
Wayne State University

Wayne State University Theses

1-1-2016

Implementation Of Camera Arm Control By An
Oculus Rift On A Da Vinci Surgical System
Simulation
Hamid Sadeghi
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_theses

Part of the Electrical and Computer Engineering Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Sadeghi, Hamid, "Implementation Of Camera Arm Control By An Oculus Rift On A Da Vinci Surgical System Simulation" (2016).
Wayne State University Theses. 506.
https://digitalcommons.wayne.edu/oa_theses/506

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses/506?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages

IMPLEMENTATION OF CAMERA ARM CONTROL BY AN
OCULUS RIFT ON A DA VINCI SURGICAL SYSTEM

SIMULATION

by

HAMID SADEGHI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan,

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2016

MAJOR: ELECTRICAL ENGINEERING

Approved by:

Advisor Date

© COPYRIGHT BY

HAMID SADEGHI

2016

All Rights Reserved

ii

DEDICATION

To my beloved parents and family.

iii

ACKNOWLEGMENTS

I am thankful to my advisor, Dr. Abhilash Pandya, for giving me this

opportunity to learn about robotics and perform research. I would like to thank Dr.

Luke Reisner for being supportive and his useful ideas during my project. Also, I

would like to take this opportunity to thank my colleagues in the CARES laboratory.

iv

TABLE OF CONTENTS

DEDICATION ... ii

ACKNOWLEGMENTS .. iii

TABLE OF CONTENTS ... iv

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER 1: INTRODUCTION ... 1

Motivation ... 1

Medical Robotics and Importance of MIS ... 2

CHAPTER 2: BACKGROUND ... 5

Camera Robot .. 5

Robot Operating System and RViz ... 5

Oculus Rift ... 5

Potential Solution .. 6

CHAPTER 3: METHODS .. 7

RViz Simulation Environment .. 8

Justification for Socket-based Communication ... 9

Socket Programming and Client/Server Communication ... 9

System Integration .. 10

Whole System Block Diagrams .. 10

Python and C++ Code for Client and Server .. 11

Converting Quaternion to Rotation Matrix ... 12

Forward Kinematics ... 13

Inverse Kinematics ... 13

Algorithm Used .. 14

Testing ... 15

CHAPTER 4: RESULT ... 16

Test 1: 30 Degrees around Y Axis .. 16

Test 2: 50 Degrees around Y Axis .. 17

Test 3: 20 Degrees around Y Axis .. 19

Test 4: 10 Degrees around Y Axis .. 20

Test 5: 45 Degrees around Y Axis .. 21

v

Test 6: 45 Degrees around X Axis .. 23

CHAPTER 5: CONCLUSION ... 25

CHAPTER 6: FUTURE WORK ... 26

APPENDIX A: OCULUS RIFT DK2 ... 27

APPENDIX B: PYTHON CODE .. 29

APPENDIX C: C++ CODE ... 31

REFERENCES .. 33

ABSTRACT .. 35

AUTOBIOGRAPHICAL STATEMENT .. 37

vi

LIST OF TABLES

Table 1. test1 ... 17

Table 2. test2 ... 18

Table 3. test3 ... 20

Table 4.test 4 ... 21

Table 5.test 5 ... 22

Table 6. test6 ... 24

vii

LIST OF FIGURES

Figure 1. Laproscopic Surgery (left). EndoAssistant (middle) and SGRCCS (right)

[19][20][9] .. 2

Figure 2. AESOP (left), FreeHand (middle) and ViKY EP (right) [3] [4] [22] 2

Figure 3. Incision illustration in open surgery and robotic surgery [8]. Multiple ports
needed for both tools and camera in robotic surgery. In the robotic case procedures to
be performed through 1-2 cm incisions.. 3

Figure 4. The da Vinci Surgical System surgeon console (left) and Patient Cart-da Vinci
Si HD Surgical System (right) [23] [24] .. 4

Figure 5. The internal structure of Oculus Rift headset [18] ... 6

Figure 6. Goal of research: Oculus and da Vinci ... 6

Figure 7. An illustration of three axes [21] (left) and Oculus Rift 3D view (right) [7] 7

