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CHAPTER 1 INTRODUCTION

1.1 Motivation and Overview

Feature selection [2–4] from real-world data is defined as a task of selecting a representa-

tive set of features which are useful for data mining tasks such as clustering, classification,

to name a few. This task can further be divided into two categories, namely, supervised and

unsupervised feature selection methods [2]. Unsupervised feature selection methods try to

extract feature sets directly from the data and are used before applying clustering methods

on the data. Supervised feature selection methods on the other hand try to extract features

which are relevant to the class. These methods can be applied for both the classification and

regression problems [3, 4].

One of the challenges involved in building effective supervised feature selection is to

propose methods which can capture the relevance of features and groups of features with

respect to a given class label. In this context, it is observed that groups of homogeneous

features within a group can have a uniform effect on the class label. Homogeneity of features

can be quantified using metrics such as correlation and feature dependence [3]. In such

scenarios, it is desirable to build feature selection methods which can account for the entire

group of homoegeneous features uniformly. This task is also called as supervised feature

grouping [3, 5]. We simply refer to this task as feature grouping in the rest of this thesis.

Some real-world examples of feature grouping are the following:

• Healthcare Analytics: Electronic health records (EHRs) contain patient informa-

tion obtained from several disparate sources such as demographics, labs, comorbidi-

ties, medications and procedures. EHR driven phenotyping [6] is one of the emerging

research areas where clinicians are interested in determining groups of features (phe-

notypes) across each of these sources which are important in determining the risk of

the disease. These groups of features can also serve as biomarkers which can be used

to track the progression of the disease for a patient [7].
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• Text Analytics: Real-world text analytics datasets have a pre-defined hierarchical

structure due to which there is an overlap of content among different documents. An

illustration of this hierarchical structure for the 20-Newsgroups dataset [1] is given in

Fig 1.1. Prediction models which can exploit groups of features representing each node

in this hierarchy will be more effective than learning a unified model on the whole text

corpus.

Figure 1.1: Hierarchical structure in 20-Newsgroups dataset [1].

One of the advantages of developing accurate feature grouping methods for such real-

world datasets is to discover inherent feature groups present in the dataset, and then utilize

structured sparsity methods such as the group lasso along with this discovered grouping

structure to build effective models with good predictive ability [5, 8–11]. It is also desirable

for regression models built on high-dimensional data to recover cohesive and homogeneous

feature groups with good accuracy, as this reduces the error variance of the model and

increases its generalizability. However, existing feature grouping methods are not capable
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of extracting stable feature groups and resolving the misfusion problem which are explained

below.

1.2 Unstable Feature Selection

In this section, we provide an illustration of the unstable feature selection problem using

the Lasso method [12]. This is illustrated in Figure 1.2 which shows the behavior of Lasso

when applied on a sample dataset with a feature space consisting of four unique groups of

features, represented in four different colors.

G1 G2 G4G3

G1 G2 G4G3

Data matrix with groups of 
correlated features

Selected features using Lasso

Figure 1.2: Unstable feature selection in Lasso.

From this illustration, where the selected features are represented with dark shaded col-

ors and the features which are not selected i.e., the features with weight 0 are represented

in lighter shade, one can clearly observe the problem associated with using Lasso for feature

selection on groups of features. It randomly picks individual features among groups of fea-

tures by discarding the rest which is incorrect. We now illustrate another problem associated

with existing feature grouping methods which is called the misfusion problem [13].

1.3 The Misfusion Problem

In this section, we provide an illustration of the misfusion problem on small synthetic

dataset. In Figure 1.3, we present a scenario of how feature grouping algorithms such as oscar

are unable to resolve the misfusion problem . We consider a small dataset with seven features

F = {f1, f2, . . . , f7, } and plot these feature indices on the X-axis and their corresponding

ground truth regression coefficient values β∗ on the Y-axis in the left of Figure 1.3. Ground
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truth β∗ values are segregated into three groups which are G1={f1, f2, f3} with β∗G1
=0.21,

G2={f4, f5} with β∗G2
=0.24, and G3={f6, f7} with β∗G3

=0.4. The response variable Y=Xβ∗+

ε is created where X ∈ R100×7 is a random feature vector matrix created using the normal

distribution N (0,1), and ε is the error term which is created using N (0,1). Subsequently, we

fit an existing state-of-the-art regression model (such as oscar method [14]) on this dataset

and plot the learned regression coefficient values (β) on the Y-axis in Figure 1.3(b).

0.21

0.24

0.40

G1

G2

G3

f1 f2 f3 f4 f5 f6 f7

β * 

Feature Indices

(a) ground truth

0.21

0.40

G1

G3

f1 f2 f3 f4 f5 f6 f7

β 

Feature Indices

(b) existing methods

0.21

0.28

0.40

G1

G2

G3

f1 f2 f3 f4 f5 f6 f7

β 

Feature Indices

(c) our approach

Figure 1.3: A simple illustration demonstrating the misfusion problem and the results ob-
tained by applying existing methods and our approach.

One can clearly observe from Figure 1.3(b) that oscar has misfused groups G1 and G2

without recovering G2 correctly. This is due to the proximity of their regression coefficient

values and oscar is unable to differentiate features in group G1 from G2. In contrast to

existing methods, our approach presented in this thesis effectively resolves the misfusion

problem as can be seen in Figure 1.3(c), with a minor trade-off being the complete recovery

of the ground truth. This misfusion problem can be seen in many high-dimensional regression

problems where coefficient values vary marginally across feature groups, and it needs to be

addressed appropriately in order to build robust and accurate prediction models.

1.4 Our Contributions

The major contributions of this thesis are as follows:

• We propose a novel weighted `1 norm regularized linear regression algorithm for feature

grouping which solves the misfusion problem to build a more effective predictive model
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compared to existing feature grouping methods such as elastic net, fused-lasso and

oscar.

• We formulate this as a convex optimization problem and solve it efficiently using the

fast iterative soft-thresholding algorithm (FISTA).

• We evaluate the goodness of prediction of our approach using state-of-the-art convex

and non-convex feature grouping methods on high-dimensional real-world datasets,

namely 20-Newsgroups and breast cancer gene-expression datasets. We also evaluate

our approach on four synthetic datasets and visualize the feature groups obtained.

1.5 Organization of this Thesis

In Chapter 2, we survey several existing convex and non-convex feature grouping meth-

ods, and also provide a brief review of proximal operators. In Chapter 3, we introduce the

preliminaries needed to comprehend our weighted `1 norm-based framework. We formulate

the corresponding weighted `1 regularized linear regression problem as a convex optimization

problem and we provide an efficient algorithm for solving this problem. In Chapter 4, we

evaluate the performance of weighted `1 norm-based model by comparing it with several con-

vex and non-convex based feature grouping models on 20-Newsgroups data, gene-expresion

data and synthetic datasets. In Chapter 5, we draw conclusions and provide directions for

future work.
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CHAPTER 2 A SURVEY OF FEATURE GROUPING ALGO-
RITHMS

In this chapter, we review existing state-of-the-art feature grouping methods and we also

present the required background for proximal gradient algorithms.

