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CHAPTER 1: INTRODUCTION 

Motivation 

Robotic and laparoscopic systems are increasing in use for surgery. The surgeon has to 

instruct a person to move the camera in the laparoscopic case which can result in positioning issues. 

The time of laparoscopic surgery was reduced by using an EndoAssist rather than a human camera 

holder. The surgeon must manually move the camera in the robotic case which can interrupt the 

flow of his/her surgery momentarily. Camera movement leads to problems involving mental work 

load and potential errors. A way to automatically move the camera fon-demand could therefore be 

biennial.  

Self-guided robotic camera control system (SGRCCS) is one useful way to help the 

surgeon during a laparoscopic surgery particularly due to its ability to track colored objects.  This 

method was proposed by Omote et al. in which the camera follows colored objects at the end of 

surgical instruments. It can help surgeons to avoid distraction while performing surgery and reduce 

surgery time significantly [9]. The need for camera assistant in laparoscopic surgery has been 

addressed using Automated Endoscope System for Optical Positioning (AESOP). It has been 

indicated that the time to learn to control laparoscopic by AESOP and manually control is almost 

equal [16].in addition, AESOP is difficult to use. 

FreeHand is the next generation of EndoAssist. It comes with a number of new features. 

For starters it is much cheaper than the first generation. It is also much easier to setup. Additionally, 

it comes with an optical system which enables the surgeon to control it by his/her head motion 

[17] [15]. 
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Another camera assistant used by surgeons, is ViKY EP. It is unique in that the endoscopic 

holder can be controlled by the surgeon’s voice and a foot paddle. However, the ViKY EP comes 

with a con—the surgery operation time is oftentimes increased when it is used [15].  

 

Figure 1. Laparoscopic Surgery (left). EndoAssistant (middle) and SGRCCS (right) [19][20][9] 

 

Figure 2. AESOP (left), FreeHand (middle) and ViKY EP (right) [3] [4] [22] 

 

Medical Robotics and Importance of MIS 

The definition of robotic surgery was used in 1985 where a fixture was held by an industrial 

robot next to a patient’s body [5]. The role of robots in medical science and remote surgery 

becomes a significant issue when medical application is growing swiftly. One of its applications 
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can be Image-guided Surgery which is a process of using a stereotactic helmet to adapt frames. 

Another application of medical robotics can be its role in rehabilitation [1].  

It is not possible to talk about medical Robotics and ignore minimally invasive surgery 

(MIS) role as a main form of medical surgery. In comparison with open surgery, MIS significantly 

reduces recovery time along with a significantly less invasive process.  However, MIS does come 

with its downsides in that it is a more challenging surgery to perform due to the limited field of view 

the surgeon has.  

Figure 3. Incision illustration in open surgery and robotic surgery [8]. Multiple ports needed for both 

tools and camera in robotic surgery. In the robotic case procedures to be performed through 1-2 cm 

incisions. 

 

The da Vinci surgical system consists of two master tool manipulators (MTMs), two or 

more patient side manipulators (PSMs) and a camera arm (ECM). It is a surgical system that is an 

example of MIS, in which all tools inserted into a patient body and operation can be controlled by 

the robot manipulators [5][6]. 
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Figure 4. The da Vinci Surgical System surgeon console (left) and Patient Cart-da Vinci Si HD Surgical 

System (right) [23] [24] 
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CHAPTER 2: BACKGROUND 

Camera Robot 

Currently, two methods for camera control have been used. First, a standard clutch-based 

method for manual camera movement in which the surgeon can move the camera manually. This 

method may serve as source of distraction. The surgeon needs to reposition the camera frequently 

by a pair of manipulators. Second, an autonomous camera also known as auto-camera method is 

used. In this process the camera is moved with-respect-to the center of surgical tool arms with 

automatic zoom ability. This is one method has been proposed to remove the surgeon’s distraction 

[10].  

Robot Operating System and RViz 

Robot Operating System (ROS) has broad applications. Zamean, Slany et al.  proposed a 

control system method based on ROS in order to map and navigate different environments [13]. 