Figure 8. Oculus head tracking sensors [25] ... 7

Figure 9. RViz simulation .. 8

Figure 10. Server-Client connection [26] ... 10

Figure 11. Illustration of the Oculus-RViz block connection ... 10

Figure 12. Windows-Linux block diagram .. 11

Figure 13. Main loop for socket programming C++ .. 11

Figure 14. Main loop for socket programming Python .. 12

Figure 15. The pose data is being sent by server (left) and is being received by client
(right) .. 12

Figure 16. General rotation matrix where a, b, c and are quaternions [2]....................... 12

Figure 17.Rotation matrix is part of transformation matrix.. 13

Figure 18. Forward kinematics .. 13

Figure 19. Inverse kinematics .. 14

Figure 20. Simulation environment for the da Vinci Surgical System, initial position (left)
and final position (right) ... 16

Figure 21. The Oculus Rift position, initial position (left) and final position (right) 16

Figure 22. Simulation environment for the da Vinci Surgical System, initial position (left)
and final position (right) ... 17

Figure 23. The Oculus Rift position, initial position (left) and final position (right) 18

Figure 24. Simulation environment for the da Vinci Surgical System, initial position (left)
and final position (right) ... 19

Figure 25. The Oculus Rift position, initial position (left) and final position (right) 19

viii

Figure 26. Simulation environment for the da Vinci Surgical System, initial position (left)
and final position (right) ... 20

Figure 27. The Oculus Rift position, initial position (left) and final position (right) 21

Figure 28. Simulation environment for the da Vinci Surgical System, initial position (left)
and final position (right) ... 21

Figure 29. The Oculus Rift position, initial position (left) and final position (right) 22

Figure 30. Simulation environment for the da Vinci Surgical System, initial position (left)
and final position (right) ... 23

Figure 31. The Oculus Rift position, initial position (left) and final position (right) 23

1

CHAPTER 1: INTRODUCTION

Motivation

Robotic and laparoscopic systems are increasing in use for surgery. The surgeon has to

instruct a person to move the camera in the laparoscopic case which can result in positioning issues.

The time of laparoscopic surgery was reduced by using an EndoAssist rather than a human camera

holder. The surgeon must manually move the camera in the robotic case which can interrupt the

flow of his/her surgery momentarily. Camera movement leads to problems involving mental work

load and potential errors. A way to automatically move the camera fon-demand could therefore be

biennial.

Self-guided robotic camera control system (SGRCCS) is one useful way to help the

surgeon during a laparoscopic surgery particularly due to its ability to track colored objects. This

method was proposed by Omote et al. in which the camera follows colored objects at the end of

surgical instruments. It can help surgeons to avoid distraction while performing surgery and reduce

surgery time significantly [9]. The need for camera assistant in laparoscopic surgery has been

addressed using Automated Endoscope System for Optical Positioning (AESOP). It has been

indicated that the time to learn to control laparoscopic by AESOP and manually control is almost

equal [16].in addition, AESOP is difficult to use.

FreeHand is the next generation of EndoAssist. It comes with a number of new features.

For starters it is much cheaper than the first generation. It is also much easier to setup. Additionally,

it comes with an optical system which enables the surgeon to control it by his/her head motion

[17] [15].

2

Another camera assistant used by surgeons, is ViKY EP. It is unique in that the endoscopic

holder can be controlled by the surgeon’s voice and a foot paddle. However, the ViKY EP comes

with a con—the surgery operation time is oftentimes increased when it is used [15].

Figure 1. Laparoscopic Surgery (left). EndoAssistant (middle) and SGRCCS (right) [19][20][9]

Figure 2. AESOP (left), FreeHand (middle) and ViKY EP (right) [3] [4] [22]

Medical Robotics and Importance of MIS

The definition of robotic surgery was used in 1985 where a fixture was held by an industrial

robot next to a patient’s body [5]. The role of robots in medical science and remote surgery

becomes a significant issue when medical application is growing swiftly. One of its applications

3

can be Image-guided Surgery which is a process of using a stereotactic helmet to adapt frames.

Another application of medical robotics can be its role in rehabilitation [1].