2.1 Related Background

We divide the literature being surveyed in this section into three parts: (i) graph-based

convex methods, (ii) graph-based non-convex methods and (iii) other methods.

2.1.1 Graph-based Convex Methods

1. Octagonal Selection and Clustering Algorithm for Regression (OSCAR):

OSCAR [14] uses the combination of `1 norm which provides sparsity and the `∞

which encourages the equality of the coefficients, this regularizer can be written as

follows:

arg min
β

1

2
||y −Xβ||22 + λ1 ‖ β ‖1 +λ2

∑
i<j

max{|βi|, |βj|}︸ ︷︷ ︸
h(β)

(2.1)

where X ∈ Rn×p, β ∈ Rp. When λ2 is 0 this regularizer becomes Lasso, but when λ1 is

0 this regularizer becomes the `∞ norm. The norm ball of this regularizer is octagonal

in shape. OSCAR can be solved using quadratic programming (QP) and first-order

methods efficiently.

2. Graph Oscar (goscar): Graph-oscar [15] is a modified version of oscar [14] which

uses a pre-specified directed feature graph. Its formulation is given below.

arg min
β

1

2
‖ y −Xβ||22 + λ1||β||1 + λ2

∑
(i,j)εE

max{|βi|, |βj|} (2.2)

Due to its convex formulation this optimization problem can be solved using the Al-

ternate Direction Method for Multipliers (ADMM) method [16].

3. Graph-guided Fused Lasso (gflasso) : Gflasso [17] also uses the knowledge from
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a pre-specified graph as in goscar. The resulting optimization problem for it is solved

using coordinate descent method [18]. The formulation for the optimization problem

is given below

arg min
β

1

2
||y −Xβ||22 + λ1||β||1 + λ2

∑
(i,j)εE

w̃(i, j)|βi − r(i, j)βj| (2.3)

In Eq. (2.3) λ1 and λ2 are regularization parameters, w(i, j) is the absolute value of

weight associated with edge between features i and j and r(i, j) is sign(w(i, j)) which

is the sign of the weight for an edge. The above formulation can be reduced as given

below

arg min
β

1

2
||y −Xβ||22 + λ1||β||1 + λ2

∑
(i,j)εE

|βi − βj| (2.4)

2.1.2 Graph-based Non-convex Methods

Graph-based Non-convex methods provide certain advantages over convex methods as

they can recover the sparse structure more efficiently and overcome the bias associated with

convex methods in some cases. Hence, to overcome this problem, graph-based non-convex

regularizers are used to handle feature grouping in the data. However, there is a trade-off

here since these models are more difficult to solve. We describe important models that

belong to this category in this section and also mention the algorithms that can be used to

solve these methods. All these models mentioned in this thesis use the Difference of Convex

functions (DC) programming method [19] to solve the optimization problem.

1. Non-convex Feature Grouping and Selection (ncFGS): NcFGS [20] uses the `1

norm for feature selection and the difference between absolute values of the coefficients

of features connected in graph to perform feature grouping. The formulation is given

below.

arg min
β

1

2
||y −Xβ||22 + λ1||β||1 + λ2

∑
(i,j)εE

w̃(i, j)||βi| − |βj|| (2.5)
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In Eq. (2.5), second term in the penalty unlike gflasso formulation in Eq. (2.3) depends

on the sign of the weights to decide whether βi and βj should be grouped together.

2. Non-convex Truncated Feature Grouping and selection (ncTFGS): NcT-

FGS [20] applies the `0 surrogate on both the `1 and the difference in absolute values

of coefficients used in ncFGS. Here, the thresholding parameters are used to reduce

the bias of the model. The formulation is given below.

arg min
β

1

2
||y −Xβ||22 + λ1

∑
i

Jτ (|βi|) + λ2

∑
(i,j)εE

w̃(i, j)Jτ (||βi| − |βj||) (2.6)

where Jτ (x) = min(x
τ
, 1) is the threshold function used to reduce the estimation bias

of the model.

3. Non-convex Truncated Fused Feature Grouping and Selection (ncTF): NcTF

applies the `0 surrogate on the fusion penalty term of gflasso formulation as in Eq. (2.3).

The formulation is given below.

arg min
β

1

2
||y −Xβ||22 + λ1||β||1 + λ2

∑
(i,j)εE

w̃(i, j)Jτ (|βi − r(i, j)βj|) (2.7)

4. Non-convex Truncated `1 Feature Grouping and Selection (ncTL): NcTL has

the formulation similar to ncTF, but here `0 surrogate of `1 regularizer is used instead

of using `0 surrogate of fusion penalty term. The formulation is given below.

arg min
β

1

2
||y −Xβ||22 + λ1

∑
i

Jτ (|βi|) + λ2

∑
(i,j)εE

w̃(i, j)|βi − r(i, j)βj| (2.8)

5. Non-convex Truncated `1 and Fused Feature Grouping and Selection (ncTLF):

NcTLF has a formulation similar to ncTF and ncTL, but here the `0 surrogate is ap-

plied on both the terms of the regularizer instead of applying it on any one term. The
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formulation is given below.

arg min
β

1

2
||y −Xβ||22 + λ1

∑
i

Jτ (|βi|) + λ2

∑
(i,j)εE

w̃(i, j)Jτ (|βi − r(i, j)βj|) (2.9)

2.1.3 Other Methods

Both graph-based convex and non-convex methods need a pre-computed feature graph

to be provided in order to recover feature groups, so they are not automatic feature grouping

methods. We now discuss other methods which have been used for feature grouping. We

provide some intuition on each of these regularizers below.

1. `q norm: `2 norm is defined as given below.

‖ β ‖2
2=

p∑
i=1

β2
i (2.10)

The shape of this norm of spherical. The `1 norm is defined below which is convex and

non-smooth.

‖ β ‖1=

p∑
i=1

|βi| (2.11)

However, the sparsity recovered using `1 can be biased sometimes. This motivates us

to study non-convex `q norms with q < 1.

The `0 [19, 21] norm is known to produce a more efficient sparse solution compared to

the `1 norm. The formulation is given below.

‖ β ‖0= |{i : βi 6= 0}| (2.12)

However, this regularizer is not capable of performing feature grouping. On the con-

trary, the `∞ norm is convex and it can perform feature grouping. The formulation is

given below.