RViz (Robot Visualizer) is visualization tools which are provided by ROS. It enables researchers 

to test and validate their data on RViz before applying on actual robots. Markers are geometric 

primitives that allow annotation in the graphic environment [12].  RViz can subscribe and publish 

robot information using ROS nodes. 

Oculus Rift 

 Oculus Rift provides its user a virtual environment that helps the user experience this 

virtual environment in the form of a 3D environment. Oculus Rift is considered as a human-

machine interface. Oculus Rift improved other VR (virtual Reality) headset issues such as motion 

and sickness issues. This headset was presented as two different versions of developer kit: DK1 

and DK2.  It comes with three sets of lenses come with Oculus Rift: -A, B and C. Furthermore, 

the Oculus Rift comes with Head tracker sensors. These Head trackers enable the Oculus Rift to 
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get head movement data which is particularly useful for controlling the view. A magnetometer, 

gyroscope and accelerometer are VR sensor on Oculus Rift which are useful to determine a user’s 

head position and orientation [14].  

 

Figure 5. The internal structure of Oculus Rift headset [18] 

Potential Solution 

A new method had been proposed in which the camera arm of the da Vinci can be moved 

based on the Oculus Rift orientation and position. 

 

Figure 6. Goal of research: Oculus and da Vinci 



7 
 

 

CHAPTER 3: METHODS 

Oculus Rift runs on Windows. It provides pose (position and orientation) information and 

3D view capability. 

 

Figure 7. An illustration of three axes [21] (left) and Oculus Rift 3D view (right) [7] 

 

Figure 8. Oculus head tracking sensors [25] 

Tracking sensors on an Oculus Rift such as: 

 STMicroelectronics 32F103C8 ARM Cortex-M3 microcontroller  

 Inverse MPU-6000 (gyroscope + accelerometer) 

 Honeywell HMC5983 (manometer) [27] 
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Tracking sensors on Oculus Rift enables us to find the pose data that we need for RViz 

simulation. There are two ways to find the Oculus Rift pose data: First, Inertial measurement Unite 

(IMU) that provides pose data so fast but not accurate enough. Second, the inferred camera that 

detects pose data of LEDs on the Oculus Rift more accurate but slowly. The combination of these 

ways uses to provide pose data of the Oculus Rift 

RViz Simulation Environment 

The da Vinci Surgical System RViz simulation consists of model of the da Vinci Surgical 

System. The RViz simulation is comprised of PSM arms, ECM arm, and setup joints. These joints 

can be activated and moved. RViz runs on Ubuntu and uses ROS nodes. The da Vinci Surgical 

System hardware moves using the same interface. Since the Oculus Rift runs in Windows, the 

major issue for this project is how to translate the Oculus information into Ubuntu/RViz? 

 

Figure 9. RViz simulation 

In order to publish data on the simulation, oculus node was used to publish data on topic 

for joints state of the Oculus Rift. 



9 
 

 

Justification for Socket-based Communication 

The Oculus Rift runs in the Windows operating system. The simulator and the da Vinci 

hardware run in Ubuntu. There is a need to connect the data from the Oculus to the ROS on the 

Ubuntu side. The solution to this is to use Socket to connect Ubuntu to Windows. 

Socket Programming and Client/Server Communication 

 Computer networks are the combination of communication technology and computer 

technology. Computers networks enable two computers to communicate with each other, even 

when running different operating systems. Client and server connection is a way to share 

information between clients and servers [11]. In this study, I used socket programming in order to 

transmit and receive data between the Oculus Rift and RViz simulation. 

Steps for server to connect to a client and transfer data: 

1. Create a socket 

2. Bind the socket to an IP 

3. Listen on the socket for a client  

4. Accept connection 

5. Transfer data  

6. Close connection 

Steps for a client to connect to a server and transfer data: 

1. Create a socket  

2. Connect to the server 

3. Transfer data through the socket 

4. Close the connection  
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Figure 10. Server-Client connection [26] 

 

System Integration 

The Oculus Rift was used to control the camera arm by the user’s head movement. The 

alignment between the user’s head movement and the camera arm was based on the Oculus Rift 

pose data. The first set of data is the home position of the ECM. The pose matrix of the Oculus is 

then used to slave the ECM robot arm. 

