this chapter, I report a screen for synthetic lethality with crd1Δ and 

taz1Δ, screening target genes that represent pathways relevant to the clinical 

presentation in BTHS patients. Several mutants from functional categories 

such as mitochondrial protein import and mitochondrial morphology exhibited 
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synthetic lethal or synthetic sick phenotypes with the CL mutants, suggesting 

a possible overlapping role of CL in these mitochondrial functions. Consistent 

with the prediction, we show that CL is required for outer membrane protein 

biogenesis (Gebert et al., 2009). In addition, the following chapter (Chapter 3) 

shows that CL is also required for mitochondrial fusion (Joshi et al., 2012).  
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Materials and methods 

 

Yeast strains and growth media:  

The yeast strains used in this study are isogenic to BY4741 and BY4742. 

Complex medium (YP) contained 1% yeast extract (US Biological), 2% 

peptone (Fischer Scientific) and 2% glucose (Fischer Scientific) in YPD and 

3% glycerol (EMD) in YPG. Complete synthetic medium (CSM) contained 

adenine (20.25 mg/liter), arginine (20 mg/liter), histidine (20 mg/liter), leucine 

(60 mg/liter), lysine (200 mg/liter), methionine (20 mg/liter), threonine (300 

mg/liter), tryptophan (20 mg/liter), and uracil (20 mg/liter), vitamins, salts 

(essentially components of Difco Vitamin Free Yeast Base without amino 

acids), and glucose (2%). Synthetic drop out medium contained all of the 

above ingredients except the amino acid used as a selectable marker. 

Sporulation medium contained potassium acetate (1%), glucose (0.05%), and 

the essential amino acids. Solid medium was prepared by adding 2% agar.   

 

Construction of double mutants by tetrad dissection: 

The CL mutants crd1Δ::URA3 and taz1Δ::URA3 MATα/MATa were crossed 

with mutants of opposite mating type obtained from the yeast deletion 

collection. The heterozygous diploids were selected on dropout media lacking 

methionine and lysine, sporulated, and tetrads were dissected. The synthetic 

interaction between CL and deletion mutants was determined by examining 

the growth of the double mutant compared to isogenic parent strains and wild 

type on YPD.  



25 
 

 
 

Extraction, separation and analysis of yeast total phospholipids: 

Yeast cells were grown in the presence of 32Pi (10 µCi/ml) in the indicated 

growth conditions. Total phospholipids were extracted and analyzed by TLC 

as described (Vaden et al., 2005). The developed chromatograms were 

analyzed by phosphorimaging and the phospholipids were quantified using 

Image Quant software.  

 

Fluorescence microscopy: 

Fluorescence microscopy was performed using an Olympus BX41 

epifluorescence microscope. Images were acquired using an Olympus Q-

Color3 digitally charge-coupled device camera operated by QCapture2 

software. All pictures were taken at 1,000 X. To stain mitochondrial DNA, 

yeast cells were cultured to the mid-log phase, fixed in 70% ethanol at room 

temperature for 30 min, washed two times with distilled water, and stained 

with 1 µg/ml DAPI (Sigma) for 5 min. 
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Results 

 

Acyltransferase and sterol metabolism mutants are not synthetically 

lethal with CL mutants  

The first group tested for synthetic lethality with taz1Δ was the 

acyltransferases. Tafazzin is a transacylase that remodels CL (Xu et al., 

2006b). We hypothesized that other acyltransferases or their products could 

compensate for the loss of TAZ1. Loss of these compensatory enzymes or 

products might thus be lethal in a TAZ1 deficient cell. The second group 

tested for synthetic lethality with CL mutants was sterol metabolism. The 

sterol metabolism pathway is relevant because hypocholesterolemia is a 

prevalent clinical abnormality in BTHS (Spencer et al., 2006). Sterols are a 

vital component of mitochondrial membranes. In addition to this, sterol 

synthesis is highly conserved in yeast and mammals (Guo et al., 2001; 

Hampton et al., 1996; Lees et al., 1999). Therefore, we hypothesized that loss 

of sterol might be lethal in taz1∆, as the loss might exacerbate defective 

mitochondrial function. To test these hypotheses, we crossed nine 

acyltransferase mutants (Table 2.1) and three sterol metabolism mutants 

(Table 2.2) obtained from the deletion collection with the taz1Δ mutant, and 

performed tetrad analysis. In all twelve crosses, the double mutants (CL 

mutant and sterol or acyltransferase mutant) were viable, indicating that the 

taz1∆ mutant is not synthetically lethal with acyltransferase or sterol 

metabolism mutants (Tables 2.1 and 2.2).  
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Table 2.1: Genetic interaction of acyltransferase mutants with taz1∆. The 

acyltransferase mutants in the MATa genetic background were crossed with 

the taz1Δ mutant (MATα) to obtain double mutants. Genetic interaction was 

determined based on the viability of the double mutant. Inviable double 

mutants would suggest a synthetic lethal interaction; viable double mutants 

with growth defects would indicate a synthetic sick interaction, and double 

mutants with no growth defect would indicate no genetic interaction. No 

genetic interactions were found in these crosses. 

 

 

Table 2.2: Genetic interaction of sterol metabolism mutants with taz1∆. 

The sterol metabolism mutants were crossed with the taz1Δ mutant to obtain 

double mutants. Genetic interaction was determined as in Table 2.1. No 

genetic interaction was found. 

 
 

Acyltransferase mutants Number of tetrads dissected Genetic 
interaction 

slc1∆ 18 No 
are1∆ 20 No 
lro1∆ 25 No 

dga1∆ 16 No 
sct1∆ 15 No 
gpt2∆ 16 No 

mum3∆ 20 No 
YBR042C∆ 20 No 
YDR018C∆ 18 No 

Sterol metabolism 
mutants 

Number of tetrads dissected Genetic 
interaction 

atf1∆ 18 No 
osh6∆ 17 No 
izh4∆ 18 No 
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CL is required for assembly of the outer mitochondrial membrane 

protein complex 

Previous studies in the Greenberg lab suggested that CL is required for 

mitochondrial protein import at elevated temperature (Jiang et al., 2000). 

Interestingly, a BTHS-like illness known as dilated cardiomyopathy with ataxia 

(DCMA) syndrome is caused by mutations in the protein import gene 

DNAJC19/TIM14. These findings strongly suggest that the defect in BTHS 

may be caused or exacerbated by defective mitochondrial protein import. To 

test this possibility, we screened mutants of the outer and inner mitochondrial 

membrane complexes for genetic interactions with crd1∆ and taz1∆. The 

outer mitochondrial membrane consists of TOM, SAM and MDM complexes 

(Figure 2.1). The TOM machinery is made up of at least seven subunits: the 

channel forming unit Tom40p, the receptor components Tom22p, Tom20p, 

and Tom70p, and small Tom proteins Tom5p, Tom6p, and Tom7p (Bolender 

et al., 2008). The TOM complex is involved in the import of some outer 

membrane precursors, but whether it is required for import and assembly of 

all outer membrane proteins is unclear (Rapaport, 2003). The SAM complex is 

required for the insertion of ß-barrel proteins in the outer membrane (Kozjak 

et al., 2003). As seen in Figure 2.2, the double mutants exhibited a range of 

phenotypes. The crd1∆tom5∆ and crd1∆mdm12∆ mutants were synthetically 

lethal. The tom5∆ mutant was also lethal with taz1Δ. The mutants tom70∆, 

tom7∆, mdm10∆, mdm12∆, mmm1∆, sam37∆ were synthetically sick with 

crd1∆ and taz1∆, as double mutants grew at 300C but not at elevated 

temperatures. Double mutants tom6∆crd1∆ and tom6∆taz1∆ grew similar to 
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Figure 2.1: Mitochondrial protein import machinery. Nuclear encoded 

proteins are imported into the mitochondria via the translocase of the outer 

membrane (TOM) and two translocases of the inner membrane (TIM22 and 

TIM23). The presequence directs preproteins to the TOM complex at the 

outer membrane, then to the TIM23 and PAM complexes at the inner 

membrane. Carrier (transporter) proteins with internal target sequences are 

targeted to Tom70, and then inserted into the inner membrane by the TIM22 

complex (Bolender et al., 2008). 

 

 



30 
 

 
 

 

Figure 2.2: Genetic interactions and synthetic growth defects. Cells were 

grown at 300C in liquid YPD to the early stationary phase, serially diluted, 

spotted on YPD plates, and incubated at the indicated temperatures for 3 to 5 

days. 
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WT. The growth defects in import mutants were more severe with crd1Δ than 

taz1∆, supporting the hypothesis that the defects were due to CL. The genetic 

interactions of TOM, SAM and MDM complex mutants with the taz1∆ mutant 

suggest that aberrant CL species (lacking unsaturated fatty acids), increased 

MLCL or decreased CL in the taz1Δ mutant was insufficient to fully support 

the function of CL in mitochondrial protein import. The genetic interactions of 

the CL mutants were observed not only with the TOM complex (Table 2.3) but 

also with the SAM and MDM (Table 2.4) complexes, which are involved in the 

assembly of outer membrane β-barrel proteins, suggesting that CL is required 

for the assembly of these proteins. In collaboration with Dr. Nikolaus Pfanner 

(University of Freiburg), we revealed a new role for CL in protein sorting at the 

outer mitochondrial membrane (Gebert et al., 2009). 

 

CRD1 genetically interacts with TIM and PAM complexes 

Pre-proteins translocated from the TOM complex are directed to the inner 

membrane translocase, the Tim23p complex (Bauer et al., 1996). An alternate 

pathway for insertion of inner membrane proteins (transporter proteins) is the 

carrier pathway mediated by the Tim22p complex. To identify the function of 

CL in inner mitochondrial protein import, we crossed the available deletion 

mutants from the Tim23 and Tim22 complexes, mitochondrial intermembrane 

space import and assembly machinery (MIA) complex, presequence 

translocase-associated motor (PAM) complex that is associated with Tim23, 

and chaperones of intermembrane space (small TIM proteins) complexes with 

the CL mutants (Figure 2.1).  
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Table 2.3: Genetic interaction of CL mutants with the TOM complex. The 

TOM complex mutants were crossed with the CL mutants to obtain double 

mutants. The genetic interaction was determined based on the viability of the 

double mutants. Key: (-): no growth; (+/-): poor growth; (+): good growth. 

 
 

Table 2.4: Genetic interaction of CL mutants with the SAM and MDM 

complexes. The SAM and MDM complex mutants were crossed with the CL 

mutants to obtain double mutants. The genetic interaction was determined 

based on the viability of the double mutants. Key: (-): no growth; (+/-): poor 

growth; (+): good growth. 

Growth of double mutants 

taz1Δ crd1Δ 

Mitochondrial protein import 
mutants 

300C 380C 300C 380C 
tom5∆ - - - - 
tom6∆ + + + + 
tom7∆ + + +/- +/- 

tom70∆ + +/- +/- +/- 

Growth of double mutants 

taz1Δ crd1Δ 

Mitochondrial protein import 
mutants 

300C 370C 300C 370C 
mdm10∆ + +/- +/- - 

 300C 360C 300C 360C 
sam37∆ + +/- + +/- 

 300C 380C 300C 380C 
mdm12∆ +/- - - - 
mmm1∆ + +/- + +/- 
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TIM23 and PAM complexes: The Tim23p complex mediates a membrane 

potential and ATP driven import of proteins across the mitochondrial inner 

membrane (Truscott et al., 2001). This complex, along with mtHsp70 and the 

PAM complex, drive the import of the preprotein into the matrix in an ATP 

dependent manner (Krayl et al., 2007). An alternative route for import of 

proteins by the TIM23 complex includes Tim17p and Tim21p (Figure 2.1). 

This pathway is independent of function of mtHsp70 and ATP (Chacinska et 

al., 2005). Even though the CL mutants did not genetically interact with the 

tim21Δ mutant from the Tim23 complex, the crd1Δ mutant was synthetic sick 

with pam17Δ (Table 2.5). Pam17p modulates the function of the core Tim23 

complex by affecting its conformation (van der Laan et al., 2005). The genetic 

interaction studies indicate that CL might affect the assembly of TIM23 by 

affecting the function of the PAM complex.  Our studies indicate that CL is 

specifically required for the ATP and membrane potential dependent functions 

of the TIM23 complex.  

TIM22 complex: The TIM22 complex is required for insertion of hydrophobic 

proteins, usually carrier proteins such as the ADP/ATP carrier (transporters) 

(Wiedemann et al., 2001). The import pathway that involves the TIM22 

complex is, thus, termed the carrier pathway. The TIM22 complex core 

consists of Tim22p, Tim54p, Tim18p, and Sdh3p (Figure 2.1). The core of the 

TIM22 complex is associated with small TIM proteins (Tim9p, Tim10p, 

Tim12p) from the intermembrane space (Figure 2.1). The small TIM proteins 

facilitate the transit of proteins during import from the outer membrane 

complex (TOM) to the inner membrane complex (TIM22) (Curran et al., 2002). 