‖ β ‖∞= max{|β1|, . . . , |βp|} (2.13)



10

2. Elastic net: The elastic net [22] is another convex regularizer which can perform

feature grouping. It is defined as a convex combination of the `1 and `2 norms. The

formulation is given below.

h(β) = (1− α) ‖ β ‖1 +α ‖ β ‖2
2 (2.14)

Here, when α = 1 this penalty becomes `2 penalty and when α = 0 this penalty

becomes `1 penalty. But when α ∈ (0, 1) this penalty will have the characteristics of

both `1 and `2, `1 provides the property of parameter sparsity and `2 provides strictly

convex nature. This penalty is also capable of soft feature grouping [23] in the presence

of perfectly correlated variables.

3. Fused-lasso: Fused-lasso [24] uses the combination of `1 and a smoothness term

to promote equality of coefficients among features to capture feature groups. This

regularizer can be written as follows:

arg min
β

1

2
||y −Xβ||22 + λ1

p∑
i=1

|βi|+ λ2

p∑
i=2

|βi − βi−1| (2.15)

This regularizer is not capable of grouping the positive and negative variables together

even if they have similar magnitude of regression coefficients. It also assumes a natural

ordering of features in the dataset.

4. Trace Norm: This regularization model uses nuclear norm as the penalty term, this

term is typically applied on matrices and acts in similar way as Lasso, this regulariza-

tion is also known as trace-lasso [25]. Following is the formulation used:

arg min
β

1

2
||y −Xβ||22 + λ1||XDiag(β)||∗ (2.16)

This regularizer behaves like `2 regularizer in presence of strongly correlated predictors,

but if the predictors are not correlated it will behave like Lasso.
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2.2 Proximal Operator-based Methods

Proximal operators are widely used to solve convex optimization problems efficiently.

Consider the formulation below consisting of a smooth convex function f(x) and a non-

smooth convex function h(x).

arg min
β
f(β) + h(β) (2.17)

For a closed proper convex function f : Rn → R ∪ {+∞} the proximal operator proxf :

Rn → Rn is defined as

proxf (v) = arg min
β

(f(β) +
1

2
‖ β − v ‖2

2) (2.18)

In each iteration of a proximal gradient method, the smooth convex function is minimized

and then the effect of non-smooth convex function is incorporated. Proximal operator solves

the problem of moving the weight vector v towards optimum of h(β). Proximal operator for

the regularization function h(β) can be written as

proxh(v) = arg min
β

(h(β) +
1

2
‖ β − v ‖2

2) (2.19)

As this moves the initial weight vector v towards the minimum of the function h(β) while

still remaining close to v, proxh(v) is also known as a proximal point with respect to h(β).

For a semi-continuous function f(x) and a scalar value γ > 0, the Moreau envelope fγ(x)

and proximal operator proxγf (x) can be defined as [26]:

fγ(x) = min
z

{
f(z) +

1

2γ
‖ z − x ‖2

2

}
≤ f(x) (2.20)

prox
γf

(x) = arg min
z

{
f(z) +

1

2γ
‖ z − x ‖2

2

}
Below we discuss two important properties of proximal operators and its relation to the

gradient of the Moreau envelope function [26, 27].

• For a given function f , the proximal operator can be related to gradient-descent step.

We consider a envelope function fγ(x) to prove this relation, the Moreau derivative
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can be written as

∂fγ(x) = ∂ min
z

{
f(z) +

1

2γ
‖ z − x ‖2

2

}
=

1

γ

[
x− ẑ(x)

]
(2.21)

where ẑ(x) = proxγf (x) is the minimum value. Hence,

prox
γf

= x− γ∂fγ(x) (2.22)

• Second, the proximal operator generalizes Euclidean projection. To demonstrate this,

we consider a case where f(x) = ιc(x) which is a set of indicator functions which belong

to some convex set C, for these set of functions the proximal approximation can be

written as proxf (x) = arg minz∈C ‖ x − z ‖2
2 which can be interpreted as Euclidean

projection of x onto C.
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CHAPTER 3 PROPOSED WEIGHTED `1 APPROACH

In this chapter we introduce the proposed weighted `1 norm based regression model and

also we solve this optimization problem using a proximal operator based efficient solver. We

also theoretically analyze the feature grouping nature of the model. Before introducing the

details of the proposed model we present the required preliminaries.

3.1 Preliminaries

Table 3.1: Notations used in this thesis.

Notation Description
n number of instances.
p number of features.
X Rn×p feature matrix.
y Rn response variable.
β Rp regression coefficient vector.
|x|↓ non-increasing sorted |x|.
P (x) permutation matrix.
Ω(β) weighted `1 norm.
λ1, λ2 scalar regularization parameters.
w Rp weight vector.
Jτ () truncated `1 norm.
E connected graph of features.
K+
m monotone non-negative cone.

In this section, we present the preliminaries needed to comprehend our weighted `1 norm

based algorithm for feature grouping. Table 3.1 presents important terms and notations

used in this thesis. We now explain the interpretation of each of these notations in detail.

Lowercase letters x, y denote column vectors and their transposes are denoted as xT , yT ,

respectively. The ith and jth components of these vectors are written as xi and yj. Matrices

are written in uppercase (such as X) and the ith column vector of X is represented as Xi.

The vector with the absolute values of the components of the vector x is written as |x|.

For a vector x ∈ Rp, the ith largest component of x is represented as x[i]. This implies that

x[1] ≥ x[2] ≥ . . . ≥ x[p]. Using this analogy, we define |x|↓ which represents the vector obtained

by sorting the absolute values vector of x (denoted by |x|) in non-increasing order so that
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|x|[1] ≥ |x|[2] . . . ≥ |x|[p] and the ties are broken arbitrarily. This vector based transformation

of |x| to |x|↓ can be done using the permutation matrix P i.e., |x|↓ = P (|x|)|x|. The

permutation matrix follows the property, P (|x|)−1 = P (|x|)T , and it sorts the entries of |x| in

a non-increasing order. For any given weight vector w ∈ Rp+ such that w1 ≥ w2 ≥ . . . wp ≥ 0,

∆w = min{wl−wl+1, l = 1, 2, . . . , p−1} is the minimum gap between consecutive components

of the weight vector w. With this background, we now discuss the formulation of oscar briefly

and introduce the weighted `1 norm.

Oscar is convex and shape of the ball is octagonal. The oscar regularizer is defined as

given in Eq. (3.1), where the `1 term promotes sparsity and the pairwise `∞ term promotes

equality in magnitude of each pair of elements |βi|, |βj| among the p(p−1)
2

feature pairs present

in the dataset. This can also be interpreted as the feature grouping component of oscar.

h(β) = λ1 ‖ β ‖1 + λ2

∑
i<j

max{|βi|, |βj|} (3.1)

We now define the weighted `1 norm and the regularized linear regression problem in

Eq. (3.2).

arg min
β∈Rp

1

2
‖ y −Xβ ‖2

2 + Ω(β) (3.2)

Ω(β) =‖ w � |β|↓ ‖1

In this equation, w is a weight vector of non-increasing weights, which is defined as

w = {w1 ≥ w2 ≥ . . . wp ≥ 0} and � is the element-wise multiplication (Hadamard Product).