Whole System Block Diagrams 

  

Figure 11. Illustration of the Oculus-RViz block connection 
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Steps: 

1. The pose data of Oculus Rift is got and sent through the socket on Windows.  

2. The data is received by Python. 

3. Oculus node publish the data on topic of the camera arm joints angles 

4. The topic was used for the camera arm on simulation 

 

Figure 12. Windows-Linux block diagram 

Python and C++ Code for Client and Server 

After the socket connection is created, server (C++) code starts sending the data and client 

(Python) starts receiving it.  

 

Figure 13. Main loop for socket programming C++ 

  

Camera control

Windows Server socket
Send data of 
Oculus Rift

Wait for command 
to terminate the 

process

Linux Client  socket
Receive Oculus 

Rift data 
Move the ECM 
arm on the ROS
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Figure 14. Main loop for socket programming Python 

 

Figure 15. The pose data is being sent by server (left) and is being received by client (right) 

Converting Quaternion to Rotation Matrix 

 

Figure 16. General rotation matrix where a, b, c and are quaternions [2] 
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Figure 17.Rotation matrix is part of transformation matrix 

Forward Kinematics 

In order to find transformation matrix from joint angles the following formula is used: 

𝑇 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠[(𝜃1, 𝜃2 , 𝜃3 , 𝜃4)] 

ECM has four degrees of freedom 

 

Figure 18. Forward kinematics 

Inverse Kinematics 

Inverse kinematics is calculated from the following formula where the output is joint 

angles: 

[𝜃1, 𝜃2, 𝜃3, 𝜃4] = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠 (𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥) 
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Figure 19. Inverse kinematics 

Algorithm Used   

1. The initial ECM rotation matrix is calculated by using forward kinematic formula (Figure 

17). 

2. The orientation data (in quaternions) of the Oculus Rift is received and converted into a 

3x3 rotation matrix (called the current Oculus rotation matrix) 

Main While loop: 

3. The orientation data (in quaternions) of the Oculus Rift is received and converted into a 

3x3 rotation matrix ( called the next Oculus rotation matrix) 

4. In order to calculate how much the Oculus Rift was rotated, the following formula is used: 

𝑑𝑒𝑙𝑡𝑎 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛=𝑛𝑒𝑥𝑡 𝑜𝑐𝑢𝑙𝑢𝑠 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛*(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑐𝑢𝑙𝑢𝑠 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 )−1 

5. The current rotation matrix of the ECM is multiplied by the oculus rotation matrix giving 

us next rotation matrix of the ECM. 

𝑛𝑒𝑥𝑡 𝑒𝑐𝑚 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑒𝑙𝑡𝑎 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑐𝑚 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

6. The following sentences express how the ECM transformation matrix is found: 
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a. The rotation matrix of the ECM transformation matrix is set equal to the new ECM 

rotation matrix. 

𝑒𝑐𝑚 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑒𝑥𝑡 𝑒𝑐𝑚 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

b. The position of the ECM is fixed (keyhole). This fact is used for finding the position 

of the ECM transformation matrix (last column of the matrix). The keyhole position is 

calculated from forward kinematics formula. 

𝑘𝑒𝑦ℎ𝑜𝑙𝑒 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠[(0, 0, 0, 0)] 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑐𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑒𝑦ℎ𝑜𝑙𝑒  

7. New joint angles for ECM are the result of inverse kinematics of rotation matrix, which is 

used to publish on the simulation. 