34 
 

 
 

Table 2.5: Genetic interaction of CL mutants with mitochondrial inner 

membrane protein import complexes. The TIM and PAM complex mutants 

were crossed with the CL mutants to obtain double mutants. The genetic 

interaction was determined based on the viability of the double mutants. Key: 

(-): no growth; (+/-): poor growth; (+): good growth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Growth of double mutants 

taz1Δ crd1Δ 

Mitochondrial 
protein import 

mutants 

300C 370C 300C 370C 
hot13Δ + + + + 
tim13Δ + + + + 
tim18∆ + + - - 

pam17Δ + + +/- +/- 
tim21∆ + + + + 
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Interestingly, the tim18Δ mutant was synthetically lethal with crd1Δ but not 

with taz1Δ (Table 2.5). These results indicate that the complete loss of CL, as 

in crd1Δ, affects the function of the TIM22 complex while the presence of 

decreased levels of CL, aberrant CL species or increased MLCL, as in the 

taz1Δ mutant, are sufficient to support Tim22 function. Tim18p is a subunit of 

Tim22 complex that assembles with Sdh3p to function in protein biogenesis 

(Gebert et al., 2011). In addition to the synthetic lethal interaction between 

crd1Δ and tim18Δ, recent studies have shown that the loss of CL leads to 

decreased activity of the SDH complex (Vinay Patil, unpublished), indicating 

that CL is required for the function of the subunits of the TIM22 complex.  

MIA complex and small TIM proteins: The MIA complex proteins Mia40p 

and Erv1p, along with Hot13p, stabilize proteins imported from the TOM 

complex and relay them to the small TIM proteins or to the TIM22 complex 

(Curran et al., 2002; Rissler et al., 2005). The crd1Δ and the taz1Δ mutants 

did not genetically interact with the available deletion mutants, including 

hot13Δ, from the intermembrane space MIA complex, and the small TIM 

protein mutant tim13Δ (Table 2.5). These findings strongly suggest that the 

function of CL is limited to the membrane proteins required for mitochondrial 

protein import.  

 

Deletion of mitochondrial morphology genes exacerbates the growth 

defect in crd1Δ 

CL is involved in mitochondrial membrane structure and stability due to its 

unique physical properties. This structurally unique lipid assembles in the 
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presence of divalent cations as inverted hexagonal structures (Vasilenko et 

al., 1982). Recent studies have demonstrated that CL is required for 

maintaining mitochondrial morphology (Kuroda et al., 2011b; Osman et al., 

2009b; Tamura et al., 2009). We recently demonstrated a specific function of 

CL in mitochondrial fusion (Chapter 3) (Joshi et al., 2012). Mitochondria from 

cells with mutated tafazzin exhibit abnormal mitochondrial morphology, further 

supporting a role for CL in mitochondrial morphology (Acehan et al., 2011; 

Acehan et al., 2007; Xu et al., 2005). The lack of CL could indirectly affect 

morphology due to reduced mitochondrial functions such as defective 

mitochondrial protein import and loss of mitochondrial DNA. Therefore, we 

hypothesized that deletion of genes with functions related to maintenance of 

mitochondrial morphology would exacerbate the growth defects of cells 

lacking CL. To characterize the function of CL in mitochondrial morphology, 

we performed a targeted synthetic lethality screen assessing genetic 

interactions between mutants lacking CL and mutants in mitochondrial 

morphology. The genetic screen in the current study identified both lethal and 

sick interactions. The genes that affect mitochondrial morphology are grouped 

according to their individual functions in Table 2.6. 

UPS proteins: Ups1p was first shown to mediate processing of Mgm1p, an 

inner mitochondrial membrane protein required for mitochondrial fusion, to 

small and long isoforms (Sesaki et al., 2006). Recent findings have shown 

that Ups1 and Ups2 proteins regulate the levels of mitochondrial PE and CL 

Table 2.6: Genetic interaction of CL mutants with mitochondrial 

morphology mutants. Mitochondrial morphology mutants were crossed with 
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crd1Δ to obtain double mutants. Key: (-): No growth; (+/-): poor growth; (+): 

good growth. 

crd1∆ Mitochondrial morphology mutants 
 

300C 370C 

ups1∆ - - 

ups2∆ - - 

UPS protein 

ups3∆ + + 

get1∆ + +/- 

get2∆ +/- +/- 

GET complex 

get3∆ + +/- 

mdm31∆ + + Mitochondrial inheritance 

mdm32∆ + + 

ERMES complex gem1∆ +/- +/- 

F-box protein association mfb1∆ + + 

Imported protein cleavage cym1∆ + +/- 

Fatty acid synthesis htd2∆ + +/- 

Similarity to hemolysins mam3∆ + +/- 

dnm1∆ +/- - 

fis1∆ + + 

mdv1∆ + + 

mdm36∆ + +/- 

ugo1∆ - - 

fzo1∆ - - 

Mitochondrial dynamics 

mgm1∆ + + 
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Figure 2.3: crd1Δ is synthetically lethal with ups1Δ. A diploid strain 

heterozygous for deletion of CRD1 and UPS1 was sporulated, and tetrads 

were dissected and incubated on YPD for 3-4 days at 30°C. Tetrads 1,3,6 and 

7 are tetratype asci, and 2,4 and 5 are parental ditypes. Arrows indicate 

inviable double mutant haploid spores. 
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(Tamura et al., 2009). Thus, to determine if UPS proteins and CL have 

overlapping cellular functions, we tested if UPS mutants genetically interacted 

with crd1Δ. As seen in Figure 2.3, CRD1 is synthetically lethal with UPS1, as 

crd1Δups1Δ is not viable. Earlier studies showed that the ups1Δ mutant has 

seven-fold decreased levels of CL (Osman et al., 2009a). We demonstrate 

here that CL is essential for viability of the ups1Δ mutant. Consistent with 

earlier studies (Osman et al., 2009a), we observed synthetic lethality between 

crd1Δ and ups2Δ. The synthetic lethality is very likely due to the decreased 

PE levels in ups2Δ (Osman et al., 2009a; Tamura et al., 2009), as our 

previous studies showed that synthesis of mitochondrial PE is essential in 

cells lacking CL (Gohil et al., 2005). UPS1 and UPS2 antagonistically regulate 

CL levels, affect the assembly of mitochondrial protein import complexes such 

as TIM23, which is present in the inner membrane, and regulate mitochondrial 

morphology (Tamura et al., 2009). The mechanism by which UPS1 and UPS2 

regulate CL levels remains unknown.  

GET complex: The second group of mutants that interact with CRD1 is the 

GET complex. Recent studies have suggested that the GET complex is 

required for targeting newly synthesized tail-anchored (TA) proteins to the ER 

membrane. This process involves formation of the Get3p-TA complex in the 

cytosol, which is then recruited by the Get1/2p receptor proteins present in the 

ER membrane to insert the TA proteins in the lipid bilayer (Mariappan et al., 

2011; Schuldiner et al., 2008; Stefer et al., 2011; Wang et al., 2011). Both 

crd1Δget1Δ and crd1Δget3Δ exhibited growth defects compared to the parent 

strains (Figure 2.4). In contrast, genetic interaction was not observed between 
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Figure 2.4: crd1Δ is synthetically sick with get1Δ and getΔ3. Yeast cells 

were pre-cultured overnight in YPD at 30°C, serially diluted and spotted on 

YPD plates. The plates were incubated at 30°C and 37°C for 3-4 days. 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crd1Δ and get2Δ. These findings suggests that at elevated temperature, CL is 

essential for the growth of get1Δ and get3Δ but not get2Δ, or that the function 

of Get1p or Get3p, but not Get2p, is essential for growth of crd1Δ. These 

findings may indicate that CL shares a novel essential function with Get1p 

and Get3p but not with Get2p.  

Surprisingly, the GET complex mutants get1Δ and get2Δ, but not 

get3Δ, exhibited a decrease in CL levels (~25% and ~55%, respectively) 

compared to WT (Figure 2.5, Table 2.7). This is the first demonstration that 

ER membrane receptor proteins Get1p and Get2p regulate the levels of CL. 

While the loss of mitochondrial DNA leads to a decrease in CL (Chen et al., 

2010b), this cannot explain the reduced CL levels in get1Δ and get2Δ, as 

DAPI staining indicated the presence of mitochondrial DNA (mtDNA) in the 

GET mutants (Figure 2.6). Although the GET mutants were not deficient in 

mtDNA, they exhibited a severe growth defect in respiratory medium, 

indicating reduced mitochondrial function (Figure 2.7). These results indicate 

that import of precursors of CL or enzymes required for CL biosynthesis in the 

mitochondria might be affected in the get1Δ and get2Δ mutants. Our results 

clearly identify a new role for the GET complex in regulating the levels of CL 

and mitochondrial function.  

MDM proteins and GEM1: An independent study demonstrated synthetic 

interactions between crd1Δ and MDM complex mutants mdm10Δ, mmm1Δ, 

mdm12Δ and mdm34Δ, consistent with our finding (Table 2.4) (Gebert et al., 

2009), which led to identification of the ER-mitochondria tethering complex 
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Figure 2.5: Separation of phospholipids from get1Δ, get2Δ and get3Δ 

mutants. Yeast cells were grown in YPD containing 32Pi at 30°C to the early 

stationary phase. Total phospholipids were extracted and analyzed by one-

dimensional TLC as described (Vaden et al., 2005).  
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Table 2.7: Quantitation of CL in the GET and the mitochondrial fusion 

complex mutants. Yeast cells were grown in YPD with 32Pi at 30°C until early 

stationary phase. Total phospholipids were extracted and analyzed by 1D- 

TLC as described (Vaden et al., 2005). Values indicated represent mean ± 

S.D (n=2) for GET mutants and ± S.E (n=3) for fusion mutants.  

Strains % CL (Mean ± S.D) Strains % CL (Mean ± S.E) 

WT 100 WT rho zero 100 

get1Δ 77.7 ± 4.7 mgm1Δ 89.6 ± 12.7 

get2Δ 45.3 ± 0.7 ugo1Δ 32.0 ± 15.5 

get3Δ 90.7 ± 9.3 fzo1Δ 134.4 ± 18.11 
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Figure 2.6: The get1Δ, get2Δ and get3Δ mutants do not exhibit loss of 

mitochondrial DNA. Yeast cells were cultured to the mid-log phase, fixed in 

70% ethanol at room temperature for 30 min, washed two times with distilled 

water, and stained with 1 µg/ml DAPI (Sigma) for 5 min. Arrows indicate 

mtDNA. 
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Figure 2.7: GET complex mutants exhibit decreased mitochondrial 

function. Yeast cells grown in liquid YPD for 1 day were inoculated into liquid 

YPG to an A550 of 0.1 and grown at 300C with shaking at 230 rpm. Aliquots of 

each culture were taken and cell density was measured at A550.  
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(ERMES). The ERMES complex was shown to be involved in phospholipid 

exchange, mitochondrial protein import, maintenance of mitochondrial DNA 

and morphology (Kornmann et al., 2009). In a recent finding, Kornmann et al. 

suggested that Gem1p is an integral component of the ERMES complex. It 

was shown to regulate the number and size of ERMES complexes and 

mediate phospholipid exchange. Consistent with this study, we showed that 

crd1Δ genetically interacts with gem1Δ (Table 2.6), supporting the function of 

the ERMES complex in phospholipid exchange (Kornmann et al., 2011). 

Mitochondrial dynamics: CRD1 genetically interacted with genes involved in 

mitochondrial fusion and fission. CRD1 is synthetically lethal with 

mitochondrial fusion genes UGO1 and FZO1 (Table 2.6). The fzo1Δ mutant 

also exhibited synthetic interaction with fmp30Δ, a mitochondrial inner 

membrane protein required for maintaining mitochondrial morphology and 

regulating CL levels (Kuroda et al., 2011b). To determine if fusion genes 

regulate CL levels, we examined CL levels in the fusion mutants. Because 

loss of mitochondrial DNA leads to decreased CL (Chen et al., 2010b) and 

fusion mutants lose mitochondrial DNA (Guan et al., 1993; Hermann et al., 

1998; Nunnari et al., 1997), we compared CL levels of fzo1Δ, ugo1Δ and 

mgm1Δ with WT rho0 cells. Except for ugo1Δ, fusion mutants did not exhibit a 

significant decrease in CL levels (Table 2.7). CRD1 also specifically interacted 

with the DNM1 and MDM36 genes in the fission pathway, as the dnm1Δ and 

mdm36Δ mutants exhibited synthetic interaction with crd1Δ (Table 2.6). DNM1 

is involved in mitochondrial fission, participates in endosomal trafficking, and 

regulates peroxisome abundance (Gammie et al., 1995; Kuravi et al., 2006; 
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Otsuga et al., 1998), while MDM36 is suggested to promote mitochondrial 

fission (Hammermeister et al., 2010). Genetic interaction of the mitochondrial 

dynamics mutants with crd1Δ strongly suggests that CL is required for 

maintaining mitochondrial morphology.  

Other mitochondrial morphology genes: CRD1 also genetically interacted 

with CYM1, HTD2, and MAM3, suggesting that these genes have overlapping 

functions with CRD1 in common essential cellular pathways (Table 2.6). The 

genetic screen has provided evidence that point towards specific players 

required for regulation of CL levels and mitochondrial function in yeast. 
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Discussion 

 

In this study, a targeted genetic screen was performed in S. cerevisiae to 

identify the cellular functions of CL that might be potential physiological 

modifiers of BTHS. We identified genetic interactions between CL mutants 

and mutants from mitochondrial protein import complexes (TOM, SAM, MDM, 

TIM and PAM) and mutants with defective mitochondrial morphology  (the 

UPS, and GET complexes mutants, and mitochondrial fusion and fission 

mutants), suggesting that CL is required for mitochondrial protein import and 

maintenance of morphology.  

How does the loss of CL affect mitochondrial protein import? A 

previous report from the Greenberg lab indicated that the loss of CL leads to 

decreased protein import and membrane potential at non-permissive 

temperature (Jiang et al., 2000). In the current study, we observed that 

several genes from the TIM complex genetically interact with cells lacking CL 

(Table 2.5). Loss of CL affects interaction between the TIM and PAM 

complexes (Tamura et al., 2009). In addition to this, it affects the 

electrophoretic mobility of the TIM22 complex, required for insertion of 

metabolic carrier proteins in the inner mitochondrial membrane (Tamura et al., 

2009). It appears from these studies that mitochondrial protein import in crd1Δ 

mutant cells might not only be affected by a decrease in membrane potential 

but also by altered activity and assembly of these protein complexes. 