This can be written as w ∈ K+
m which represents the monotone non-negative cone [28]. This

definition of the weighted `1 norm now makes the oscar regularizer a specific case of this

weighted `1 problem with the weights as (wi = λ1 + λ2(p− i) ∀i = 1, 2, . . . , p). Apart from

oscar, other regularizers such as the lasso and `∞ also become special cases of the weighted

`1 norm. When all the wi values are fixed, the weighted `1 norm becomes the weighted lasso.

Similarly, when w1 = 1 and wi = 0 ∀ i = 2, 3, . . . , p, then the weighted `1 norm becomes the

`∞ norm.
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A Moreau proximal operator [26] can be derived to solve such regularized problems,

as it can be interpreted as a gradient-descent step for the objective function. Proximal

operators also have a distinct advantage when dealing with non-smooth regularizers such as

the weighted `1 norm, as they are a generalization of the projection operator, which in turn is

used to solve non-smooth optimization problems. In the next section, we derive the proximal

operator for the weighted `1 norm and use it within an accelerated proximal gradient (APG)

algorithm for solving this problem efficiently.

3.2 The Proposed Method

In this section, we present an accelerated proximal gradient FISTA algorithm to solve the

weighted `1 norm regularized linear regression problem. This algorithm uses the proximal

operator for the weighted `1 norm and we present the method for obtaining it efficiently.

Subsequently, we provide theoretical analysis where we prove the convexity and the feature

grouping property of this weighted `1 norm which proves why it is effective at resolving the

misfusion problem.

3.2.1 Proximal operator for Weighted `1 Norm

The proximal operator for Ω, which is denoted by proxΩ(.), is defined in Eq. (3.3) for any

v ∈ Rp using the standard definition of a proximal operator proposed in [26]. We now try

to simplify the proximal operator using the steps provided below and explain the procedure

for obtaining it.

proxΩ(v) = arg min
β∈Rp

(
1

2
‖ β − v ‖2

2 + Ω(β)

)
(3.3)

Using Eq. (3.3) we can estimate proxΩ(v) in order to employ it within the FISTA frame-

work. We use the fact that w, β ∈ K+
m ⊂ Rp and mention the steps needed to simplify
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Eq. (3.3) further as follows:

proxΩ(v) = arg min
β∈K+

m

1

2
‖ β − v ‖2

2 + wTβ (3.4)

= arg min
β∈K+

m

1

2
‖ β − (v − w) ‖2

2

s.t β1 ≥ β2 ≥ . . . ≥ βp ≥ 0

The simplification yields Eq. (3.4) which needs to be solved to obtain proxΩ(v). This

computation can be interpreted as consisting of two operations which are (i) obtaining the

projection (v−w) onto the monotone cone Km = {β1 ≥ β2 ≥ . . . ≥ βp} by solving Eq. (3.5),

and (ii) applying a subsequent projection of this result onto Rp+ by clipping the negative

values.

arg min
β∈Km

1

2
‖ β − (v − w) ‖2

2 (3.5)

s.t β1 ≥ β2 ≥ . . . ≥ βp

This projection problem in Eq. (3.5) has the form as given in Eq. (3.6) which is also called

the isotonic regression problem which is a submodular convex optimization problem [29].

Hence, in order to solve Eq. (3.5), we use an existing isotonic regression solver like the pool

adjacent violators algorithm (PAVA) [30].

arg min
y∈Rp

p∑
i=1

fi(yi) (3.6)

s.t y1 ≤ y2 ≤ . . . ≤ yp

PAVA is one of the most efficient methods for solving the isotonic regression problem

with O(plogp) time complexity [31]. We briefly describe the intuition behind this algorithm.

PAVA computes a non-decreasing sequence of yi such that the problem is optimized. It starts

with y1 on the left and moves to the right until it encounters the first violation yi > yi+1.

Once it encounters the violation it forms a block of yi and yi+1, then computes a update

based on a solver that results in yi+1 = s(yi) as needed to get the monotonicity. Then, it
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continues to the right until it finally reaches yp. By applying this PAVA algorithm to solve

Eq. (3.5) and then by applying the clipping operator to project the result onto Rp+, we

obtain proxΩ(v). This proximal operator is now used within the FISTA based algorithm

given in Algorithm 3.1 which is the proposed weighted `1 norm regularized linear regression

solver.

3.2.2 FISTA based Algorithm

In this section, we present the solver for the weighted `1 norm regularized linear regression

problem which uses the fast iterative soft-thresholding algorithm (FISTA) [32]. FISTA is a

variant of the iterative soft-thresholding algorithm (ISTA) which uses the accelerated prox-

imal gradient (APG) method based on Nesterov’s technique [33]. First-order optimization

methods such as FISTA converge as O( 1
n2 ) compared to the traditional gradient methods

which have a slow convergence rate of O( 1√
n
).

Algorithm 3.1: FISTA based Solver for the weighted `1 norm regularized linear re-
gression.

1 Input: Feature vector X ∈ Rn×p, Response vector Y ∈ Rn, Lipschitz constant
L = 2Λmax(X

TX), Weight vector w, Tolerance parameter tol, max iterations
max iter.

2 Output: Regression coefficients β ∈ Rp

3 Initialize: β0 ∈ Rp, u1 = β0, t1 = 1;
4 for k=1 to max iter do

5 βk = proxΩ

(
uk −XT (Xuk − y)/L

)
using Eq. (3.4) ;

6 tk+1 =
1+
√

1+4t2k
2

;

7 uk+1 = βk +

(
tk−1
tk+1

)
(βk − βk−1) ;

8 if ‖ βk − βk−1 ‖2< tol then
9 break;

10 end
11 k = k + 1;

12 end
13 Return βk ;

In Algorithm 3.1, we describe the FISTA based algorithm used to learn the regression

coefficient vector. The inputs to the algorithm are X, Y , the Lipschitz constant L which
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is estimated using the maximum value among all the Eigen values (Λ(XTX)). The weight

vector w is also provided, and it is used for the weighted `1 norm computation as given in

Eq. (3.2). w satisfies the property that w ∈ K+
m such that w1 ≥ w2 ≥ . . . ≥ wp ≥ 0. In this

algorithm, after initializing the parameters, in line 3, proxΩ is computed by solving Eq. (3.4)

using the PAVA algorithm and the subsequent projection using the clipping operator onto

Rp+. In Lines 4 and 5, the updates are done as per the accelerated proximal gradient method.