𝑒𝑐𝑚_𝑗𝑜𝑖𝑛𝑡_𝑎𝑛𝑔𝑙𝑒𝑠 = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠(𝑒𝑐𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 

8. Oculus node publishes ECM joint angles on the topic of the camera arm 

Testing  

In order to test algorithm, we compare the rotation angle of the Oculus Rift that is measured 

manually with the data is publishing on the simulation. The angle between each pair of orientation 

data (in quaternion) is calculated by using following formula: 

2 ∗ 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓(𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑞1, 𝑞2)) ∗ 180/𝑝𝑖  

Where q1 and q2 are quaternion value. This command shows angle between to quaternions in 

degree. 
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CHAPTER 4: RESULT 

Six tests were implemented to observe and compare the Oculus Rift movement with the 

simulation movement and the Euler angles. In all test the Oculus Rift movement matched with the 

data was used to publish on the camera arm. 

Test 1: 30 Degrees around Y Axis 

 

Figure 20. Simulation environment for the da Vinci Surgical System, initial position (left) and final 

position (right) 

  

Figure 21. The Oculus Rift position, initial position (left) and final position (right) 
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Test Initial quaternion of 

simulation 

Next quaternion of 

simulation 

Degree from 

the Oculus 

Rift 

Degree from 

the 

simulation 

1 [-0.63678, 0.64683, -

0.33389, -0.25426] 

[-0.61574, 0.63901, -

0.42998, -0.16629] 

30 31.029 

Table 1. test1 

 

Test 2: 50 Degrees around Y Axis 

 

Figure 22.  Simulation environment for the da Vinci Surgical System, initial position (left) and final 

position (right) 
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Figure 23. The Oculus Rift position, initial position (left) and final position (right) 

Test Initial quaternion of 

simulation 

Next quaternion of simulation Degree from 

the Oculus 

Rift 

Degree from 

the 

simulation 

2 [-0.63678, 0.64683, -

0.33389, -0.25426] 

[0.70976, -0.49331, 

0.085756, 0.49551] 

50 44.461 

Table 2. test2 
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Test 3: 20 Degrees around Y Axis 

 
Figure 24. Simulation environment for the da Vinci Surgical System, initial position (left) and final 

position (right) 

 

 

Figure 25. The Oculus Rift position, initial   position (left) and final position (right) 
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Test Initial quaternion of 

simulation 

Next quaternion of 

simulation 

Degree from 

the Oculus 

Rift 

Degree 

from the 

simulation 

3 [-0.63678, 0.64683, 

-0.33389, -0.25426] 

[0.70272, -0.56864, 

0.22082, 0.36615] 

20 21.703 

Table 3. test3 

Test 4: 10 Degrees around Y Axis 

 

Figure 26. Simulation environment for the da Vinci Surgical System, initial position (left) and final 

position (right) 
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Figure 27. The Oculus Rift position, initial position (left) and final position (right) 

Test Initial quaternion of 

simulation 

Next quaternion of 

simulation 

Degree from 

the Oculus 

Rift 

Degree 

from the 

simulation 

4 [-0.63678, 0.64683, 

-0.33389, -0.25426] 

 

[-0.61574, 0.63901, 

-0.42998, -0.16629] 

10 15.154 

Table 4.test 4 

Test 5: 45 Degrees around Y Axis 

 

Figure 28. Simulation environment for the da Vinci Surgical System, initial position (left) and final 

position (right) 
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Figure 29. The Oculus Rift position, initial position (left) and final position (right) 

 

Test Initial quaternion of 

simulation 

Next quaternion of 

simulation 

Degree from 

the Oculus 

Rift 

Degree 

from the 

simulation 

5 [-0.63678, 0.64683, -

0.33389, -0.25426] 

 

[-0.61574, 0.63901, -

0.42998, -0.16629] 

45 41.85 

Table 5.test 5 
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Test 6: 45 Degrees around X Axis 

 

Figure 30. Simulation environment for the da Vinci Surgical System, initial position (left) and final 

position (right) 

 

Figure 31. The Oculus Rift position, initial position (left) and final position (right) 
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Test Initial quaternion of 

simulation 

Next quaternion of simulation Degree from 

the Oculus 

Rift 

Degree from 

the 

simulation 

6 [0.71468, -0.6557, 

0.22048, 0.10333] 

[0.78892, -0.46745, 

0.36534, 0.16005] 

30 29.331 

Table 6. test6  
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CHAPTER 5: CONCLUSION 

In this study, the data was transferred through the socket and shown in the simulation. In 

addition, the Oculus Rift rotation angle matched the rotation angle of the camera arm in the 

simulation. For system evaluation, the several headset rotation angles were compared to the camera 

arm rotation angles in the simulation. The results demonstrated that the user can move the camera 

arm using head motions, and the orientation of the camera arm closely matched the headset’s 

orientation.  