Interestingly, we also showed that several genes from the TOM complex 

genetically interact with crd1Δ and taz1Δ mutants, strongly indicating that CL 
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shares functions with the outer membrane proteins required for protein import. 

Consistent with this, we provide evidence that a detectable amount of CL is 

present in the outer membrane and is required for assembly of the β barrel 

protein in yeast as well as in mitochondria from lymphoblasts isolated from a 

Barth patient (Gebert et al., 2009). Thus, CL is required for outer membrane 

biogenesis. Taken together, the genetic interaction data suggest that CL is 

required for the biogenesis of translocases of the inner and outer membrane.  

What is the function of CL in the maintenance of mitochondrial 

morphology? Mitochondrial morphological defect in cells lacking CL could be 

due to decreased membrane potential or decreased mitochondrial import 

(Stojanovski et al., 2006). Recent studies have shown that CL could have a 

direct effect on mitochondrial morphology (Chapter 3) (DeVay et al., 2009; 

Joshi et al., 2012; Rujiviphat et al., 2009). In the genetic screen with 

mitochondrial morphology mutants, we have shown that the GET and UPS 

complexes genetically interacted with the crd1Δ mutant, indicating that these 

modifiers share cellular functions with CL. Our findings indicate that the GET 

complex might be required for the regulation of CL levels, as the loss of GET 

proteins such as Get1p and Get2p leads to decreased CL levels. In addition 

to this, the crd1Δ mutant interacted with several other mitochondrial 

morphology mutants, indicating that CL is required for the maintenance of 

mitochondrial morphology.   

The goal of the synthetic lethality screen performed in this study was to 

identify functions of CL that might be physiological modifiers of BTHS. In the 

current study, we showed that CL is required for mitochondrial protein import 
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and maintenance of mitochondrial morphology. How could mitochondrial 

protein import and mitochondrial morphology act as physiological modifiers of 

BTHS? Import of proteins into the mitochondria is an intricate process that 

requires the presence of target sequences in the proteins, targeting of protein 

to the TOM complex present in the outer membrane, and the translocation of 

proteins into the mitochondria. Errors in these events may lead to disease in 

humans due to decreased mitochondrial proteins.  As discussed previously, 

DCMA syndrome is an illness caused by mutation in a protein (Tim14p) 

required for import. Pyruvate dehydrogenase deficiency is a disease caused 

by mutation in the targeting signal of one subunit of pyruvate dehydrogenase 

enzyme (PDH). As a result, the mitochondrial import of PDH is defective. PDH 

deficiency is the most common cause of lactic acidosis in infants and children. 

Interestingly, BTHS patients exhibit lactic acidosis upon exercise (Sweeney et 

al., 2008). Thus, it is possible that import of PDH is decreased in cells with 

defective CL. Mutation in Hsp60, a mitochondrial matrix chaperone, causes 

atypical mitochondrial disease involving, perturbation of oxidative 

phosphorylation, β-oxidation, and pyruvate metabolism (Agsteribbe et al., 

1993; Briones et al., 1997). Consistent with this, we observed that cells 

lacking CL appear to be defective in these metabolic pathways, as described 

in Chapter 4. Thus, mitochondrial protein import is potentially a vital 

physiological modifier that may lead to metabolic deficiencies in BTHS.  

The functional state of mitochondria affects its morphology. Defects in 

mitochondrial protein import, decreased ATP levels or increased ROS lead to 

defective morphology (Stojanovski et al., 2006). The genetic screen discussed 
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in the current study identified several players that might act as physiological 

modifiers of CL in BTHS, including the UPS and GET complexes. GET 

complex mutants, which have defective mitochondrial morphology, regulate 

CL levels. In addition, subsequent studies following up on the synthetic lethal 

data with fusion mutants (discussed further in chapter 3) indicate that CL is 

required for mitochondrial fusion (Joshi et al., 2012). Therefore, mitochondrial 

fusion could be a physiological modifier of BTHS. The role of mitochondrial 

fusion as a physiological modifier of BTHS is discussed in Chapter 3. Thus, 

genes that interact with CRD1 may identify functions that affect the BTHS 

phenotype. An increased understanding of the role of CL and its regulation 

could identify potential avenues for new treatments of BTHS.  
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CHAPTER 3 

 

CARDIOLIPIN AND MITOCHONDRIAL PHOSPHATIDYLETHANOLAMINE 

HAVE OVERLAPPING FUNCTIONS IN MITOCHONDRIAL FUSION IN 

SACCHAROMYCES CEREVISIAE  

 

The work in this chapter is published in the Journal of Biological Chemistry 

2012 May 18;287(21):17589-97. I thank Morgan N. Thompson for 

constructing the crd1Δpsd1Δ conditional mutant, Naomi Fei for assistance 

with tetrad dissection and microscopy, and Dr. J. Michael McCaffery, 

Integrated Imaging Centre (Johns Hopkins University), for providing EM 

images.

INTRODUCTION 

Mitochondria exist as dynamic, double membrane-bound organelles. 

Mitochondrial membranes are enriched in phospholipids and proteins that are 

required for mitochondrial biogenesis and for maintenance of mitochondrial 

morphology and the tubular network (Gohil and Greenberg, 2009). CL and PE 

are non-bilayer forming phospholipids in the mitochondrial membranes (Ardail 

et al., 1990; Gonzalvez and Gottlieb, 2007) that play an essential role in 

mitochondrial function. Although cells lacking CL or mitochondrial PE are 

viable, the loss of both phospholipids is lethal, suggesting that these lipids 

have overlapping functions that are essential (Gohil et al., 2005). Several 

recent studies have implicated the involvement of CL and mitochondrial PE in 

the maintenance of mitochondrial morphology (Kuroda et al., 2011a; Osman 
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et al., 2009a; Tamura et al., 2009). CL and PE are fusogenic phospholipids 

that form hexagonal phases in the presence of divalent cations, which confer 

negative curvature to the mitochondrial membrane (Rand and Sengupta, 

1972; van den Brink-van der Laan et al., 2004). In the current study, we 

investigated the role of CL and PE in mitochondrial fusion. Highly conserved 

protein machinery strictly regulates the process of mitochondrial fusion, and 

recent studies suggest that phospholipids also play a vital role in this process. 

Mitochondrial fusion in the yeast Saccharomyces cerevisiae primarily requires 

three proteins. These include the outer membrane GTPase, Fzo1p (Mfn1 and 

Mfn2 in mammals) (Hermann et al., 1998; Rapaport et al., 1998), the inner 

membrane GTPase, Mgm1p (Opa1 in mammals) (Wong et al., 2000; Wong et 

al., 2003), and the outer membrane protein Ugo1p, which links the two 

GTPases to form a functional complex (Hoppins et al., 2009; Sesaki and 

Jensen, 2001; Sesaki and Jensen, 2004). In S. cerevisiae, Mgm1p exists as 

long (l-Mgm1p) and short isoforms (s-Mgm1p), both of which are required for 

mitochondrial fusion (Herlan et al., 2003; Zick et al., 2009). In vitro studies 

demonstrated that CL stimulates the GTPase activity of the s-Mgm1p (DeVay 

et al., 2009; Rujiviphat et al., 2009). Moreover, it was shown in vitro that s-

Mgm1p and l-Mgm1p assemble in a CL dependent manner (DeVay et al., 

2009). We hypothesized that the mitochondrial phospholipids CL and PE have 

overlapping functions in mitochondrial fusion in vivo. Consistent with this 

hypothesis, we demonstrate that cells lacking both CL and mitochondrial PE 

have reduced levels of both Mgm1p isoforms and exhibit excessive 

fragmentation of mitochondria and defects in mitochondrial fusion.  
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MATERIAL AND METHODS 

 

Yeast strains, plasmids and growth media: 

The S. cerevisiae strains used in this study, listed in Table 3.1, are isogenic to 

BY4741 and BY4742. The single mutants were obtained from the MATa yeast 

deletion collection obtained from Dr. John Lopes. Double and triple mutants 

used in this study were obtained by tetrad dissection. Synthetic complete 

media contained standard concentration of amino acids, all the essential 

components of DIFCO vitamin-free yeast nitrogen base, 0.2% ammonium 

sulphate and glucose (2%). Synthetic dropout media contained all of the 

aforementioned ingredients except the amino acid used as a selectable 

marker. Complex media contained yeast extract (1%), peptone (2%), with 

glucose (2%) (YPD) or galactose (2%) (YP-galactose) as carbon source. All 

the plasmids were amplified and extracted using standard protocols. The 

plasmids were transformed into yeast strains using a one-step transformation 

protocol (Chen et al., 1992). The v5 epitope-tagged CRD1 gene was cloned 

into the pCM189 plasmid (ATCC), in which, the TETOFF promoter regulates 

the expression of cloned gene, using the BamHI and NotI restriction sites. The 

existing URA3 marker of the plasmid was replaced by HIS3 using EcoRV and 

ClaI restriction sites. Bacterial transformations were performed using dam- 

E.coli to avoid Dam methylase sensitivity to the ClaI restriction enzyme. 

 

Fluorescence microscopy: 
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Fluorescence microscopy was performed using an Olympus BX41 

epifluorescence microscope. Images were acquired using an Olympus Q-

Color3 digitally charge-coupled device camera operated by QCapture2 

software. All pictures were taken at 1,000 X. To stain mitochondrial DNA, 

yeast cells were cultured to the mid-log phase, fixed in 70% ethanol at room 

temperature for 30 min, washed two times with distilled water, and stained 

with 1 µg/ml DAPI (Sigma) for 5 min. Mitochondria were visualized by 

transforming the cells with either plasmid pYX142 or pYX122 expressing GFP 

fused to the mitochondrial presequence, pre Su9 (Westermann and Neupert, 

2000) (provided by Dr. Benedikt Westermann) or pYX142-mtRFP expressing 

mitochondria targeted RFP (provided by Dr. Janet Shaw). Cells were 

harvested in the appropriate medium and viewed under fluorescence 

microscopy.  

 

Electron microscopy: 

Cells were grown in 100 ml YPD to an A550 of 0.5. After harvesting, cells were 

prepared for EM using the osmium thiocarbohydrazide osmium fixation 

method (Willingham and Rutherford, 1984).   

 

In vivo fusion assay: 

The mitochondrial in vivo fusion assay was performed as described (Nunnari 

et al., 1997; Wong et al., 2003). MATα cells of WT, crd1Δ, and psd1Δ, were 

transformed with pYX122-mtGFP and MATa cells were transformed with 

pYX142-mtRFP. MATa cells of the conditional mutant crd1Δpsd1Δ were 
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transformed with pYX142-mtRFP, and MATα cells with pYX142-mtGFP. 

MATa cells of the conditional mutant crd1Δpsd1Δfis1Δ were transformed with 

pYX142-mtGFP, and MATα with pYX142-mtRFP. MATα cells of 

crd1psd1dnm1Δ were transformed with pYX142-mtGFP and MATa with 

pYX142-mtRFP. Cells were grown in 5 ml selective media to an A550 of 0.5. 

After centrifugation, cells of opposite mating type were mixed and spotted on 

an YPD plate. After 3.5 hours of incubation at 30°C, cells were observed for 

mitochondrial fusion. The images were merged and analyzed using Image J 

software.  

 

Extraction, separation and analysis of yeast total phospholipids: 

Yeast cells were grown in the presence of 32Pi (10 µCi/ml) in the indicated 

growth conditions. Total phospholipids were extracted and analyzed by TLC 

as described (Vaden et al., 2005). The developed chromatograms were 

analyzed by phosphorimaging and the phospholipids were quantified using 

Image Quant software.  

 

Flow cytometry: 

Mitochondrial membrane potential was measured using whole cells as 

described (Ludovico et al., 2001). Cells were grown in YP-galactose media to 

the mid-logarithmic phase. Actively growing cells (5x104 cells) were incubated 

at 30°C with the dye tetramethyl rhodamine methyl ester (TMRM) (50nM) for 

30 mins. To induce a decrease in membrane potential, control cells were 

treated with sodium azide (20 mM). Fluorescence was measured using a flow 
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cytometer. The results were analyzed using WinMDI2.9 software.  

 

SDS-PAGE and Western blot analysis: 

Proteins were extracted from cells grown to an A550 of 0.5, separated by 8% 

SDS-PAGE, transferred to PVDF membrane and analyzed using primary 

antibodies to Fzo1p (1: 1000), Ugo1p (1:1000), Mgm1p (1:500) (provided by 

Dr. Jodi Nunnari) and α-tubulin (1:1000) (Santa Cruz Biotechnology). Proteins 

were visualized using appropriate secondary antibody conjugated with 

horseradish peroxidase (1:3000) followed by detection using the ECL 

chemiluminescence system (GE Healthcare). 
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Table 3.1: Strains used in this study. 
 