Subsequently, in lines 6-10, the convergent regression coefficient vector is returned.

3.2.3 Complexity Analysis

We now discuss the complexity of the weighted `1 norm regularized linear regression

algorithm presented above. The number of iterations for the FISTA algorithm to obtain an

ε-optimal solution is O(1/
√
ε). The computation of the proximal operator for the weighted

`1 norm requires solving Eq. (3.5) which has a time complexity of O(plogp) as mentioned

earlier for the PAVA algorithm. The projection onto Rp+ using the clipping operator takes

constant time. Hence, the total time complexity of the algorithm is O

(
1√
ε
(p(n+ logp)

)
. We

observe that for most of the real-world datasets n� logp and hence the complexity of this

algorithm is O(np/
√
ε).

3.2.4 Theoretical Analysis

In this section, we prove the convexity and the feature grouping property of the weighted

`1 norm. Before we state the theorem and provide its proof, we introduce several lemmas

which state the convexity, norm property and the strong Schur convexity [34, 35] properties

of the weighted `1 norm. These lemmas will also be used to prove the feature grouping

property.

lemma 1. Ω(x) is a convex function.
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Proof. Let u, v ∈ Rp, θ ∈ [0, 1], x = θ u+ (1− θ) v, then

Ω(x) =‖ w � |x|↓ ‖1 (3.7)

=‖ w � P (|x|)|x| ‖1

=‖ w � P (|x|)|(θu+ (1− θ) v)| ‖1

≤‖ w � P (|x|)(|θu|+ |(1− θ) v)| ‖1

≤ θ ‖ w � P (|x|)u ‖1 +(1− θ) ‖ w � P (|x|)v ‖1

≤ θ ‖ w � P (|u|)u ‖1 +(1− θ) ‖ w � P (|v|)v ‖1

≤ θ ‖ w � P (|u|)|u| ‖1 +(1− θ) ‖ w � P (|v|)|v| ‖1

≤ θ Ω(u) + (1− θ) Ω(v)

Here we assume without loss of generality that the permutation matrices for x, u, v vectors

are the same. While deriving this proof, we applied the following properties for the absolute

value function: for u, v ∈ Rp, |u + v| ≤ |u| + |v| and u ≤ |u| to prove the convex function

property.

lemma 2. If w ∈ K+
m then Ω(x) satisfies the conditions of a norm.

Proof. To prove that Ω(x) is a norm, we need to prove the definiteness condition that
Ω(x) = 0 ⇐⇒ x = 0. As w ∈ K+

m and Ω(x) = 0 only if x = 0. The vice-versa statement
is also true that if x = 0, then Ω(x) = 0 using the definition of the weighted `1 norm from
Eq. (3.2). The positive homogeneity condition which states that Ω(αx) = α Ω(x) for any
α ≥ 0 can also be proved trivially using the definition of the weighted `1 norm. We can
also prove the triangle inequality condition that Ω(u+ v) ≤ Ω(u) + Ω(v) for any two vectors
u, v ∈ Rp by following the steps similar to those provided in Lemma 1. This proves that
Ω(x) satisfies the conditions of a norm.

We now present a lemma which is based on the strong Schur convexity of the weighted

`1 norm.

lemma 3. Consider a vector β ∈ Rp+ and two of its components βi and βj, such that
βi > βj. Let z ∈ Rp+ be obtained by applying to β an increment of ε ∈ (0, (βi − βj)/2), so
that zi = βi − ε, zj = βj + ε, zk = βk, for k 6= i, j. Then

Ω(β)− Ω(z) ≥ ∆wε (3.8)

Proof. xi and xj are non-negative and let l andm be their respective rank orders, i.e., xi = x[l]

and xj = x[m]; of course, l < m, because xi = x[l] > x[m] = xj. Now let l + a and m − b be
the rank orders of zi and zj, respectively, i.e., xi − ε = zi = z[l+a] and xj + ε = zj = z[m−b].
Of course, it may happen that a or b (or both) are zero, if ε is small enough not to change
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the rank orders of one (or both) of the affected components of x. Furthermore, the condition
ε < (xi − xj)/2 implies that xi − ε > xj + ε, thus l + a < m − b. A key observation is that
x↓ and z↓ only differ in positions l to l + a and m− b to m, thus we can write

Ωw(x)− Ωw(z) =
l+a∑
k=l

wk(x[k] − z[k]) +
m∑

k=m−b

wk(x[k] − z[k]). (3.9)

In the range from l to l + a, the relationship between z↓ and x↓ is

z[l] = x[l+1], z[l+1] = x[l+2], ...., z[l+a−1] = x[l+a], z[l+a] = x[l] − ε,

whereas in the range from m− b to m, we have

z[m−b] = x[m] + ε, z[m−b+1] = x[m−b], ...., z[m] = x[m−1].

Plugging these equalities into Eq. (3.9) yields

Ωw(x)− Ωw(z) =
l+a−1∑
k=l

wk (x[k] − x[k+1])︸ ︷︷ ︸
≥0

+
m∑

k=m−b+1

wk (x[k] − x[k−1])︸ ︷︷ ︸
≤0

+ wl+a(x[l+a] − x[l] + ε) + wm−b(x[m−b] − x[m] − ε)

(A)

≥wl+a
l+a−1∑
k=l

(x[k] − x[k+1]) + wm−b

m∑
k=m−b+1

(x[k] − x[k−1])

+ wl+a(x[l+a] − x[l] + ε) + wm−b(x[m−b] − x[m] − ε)

=wl+a

(
l+a−1∑
k=l

(x[k] − x[k+1]) + (x[l+a] − x[l] + ε)

)

+ wm−b

(
m∑

k=m−b+1

(x[k] − x[k−1]) + (x[m−b] − x[m] − ε)

)
(C)
= ε(wl+a − wm−b)

(C)

≥ ε∆w,

where inequality (A) results from x[k]−x[k+1] ≥ 0, x[k]−x[k−1] ≤ 0, and the components of
w forming a non-increasing sequence, thus wl+a ≤ wk, for k = l, ...., l+a−1, and wm−b ≥ wk,
for k = m − b + 1, ....,m; equality (C) is a consequence of the cancellation of the remains
of the telescoping sums with the two other terms; inequality (C) results from the fact that
l + a < m− b and the definition of ∆w.