It is not possible to talk about medical Robotics and ignore minimally invasive surgery

(MIS) role as a main form of medical surgery. In comparison with open surgery, MIS significantly

reduces recovery time along with a significantly less invasive process. However, MIS does come

with its downsides in that it is a more challenging surgery to perform due to the limited field of view

the surgeon has.

Figure 3. Incision illustration in open surgery and robotic surgery [8]. Multiple ports needed for both

tools and camera in robotic surgery. In the robotic case procedures to be performed through 1-2 cm

incisions.

The da Vinci surgical system consists of two master tool manipulators (MTMs), two or

more patient side manipulators (PSMs) and a camera arm (ECM). It is a surgical system that is an

example of MIS, in which all tools inserted into a patient body and operation can be controlled by

the robot manipulators [5][6].

4

Figure 4. The da Vinci Surgical System surgeon console (left) and Patient Cart-da Vinci Si HD Surgical

System (right) [23] [24]

5

CHAPTER 2: BACKGROUND

Camera Robot

Currently, two methods for camera control have been used. First, a standard clutch-based

method for manual camera movement in which the surgeon can move the camera manually. This

method may serve as source of distraction. The surgeon needs to reposition the camera frequently

by a pair of manipulators. Second, an autonomous camera also known as auto-camera method is

used. In this process the camera is moved with-respect-to the center of surgical tool arms with

automatic zoom ability. This is one method has been proposed to remove the surgeon’s distraction

[10].

Robot Operating System and RViz

Robot Operating System (ROS) has broad applications. Zamean, Slany et al. proposed a

control system method based on ROS in order to map and navigate different environments [13].

RViz (Robot Visualizer) is visualization tools which are provided by ROS. It enables researchers

to test and validate their data on RViz before applying on actual robots. Markers are geometric

primitives that allow annotation in the graphic environment [12]. RViz can subscribe and publish

robot information using ROS nodes.

Oculus Rift

 Oculus Rift provides its user a virtual environment that helps the user experience this

virtual environment in the form of a 3D environment. Oculus Rift is considered as a human-

machine interface. Oculus Rift improved other VR (virtual Reality) headset issues such as motion

and sickness issues. This headset was presented as two different versions of developer kit: DK1

and DK2. It comes with three sets of lenses come with Oculus Rift: -A, B and C. Furthermore,

the Oculus Rift comes with Head tracker sensors. These Head trackers enable the Oculus Rift to

6

get head movement data which is particularly useful for controlling the view. A magnetometer,

gyroscope and accelerometer are VR sensor on Oculus Rift which are useful to determine a user’s

head position and orientation [14].

Figure 5. The internal structure of Oculus Rift headset [18]

Potential Solution

A new method had been proposed in which the camera arm of the da Vinci can be moved

based on the Oculus Rift orientation and position.

Figure 6. Goal of research: Oculus and da Vinci

7

CHAPTER 3: METHODS

Oculus Rift runs on Windows. It provides pose (position and orientation) information and

3D view capability.

Figure 7. An illustration of three axes [21] (left) and Oculus Rift 3D view (right) [7]

Figure 8. Oculus head tracking sensors [25]

Tracking sensors on an Oculus Rift such as:

 STMicroelectronics 32F103C8 ARM Cortex-M3 microcontroller

 Inverse MPU-6000 (gyroscope + accelerometer)

 Honeywell HMC5983 (manometer) [27]

8

Tracking sensors on Oculus Rift enables us to find the pose data that we need for RViz

simulation. There are two ways to find the Oculus Rift pose data: First, Inertial measurement Unite

(IMU) that provides pose data so fast but not accurate enough. Second, the inferred camera that

detects pose data of LEDs on the Oculus Rift more accurate but slowly. The combination of these

ways uses to provide pose data of the Oculus Rift

RViz Simulation Environment

The da Vinci Surgical System RViz simulation consists of model of the da Vinci Surgical

System. The RViz simulation is comprised of PSM arms, ECM arm, and setup joints. These joints

can be activated and moved. RViz runs on Ubuntu and uses ROS nodes. The da Vinci Surgical

System hardware moves using the same interface. Since the Oculus Rift runs in Windows, the

major issue for this project is how to translate the Oculus information into Ubuntu/RViz?