Strains Genotype Reference 
BY4741 MATa, his 301, leu 200, met 1500, ura 300 Invitrogen 
BY4742 MATα , his 301, leu 200, lys 200, ura 300 Invitrogen 
VGY1 MATα, his 301, leu 200, lys 200, ura 300, 

crd1Δ::URA3 
Gohil et 
al., 2005 

crd1Δ MATa, his 301, leu 200, met 1500, ura 300, 
crd1Δ::KanMX4 

Invitrogen 

psd1Δ MATa, his 301, leu 200, met 1500, ura 300, 
psd1Δ::KanMX4 

Invitrogen 

psd1Δ MATα, his 301, leu 200, lys 200, ura 300, 
psd1Δ::KanMX4 

This study 

dnm1Δ MATa, his 301, leu 200, met 1500, ura 300, 
dnm1Δ::KanMX4 

Invitrogen 

fis1Δ MATa, his 301, leu 200, met 1500, ura 300, 
fis1Δ::KanMX4 

Invitrogen 

crd1Δpsd1Δ MATα, his 301, leu 200, lys 200, ura 300, 
crd1Δ::URA3, psd1Δ::KanMX4, pCM189-CRD1 

This study 

crd1Δpsd1Δ MATa, his 301, leu 200, lys 200, met 1500, ura 300, 
crd1Δ::URA3, psd1Δ::KanMX4, pCM189-CRD1 

This study 

crd1Δpsd1Δ
fis1Δ 

MATa, his 301, leu 200, lys 200, ura 300, 
crd1Δ::URA3, psd1Δ::KanMX4, fis1Δ::KanMX4, 
pCM189-CRD1 

This study 

crd1Δpsd1Δ
fis1Δ 

MATα, his 301, leu 200, lys 200, ura 300, 
crd1Δ::URA3, psd1Δ::KanMX4, fis1Δ::KanMX4, 
pCM189-CRD1 

This study 

crd1Δpsd1Δ
dnm1Δ 

MATa, his 301, leu 200, ura 300, crd1Δ::URA3, 
psd1Δ::KanMX4, dnm1Δ::KanMX4, pCM189-CRD1 

This study 

crd1Δpsd1Δ
dnm1Δ 

MATα, his 301, leu 200, lys 200, met 1500, ura 300, 
crd1Δ::URA3, psd1Δ::KanMX4, dnm1Δ::KanMX4, 
pCM189-CRD1 

This study 
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RESULTS 

 

Maintenance of a mitochondrial network and mitochondrial fusion is 

defective in the absence of CL and mitochondrial PE  

Previous studies have shown that loss of CL (crd1Δ) is lethal in combination 

with loss of mitochondrial PE (psd1Δ), but not cytosolic PE (psd2Δ) (Gohil et 

al., 2005). To gain insight into the overlapping roles of these mitochondrial 

lipids, we constructed a conditional mutant, crd1Δpsd1Δ, in which CRD1 is 

expressed from a plasmid under the control of the TETOFF promoter. This 

mutant lacks mitochondrial PE and CL in the presence of tetracycline, but 

contains CL in the absence of tetracycline. We used this conditional mutant as 

a tool to identify functions of these phospholipids in mitochondrial morphology 

and mitochondrial fusion. The conditional double mutant grew normally on 

YPD. The addition of tetracycline (200 µg/ml), which shut off CRD1 

expression, inhibited growth of the double mutant but did not affect growth of 

WT, crd1Δ, or psd1Δ cells (Figure 3.1A). To determine if tetracycline did 

indeed regulate CRD1 expression, we measured the levels of CL in 

crd1Δpsd1Δ cells. In psd1Δ, CL was synthesized, although levels were 

reduced compared to those of WT, consistent with previous studies (Gohil et 

al., 2005). In crd1Δpsd1Δ grown in the absence of tetracycline, CL levels were 

40% of those of psd1Δ, indicating that CL levels from plasmid CRD1 are less 

than CL levels obtained from genomic CRD1.  In the presence of tetracycline, 

CL was greatly diminished to only 14% of the levels in psd1Δ, indicating that 

expression from the TETOFF promoter was greatly (but not completely) 
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repressed. Tetracycline itself did not affect CL levels in cells lacking the 

plasmid, which were similar in psd1Δ cells grown in the presence and 

absence of the drug (Figure 3.1B).  

To determine if CL and mitochondrial PE play a role in the 

maintenance of mitochondrial morphology, we compared the mitochondrial 

network in WT, crd1Δ, psd1Δ, and crd1Δpsd1Δ cells transformed with 

plasmids expressing mitochondria targeted GFP (mtGFP) (Westermann and 

Neupert, 2000) (Figure 3.2A). At least 500 cells of each strain were observed 

for each biological replicate (Figure 3.2B). Cells exhibited a normal tubular 

mitochondrial network in crd1Δ, consistent with earlier findings (Chen et al., 

2010b), indicating that the lack of CL by itself does not affect the 

mitochondrial network. The lack of mitochondrial PE had a small but 

significant effect on the mitochondrial network, as ~23% of psd1Δ cells 

exhibited fragmented mitochondria. Unlike the WT-like tubular mitochondrial 

network, the majority of psd1Δ cells had short tubular mitochondria consistent 

with a mitochondrial morphology defect in these cells. The morphology of 

crd1Δpsd1Δ cells grown in the absence of tetracycline was similar to that of 

psd1Δ cells. However, the addition of tetracycline severely affected the 

mitochondrial network, leading to excessive mitochondrial fragmentation 

similar to that observed in fusion mutants (Figure 3.2A, 3.2B). These findings 

suggested that loss of both CL and mitochondrial PE leads to a defect in 

mitochondrial fusion. Tetracycline by itself did not affect the mitochondrial 

network in WT, crd1Δ and psd1Δ cells (data not shown). To determine if the 

increase in mitochondrial fragmentation correlated with the loss of CL, a time 
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course experiment was performed in which crd1Δpsd1Δ cells were grown in 

YPD containing 32Pi, in the presence or absence of tetracycline. Total 

phospholipids and mitochondrial morphology were examined at 5, 8 and 11 

hrs. Total CL decreased by ~11%, ~31%, and ~55% while the percentage of 

mitochondrial fragmentation increased during this time to ~20%, ~45% and 

~96% at 5, 8 and 11 hrs, respectively (Figure 3.2C, 3.2D). These findings 

indicate that the increase in mitochondrial fragmentation corresponded with a 

decrease in CL in the crd1Δpsd1Δ cells. 

Electron microscopic examination of the mutants revealed that crd1Δ 

mitochondria were somewhat smaller than those of WT, but relatively 

unremarkable (data not shown). Mitochondria in psd1Δ cells and in 

crd1Δpsd1Δ cells grown in the absence of tetracycline also appeared smaller 

than WT. This phenotype was even more striking in crd1Δpsd1Δ cells grown 

in the presence of tetracycline. Thus, the loss of both CL and mitochondrial 

PE led to highly fragmented mitochondria, consistent with defective fusion 

(Figure 3.2F). To determine the role of CL and mitochondrial PE in 

mitochondrial fusion, we performed an in vivo fusion assay (Nunnari et al., 

1997; Wong et al., 2003) as described in “Materials and methods.” In this 

assay, we examined the mitochondrial fusion events in zygotes acquired by 

mating haploids of opposite mating types of WT, crd1Δ, psd1Δ, and 

crd1Δpsd1Δ cells transformed with either mtGFP or mitochondria tagged RFP 

(mtRFP). As expected, crd1Δ cells exhibited complete mixing of mitochondrial 

content, indicating that the lack of CL alone does not affect mitochondrial 

fusion (Figure 3.3A). Fusion occurred but was decreased in psd1Δ cells,  
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A 

 
B 

 
 

Figure 3.1: Tetracycline-dependent growth of the conditional mutant 

crd1Δpsd1Δ. A) 10-fold serial dilutions of cell suspensions were spotted on 

YPD plates supplemented with 200 µg/ml tetracycline (Tet) where indicated 

and incubated at 30°C. B) Cells were grown in YPD for 12 h in the presence 

or absence of tetracycline. Steady state labeling, phospholipid extraction, one 

dimensional TLC, phosphorimaging, and quantification were carried out as 

described under “Materials and methods.” CL levels are quantified as percent 

of total phospholipids. Mean values ± S.D. of two independent experiments 

are shown. PC, phosphatidylcholine; PI, phosphatidylinositol; PS, 

phosphatidylserine; PG, phosphatidylglycerol; PA, phosphatidic acid. 
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Figure 3.2: Mitochondrial fragmentation observed in crd1Δpsd1ΔCRD1 

cells. A) Mitochondria were visualized using mtGFP. Cells were grown at 

30°C to log phase in synthetic leucine deficient medium with or without 200 

µg/ml tetracycline (Tet) and examined by fluorescence microscopy. Bars,1 

µm. B) Quantitation of cells containing fragmented mitochondria. Values are 

mean ± S.E. (n=3). At least 500 cells were visualized in each experiment. C–

F, the crd1Δpsd1ΔCRD1 mutant cells were grown at 30° C in the presence or 

absence of 200 µg/ml tetracycline and harvested at the indicated times. C) CL 

levels were analyzed by one-dimensional TLC as described under “Materials 

and methods” and relative levels of CL are indicated. Values are mean ± S.E. 

(n=3). D) Cells containing fragmented and tubular mitochondrial morphology 

were quantified. Values are mean ± S.E. (n =3). E) Total cell proteins were 

extracted and analyzed by SDS-PAGE followed by Western blot. F) Aliquots 

of crd1Δpsd1Δcells were fixed as described under “Materials and methods” 

and thin sections were examined by electron microscopy. Labels m and V 

indicate mitochondria and vacuole (white area), respectively. Bars, 500 nm. 
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suggesting that the lack of PE causes somewhat reduced fusion even when 

CL is present. As expected, the fusion phenotype of crd1Δpsd1Δ cells grown 

in the absence of tetracycline was similar to that of psd1Δ cells. However, in 

the presence of tetracycline, a complete block of mitochondrial fusion was 

observed in all the crd1Δpsd1Δ zygotes examined, consistent with the 

defective mitochondrial network observed in the absence of both CL and 

mitochondrial PE (Figure 3.3A). These results indicate that when both CL and 

mitochondrial PE are deficient, mitochondrial fusion does not occur.  

 

Loss of mitochondrial DNA and reduced mitochondrial membrane 

potential in cells lacking CL and mitochondrial PE 

Several studies have reported that cells defective in mitochondrial fusion lose 

mitochondrial DNA (mtDNA) (Chen et al., 2010a; Guan et al., 1993; Herlan et 

al., 2003; Hermann et al., 1998; Nunnari et al., 1997). Therefore, we 

hypothesized that crd1Δpsd1Δ cells would exhibit mtDNA loss. To address 

this possibility, WT, crd1Δ, psd1Δ, and crd1Δpsd1Δ cells were grown with or 

without tetracycline to the mid-logarithmic growth phase at 30°C. Cells were 

observed under the fluorescence microscope after DAPI staining for the 

presence of mtDNA (Figure 3.4A). As expected, the majority of crd1Δpsd1Δ 

cells (~80%) grown in the absence of tetracycline at the permissive 

temperature of 30°C retained the mtDNA. This was consistent with our 

previous study showing that crd1Δ cells retained mtDNA at 30°C but exhibited 

mtDNA loss only at elevated temperatures (Zhong et al., 2004). However, in 
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the presence of tetracycline, only ~20% of crd1Δpsd1Δ cells had mtDNA 

(Figure 3.4B).  

Mitochondrial fusion as determined by in vitro assay involves distinct 

steps of outer and inner membrane fusion (Meeusen et al., 2004). In addition 

to functional protein complexes, fusion of the outer membrane requires low 

GTP levels and a proton gradient, while inner membrane fusion requires large 

amounts of GTP and an inner membrane potential. It is therefore possible that 

a decreased membrane potential led to the fusion defect in crd1Δpsd1Δ cells. 

To test this possibility, we used a flow cytometry assay to measure 

mitochondrial membrane potential (ΔΨm) in intact WT, crd1Δ, psd1Δ, and 

crd1Δpsd1Δ cells grown with or without tetracycline (Ludovico et al., 2001) in 

YP-galactose rather than YP-glucose to ensure actively respiring 

mitochondria. Cells were grown at 30°C to the mid-logarithmic growth phase 

and then incubated with the voltage-dependent probe tetramethylrhodamine 

methyl ester (TMRM) (50 nM) for 30 minutes. The accumulation of TMRM in 

mitochondria is driven by the ΔΨm, which is determined by the difference in 

yellow fluorescence and forward scatter in the form of fluorescence peaks 

(Ludovico et al., 2001). Values were calculated relative to the control, i.e., 

crd1Δpsd1Δ cells grown in the absence of tetracycline. As seen in Figure 

3.4C, crd1Δpsd1Δ cells in the presence of tetracycline exhibited a decrease in 

membrane potential similar to that observed in these cells in the presence of 

sodium azide, a cytochrome c oxidase inhibitor that reduces the ΔΨm 

(Ludovico et al., 2001). These observations were consistent with a reduced 

membrane potential in cells lacking both CL and mitochondrial PE. It was 
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recently demonstrated that mitochondrial fusion in mammalian cells requires 

high ΔΨm levels and is prevented by depolarization (Mitra et al., 2009). Thus, 

the observed decrease of ΔΨm could be one explanation for the fusion 

defects in the crd1Δpsd1Δ mutant cells. 

 

Deletion of DNM1 in crd1Δpsd1Δ cells restores normal mitochondrial 

tubular network 

We wished to determine if the mitochondrial fragmentation observed in 

crd1Δpsd1Δ cells could be explained by increased fission rather than 

decreased fusion. Fusion and fission regulate mitochondrial morphology in an 

antagonistic manner (Hoppins et al., 2007). Previous studies have shown that 

three major proteins regulate mitochondrial fission, Dnm1p (Bleazard et al., 

1999; Mozdy et al., 2000; Sesaki and Jensen, 1999), Fis1p (Mozdy et al., 

2000), and Mdv1p (Tieu and Nunnari, 2000; Tieu et al., 2002). Abolishing 

mitochondrial fission by deletion of any of these genes leads to net-like 

mitochondria. In contrast, eliminating fusion by deletion of MGM1, FZO1 or 

UGO1 leads to fragmentation, which can be restored to normal tubular 

morphology by deletion of the fission gene DNM1 (Sesaki and Jensen, 1999; 

Wong et al., 2003). If mitochondrial fragmentation in crd1Δpsd1Δ cells results 

from a defect in fusion and not increased fission, then disruption of 

mitochondrial fission would restore mitochondria to the normal tubular 

morphology. Therefore, we examined if the fragmented mitochondrial 

morphology of crd1Δpsd1Δ cells could be rescued to normal tubular 

mitochondrial morphology by deletion of the fission gene DNM1. To do so, we 



68 
 

 
 

 

 

Figure 3.3: crd1Δpsd1Δ cells exhibit defective mitochondrial fusion. (A) 

Cells of opposing mating type were transformed with either mtGFP or mtRFP. 