Theorem 1. Let β̂ be a solution of Eq. (3.2), and let Xi and Xj be two columns of X.
Then,

• ‖ Xi −Xj ‖2< ∆w/ ‖ y ‖2 =⇒ β̂i = β̂j, and
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• ‖ Xi +Xj ‖2< ∆w/ ‖ y ‖2 =⇒ β̂i = −β̂j

Proof. We prove this property by first mentioning that if f is a convex function and β̂ ∈
dom(f). Then β̂ ∈ arg min f , if and only if f ′(β̂, u) ≥ 0, for any u where f ′(β, u) is the
directional derivative of function f in the direction u. Eq. (3.2) can be written as the sum
of two components f(β) = L(β) + Ω(β) where L(β) = 1

2
‖ y −Xβ ‖2

2. We begin by stating
that given ‖ Xi − Xj ‖2< ∆w/ ‖ y ‖2 is satisfied for some pair of columns, then consider

some β̂ such that β̂i 6= β̂j and we can assume that β̂i > β̂j. The directional derivative of L

at β̂, in the direction u, where ui = −1, uj = 1, and uk = 0, for k 6= i, j, is.

L′(β̂, u) = lim
α→0+

‖ y −Xβ̂ + α(Xi −Xj) ‖2
2

2α
− ‖ y −Xβ̂ ‖

2
2

2α
(3.10)

= gT (Xi −Xj)

where g=y −Xβ̂. Similarly, we can compute the directional derivative of Ω at β̂, in the
same direction u

Ω′(β̂, u) = lim
α→0+

Ω(β̂ + αu)− Ω(β̂)

α
(3.11)

In Eq. (3.11), we can use Lemma 3 and Eq. (3.8) and this can be re-written as

Ω′(β̂, u) ≤ lim
α→0+

−∆wα

α
= −∆w (3.12)

We can now combine Eq. (3.10) and Eq. (3.12) to obtain the directional derivative of f as

f
′
(β̂, u) ≤ gT (Xi −Xj)− ∆w (3.13)

≤‖ g ‖2‖ Xi −Xj ‖2 − ∆w

≤‖ y ‖2‖ Xi −Xj ‖2 − ∆w < 0.

In Eq. (3.13), we used our assumption at the beginning that ‖ Xi−Xj ‖2< ∆w/ ‖ y ‖2 to

arrive at f
′
(β̂, u) < 0. However, this is a contradiction to our assumption using the convex

function property stated earlier that f
′
(β̂, u) ≥ 0. Hence, using proof by contradiction, we

conclude that β̂i = β̂j. This implies that Ω assigns coefficients of the same magnitude for
similar features essentially grouping them into a cluster.

The second part of this theorem is simply a corollary of the first part which results from
swapping the signs of either Xi or Xj and the corresponding coefficient. If two columns are
similar, then any ∆w > 0 is sufficient to guarantee that these two columns (features) will be
grouped together, and their corresponding regression coefficient values will have the same
magnitude. This completes the proof explaining how the weighted `1 norm performs exact
feature grouping and resolves the misfusion problem .
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CHAPTER 4 EXPERIMENTAL RESULTS

In this chapter, we present the experiments conducted to evaluate the performance of

our weighted `1 approach. We explain the details of the synthetic datasets and also describe

the real-world datasets used. We explain the baseline models, evaluation metrics and the

implementation details of these methods. We conduct different experiments to assess the

recovery of feature groups, goodness of prediction and scalability of the proposed approach.

4.1 Datasets Description

In this section, we describe the datasets considered for evaluating the performance of our

weighted `1 approach. We provide details regarding the synthetic dataset creation which is

followed by describing the 20-Newsgroups and breast cancer datasets.

4.1.1 Synthetic Datasets

We created three synthetic datasets with moderate dimensionality (Syn-1, Syn-2 and

Syn-3 ) and one high-dimensional dataset (Syn-4 ). We include a feature grouping pattern

in these datasets which is specified below. This allows to visualize the goodness of feature

grouping methods for the moderate dimensionality datasets. The response variable in these

datasets is created using the linear regression model which can be written as y = Xβ∗ + ε

where β∗ ∈ Rp and ε ∼ N (0, σ2) is the error term. Features for these datasets are generated

as X ∼ N (0, C) where C=[cij] is a covariance matrix.

1. In Syn-1, n=280 and there are 8 predictors; the parameters are generated as follows

β∗ = [3, 2, 1.5, 0, 0, 0, 0, 0]T

and σ=3, with covariance cij=0.7|i−j|.

2. In Syn-2, n=280 and there are 8 predictors; the parameters are generated as follows

β∗ = [3, 0, 0, 1.5, 0, 0, 0, 2]T

and σ=3, with covariance cij=0.7|i−j|.
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3. In Syn-3, n=800 and there are 40 predictors; the parameters are generated as follows

β∗ = [0, · · · , 0︸ ︷︷ ︸
10

, 2, · · · , 2︸ ︷︷ ︸
10

, 0, · · · , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

]T

and σ=15, with covariance cij=0.5 when i 6= j, and 1 otherwise.

4. In Syn-4, n=2000 and there are 5000 predictors; the parameters are generated as

follows

β∗ = [3, · · · , 3︸ ︷︷ ︸
0.1p

, 0, · · · , 0︸ ︷︷ ︸
0.3p

, 1.5, · · · , 1.5︸ ︷︷ ︸
0.1p

, 0, · · · , 0︸ ︷︷ ︸
0.4p

, 2, · · · , 2︸ ︷︷ ︸
0.1p

]T

and σ=3, with covariance cij=0.7|i−j|.

Table 4.1: Description of the datasets used in our experiments.

Dataset # Features # Instances
Syn-1 8 280
Syn-2 8 280
Syn-3 40 800
Syn-4 5000 2000
breast-cancer 8141 295
atheism vs graphics 7943 2000
windows.x vs religion.misc 8442 2000
autos vs motorcycles 7094 2000
baseball vs hockey 7909 2000
forsale vs ms-windows.misc 6678 2000
guns vs mideast 9763 2000
med vs space 8778 2000
pc.hardware vs politics.misc 8001 2000
mac.hardware vs christian 7288 1997
crypt vs electronics 7410 2000

4.1.2 20-Newsgroups Dataset

This dataset is a collection of approximately 20,000 newsgroup documents, partitioned

evenly across 20 different newsgroups1. We extract 10 pairs from the 20 different newsgroups

to form 10 datasets as given in Table 4.1. We treat each of these 10 pairs as a binary

1http://qwone.com/~jason/20Newsgroups/
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classification problem, wherein we label each document in the dataset with the newsgroup

it belongs to. As a part of the preprocessing step, we perform stemming to reduce the

redundancy of words and remove the stop words. We only consider words which appear

in atleast 4 documents. Subsequently, we build a weight matrix using the TF-IDF method

which is commonly used in text analytics to obtain a feature vector based representation.

4.1.3 Breast Cancer Dataset

We use a high-dimensional breast cancer gene expression dataset2 in our experiments.