Figure 9. RViz simulation

In order to publish data on the simulation, oculus node was used to publish data on topic

for joints state of the Oculus Rift.

9

Justification for Socket-based Communication

The Oculus Rift runs in the Windows operating system. The simulator and the da Vinci

hardware run in Ubuntu. There is a need to connect the data from the Oculus to the ROS on the

Ubuntu side. The solution to this is to use Socket to connect Ubuntu to Windows.

Socket Programming and Client/Server Communication

 Computer networks are the combination of communication technology and computer

technology. Computers networks enable two computers to communicate with each other, even

when running different operating systems. Client and server connection is a way to share

information between clients and servers [11]. In this study, I used socket programming in order to

transmit and receive data between the Oculus Rift and RViz simulation.

Steps for server to connect to a client and transfer data:

1. Create a socket

2. Bind the socket to an IP

3. Listen on the socket for a client

4. Accept connection

5. Transfer data

6. Close connection

Steps for a client to connect to a server and transfer data:

1. Create a socket

2. Connect to the server

3. Transfer data through the socket

4. Close the connection

10

Figure 10. Server-Client connection [26]

System Integration

The Oculus Rift was used to control the camera arm by the user’s head movement. The

alignment between the user’s head movement and the camera arm was based on the Oculus Rift

pose data. The first set of data is the home position of the ECM. The pose matrix of the Oculus is

then used to slave the ECM robot arm.

Whole System Block Diagrams

Figure 11. Illustration of the Oculus-RViz block connection

11

Steps:

1. The pose data of Oculus Rift is got and sent through the socket on Windows.

2. The data is received by Python.

3. Oculus node publish the data on topic of the camera arm joints angles

4. The topic was used for the camera arm on simulation

Figure 12. Windows-Linux block diagram

Python and C++ Code for Client and Server

After the socket connection is created, server (C++) code starts sending the data and client

(Python) starts receiving it.

Figure 13. Main loop for socket programming C++

Camera control

Windows Server socket
Send data of
Oculus Rift

Wait for command
to terminate the

process

Linux Client socket
Receive Oculus

Rift data
Move the ECM
arm on the ROS

12

Figure 14. Main loop for socket programming Python

Figure 15. The pose data is being sent by server (left) and is being received by client (right)

Converting Quaternion to Rotation Matrix

Figure 16. General rotation matrix where a, b, c and are quaternions [2]

13

Figure 17.Rotation matrix is part of transformation matrix

Forward Kinematics

In order to find transformation matrix from joint angles the following formula is used:

𝑇 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠[(𝜃1, 𝜃2 , 𝜃3 , 𝜃4)]

ECM has four degrees of freedom

Figure 18. Forward kinematics

Inverse Kinematics

Inverse kinematics is calculated from the following formula where the output is joint

angles:

[𝜃1, 𝜃2, 𝜃3, 𝜃4] = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠 (𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥)

14

Figure 19. Inverse kinematics

Algorithm Used

1. The initial ECM rotation matrix is calculated by using forward kinematic formula (Figure

17).

2. The orientation data (in quaternions) of the Oculus Rift is received and converted into a

3x3 rotation matrix (called the current Oculus rotation matrix)

Main While loop:

3. The orientation data (in quaternions) of the Oculus Rift is received and converted into a

3x3 rotation matrix (called the next Oculus rotation matrix)

4. In order to calculate how much the Oculus Rift was rotated, the following formula is used:

𝑑𝑒𝑙𝑡𝑎 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛=𝑛𝑒𝑥𝑡 𝑜𝑐𝑢𝑙𝑢𝑠 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛*(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑐𝑢𝑙𝑢𝑠 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛)−1

5. The current rotation matrix of the ECM is multiplied by the oculus rotation matrix giving

us next rotation matrix of the ECM.

𝑛𝑒𝑥𝑡 𝑒𝑐𝑚 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑒𝑙𝑡𝑎 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑐𝑚 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

6. The following sentences express how the ECM transformation matrix is found:

15

a. The rotation matrix of the ECM transformation matrix is set equal to the new ECM

rotation matrix.