In this study, we proposed the control of the camera arm via an Oculus Rift as a new method 

for camera control. The RViz simulation closely reflected the movements of the headset, and the 

feasibility for the method was demonstrated during the tests. 
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CHAPTER 6: FUTURE WORK 

1. Implement the joint angles on the actual da Vinci Surgical System camera arm 

2. Find a method for zooming in and out. My suggestions are: 

a. Use a button on the Oculus Rift which enables the user to do that 

b. Use the zoom keep the tools in the field of view 

3. Create a Graphic User Interface to enable user to start and stop process 

4. Test this method with the hardware and compare results with other methods 

5. Send the camera view to the Oculus Rift display  

6. Check to see whether subject can see the system comfortably during a simple operation 
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APPENDIX A: OCULUS RIFT DK2 

 Display 

o Resolution   1920 x 1080 

o Refresh rate  75 Hz, 72 Hz, 60 Hz 

o Persistence   2 ms, 3 ms, full 

 Viewing Optic 

o Viewing Optics 100° Field of view (nominal) 

 Positional Tracking   

o Sensors   Near Infrared 

CMOS sensor 

o Update Rate 1000 Hz 

 

 Included Accessories  

o Included Accessories  

HDMI to DVI Adapter 

DC Power Adapter  

International Power Plugs 

Nearsighted lens 

Cups 

Lens cleaning 

Cloth 
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 Interfaces 

o Cable  10’ (detachable) 

o HDMI  Yes 

o USB Device  Yes 

o USB Host  USB 2.0 

(Requires DC Power Adapter) 

o Positional   USB 2.0 

o Tracker USB USB 2.0 

 Weight  

o Weight   440 grams 

 Internal Tracking 

o Sensors   Magnetometer  

Accelerometer 

Gyroscope 

o Update rate  1000 Hz 
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APPENDIX B: PYTHON CODE 

Some ROS and robotics commands that I used in this study. 

Homogenous matrix= quaternion_matrix (quaternion) 

This command was used to get transformation matrix from quaternions. 

ecm_pub= rospy.Publisher (‘topic name’, JointState, queue size) 

It creates an ECM publisher 

Transformation matrix= ecm_kin_forward (joint angles) 

This command was used to do forward kinematics which get joint angles as inputs. Transformation 

matrix of the camera arm is its output.  

delta_rot=numpy.matrix (next_oculus_rot)* numpy.matrix (numpy.linalg.inv 

(current_oculus_rot)) 

It finds rotation matrix between the current oculus rotation matrix and next oculus rotation. The 

linalg.inv finds inverse of the matrix. 

Euler_angles=numpy.matrix (transpose (delta_rot)) 

This function finds transpose of a matrix in which delta rotation is rotation matrix. The output is 

Euler angles.  

Joint_angles_ecm=ecm_kin.inverse (transformation_mat) 

It calculates inverse kinematics of the ECM. It takes transformation matrix as an input and its 

output is joint angles of the ECM 

 

rospy.init_node (‘node name’)   

This command initializes a node where node name in my project was oculus node. 

S=socket. Socket (socket.AF_INET, socket.SOCK_STREAM) 
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s.connect ((HOST, PORT)) 

This command makes a socket and connect to a server. 

s.send (data) 

It sends data through the socket  

s.recv (25) 

I used this command to receives a string data type  
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APPENDIX C: C++ CODE 

Some C++ commands that were used in this project. 