Mitochondrial fusion was examined by observing merged images of mtGFP 

and mtRFP in WT (a-d), crd1Δ (e-h), psd1Δ (i-l) and crd1Δpsd1Δ cells grown 

without (m-p) or with (q-t) tetracycline. Bars, 1 µm. (B) Total cellular proteins 

were analyzed by SDS-PAGE followed by Western blot. Steady state levels of 

Mgm1p, Fzo1p and Ugo1p were measured. α-tubulin was used as a loading 

control. (C) Quantitation of fusion proteins. Values are mean ± SE (n = 3). 
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Figure 3.4: crd1Δpsd1Δ cells exhibit loss of mitochondrial DNA and 

reduced membrane potential. (A) Cells were grown in YP-gal to log phase 

at 30°C with or without 200 µg/ml tetracycline (Tet) and stained with DAPI. 

Bars, 1µm. (B) Quantitation of cells containing mtDNA. Values are mean ± SE 

(n = 3). At least 500 cells were visualized in each experiment. (C) Dissipation 

of the mitochondrial membrane potential demonstrated as TMRM 

fluorescence (%) in crd1Δpsd1Δ cells grown to log phase in YP-gal with or 

without tetracycline and stained with TMRM. Cells were also treated with 

sodium azide as control.  
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constructed a crd1Δpsd1Δdnm1Δ conditional mutant containing the plasmid 

with the TETOFF regulated CRD1 expression plasmid, as well as a plasmid 

expressing mtGFP (Figure 3.5A). In the absence of tetracycline, when CRD1 

is expressed, the crd1Δpsd1Δdnm1Δ cells would be expected to exhibit net-

like mitochondria characteristic of a fission defect. However, in the presence 

of tetracycline, the cells would be predicted to lack both fission and fusion 

and, hence, would exhibit WT tubular mitochondrial morphology. 

As seen in Figure 3.5B, ~76% of crd1Δpsd1Δdnm1Δ cells grown in the 

absence of tetracycline exhibited net-like mitochondria, the predicted 

phenotype. The remaining cells (~18%) exhibited tubular mitochondria, most 

likely because fusion was decreased in these cells due to the low level of 

expression of CRD1 (Figure 1). In the presence of tetracycline, only ~32% of 

cells exhibited net-like mitochondria while the majority (~45%) exhibited 

tubular mitochondria, as predicted. These findings suggest that both fission 

and fusion were defective in these cells and that the fragmented mitochondrial 

morphology in crd1Δpsd1Δ cells was rescued by deletion of the fission gene 

DNM1 (Figure 3.5A, 3.5B). Tetracycline itself did not affect the mitochondrial 

morphology in dnm1Δ (data not shown). Interestingly, a significant number of 

crd1Δpsd1Δdnm1Δ cells (~22%) grown in the presence of tetracycline, had 

fragmented mitochondria, as the network exhibited the appearance of a string 

of beads (data not shown). This morphology suggested the presence of a 

persistent fusion defect in the absence of CL and mitochondrial PE.  

To further investigate the block in fusion, we performed an in vivo 

mitochondrial fusion experiment by mating crd1Δpsd1Δdnm1Δ cells of 
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opposite mating types, in which one mating type contained mtGFP and the 

other mating type contained mtRFP. We observed decreased fusion in cells 

grown without tetracycline, and a complete block in mitochondrial fusion in 

cells grown with tetracycline (Figure 3.5C). Cells grown without tetracycline 

that exhibited net-like structures had no defect in mitochondrial fusion (Figure 

3.5C). Cells grown in the presence of tetracycline displayed a complete block 

of mitochondrial fusion. Similar observations were made in the conditional 

mutant crd1Δpsd1Δfis1Δ (data not shown). These experiments suggest that 

crd1Δpsd1Δdnm1Δ cells exhibited a fusion defect due to loss of CRD1 and 

PSD1. Taken together, these studies indicate that mitochondrial 

fragmentation observed in crd1Δpsd1Δ cells is a result of defective fusion and 

not due to increased fission. 

 To determine if deletion of the fission gene FIS1 or DNM1 could 

rescue the lethality of the double mutant, we crossed crd1Δdnm1Δ and 

crd1Δfis1Δ with psd1Δ and carried out meiotic tetrad analysis to identify viable 

triple mutants. However, triple mutants were not detected in 72 tetrads of the 

diploid crd1Δfis1ΔPSD1/CRD1FIS1psd1Δ or 75 tetrads of the diploid 

crd1Δdnm1ΔPSD1/CRD1DNM1psd1Δ. Therefore, while CL and mitochondrial 

PE have overlapping functions in mitochondrial fusion, rescue of the fusion 

defect could not rescue the synthetic lethality.  
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Figure 3.5: crd1Δpsd1Δdnm1Δ cells are defective in mitochondrial 

fusion. (A) Mitochondria were visualized in the crd1Δpsd1Δdnm1Δ mutant 

using mtGFP. Cells were grown at 30°C to log phase in synthetic deficient 

glucose medium with 200 µg/ml tetracycline (Tet) where indicated and 

examined by fluorescence microscopy. Bars, 1µm. (B) Cells containing 

tubular, fragmented and net-like mitochondria were quantified. Values are 

mean ± SE (n = 3). At least 100 cells were visualized in each experiment. (C) 

crd1Δpsd1Δdnm1Δ cells of opposing mating type were transformed with either 

mtGFP or mtRFP. Mitochondrial fusion was examined by observing merged 

images of mtGFP and mtRFP in zygotes of crd1Δpsd1Δdnm1Δ grown without 

(a-d) or with (e-h) tetracycline. Bars, 1µm. 
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Reduced steady state levels of l-Mgm1 and s-Mgm1 isoforms in cells 

lacking CL and mitochondrial PE 

The current study suggests that one common function of CL and PE is 

mitochondrial fusion. It has been reported that the lack of CL destabilizes the 

anchoring, assembly, and GTPase activity of fusion protein Mgm1p in vitro 

(Ban et al., 2010; DeVay et al., 2009; Rujiviphat et al., 2009). To test if 

mitochondrial PE compensates for the loss of CL and stabilizes the fusion 

proteins in vivo, we determined the steady state levels of fusion proteins 

Fzo1p, Ugo1p, l-Mgm1p and s-Mgm1p in WT, crd1Δ, psd1Δ, and crd1Δpsd1Δ 

cells. The crd1Δpsd1Δ cells exhibited significantly diminished levels of l-

Mgm1p and s-Mgm1p (Figure 3.3B, 3.3C). Fzo1p levels were slightly 

decreased and Ugo1p was not affected (Figure 3.3B, 3.3C). To determine if 

the loss of Mgm1p isoforms correlated with the loss CL in crd1Δpsd1Δ, cells 

were grown in the presence or absence of tetracycline, proteins were 

extracted from cells harvested at 5, 8 and 11 hrs, and the levels of Mgm1p 

isoforms were determined by Western blot (Figure 3.2E). The isoform levels 

were severely diminished at 11 hrs, which correlated with increased 

mitochondrial fragmentation as seen in Figure 3.2C. These data indicate that 

the defect in mitochondrial fusion in crd1Δpsd1Δ can be attributed at least in 

part to the reduced levels of s-Mgm1p and the 1-Mgm1p.  
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DISCUSSION 

 

In this study, we demonstrate that crd1Δpsd1Δ cells lacking both CL and 

mitochondrial PE have fragmented mitochondria due to a defect in 

mitochondrial fusion. In addition to this defect, we show that crd1Δpsd1Δ cells 

exhibit loss of mtDNA, decreased membrane potential, and reduced steady 

state levels of short and long isoforms of Mgm1p, a mitochondrial inner 

membrane protein essential for fusion. The fragmented mitochondrial 

morphology along with the fusion defect observed in crd1Δpsd1Δ cells were 

rescued by deletion of the fission genes DNM1 or FIS1. These data indicate 

that CL and mitochondrial PE are required for mitochondrial fusion in vivo.   

Our previous studies have shown a synthetic lethal interaction between 

crd1Δ and psd1Δ mutant cells, suggesting essential overlapping roles of CL 

and mitochondrial PE (Gohil et al., 2005). PE synthesized by the non-

mitochondrial pathway (Psd2p catalyzed PE synthesis in Golgi/vacuole) 

(Trotter et al., 1993; Trotter et al., 1995; Trotter and Voelker, 1995) did not 

rescue this lethality. Externally synthesized PE is inefficiently transported to 

the inner mitochondrial membrane, as reduced levels of PE were observed in 

the inner mitochondrial membrane of psd1Δ mutant cells (Burgermeister et al., 

2004). Taken together, these studies suggested that PE synthesized in the 

mitochondrial inner membrane has functions that cannot be compensated by 

externally synthesized PE. In the current study, we demonstrate that the loss 

of mitochondrial phospholipids CL and PE leads to mitochondrial 

fragmentation (Fig. 2A, 2B, and 2F) and defective mitochondrial fusion (Fig. 
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3A). Although mitochondrial fusion is an overlapping function of CL and PE, 

the lack of mitochondrial fusion is probably not the cause of lethality observed 

in crd1Δpsd1Δ cells, as lethality was not rescued by deletion of the fission 

gene FIS1 or DNM1. Mitochondria are required not only for cellular 

bioenergetics, but also for the synthesis of essential metabolites. In addition, 

our previous studies have shown that CL is required for non-mitochondrial 

functions, including vacuolar function, the high osmolarity glycerol (Schuller et 

al., 1994) pathway, and cell wall synthesis (Chen et al., 2008b; Zhong et al., 

2007; Zhou et al., 2009). Thus, it is possible that lethality in cells lacking CL 

and PE could be caused by deficiencies in both mitochondrial and non-

mitochondrial functions. The identification of suppressors of crd1Δpsd1Δ 

synthetic lethality will very likely identify the essential cellular functions shared 

by these phospholipids. These studies are currently in progress.  

How do CL and mitochondrial PE affect mitochondrial fusion? Non-

bilayer lipids are known to affect the function and stability of many 

mitochondrial membrane proteins (Schlame and Ren, 2009). Recent studies 

have proposed that scaffolding proteins such as prohibitin recruit membrane 

proteins to CL and PE rich regions, forming protein rich lipid domains (Osman 

et al., 2011). The lack of CL and mitochondrial PE might influence the 

distribution of these domains, which in turn would affect several mitochondrial 

processes, including mitochondrial fusion. Although early studies suggested 

that the non-bilayer forming phospholipids CL and PE play an important role 

in mitochondrial fusion, very little was known about the mechanism by which 

this could occur (Cullis and de Kruijff, 1979; Furt and Moreau, 2009; van den 
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Brink-van der Laan et al., 2004). In this study, we show that the lack of CL 

and mitochondrial PE leads to reduced steady state levels of both large and 

small isoforms of Mgm1p (Fig. 2E, 3B), which are required for fusion. Recent 

studies have shown that l-Mgm1p acts as an anchor in the inner membrane 

(Zick et al., 2009). Both CL and PE are synthesized and predominantly 

localized in the inner mitochondrial membrane, and the loss of both CL and 

mitochondrial PE might affect the stability of this isoform, leading to its 

degradation. The formation of s-Mgm1p requires functional mitochondrial 

protein import machinery, membrane potential and adequate ATP levels, all of 

which are defective in cells lacking CL (Claypool et al., 2008; Duvezin-Caubet 

et al., 2006; Gebert et al., 2009; Herlan et al., 2004; Jiang et al., 2000). This is 

a first report describing the overlapping roles of CL and mitochondrial PE in 

fusion in vivo, and suggests a mechanistic role for these phospholipids in 

regulating mitochondrial structure and function.  