𝑒𝑐𝑚 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑒𝑥𝑡 𝑒𝑐𝑚 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

b. The position of the ECM is fixed (keyhole). This fact is used for finding the position

of the ECM transformation matrix (last column of the matrix). The keyhole position is

calculated from forward kinematics formula.

𝑘𝑒𝑦ℎ𝑜𝑙𝑒 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠[(0, 0, 0, 0)]

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑐𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑒𝑦ℎ𝑜𝑙𝑒

7. New joint angles for ECM are the result of inverse kinematics of rotation matrix, which is

used to publish on the simulation.

𝑒𝑐𝑚_𝑗𝑜𝑖𝑛𝑡_𝑎𝑛𝑔𝑙𝑒𝑠 = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠(𝑒𝑐𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛)

8. Oculus node publishes ECM joint angles on the topic of the camera arm

Testing

In order to test algorithm, we compare the rotation angle of the Oculus Rift that is measured

manually with the data is publishing on the simulation. The angle between each pair of orientation

data (in quaternion) is calculated by using following formula:

2 ∗ 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓(𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑞1, 𝑞2)) ∗ 180/𝑝𝑖

Where q1 and q2 are quaternion value. This command shows angle between to quaternions in

degree.

16

CHAPTER 4: RESULT

Six tests were implemented to observe and compare the Oculus Rift movement with the

simulation movement and the Euler angles. In all test the Oculus Rift movement matched with the

data was used to publish on the camera arm.

Test 1: 30 Degrees around Y Axis

Figure 20. Simulation environment for the da Vinci Surgical System, initial position (left) and final

position (right)

Figure 21. The Oculus Rift position, initial position (left) and final position (right)

17

Test Initial quaternion of

simulation

Next quaternion of

simulation

Degree from

the Oculus

Rift

Degree from

the

simulation

1 [-0.63678, 0.64683, -

0.33389, -0.25426]

[-0.61574, 0.63901, -

0.42998, -0.16629]

30 31.029

Table 1. test1

Test 2: 50 Degrees around Y Axis

Figure 22. Simulation environment for the da Vinci Surgical System, initial position (left) and final

position (right)

18

Figure 23. The Oculus Rift position, initial position (left) and final position (right)

Test Initial quaternion of

simulation

Next quaternion of simulation Degree from

the Oculus

Rift

Degree from

the

simulation

2 [-0.63678, 0.64683, -

0.33389, -0.25426]

[0.70976, -0.49331,

0.085756, 0.49551]

50 44.461

Table 2. test2

19

Test 3: 20 Degrees around Y Axis

Figure 24. Simulation environment for the da Vinci Surgical System, initial position (left) and final

position (right)

Figure 25. The Oculus Rift position, initial position (left) and final position (right)

20

Test Initial quaternion of

simulation

Next quaternion of

simulation

Degree from

the Oculus

Rift

Degree

from the

simulation

3 [-0.63678, 0.64683,

-0.33389, -0.25426]

[0.70272, -0.56864,

0.22082, 0.36615]

20 21.703

Table 3. test3

Test 4: 10 Degrees around Y Axis

Figure 26. Simulation environment for the da Vinci Surgical System, initial position (left) and final

position (right)

21

Figure 27. The Oculus Rift position, initial position (left) and final position (right)

Test Initial quaternion of

simulation

Next quaternion of

simulation

Degree from

the Oculus

Rift

Degree

from the

simulation

4 [-0.63678, 0.64683,

-0.33389, -0.25426]

[-0.61574, 0.63901,

-0.42998, -0.16629]

10 15.154

Table 4.test 4

Test 5: 45 Degrees around Y Axis

Figure 28. Simulation environment for the da Vinci Surgical System, initial position (left) and final

position (right)

22

Figure 29. The Oculus Rift position, initial position (left) and final position (right)

Test Initial quaternion of

simulation

Next quaternion of

simulation

Degree from

the Oculus

Rift

Degree

from the

simulation

5 [-0.63678, 0.64683, -

0.33389, -0.25426]

[-0.61574, 0.63901, -

0.42998, -0.16629]

45 41.85

Table 5.test 5

23

Test 6: 45 Degrees around X Axis

Figure 30. Simulation environment for the da Vinci Surgical System, initial position (left) and final

position (right)