This dataset contains information about 8,141 genes for 295 breast cancer tumors. These

tumor information were collected from 295 women suffering from breast cancer. Out of the

295 tumors, 78 are metastatic (which are labeled as 1) and 217 are non-metastatic (which are

labeled as -1). To decrease the class imbalance, we duplicate the metastatic class instances

twice before evaluating the performance of the models used here. This helps to obtain

unbiased results.

4.2 Performance Evaluation

In this section, we present the metrics used for evaluating our weighted `1 approach. We

use the following metrics to compare the performance of the proposed model with the baseline

models: Area Under ROC Curve (AUC) (including standard deviation and p-values), Mean

Squared Error (MSE), and the coefficient of determination R-squared (R2).

4.3 Implementation Details

Our proposed weighted `1 norm and its corresponding proximal operator was imple-

mented in R. The isotone R-package is used to implement the PAVA algorithm. The R-

package Sparse Modeling Software (SPAMS ) was used to implement methods such as elastic

net, graph-ridge, `0, `∞, fused-lasso and trace-lasso algorithms. We use the R-package Fea-

ture Grouping and Selection over Undirected Graph (FGSG) to implement the graph-based

models such as goscar, gflasso, ncFGS, ncTFGS, ncTL, ncTF, and ncTLF. To calculate AUC

and R2 we use R-packages pROC and Metrics. We calculate the MSE for synthetic datasets

2http://lbbe.univ-lyon1.fr/-Jacob-Laurent-.html?lang=fr
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with a known ground truth β∗ using this formula: MSE = 1
n
(β − β∗)TXTX(β − β∗), where

β is the learned regression coefficient vector after applying the corresponding feature group-

ing algorithm [36]. These metrics were obtained using five-fold cross validation. Parameter

tuning of the regularization parameters was done using a hold out set for all the graph-based

convex and non-convex models. The weight vector (w), which follows a pre-specified ordering

in our weighted `1 approach, was generated using a Gaussian Benjamini-Hochberg (BHq)

procedure [37].

Table 4.2: MSE (std) values of our weighted `1 approach compared with other methods for
synthetic datasets.

Method Syn-1 Syn-2 Syn-3
elastic net 1.370 (0.086) 1.382 (0.165) 2.954 (0.325)

fused-lasso 1.032 (0.209) 1.142 (0.137) 2.888 (0.442)

`∞ 1.678 (0.104) 1.750 (0.146) 2.834 (0.344)

graph-ridge 1.575 (0.156) 1.576 (0.178) 2.881 (0.362)

goscar 1.509 (0.156) 1.529 (0.132) 2.918 (0.382)

gflasso 1.593 (0.137) 1.650 (0.178) 2.879 (0.428)

trace-lasso 1.681 (0.192) 1.776 (0.218) 2.888 (0.414)

ncFGS 1.568 (0.118) 1.655 (0.204) 2.832 (0.274)

ncTFGS 1.530 (0.132) 1.632 (0.216) 2.814 (0.413)

ncTF 1.643 (0.145) 1.589 (0.215) 2.880 (0.270)

ncTL 1.652 (0.136) 1.611 (0.236) 2.834 (0.344)

ncTLF 1.606 (0.1502) 1.529 (0.159) 2.822 (0.322)

weighted `1 0.543 (0.052) 0.454 (0.051) 1.762 (0.238)

4.4 Goodness of Prediction

In this section, we present the results corresponding to the goodness of prediction of

our proposed approach. In Table 4.2, we present results obtained using the mean squared

error (MSE) and the standard deviation estimated by bootstrapping with 500 resamplings.

We observe that our weighted `1 approach obtains lower MSE values compared to the other

competing models. In Table 4.3, we also provide the coefficient of determination (R2) values.

A model is good when it has low MSE and high R2 values. These results indicate that our

method provides the best fit compared to all other methods. This better performance is

due to the effective feature grouping ability of our approach which helps in building more
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effective and generalizable models.

Table 4.3: R2 values of our weighted `1 approach compared with other methods for synthetic
datasets.

Method Syn-1 Syn-2 Syn-3
elastic net 0.305 0.318 0.103
fused-lasso 0.320 0.321 0.105
`∞ 0.288 0.301 0.100
graph-ridge 0.289 0.303 0.104
goscar 0.319 0.312 0.107
gflasso 0.315 0.318 0.104
trace-lasso 0.310 0.305 0.105
ncFGS 0.323 0.323 0.114
ncTFGS 0.320 0.320 0.110
ncTF 0.313 0.318 0.112
ncTL 0.321 0.311 0.110
ncTLF 0.318 0.317 0.111
weighted `1 0.354 0.345 0.377

In Table 4.4, we provide the AUC (along with the standard deviation of the result using

five-fold cross validation), p-values for our weighted `1 approach to confirm the performance

and the statistical significance of our results. The p-value is calculated using Delong’s test

for comparing the significance between a pair of AUC values [38]. We compute the p-value by

comparing the result obtained after applying our approach with the second best performing

model (trace-lasso) for each dataset considered. It should be noted that a result with a

p-value of less than 0.05 is considered to be statistically significant and is interpreted as

being small enough to justify the superiority of our approach over the methods used for

comparison.

4.5 Recovering Feature Groups

In this section, we conduct an experiment to visually assess the goodness of our weighted

`1 approach compared to other feature grouping methods for Syn-1, Syn-2 and Syn-3 datasets.

In Figure 4.1, the y-axis represents the feature regression coefficients obtained after fitting

four different feature grouping algorithms for all three synthetic datasets and the x-axis rep-

resents the feature indices. The first, second and third rows in Figure 4.1 correspond to
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Syn-1, Syn-2 and Syn-3 datasets, respectively. We can observe that goscar almost retains

both the sparsity and the feature grouping structure for Syn-1 and Syn-2 datasets, whereas

fused lasso and elastic net are not as good as goscar at retaining the grouping structure.

Our weighted `1 approach recovers the ground truth almost completely for Syn-1 and Syn-2.

For Syn-3 one can observe that all competing algorithms perform poorly, but our approach

is relatively more effective at recovering the grouping structure, and it avoids misfusing the

groups.

4.6 Scalability Experiments

In this section, we compare the runtime of our weighted `1 norm regularized linear re-

gression model against oscar and goscar by varying the features and number of instances for

a high-dimensional synthetic datasets (Syn-4 ). We choose these two algorithms as baselines

for comparison as they are relatively faster compared to other non-convex feature grouping

methods used for comparisons in this thesis. This experiment was performed on a machine

with 12-GB memory and quad-core CPU.