  How is the role of CL and PE in mitochondrial fusion relevant to human 

disease? The role of mitochondrial phospholipids in fusion is relevant to 

studies that implicate function of mitochondrial fusion in cardiac function (Dorn 

et al., 2011). Fragmented mitochondria are associated with the loss of Opa1 

(the human homolog of Mgm1p) in mitochondrial myopathies involving cardiac 

and skeletal muscle (Duvezin-Caubet et al., 2006) and in ischemic 

cardiomyopathy (Chen et al., 2009). Overexpression of the fusion proteins 

Mfn1/2 (human homolog of Fzo1p) prevents cardiac cell death from ischemia 

(Ong et al., 2010). Elucidating the role of CL and PE in mitochondrial fusion 

may also shed light on defects observed in lymphoblast mitochondria from 
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patients with Barth syndrome (BTHS), a severe genetic disorder characterized 

by dilated cardiomyopathy and skeletal myopathy (Barth et al., 1996; Bolhuis 

et al., 1991). BTHS is caused by mutation in the CL remodeling enzyme 

tafazzin, resulting in decreased CL and altered fatty acid composition of major 

mitochondrial phospholipids, including CL and PE (Xu et al., 2005). Defects in 

mitochondrial fusion may account for the observed morphological variation in 

BTHS mitochondria, including enlarged size, fragmentation, adhesion of 

opposing membranes and deformed intercristae space observed in BTHS 

lymphoblasts as well as in cardiac and skeletal muscle mitochondria of the 

mouse model of BTHS (Acehan et al., 2011; Acehan et al., 2007). Identifying 

the role of CL and PE in mitochondrial fusion may thus explain, in part, the 

wide variation in the clinical presentation observed in BTHS.
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CHAPTER 4 

 

PERTURBATION OF THE TCA CYCLE IN CELLS LACKING CARDIOLIPIN 

CANNOT BE ALLEVIATED DUE TO DEFECTIVE MITOCHONDRIAL 

RETROGRADE RESPONSE  

 

INTRODUCTION 

 

Cardiolipin (CL) is synthesized in the mitochondrial inner membrane and 

interacts with various inner membrane protein complexes (Houtkooper and 

Vaz, 2008; Pfeiffer et al., 2003). CL mutants exhibit deficiencies in 

mitochondrial bioenergetics (Koshkin and Greenberg, 2000; Koshkin and 

Greenberg, 2002), perturbation of mitochondrial protein import, decreased 

membrane potential (Jiang et al., 2000), and defective assembly of 

mitochondrial outer membrane complexes in both yeast and Barth syndrome 

(BTHS) lymphoblasts (Gebert et al., 2009). Clearly, perturbation of CL 

synthesis disrupts numerous important mitochondrial functions. 

The mitochondrion is an essential organelle that plays a crucial role in 

cellular bioenergetics, programmed cell death, and metabolism. The 

tricarboxylic acid cycle (TCA) is the central metabolic pathway that occurs in 

the mitochondrial matrix of eukaryotic cells. The TCA cycle is an amphibolic 

pathway that is critical for oxidation of acetyl-CoA and for the production of the 

reducing agent NADH, which is used by the respiratory complexes to 

generate ATP.  It is also important for biosynthetic processes, including amino 
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acid and heme biosynthesis. TCA cycle enzymes are more important for cell 

growth when non-fermentable carbon sources are metabolized. Nevertheless, 

the first three steps of the TCA cycle leading to the synthesis of α-

ketoglutarate are expressed at basal levels even during growth on glucose. α-

ketoglutarate is a precursor for synthesis of glutamate, which is utilized for the 

synthesis of glutamine, proline and arginine.  

Yeast cells respond to the loss of mitochondrial DNA or to decreased 

mitochondrial function resulting from perturbation of the TCA cycle by 

signaling the nucleus to modulate the expression of genes required to 

replenish key mitochondrial metabolites (Epstein et al., 2001). In particular, 

the expression of genes required for glutamate biosynthesis is upregulated by 

activation of the mitochondrial retrograde (RTG) pathway (Gangloff et al., 

1990; Liu and Butow, 1999). Target genes that respond to RTG signaling 

include CIT2, CIT1, ACO1, IDH1 and IDH2, which are required for glutamate 

synthesis, and DLD3, a cytosolic D-lactate dehydrogenase (Chelstowska and 

Butow, 1995; Liao and Butow, 1993; Liao et al., 1991; Liu and Butow, 1999). 

Thus, the central role of the RTG pathway is to replenish TCA cycle 

intermediates, such as α-ketoglutarate, which is a precursor for glutamate 

biosynthesis. 

The RTG pathway is regulated by several positive (Rtg1p, Rtg2p, 

Rtg3p, Grr1p) and negative (Mks1p, Bmh1p, Bmh2p, Lst8p) regulators that 

control expression of the RTG target genes (Figure 4.1) (Liu and Butow, 

2006). In response to decreased mitochondrial function, the RTG pathway is  
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Figure 4.1: The positive (blue) and negative (red) regulators of the RTG 

pathway. Based on the functional state of mitochondria, and availability of 

glutamate, the positive and negative regulators of the RTG pathway modulate 

expression of the target genes (Liu and Butow, 2006). 
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activated by dephosphorylation and translocation of Rtg3p/Rtg1p into the 

nucleus (Sekito et al., 2000). Rtg1p and Rtg3p are transcription factors that 

bind to the promoter region (R box) of target genes such as CIT2 (Sekito et 

al., 2000). Mks1p, a negative regulator of the RTG pathway, prevents the 

translocation of Rtg3p/Rtg1p into the nucleus by promoting phosphorylation of 

Rtg3p. It acts downstream of Rtg2p and upstream of Rtg1/3p (Dilova et al., 

2004). Thus, Rtg2p is required for dephosphorylation of Rtg3p and nuclear 

translocation of Rtg1/3p (Liu et al., 2003). In addition, Rtg2p binds to the 

promoter region of CIT2 and increases its expression under inducible 

conditions (Pray-Grant et al., 2002). Bmh1p and Bmh2p (14-3-3 proteins) act 

as negative regulators of the RTG pathway by preventing degradation of 

Mks1p. These proteins are known to bind different phosphorylated proteins; 

hence, they have diverse cellular functions, in addition to their role in the RTG 

pathway (Gelperin et al., 1995; Kakiuchi et al., 2007).  

 In addition to the RTG pathway, other routes to replenish the TCA 

cycle metabolites in yeast include β-oxidation and the glyoxylate cycle (Figure 

4.2). These two metabolic pathways complement each other and replenish 

vital metabolites such as acetyl CoA, succinate, and citrate.  Acetyl CoA is a 

central metabolite of carbon assimilation in eukaryotic cells.  In addition to 

synthesis of acetyl CoA from pyruvate by pyruvate dehydrogenase (PDH) in 

the mitochondria, acetyl-CoA is imported into the mitochondria via two 

pathways (Elgersma et al., 1995; van Roermund et al., 1999). One requires 

CIT2, a peroxisomal citrate synthase that converts acetyl-CoA into the 

glyoxylate cycle intermediates succinate and citrate. These metabolites are 
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Figure 4.2: Metabolic pathways that replenish the TCA cycle. The 

glyoxylate cycle and the β-oxidation pathway compensate the TCA cycle by 

providing metabolic intermediates. The glyoxylate cycle provides citrate and 

succinate while the β-oxidation pathway provides acetyl-CoA to the TCA 

cycle. Glyoxylate cycle and glutamate biosynthesis genes that require Rtg1p, 

Rtg2p, and Rtg3p for expression are underlined. Metabolite transporters are 

in bold. Modified from Liu and Butow, 2006.  
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imported into the mitochondria by carrier proteins. The second pathway 

involves transport of acetyl-carnitine into the mitochondria via the carnitine 

transporter Crc1p (van Roermund et al., 1999). Interestingly, some BTHS 

patients have decreased levels of carnitine and accumulation of fat droplets 

due to decreased transport of acetyl CoA into the mitochondria (Barth et al., 

1983). In the mitochondria, carnitine acetyl CoA transferase catalyzes the 

release of acetyl units, which can be utilized subsequently in the TCA cycle.  

Studies from the Greenberg lab have shown that: 1) CL mutants exhibit 

decreased activity of the TCA cycle enzymes aconitase and succinate 

dehydrogenase (Vinay Patil, unpublished); 2) CL mutants are synthetically 

lethal with pyruvate dehydrogenase mutants, suggesting that acetyl CoA 

synthesis is decreased in the mutants (Vaishnavi Raja, unpublished); and 3) 

genes that play a role in acetate metabolism, uptake of acetyl CoA into the 

mitochondria, and transporters of lactate and several amino acid are up-

regulated in the crd1Δ mutant (Vishal Gohil, unpublished). These findings 

suggest that CL deficiency leads to perturbation of the TCA cycle. As 

discussed above, a block in the TCA cycle leads to activation of the 

mitochondrial RTG pathway by up regulation of CIT2 gene expression. In this 

study, I report that CIT2 is not upregulated in cells lacking CL at elevated 

temperature despite the mitochondrial dysfunction present in these cells. In 

addition, I find that overexpression of RTG2 or supplementation of glutamate 

rescues the growth defect of crd1Δ at elevated temperature. Based on these 

findings, I hypothesize that CL deficiency leads to perturbation of the TCA 
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cycle, which is not alleviated due to either defective or insufficient activation of 

the RTG pathway. 
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Materials and methods 

 

Yeast strains and growth media:  

The yeast strains used in this study are isogenic to BY4741 and BY4742 

(Table 4.1). Complex medium (YPD) contained 1% yeast extract (US 

Biological), 2% peptone (Fischer Scientific) and 2% glucose (Fischer 

Scientific). Synthetic medium contained adenine (20.25 mg/liter), arginine (20 

mg/liter), histidine (20 mg/liter), leucine (60 mg/liter), lysine (200 mg/liter), 

methionine (20 mg/liter), threonine (300 mg/liter), tryptophan (20 mg/liter), and 

uracil (20 mg/liter), vitamins, salts (essentially components of Difco Vitamin 

Free Yeast Base without amino acids), and glucose (2%), acetate (2%) or 

oleic acid (0.1%) as carbon source. Glutamate was added to a final 

concentration of 0.05% when indicated. Sporulation medium contained 

potassium acetate (1%), glucose (0.05%), and the essential amino acids. 

Solid medium was prepared by adding 2% agar.   

 

Construction of double mutants by tetrad dissection: 

The CL mutant strain crd1Δ::URA3 MATα was crossed with mutants of the 

opposite mating type obtained from the yeast deletion collection. 

Heterozygous diploids were selected on synthetic media lacking methionine 

and lysine, sporulated, and tetrads were dissected.  
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Real time PCR: 

Yeast cultures (10 ml) were grown to an A550 of 1.0 in YPD at 300C, cells were 

harvested, and total RNA was isolated using the acid phenol method (Collart 

and Oliviero, 2001). The RNA was then purified with an RNeasy Plus Mini Kit 

(Qiagen). cDNAs were synthesized with a Transcriptor First Strand cDNA 

Synthesis Kit (Roche). Real time PCR reactions were performed using a 

quantitative PCR SYBR green mix (Stratagene). Duplicates for each sample 

were included for each reaction. RNA levels of the gene of interest were 

normalized to ACT1, which was used as an internal control.  
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Table 4.1: Strains and plasmids used in this study 

Strains Genotype Reference 
BY4742 MATα, his 301, leu 200, lys 200, ura 300 Invitrogen 
VGY1 MATα, his 301, leu 200, lys 200, ura 300, 

crd1Δ::URA3 
Gohil et al., 

2005 
BY4742 rho0 MATα , his 301, leu 200, lys 200, ura 

300 
Shuliang 

Chen 
VGY1 rho0 MATα, his 301, leu 200, lys 200, ura 

300, crd1Δ::URA3 
Shuliang 

Chen 
rtg1Δ MATa, his 301, leu 200, met 1500, ura 300, 

rtg1Δ::KanMX4 
Invitrogen 

rtg2Δ MATa, his 301, leu 200, met 1500, ura 300, 
rtg2Δ::KanMX4 

Invitrogen 

rtg3Δ MATa, his 301, leu 200, met 1500, ura 300, 
rtg3Δ::KanMX4 

Invitrogen 

mks1Δ MATa, his 301, leu 200, met 1500, ura 300, 
mks1Δ::KanMX4 

Invitrogen 

bmh1Δ MATa, his 301, leu 200, met 1500, ura 300, 
bmh1Δ::KanMX4 

Invitrogen 

bmh2Δ MATa, his 301, leu 200, met 1500, ura 300, 
bmh2Δ::KanMX4 

Invitrogen 

crd1Δrtg1Δ MATα, his 301, leu 200, lys 200, ura 300, 
crd1Δ::URA3, rtg1Δ::KanMX4 

This study 

crd1Δrtg2Δ MATa, his 301, leu 200, lys 200, met 1500, 
ura 300, crd1Δ::URA3, rtg2Δ::KanMX4 

This study 

crd1Δrtg3Δ MATa, his 301, leu 200, lys 200, ura 300, 
crd1Δ::URA3, rtg3Δ::KanMX4 

This study 

crd1Δmks1Δ MATα, his 301, leu 200, lys 200, ura 300, 
crd1Δ::URA3, mks1Δ::KanMX4 

This study 

crd1Δbmh1Δ MATa, his 301, leu 200, ura 300, 
crd1Δ::URA3, bmh1Δ::KanMX4 

This study 

crd1Δbmh2Δ MATα, his 301, leu 200, lys 200, met 1500, 
ura 300, crd1Δ::URA3, bmh2Δ::KanMX4 

This study 

pYPGK18 2 µm, LEU2 Vaz et al., 
2003 

pYPGK18-
RTG2 

Derivative of pYPGK18, expresses RTG2 
from PGK1 promoter 

Chen et al., 
2008 
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Results 

 

Overexpression of RTG2 alleviates the temperature sensitivity of cells 

lacking CL 

I utilized the genetic approach of suppressor analysis to identify functions of 

CL that are deficient in CL mutants. To this end, I performed a suppressor 

screen to isolate suppressors of the ts phenotype of taz1Δtom70Δ (Figure 

2.2). The rationale for using the taz1Δtom70Δ mutant is that it exhibited a 

more severe growth defect than crd1Δ, thus enabling more stringent 

conditions for isolating suppressors. We obtained 45 putative suppressors 

after screening 3119 transformants. RTG1 was a putative suppressor 

identified in this screen. As the goal of the study was to identify cellular 

functions of CL, I checked if RTG1 rescued the ts phenotype of crd1Δ. 