Figure 31. The Oculus Rift position, initial position (left) and final position (right)

24

Test Initial quaternion of

simulation

Next quaternion of simulation Degree from

the Oculus

Rift

Degree from

the

simulation

6 [0.71468, -0.6557,

0.22048, 0.10333]

[0.78892, -0.46745,

0.36534, 0.16005]

30 29.331

Table 6. test6

25

CHAPTER 5: CONCLUSION

In this study, the data was transferred through the socket and shown in the simulation. In

addition, the Oculus Rift rotation angle matched the rotation angle of the camera arm in the

simulation. For system evaluation, the several headset rotation angles were compared to the camera

arm rotation angles in the simulation. The results demonstrated that the user can move the camera

arm using head motions, and the orientation of the camera arm closely matched the headset’s

orientation.

In this study, we proposed the control of the camera arm via an Oculus Rift as a new method

for camera control. The RViz simulation closely reflected the movements of the headset, and the

feasibility for the method was demonstrated during the tests.

26

CHAPTER 6: FUTURE WORK

1. Implement the joint angles on the actual da Vinci Surgical System camera arm

2. Find a method for zooming in and out. My suggestions are:

a. Use a button on the Oculus Rift which enables the user to do that

b. Use the zoom keep the tools in the field of view

3. Create a Graphic User Interface to enable user to start and stop process

4. Test this method with the hardware and compare results with other methods

5. Send the camera view to the Oculus Rift display

6. Check to see whether subject can see the system comfortably during a simple operation

27

APPENDIX A: OCULUS RIFT DK2

 Display

o Resolution 1920 x 1080

o Refresh rate 75 Hz, 72 Hz, 60 Hz

o Persistence 2 ms, 3 ms, full

 Viewing Optic

o Viewing Optics 100° Field of view (nominal)

 Positional Tracking

o Sensors Near Infrared

CMOS sensor

o Update Rate 1000 Hz

 Included Accessories

o Included Accessories

HDMI to DVI Adapter

DC Power Adapter

International Power Plugs

Nearsighted lens

Cups

Lens cleaning

Cloth

28

 Interfaces

o Cable 10’ (detachable)

o HDMI Yes

o USB Device Yes

o USB Host USB 2.0

(Requires DC Power Adapter)

o Positional USB 2.0

o Tracker USB USB 2.0

 Weight

o Weight 440 grams

 Internal Tracking

o Sensors Magnetometer

Accelerometer

Gyroscope

o Update rate 1000 Hz

29

APPENDIX B: PYTHON CODE

Some ROS and robotics commands that I used in this study.

Homogenous matrix= quaternion_matrix (quaternion)

This command was used to get transformation matrix from quaternions.

ecm_pub= rospy.Publisher (‘topic name’, JointState, queue size)

It creates an ECM publisher

Transformation matrix= ecm_kin_forward (joint angles)

This command was used to do forward kinematics which get joint angles as inputs. Transformation

matrix of the camera arm is its output.

delta_rot=numpy.matrix (next_oculus_rot)* numpy.matrix (numpy.linalg.inv

(current_oculus_rot))

It finds rotation matrix between the current oculus rotation matrix and next oculus rotation. The

linalg.inv finds inverse of the matrix.

Euler_angles=numpy.matrix (transpose (delta_rot))

This function finds transpose of a matrix in which delta rotation is rotation matrix. The output is

Euler angles.

Joint_angles_ecm=ecm_kin.inverse (transformation_mat)

It calculates inverse kinematics of the ECM. It takes transformation matrix as an input and its

output is joint angles of the ECM

rospy.init_node (‘node name’)

This command initializes a node where node name in my project was oculus node.

S=socket. Socket (socket.AF_INET, socket.SOCK_STREAM)

30

s.connect ((HOST, PORT))

This command makes a socket and connect to a server.

s.send (data)

It sends data through the socket

s.recv (25)

I used this command to receives a string data type

31

APPENDIX C: C++ CODE

Some C++ commands that were used in this project.