WSADATA wsaData 

Makes WSADATA structure  

WSAstartup (MAKEWORD (2, 2), &wsaData) 

Initialize Winsock 

ListenSocket = socket (result->ai_family, result->ai_socktype, result->ai_protocol) 

Create a socket for server connection  

iResult = bind (ListenSocket, result->ai_addr, (int) result->ai_addrlen) 

Bind a socket to an IP 

iResult = listen(ListenSocket, SOMAXCONN) 

Listen to the socket 

ClientSocket = accept (ListenSocket, NULL, NULL) 

Accept a client socket 

iResult = recv(ClientSocket, recvbuf, recvbuflen, 0) 

Receive data  

 closesocket (ClientSocket) 

Close the socket 

WSACleanup () 

Clean up WSAC 

ovrHmd hmd 

Create an ovrHmd object  

ovrTrackingState ts 
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Create ovrTrackingState object 

ovrSensorData sensorData 

Create sensorData object 

ovrVector3f gyroData 

Create ovrVector3f 

ovrVector3f magData 

Create ovrVector3f 

T [0] = ts.HeadPose.ThePose.Orientation.x 

T [1] = ts.HeadPose.ThePose.Orientation.y 

T [2] = ts.HeadPose.ThePose.Orientation.z 

T [3] = ts.HeadPose.ThePose.Orientation.w 

T matrix consists of quatrianian data  

ovrHmd_Destroy (hmd) 

Destroy hmd  

ovr_Shutdown ()  

shutdown ovr  
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ABSTRACT 

IMPLEMENTATION OF CAMERA ARM CONTROL BY AN OCULUS 

RIFT ON A DA VINCI SURGICAL SYSTEM SIMULATION 

by 

HAMID SADEGHI 

August 2016 

Advisor: Professor. Abhilash Pandya 

Major: Electrical and Computer Engineering 

Degree: Master of Science  

Camera control methods play a significant role in remote surgery. Two methods have been 

developed to control the camera arm of the da Vinci Surgical System:  a standard clutch-based 

method for manual movement of the camera and an autonomous camera (auto-camera) method. In 

the standard method, the surgeon positions the camera manually using a pair of hand controllers. 

This happens frequently during the surgery and may serve as a distraction during surgical 

procedures. The second method was developed in order to help surgeon to remove the issue 

mentioned in the standard method. Auto-camera method enables the system to move the camera 

autonomously. In this method, the camera is moved with-respect-to the center of surgical tool arms 

with automatic zoom control ability.  There are still many issues with automatically moving a 

camera.  We will show the feasibility of an intermediate solution using an Oculus rift head mounted 

stereo display. 

Achieving the optimal camera viewpoint with simple control methods is of utmost 

importance for remote surgical systems. We propose a new method to move the camera arm based 

on sensors within the Oculus Rift.  Can a surgeon put the Oculus Rift (virtual reality headset), get 
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a stereoscopic view and control the camera with simple head gestures? In this case, the surgeon 

will be able to see the 3D camera view of scope inside of the Oculus Rift and move the viewpoint 

by his/her head orientation. Position and orientation of the Oculus rift is measured by an inertial 

measuring unit and optical tracking sensors within the Oculus platform. These data can be used to 

control the position and orientation of the camera arm. 

 In this thesis, a complete system will be created based on the Robot Operating System 

(ROS) and a 3D simulation of the da Vinci robot in RViz.  In addition, a usability study will be 

conducted to analyze   system accuracy. For this system evaluation, headset orientation will be 

compared to corresponding orientation of the camera in simulation. We will also check whether 

subjects can use the system comfortable during a simple operation. 

In this study, we propose controlling of the camera arm by Oculus Rift as a new method 

for camera control. It is anticipated that the headset movement will be the same as its 

corresponding simulation in RViz (simulation environment for the robot). We anticipate that our 

results will demonstrates feasibility for this method to control a camera.  We will propose next 

steps for testing this system on the da Vinci hardware leading towards a system for the operating 

room of the future. 
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