Overexpression of RTG1 or RTG3 alone did not rescue the ts phenotype. In 

contrast, I observed that overexpression of RTG2 rescued the ts phenotype of 

the crd1Δ mutant (Figure 4.3). This suggested that the function of the RTG 

pathway was deficient in crd1Δ at elevated temperature. Consistent with this, 

deletion of RTG1, RTG2, or RTG3 in the crd1Δ mutant exacerbated the 

growth phenotype at elevated temperature in synthetic media (Figure 4.4). As 

discussed above, defects in the RTG pathway lead to glutamate auxotrophy, 

as RTG proteins regulate the expression of genes required for glutamate 

synthesis. We observed that supplementation of glutamate rescues the ts 

phenotype of the crd1Δ mutant at elevated temperature (Figure 4.5), which is 

consistent with the prediction that the RTG response in the CL mutant is 
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Figure 4.3: Overexpression of RTG2 rescues temperature sensitivity of 

crd1Δ. Cells were grown in leucine deficient synthetic medium overnight at 

300C, diluted, plated on synthetic media lacking leucine and incubated at 

300C and 390C for 3-5 days.  
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Figure 4.4: RTG genes are required for growth of crd1Δ in synthetic 

media without glutamate at elevated temperature. Cells were pre-cultured 

overnight in YPD at 300C, plated on synthetic media with glucose lacking 

glutamate and incubated at 370C for 3-5 days.  
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Figure 4.5: Glutamate supplementation rescues the ts phenotype of 

crd1Δ. Cells were pre-cultured overnight in YPD at 300C, washed and plated 

onto synthetic media with or without 0.05% glutamate and incubated at 390C 

for 3-5 days. 
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insufficient to alleviate mitochondrial dysfunction at elevated temperature. 

 

Cells lacking CL cannot induce expression of CIT2 at elevated 

temperature.  

Previous studies have shown that loss of mitochondrial DNA (Epstein et al., 

2001), decreased mitochondrial membrane potential (Miceli et al., 2011), and 

decreased activities of TCA cycle enzymes such as succinate dehydrogenase 

(Lin et al., 2011) lead to activation of the RTG pathway.  Therefore, I expected 

that in crd1Δ cells, which exhibit similar mitochondrial defects, the RTG 

pathway would be activated and expression of the RTG target gene CIT2 

would be increased. I found that CIT2 mRNA levels in crd1Δ cells, as 

compared to WT, were upregulated ~4 fold relative to WT at 300C (Figure 

4.6). However, to my surprise, CIT2 was not upregulated in crd1Δ at elevated 

temperature, the condition in which it exhibits severe mitochondrial defects 

(Figure 4.6). These results indicate that the RTG pathway is not activated at 

elevated temperature in the crd1Δ mutant. As the RTG response is strain 

specific, I checked if the defect in activation of the RTG pathway at elevated 

temperature could be explained by a reduced RTG response in the BY4742 

strain utilized in this study. To this end, I compared CIT2 mRNA levels in WT 

rho0 and rho+ cells. As expected, CIT2 mRNA levels were ~5-fold upregulated 

in WT rho0 compared to rho+ cells, indicating that the BY4742 strain does 

exhibit an RTG response. Interestingly, crd1Δ rho0 cells exhibited a greater 

increase in CIT2 mRNA levels than WT at 300C probably due to the 

combinatorial effect of loss of mtDNA and decreased mitochondrial function 
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Figure 4.6: Quantitative measurement of CIT2 mRNA levels. Total RNA 

was extracted from cells grown to an A550 of 1.0 to 2.0 in YPD at 30°C and 

39°C. mRNA levels of CIT2 were determined by real-time PCR. Expression 

was normalized to the mRNA levels of the internal control ACT1. Values are 

mean ± S.E from two independent experiments with technical duplicates.  
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(Figure 4.6). Even though the retrograde pathway was activated in crd1Δ rho0 

cells at 300C, these cells exhibited a growth defect in synthetic media that was 

rescued by glutamate supplementation (Figure 4.7). Taken together, my 

results suggest that crd1Δ cells can activate the RTG pathway at 300C but not 

at the elevated temperature.  

 

Deletion of negative regulator BMH2 rescues glutamate auxotrophy of 

crd1Δ at elevated temperature 

The loss of negative regulators of the RTG pathway leads to constitutive 

expression of the target genes and rescue of glutamate auxotrophy (Dilova et 

al., 2002). Therefore, I predicted that defective activation of the RTG pathway 

would be rescued by deletion of the negative regulators, include MKS1, 

BMH1, BMH2 and LST8. Among these, LST8 is an essential gene and the 

null mutant is not viable. As the other genes are not essential, I deleted 

MKS1, BMH1, and BMH2 in the crd1Δ mutant. I observed that deletion of 

BHM2 but not MKS1 or BMH1 rescued the ts phenotype of the crd1Δ mutant 

in synthetic media lacking glutamate (Figure 4.8). In contrast, deletion of 

MKS1 exacerbated the crd1Δ mutant phenotype (Figure 4.8). A possible 

explanation for this finding is that in the BY4742 background, Mks1p may not 

be a negative regulator. Discrepancies regarding the role of MKS1 in the RTG 

pathway have been reported (Dilova and Powers, 2006). While Mks1p was 

shown to be a negative regulator in some studies (Dilova et al., 2002; Sekito 

et al., 2002), Shamji et al., (2000) reported that RTG target gene expression 
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Figure 4.7: crd1Δ rho0 exhibits glutamate auxotrophy at 300C. Cells were 

pre-cultured overnight in YPD at 300C. WT rho0 and crd1Δ rho0 cells were 

plated on synthetic media with or without 0.05% glutamate and incubated at 

300C for 3-5 days.  
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Figure 4.8: Deletion of BMH2 suppresses the ts phenotype of crd1Δ. 

Cells were pre-cultured overnight in YPD at 300C, grown until an A550 of 1.0 in 

YPD at 300C, washed with water, plated onto synthetic media without 

glutamate and incubated at 370C and 390C as indicated for 3-5 days.  
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was actually impaired in the mks1Δ strain, suggesting that Mksp1 is a positive 

regulator of the RTG pathway. Consistent with an activator role, I observed 

that the mks1Δ mutant, similar to the rtg1Δ, rtg2Δ, and rtg3Δ mutants, required 

glutamate for growth in the BY4742 strain used in the current study (data not 

shown). In addition, expression of the RTG target genes was impaired in 

mks1Δ (data not shown) In summary, deletion of the negative regulator BMH2 

rescued the glutamate auxotrophy of crd1Δ, while deletion of positive 

regulators exacerbated the phenotype of the crd1Δ mutant.  

 

Cells lacking CL cannot utilize acetate or oleic acid as sole source of 

carbon 

The glyoxylate cycle and β-oxidation pathways compensate for TCA cycle 

deficiencies by supplying intermediates, as discussed above (Figure 4.2). 

Oleic acid is broken down in peroxisomes by β-oxidation to supply acetyl-CoA 

to the TCA cycle, or to supply TCA cycle intermediates by the glyoxylate 

cycle. As mentioned, the RTG pathway is required for expression of CIT2, a 

glyoxylate cycle gene, and for peroxisomal genes required for β-oxidation in 

cells grown in oleic acid (Chelstowska and Butow, 1995). Therefore, RTG 

mutants cannot utilize acetate or oleic acid as a sole source of carbon. 

Consistent with our hypothesis that crd1Δ has defective RTG signaling, the 

crd1Δ mutant, similar to RTG mutants, exhibits decreased growth on acetate 

(Figure 4.9) or oleic acid media (Figure 4.10). The growth defects in acetate 

are indications of TCA and glyoxylate cycle deficiencies, whereas inability of  
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Figure 4.9: crd1Δ exhibits a growth defect on acetate. Cells were pre-

cultured overnight in YPD. WT, crd1Δ, and taz1Δ cells were plated on 

synthetic media containing glucose and acetate as the sole source of carbon 

and incubated at 300C for 6 days.  
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Figure 4.10: crd1Δ exhibits a growth defect on oleic acid. Cells were pre-

cultured in YPD until stationary phase at 300C. Cells were counted and 

spotted on synthetic media containing glucose or oleic acid as the sole source 

of carbon and incubated at 300C for 5-7days.  

 

 

 

 

 

 

 

 

 



100 
 

 
 

crd1Δ cells to utilize oleic acid as a sole source of carbon (Figure 4.10) 

indicates that the mutant may have a defect in 1) β-oxidation, 2) mitochondrial 

uptake of acetyl-CoA generated by β-oxidation, or 3) uptake of TCA 

intermediates synthesized by the β-oxidation pathway and the glyoxylate 

cycle. Interestingly, the taz1Δ mutant grows normally (Figures 4.9 and 4.10) 

suggesting that decrease in CL, aberrant CL species or increased MLCL 

levels, as observed in taz1Δ, are sufficient to support growth on acetate or 

oleic acid media. These results are consistent with the hypothesis that cells 

lacking CL exhibit a defective RTG pathway.  
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Discussion 

 

The experiments in this study support the hypothesis that the loss of 

CL leads to defective activation of the RTG pathway at elevated temperature. 

Consistent with an RTG defect, the RTG target gene CIT2 is not upregulated, 

and crd1Δ cells exhibit glutamate auxotrophy at elevated temperature. 

Temperature sensitivity of the crd1Δ mutant was rescued by overexpression 

of RTG2, a positive regulator of the RTG pathway, and by deletion of BMH2, a 

negative regulator of the RTG pathway. Furthermore, crd1Δ cells exhibit 

growth defects on acetate or oleic acid media, indicating a defect in the 

glyoxylate cycle and β-oxidation pathways, which require the RTG pathway 

for activation. Taken together, these results indicate that perturbation of the 

TCA cycle in crd1Δ cells cannot be alleviated due to a defective activation of 

the RTG pathway. 

Deletion of BMH2, a negative regulator of the RTG pathway rescued 

the glutamate auxotrophy of the crd1Δ mutant at elevated temperature (Figure 

4.8). In addition to its role in the RTG pathway, Bmh2p, interacts with several 

phosphorylated proteins that regulate cell signaling pathways, stress 

response pathways, the cell cycle, and chitin synthesis at the cell wall 

(Kakiuchi et al., 2007). Interestingly, the Greenberg lab has shown that the 

crd1Δ mutant has defects in the stress response pathway, cell wall synthesis, 

and the cell cycle (Chen et al., 2010b; Zhong and Greenberg, 2005; Zhou et 

al., 2009). This suggests the possibility that Bmh2p might not only affect the 
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activation of the RTG pathway but also affect these other pathways, which are 

deficient in the crd1Δ mutant.  

A decrease in the mitochondrial membrane potential is believed to be 

the signal for activation of the RTG pathway (Miceli et al., 2011), which is 

probably sensed by Rtg2p (Jazwinski and Kriete, 2012). Although a 

decreased membrane potential was observed in crd1Δ (Jiang et al., 2000) the 

RTG pathway was not triggered at elevated temperature. This suggests that 

the signal for activation of the RTG pathway is not relayed in crd1Δ cells, and 

that Rtg2p may be defective in the crd1Δ mutant. Consistent with this, 

overexpression of Rtg2p rescued the ts phenotype of crd1Δ cells (Figure 4.3).  

 In mammalian cells, NFκB is believed to be a master regulator of the 

RTG response that senses mitochondrial dysfunction (Liu and Butow, 2006), 

a role similar to Rtg2p in yeast. NFκB modulates the expression of nuclear 

encoded genes (Cogswell et al., 2003) via activation of the Myc-Max 

heterodimer, a homolog of the RTG1-RTG3 heterodimer (Jazwinski and 

Kriete, 2012). Thus, identifying the mechanism of RTG regulation in crd1Δ 

may facilitate understanding of CL function in NFκB mediated signaling in 

mammalian cells. 

 As discussed earlier, the TCA cycle is required for the biosynthesis of 

many metabolites, including amino acids such as glutamate, arginine, 

methionine and lysine. Recent studies from the Greenberg lab have shown 

that CL deficient cells are auxotrophic for methionine and lysine (Vinay Patil, 

unpublished) as well as for glutamate (Figure 4.6). Interestingly, amino acids 

have been used as supplements to treat BTHS patients, with a positive 
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outcome (Richard Kelly, unpublished). We anticipate that elucidating the 

metabolic deficiencies in crd1Δ cells will contribute to our understanding of 

similar deficiencies observed in BTHS. The restoration of deficient metabolites 

will offer potential new treatments for this disorder. 
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CHAPTER 5 

 

FUTURE DIRECTIONS 

 

The studies described in this thesis show exciting new roles of CL in diverse 

mitochondrial functions, including protein import, fusion and RTG pathway 

regulation. While my findings have shed some light on the mechanisms 

underlying the cellular functions of CL, I feel that they have uncovered just the 

tip of the iceberg. In this chapter, I suggest fascinating as well as challenging 

new directions for future studies that could lead to a better understanding of 

the mechanisms underlying CL function. 

 
1. CL and mitochondrial protein import: CL plays vital roles in the 

mitochondrial inner membrane, including assembly of protein complexes, 

(Claypool, 2009; Claypool et al., 2006; Claypool et al., 2008; Pfeiffer et al., 

2003), mitochondrial protein import, and membrane potential (Jiang et al., 

2000; Kutik et al., 2008; Tamura et al., 2009). Based on the genetic 

interaction of CL mutants with the TOM, SAM and MDM complex mutants, I 

hypothesized that CL plays a role in outer membrane protein biogenesis. As 

CL is synthesized and is predominantly present in the mitochondrial inner 

membrane, it was exciting to identify a function of CL in the biogenesis of 

outer membrane protein complexes required for mitochondrial protein import 

(Chapter 2). Importantly, CL is required for import not only in yeast. We also 

showed a role of CL in assembly of outer membrane complexes in humans 
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(Gebert et al., 2009). This is the first finding in humans that links CL to 

mitochondrial protein import.   