WSADATA wsaData

Makes WSADATA structure

WSAstartup (MAKEWORD (2, 2), &wsaData)

Initialize Winsock

ListenSocket = socket (result->ai_family, result->ai_socktype, result->ai_protocol)

Create a socket for server connection

iResult = bind (ListenSocket, result->ai_addr, (int) result->ai_addrlen)

Bind a socket to an IP

iResult = listen(ListenSocket, SOMAXCONN)

Listen to the socket

ClientSocket = accept (ListenSocket, NULL, NULL)

Accept a client socket

iResult = recv(ClientSocket, recvbuf, recvbuflen, 0)

Receive data

 closesocket (ClientSocket)

Close the socket

WSACleanup ()

Clean up WSAC

ovrHmd hmd

Create an ovrHmd object

ovrTrackingState ts

32

Create ovrTrackingState object

ovrSensorData sensorData

Create sensorData object

ovrVector3f gyroData

Create ovrVector3f

ovrVector3f magData

Create ovrVector3f

T [0] = ts.HeadPose.ThePose.Orientation.x

T [1] = ts.HeadPose.ThePose.Orientation.y

T [2] = ts.HeadPose.ThePose.Orientation.z

T [3] = ts.HeadPose.ThePose.Orientation.w

T matrix consists of quatrianian data

ovrHmd_Destroy (hmd)

Destroy hmd

ovr_Shutdown ()

shutdown ovr

33

REFERENCES

[1] (Dario, Guglielmelli et al. 1996)Dario, P., et al. (1996). "Robotics for medical applications."

IEEE Robotics & Automation Magazine 3(3): 44-56.

[2] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

[3] http://www.ideasforsurgery.com/wp-content/uploads/2009/01/aesop2.jpg

[4] https://www.wired.com/images_blogs/gadgetlab/2009/09/surgical_robots_5a.jpg

[5] Davies, B. (2000). "A review of robotics in surgery." Proceedings of the Institution of

Mechanical Engineers, Part H: Journal of Engineering in Medicine 214(1): 129-140.

[6] Dogangil, G., et al. (2010). "A review of medical robotics for minimally invasive soft tissue

surgery." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of

Engineering in Medicine 224(5): 653-679.

[7] https://blog.sketchfab.com/wp-

content/uploads/2014/07/tumblr_inline_n855ucUg671rh8rjh.png

[8] http://www.ucdmc.ucdavis.edu/urology/images/body/incision_illustration.jpg

[9] Omote, K., et al. (1999). "Self-guided robotic camera control for laparoscopic surgery

compared with human camera control." The American journal of surgery 177(4): 321-324.

[10] ESLAMIAN, S., et al. (2016). "Towards the Implementation of an Autonomous Camera

Algorithm on the da Vinci Platform." Medicine Meets Virtual Reality 22: NextMed/MMVR22

220: 118.

[11] Xue, M. and C. Zhu (2009). The socket programming and software design for communication

based on client/server. Circuits, Communications and Systems, 2009. PACCS'09. Pacific-Asia

Conference on, IEEE.

[12] Gossow, D., et al. (2011). "Interactive markers: 3-d user interfaces for ros applications [ros

topics]." IEEE Robotics & Automation Magazine 18(4): 14-15.

34

[13] Zaman, S., et al. (2011). ROS-based mapping, localization and autonomous navigation using a

Pioneer 3-DX robot and their relevant issues. Electronics, Communications and Photonics

Conference (SIECPC), 2011 Saudi International, IEEE.

[14] Desai, P. R., et al. (2014). "A review paper on oculus rift-a virtual reality headset." arXiv

preprint arXiv:1408.1173.

[15] Pandya, A., et al. (2014). "A review of camera viewpoint automation in robotic and

laparoscopic surgery." Robotics 3(3): 310-329

[16] Jacobs, L., et al. (1997). "Determination of the learning curve of the AESOP robot." Surgical

endoscopy 11(1): 54-55.

[17] Beasley, R. A. (2012). "Medical robots: current systems and research directions." Journal of

Robotics 2012.