In Figure 4.2(a), the x-axis represents the number of features and the y-axis represents the

time needed for the algorithm execution in seconds. In Figure 4.2(b), the x-axis represents

the number of instances and y-axis represents the time. The plots in Figure 4.2 clearly

indicate that our algorithm is significantly faster than oscar and goscar. This is because

the oscar solver uses a quadratic programming (QP) solver which is slow, and goscar uses

an ADMM method based solver, but it requires computing the sparse edgeset graph, which

affects its runtime when the number of features are high. In contrast to these algorithms,

the FISTA based solver used in our algorithm is much faster because the proximal operator

can be computed efficiently with time complexity of O(plogp). In addition, our approach

does not explicitly build a feature graph to learn cohesive feature groups, but learns them

directly from the data. This also saves the computational time compared to oscar and goscar

algorithms.
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Figure 4.2: Comparison of runtime (in seconds) for our weighted `1, oscar and goscar algo-
rithms on Syn-4 dataset with varying number of features (a) and instances (b).
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CHAPTER 5 CONCLUSION AND FUTURE WORK

In this thesis, we presented a weighted `1 algorithm for solving the misfusion problem

while learning regression models from high-dimensional data with inherent feature groupings

which are not unknown beforehand. We derived the proximal operator for this weighted `1

norm and solved the corresponding weighted `1 norm regularized linear regression problem

using the FISTA algorithm. Our approach can automatically learn the feature grouping

structure, and it was more effective at resolving the misfusion problem compared to existing

methods such as elastic net, fused-lasso and oscar. In addition, our approach was also

more scalable compared to oscar and goscar for high-dimensional datasets. We provided

exhaustive experimental results on various real-world datasets including the 20-Newsgroups

and breast cancer. We also provided results on four synthetic datasets to visually assess the

recovery of feature grouping and the scalability of our approach. This work can be extended

by developing a more theoretical procedure of providing the optimal weight sequence for the

weighted `1 norm computation.
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coordinate optimization. The Annals of Applied Statistics, 1(2):302–332, 2007.

[19] Gilles Gasso, Alain Rakotomamonjy, and Stéphane Canu. Recovering sparse signals

with a certain family of nonconvex penalties and dc programming. IEEE Transactions

on Signal Processing, 57(12):4686–4698, 2009.

[20] Yunzhang Zhu, Xiaotong Shen, and Wei Pan. Simultaneous grouping pursuit and feature

selection over an undirected graph. Journal of the American Statistical Association,



34

108(502):713–725, 2013.

[21] Dongdong Ge, Xiaoye Jiang, and Yinyu Ye. A note on the complexity of `p minimization.

Mathematical programming, 129(2):285–299, 2011.

[22] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–

320, 2005.

[23] Jonathan H Clark. Locally non-linear learning via feature induction and structured

regularization in statistical machine translation. PhD thesis, Carnegie Mellon University,

2015.

[24] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Spar-

sity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 67(1):91–108, 2005.

[25] Edouard Grave, Guillaume R Obozinski, and Francis R Bach. Trace lasso: a trace norm

regularization for correlated designs. In Advances in Neural Information Processing

Systems, pages 2187–2195, 2011.

[26] Neal Parikh and Stephen P Boyd. Proximal algorithms. Foundations and Trends in

Optimization, 1(3):127–239, 2014.

[27] Nicholas G Polson, James G Scott, and Brandon T Willard. Proximal algorithms in

statistics and machine learning. Statistical Science, 30(4):559–581, 2015.

[28] Xiangrong Zeng and Mário AT Figueiredo. The ordered weighted `1 norm: Atomic

formulation, projections, and algorithms. arXiv preprint arXiv:1409.4271, 2014.

[29] RERE Barlow. Statistical inference under order restrictions; the theory and application

of isotonic regression. Technical report, 1972.

[30] Patrick Mair, Kurt Hornik, and Jan de Leeuw. Isotone optimization in R: pool-adjacent-

violators algorithm (PAVA) and active set methods. Journal of Statistical Software,

32(5):1–24, 2009.

[31] Cong Han Lim and Stephen J Wright. Efficient bregman projections onto the permuta-



35

hedron and related polytopes. In Proceedings of the 19th International Conference on

Artificial Intelligence and Statistics, pages 1205–1213, 2016.

[32] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[33] Yurii Nesterov. Gradient methods for minimizing composite objective function. Tech-

nical report, UCL, 2007.

[34] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004.

[35] Mário AT Figueiredo and Robert D Nowak. Ordered weighted `1 regularized regression

with strongly correlated covariates: Theoretical aspects. In Proceedings of the 19th

International Conference on Artificial Intelligence and Statistics, pages 930–938, 2016.

[36] Leon Wenliang Zhong and James T Kwok. Efficient sparse modeling with auto-

matic feature grouping. IEEE Transactions on Neural Networks and Learning Systems,

23(9):1436–1447, 2012.

[37] Ma lgorzata Bogdan, Ewout van den Berg, Chiara Sabatti, Weijie Su, and Emmanuel J

Candès. Slope adaptive variable selection via convex optimization. The Annals of

Applied Statistics, 9(3):1103–1140, 2015.

[38] Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique Lisacek,

Jean-Charles Sanchez, and Markus Müller. pROC: an open-source package for R and

S+ to analyze and compare roc curves. BMC bioinformatics, 12(1):1, 2011.



36

ABSTRACT

FEATURE GROUPING USING WEIGHTED `1 NORM FOR
HIGH-DIMENSIONAL DATA.

by

KARTHIK KUMAR PADTHE

August 2016

Advisor: Dr. Chandan K. Reddy

Major: Computer Science

Degree: Master of Science

Building effective prediction models from high-dimensional data is an important prob-

lem in several domains such as in bioinformatics, healthcare analytics and general regression

analysis. Extracting feature groups automatically from such data with several correlated

features is necessary, in order to use regularizers such as the group lasso which can exploit

this deciphered grouping structure to build effective prediction models. Elastic net, fused-

lasso and Octagonal Shrinkage Clustering Algorithm for Regression (oscar) are some of the

popular feature grouping methods proposed in the literature which recover both sparsity

and feature groups from the data. However, their predictive ability is affected adversely

when the regression coefficients of adjacent feature groups are similar, but not exactly equal.

This happens as these methods merge such adjacent feature groups erroneously, which is

widely known as the misfusion problem. In order to solve this problem, in this thesis, we

propose a weighted `1 norm-based approach which is effective at recovering feature groups,

despite the proximity of the coefficients of adjacent feature groups, building extremely accu-

rate prediction models. This convex optimization problem is solved using the fast iterative

soft-thresholding algorithm (FISTA). We depict how our approach is more successful than

competing feature grouping methods such as the elastic net, fused-lasso and oscar at solving

the misfusion problem on synthetic datasets. We also compare the goodness of prediction
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of our algorithm against state-of-the-art non-convex feature grouping methods when applied

on a real-world breast cancer dataset, the 20-Newsgroups dataset and synthetic datasets.
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