While we have established the function of CL in mitochondrial protein 

import at the outer as well as inner membrane (Chapter 2), the implication of 

defective protein import in CL deficient cells is unknown. A large-scale 

proteomic study to compare the mitochondrial proteins in crd1Δ and WT cells 

would identify the proteins that are not imported into mitochondria lacking CL. 

Although this may seem challenging, it is both doable (as there are only ~600 

to 700 mitochondrial proteins in yeast) and promising, as it may greatly 

facilitate the identification of specific mitochondrial metabolic deficiencies 

observed in crd1Δ cells (Chapter 4). Furthermore, it will be fascinating to 

elucidate the role of a mitochondrial lipid in the regulation of basic metabolic 

pathways. 

 A complementary approach to determine the consequences of 

defective protein import in CL deficient cells is to identify suppressors of the 

genetic interactions identified between mitochondrial protein import mutants 

and CL mutants (Chapter 2). Suppressor mutations may fall into a number of 

categories, including those that increase mitochondrial protein import, that 

increase the amount of an essential protein that is limiting, and/or that have a 

decrease in the accumulation of a toxic product that leads to the defective 

growth phenotype.  

 

2. CL and mitochondrial morphology: The study described in Chapter 

2 utilized a genetic interaction screen to identify the functions of CL in 
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mitochondrial morphology. Genetic interaction was determined based on the 

phenotype of the double mutant (crd1Δ and mitochondrial morphology 

mutant). While several categories were uncovered, I draw future students’ 

attention to two in particular, the UPS and GET complexes. An interesting 

finding pertinent to the regulation of CL synthesis is that crd1Δ is synthetically 

lethal with ups1Δ (Figure 2.3). Other studies have reported that the UPS 

complex (Ups1p and Ups2p) is required for regulating CL levels (Osman et 

al., 2009a; Tamura et al., 2009). Why is crd1Δ synthetically lethal with ups1Δ? 

How do UPS proteins regulate the levels of CL in the mitochondria? Answers 

to these intriguing questions would clarify how Ups1p regulates CL synthesis. 

While UPS proteins are present in mitochondria, GET proteins (Get1p 

and Get2p) are present in the ER membrane. I showed that crd1Δ is 

synthetically sick with get1Δ and get3Δ, which suggests that CL shares 

functions with GET proteins. It was surprising to find genetic interaction of a 

mitochondrial lipid mutant with the ER mutants. The GET proteins are 

required for targeting proteins into the ER membrane (Schuldiner et al., 2008). 

It is interesting to speculate that CL may be involved in targeting proteins to 

the ER membrane, especially given the fact that ER and mitochondrial 

membranes are tightly connected (Kornmann et al., 2009). 

Decreased levels of CL observed in the get2Δ mutant point to another 

interesting question. In addition to its role in protein targeting, does Get2p also 

play a role in lipid transfer from the ER to the mitochondria? The mechanism 

of lipid transfer from ER to mitochondria is not known. It is possible that GET 

proteins might transfer lipids from the ER to the mitochondria by creating 
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ERMES-like contact sites (Kornmann et al., 2009). Future work focusing on 

these questions may reveal very interesting connections between ER and 

mitochondria.  

 

3. CL and mitochondrial fusion: Chapter 3 describes the function of CL 

in mitochondrial fusion in yeast. The loss of CL in yeast does not lead to a 

defect in the mitochondrial tubular structure, although in vitro studies reported 

that CL is required for the assembly and activity of the fusion protein Mgm1p. 

Based on earlier findings that the loss of both CL and PE is lethal (Gohil et al., 

2005), I hypothesized that PE might compensate for CL in mitochondrial 

fusion. Indeed, my studies showed that loss of both PE and CL leads to 

mitochondrial fragmentation due to a fusion defect (Joshi et al., 2012). It will 

be fascinating to study if the loss of mitochondrial PE and CL leads to 

structural defects in other cellular organelles such as ER, vacuole, and 

peroxisomes. These findings would suggest that PE and CL might be required 

for cross talk between cellular organelles. 

While the studies in Chapter 3 address a shared function of CL and 

mitochondrial PE, they do not answer the question of why the loss of both is 

lethal. Answering this question would identify essential mitochondrial as well 

as non-mitochondrial functions of these phospholipids. The “awesome power 

of yeast genetics” can be used to isolate suppressors of crd1Δpsd1Δ lethality, 

which would lead to the identification of essential functions that are missing in 

crd1Δpsd1Δ cells.  
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4. CL and the mitochondrial RTG pathway: In Chapter 4, I discussed a 

fascinating new role of CL in activation of the RTG pathway. While decreased 

mitochondrial function leads to activation of the RTG pathway in WT cells, 

crd1Δ cells, which have decreased mitochondrial function, fail to activate the 

RTG pathway at elevated temperature. This is the first report to show that a 

phospholipid be might required for activation of the RTG mediated signaling 

pathway. I reported in Chapter 4 that the key RTG target CIT2 is not 

upregulated in crd1Δ cells (Figure 4.6B). Consistent with this, temperature 

sensitivity of crd1Δ is rescued by 1) overexpression of RTG2 (Figure 4.3), a 

positive regulator of the RTG pathway, 2) deletion of BMH2 (Figure 4.5), a 

negative regulator of the RTG pathway, and 3) supplementation with 

glutamate (Figure 4.6). All these findings indicate that activation of the RTG 

pathway is defective.  

Why do cells lacking CL have a defect in activation of the RTG 

pathway? One possible reason involves the interplay between the positive 

and the negative regulators of the RTG pathway. Rtg3p phosphorylation may 

be perturbed in crd1Δ cells. Rtg2p activity may be defective in the mutant. 

Alternatively, protein levels of the negative regulators may be elevated in 

crd1Δ cells. A second possibility is that altered levels of TCA cycle 

intermediates in the CL mutants lead to decreased expression of CIT2. At 

least two possible mechanisms can alter the levels of TCA intermediates in 

crd1Δ cells. First, decreased activities of TCA cycle enzymes such as 

aconitase and succinate dehydrogenase (SDH), as seen in crd1Δ cells (Vinay 

Patil, unpublished) could lead to decrease TCA intermediates. Second, 
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decrease in TCA cycle intermediates in mitochondria may result from 

decreased activity of transporters present in mitochondrial membranes. 

Transporters such as Crc1p (carnitine), Sfc1p (succinate-fumarate), Ctp1p 

(citrate), and Odc1p (α-ketoglutarate) are required to shuttle metabolites 

across the mitochondrial membranes. CL might affect the activity of the 

transporters in the membrane, causing an accumulation of the TCA cycle 

intermediates in the mitochondria. An accumulation of metabolites such as 

succinate in the mitochondria has been shown to inhibit the expression of 

CIT2 (Lin et al., 2011). It will be interesting to check if accumulation of other 

metabolites in the mitochondria has a similar effect on expression of CIT2. 

Based on these observations, I hypothesize that the loss of CL leads to 

defective shuttling of TCA cycle intermediates across the mitochondrial 

membranes due to decreased activity of metabolite transporters, culminating 

in feedback inhibition of CIT2 expression.  

Another interesting possibility is that the loss of CL can lead to 

decreased activity enzymes in the glyoxylate cycle, and β-oxidation pathway 

that cannot be alleviated by activation of the RTG pathway. Consistent 

glyoxylate and β-oxidation defects, the crd1Δ mutant is unable to utilize 

acetate or oleic acid as a sole source of carbon (Figure 4.9 and 4.10). The 

enzymes for these pathways are localized in peroxisomes. Interestingly, a 

significant amount of CL (7% of total phospholipids) is present in the 

peroxisomal membrane (Zinser et al., 1991) Therefore, CL deficiency may 

lead to decreased activities of enzymes in this organelle. It is possible that 
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blocks in these pathways could lead to metabolic deficiencies in crd1Δ cells 

that are not alleviated by activation of the RTG pathway. 

I challenge my colleagues in the Greenberg lab to address these 

questions, the answers to which will facilitate our understanding of the role of 

CL in the mitochondrial RTG pathway and in pathways replenishing the TCA 

cycle.  

 

5. What makes CL research exciting? A great deal remains to be 

learned about the uniqueness of CL. As discussed above, questions 

regarding the function of CL in mitochondrial protein import, mitochondrial 

morphology and the RTG pathway remain unanswered. What makes this 

study exciting? First, because these functions are conserved and have direct 

implications for human disorders, answering these questions will have 

important implications not just for BTHS, but also for other disorders in which 

CL plays a role. Second, we can use the simple yeast model system to 

elucidate the link between the functions of a lipid to regulation of basic 

metabolic pathways. Third, imagine that we identify metabolites that are 

deficient in CL mutants. Can we then use this knowledge to cure CL related 

disorders such as BTHS simply by supplementing metabolites as nutrients, 

saving patients from more harsh treatments? This is what excites me about 

CL research. I hope you are excited too. I wish all the success to the folks in 

the Greenberg lab for their future work. Cheers! 
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Cardiolipin (CL) is an anionic phospholipid synthesized in the 

mitochondrial inner membrane. Perturbation of CL metabolism leads to Barth 

syndrome (BTHS), a life threatening genetic disorder. I utilized genetic, 

biochemical and cell biological approaches in yeast to elucidate the cellular 

functions of CL. Understanding the functions of CL is expected to shed light 

on the pathology and possible treatments for BTHS. 

BTHS is caused by mutations in TAZ1, which encodes a CL 

remodeling enzyme called tafazzin. BTHS patients exhibit a wide range of 

clinical presentations, indicating that physiological modifiers influence the 

BTHS phenotype. A targeted synthetic lethality screen was performed to 

identify physiological modifiers of CL deficiency. Using this approach, 

synthetic genetic interactions of CL mutants were identified with genes 

encoding mitochondrial outer membrane proteins, specifically in the TOM, 

MDM and SAM complexes, which are involved in mitochondrial protein import, 

suggesting that CL plays a role in this process. Consistent with this, we 
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showed that CL is present in the outer mitochondrial membrane and is 

involved in assembly of outer membrane protein complexes in yeast as well 

as in BTHS lymphoblasts. In addition to this, we showed that CL mutants 

interacted with genes encoding mitochondrial protein import complexes of the 

inner membrane, including the TIM and PAM complexes. To identify the role 

of CL in maintaining mitochondrial morphology, a targeted synthetic lethality 

screen was performed to determine if CL mutants genetically interacted with 

mutants defective in this function. The crd1Δ mutant genetically interacted 

with genes required for mitochondrial fusion and fission, suggesting a 

common cellular function. In addition to genes involved in mitochondrial 

fusion, crd1Δ genetically interacted with the UPS and GET complex mutants 

suggesting shared cellular functions with these as well. Unlike the UPS 

complex, a role for the GET complex in CL metabolism is unknown. My 

studies indicated that levels of CL were decreased in the get2Δ mutant, thus 

identifying a novel role of Get2p in the regulation of CL levels in yeast. In 

summary, the genetic interaction studies identified functions that could be 

physiological modifiers of CL deficiency in yeast, and could possibly point to 

modifiers of the BTHS phenotype.  

Based on the genetic interactions of CL mutants with mitochondrial 

fusion mutants, we tested if CL plays a role in mitochondrial fusion. Because 

the lack of CL does not lead to defects in the mitochondrial network in 

Saccharomyces cerevisiae, I hypothesized that PE may compensate for CL in 

the maintenance of mitochondrial tubular morphology and fusion. Previous 

studies have shown that CL and mitochondrial PE have overlapping functions, 
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and the loss of both is synthetically lethal. In the current study, we showed 

that the loss of both CL and mitochondrial PE exhibited highly fragmented 

mitochondria, loss of mitochondrial DNA, and reduced membrane potential, 

characteristic of fusion mutants. Deletion of DNM1, required for mitochondrial 

fission, restored the tubular mitochondrial morphology. Loss of CL and 

mitochondrial PE led to reduced levels of small and large isoforms of the 

fusion protein Mgm1p, possibly accounting for the fusion defect. Taken 

together, these data demonstrate in vivo that CL and mitochondrial PE are 

required to maintain tubular mitochondrial morphology and have overlapping 

functions in mitochondrial fusion.  

Recent studies have shown that cells lacking CL exhibit decreased 

activities of the TCA cycle enzymes aconitase and succinate dehydrogenase. 

Consistent with this finding, we showed that crd1Δ cells exhibit a growth 

defect on acetate medium, consistent with a defect in the TCA and glyoxylate 

cycles.  A defect in the TCA cycle, and decreased mitochondrial functions, 

leads to activation of the retrograde (RTG) pathway. While the crd1Δ mutant 

exhibits these mitochondrial defects, it fails to activate the RTG pathway, as 

the expression of CIT2 in crd1Δ is not upregulated at elevated temperature. 

Consistent with the RTG defect, crd1Δ cells exhibit glutamate auxotrophy at 

elevated temperature.  We also find that overexpression of RTG2, a positive 

regulator of the RTG pathway, and deletion of BHM2, a negative regulator of 

the RTG pathway, rescues the ts phenotype of crd1Δ. The RTG pathway is 

required for expression of genes that replenish TCA cycle metabolites. In 

addition to the RTG pathway, the β-oxidation pathway can also compensate 
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for the defect in the TCA cycle by replenishing intermediates such as acetyl-

CoA. Interestingly, crd1Δ exhibits growth defects on oleic acid medium, 

suggesting that cells lacking CL have a defect in the β-oxidation pathway. 

Taken together, my studies suggest that CL mutants have defects in the TCA 

and glyoxylate cycles and in the β-oxidation pathway, which cannot be 

alleviated due to defective activation of the RTG pathway. Identifying the 

function of CL in RTG signaling and metabolic pathways will facilitate 

understanding of specific metabolic deficiencies in BTHS patients.  
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