[18] https://virtualrealitysb.files.wordpress.com/2014/11/interal-rift.png

[19] http://www.freehandsurgeon.com/images/CompanyHistory/EndoAssist.png

[20] http://hicarebd.com/wp-content/uploads/2015/08/laparoscopy.jpg

[21] http://oculusrift-blog.com/wp-content/uploads/2013/01/headset_fig8.jpg

[22] http://innorobo.com/wp-content/uploads/2015/06/VIKY_EP_BY_ENDOCONTROL-1-

300x211.jpg

[23] http://www.pro-israel.ru/wp-content/gallery/aortokoronarnoe-shuntirovanie-v-izraile/coronary-

artery-bypass-surgery-in-israel3.jpg

[24] http://static.wixstatic.com/media/5a2197_4018d89592942ce535fe86e5e2ad48d7.jpg/v1/fill/w_

480,h_384,al_c,lg_1,q_80/5a2197_4018d89592942ce535fe86e5e2ad48d7.jpg

[25] https://s3.amazonaws.com/static.oculus.com/website/2013/01/DSC_0178.jpg

[26] http://www.codeproject.com/KB/IP/TCPIPChat/ClientServer.jpg

[27] LaValle, Steven M., et al. "Head tracking for the Oculus Rift." 2014 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2014.

35

ABSTRACT

IMPLEMENTATION OF CAMERA ARM CONTROL BY AN OCULUS

RIFT ON A DA VINCI SURGICAL SYSTEM SIMULATION

by

HAMID SADEGHI

August 2016

Advisor: Professor. Abhilash Pandya

Major: Electrical and Computer Engineering

Degree: Master of Science

Camera control methods play a significant role in remote surgery. Two methods have been

developed to control the camera arm of the da Vinci Surgical System: a standard clutch-based

method for manual movement of the camera and an autonomous camera (auto-camera) method. In

the standard method, the surgeon positions the camera manually using a pair of hand controllers.

This happens frequently during the surgery and may serve as a distraction during surgical

procedures. The second method was developed in order to help surgeon to remove the issue

mentioned in the standard method. Auto-camera method enables the system to move the camera

autonomously. In this method, the camera is moved with-respect-to the center of surgical tool arms

with automatic zoom control ability. There are still many issues with automatically moving a

camera. We will show the feasibility of an intermediate solution using an Oculus rift head mounted

stereo display.

Achieving the optimal camera viewpoint with simple control methods is of utmost

importance for remote surgical systems. We propose a new method to move the camera arm based

on sensors within the Oculus Rift. Can a surgeon put the Oculus Rift (virtual reality headset), get

36

a stereoscopic view and control the camera with simple head gestures? In this case, the surgeon

will be able to see the 3D camera view of scope inside of the Oculus Rift and move the viewpoint

by his/her head orientation. Position and orientation of the Oculus rift is measured by an inertial

measuring unit and optical tracking sensors within the Oculus platform. These data can be used to

control the position and orientation of the camera arm.

 In this thesis, a complete system will be created based on the Robot Operating System

(ROS) and a 3D simulation of the da Vinci robot in RViz. In addition, a usability study will be

conducted to analyze system accuracy. For this system evaluation, headset orientation will be

compared to corresponding orientation of the camera in simulation. We will also check whether

subjects can use the system comfortable during a simple operation.

In this study, we propose controlling of the camera arm by Oculus Rift as a new method

for camera control. It is anticipated that the headset movement will be the same as its

corresponding simulation in RViz (simulation environment for the robot). We anticipate that our

results will demonstrates feasibility for this method to control a camera. We will propose next

steps for testing this system on the da Vinci hardware leading towards a system for the operating

room of the future.

37

AUTOBIOGRAPHICAL STATEMENT

I started my undergraduate study in the year 2009. My major was Electronics. During my

undergraduate study, I learned about different fields of Electrical Engineering that helped me to

understand my dream major. I found myself interested in robotics and I was looking an opportunity to

work on this field. Finally, I got that opportunity by starting my graduate study at Wayne State University

in the 2014.

During my graduate projects, I learned about robotics, MATLAB, Python and C++ Programming

Language as well as control and image processing. My mathematics skills helped me to understand my

research.

	Wayne State University
	1-1-2016
	Implementation Of Camera Arm Control By An Oculus Rift On A Da Vinci Surgical System Simulation
	Hamid Sadeghi
	Recommended Citation

	tmp.1481066094.pdf.D0cZh

