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1 Introduction

Consensus controls represent a team effort to reach a common goal. The problems are

related to many applications that involve coordination of multiple entities with only

limited neighborhood information to reach a global goal for the entire team. Typical

examples include multi-agents in robotics, flocking behavior in people and animals,

wireless communication networks, sensor networks, platoon formation in ground and

aerial vehicles, distributed computing, biological systems, etc. Due to the diversity in

application domains, detailed system descriptions vary substantially and diversified

methodologies are needed to treat such systems. However, one common feature of the

underlying problems is: Although the goal of control is global to the entire system,

only limited local information is available for control actions.

There is an extensive literature on consensus control in a variety of application

areas, including computing load balancing [22, 40], sensor networks [1, 28], mobil

agents [13, 27], flocking behavior and swarms [21, 36, 37], etc. Related algorithms

and theoretical developments were reported in [5, 11, 31]. Much of recent work was

motivated by [37], which in fact is a version of a model introduced earlier in [33] for

simulating flocking and schooling behaviors in computer graphics. The effort in the

control community can be traced back to the asynchronous stochastic optimization

algorithms [38], which was substantially generalized in [18]. In this dissertation, we

consider a specific control structure for consensus. It is noted that consensus control

often leads to consensus without further constraints on the actual state. Practical
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systems always require states to be confined in some ways. Our link-based control

provides a natural and practical constraint on the state.

With the aforementioned motivations, this dissertation is mainly concerned with

the study of convergence properties of consensus-type algorithms for networked sys-

tems in which the network topologies switch randomly and develops an iterate av-

eraging algorithm for consensus-type controls of networked systems. Our interest

in this problem is motivated by cooperative and coordinated control. Owing to the

wide variety of applications, detailed system descriptions vary substantially and di-

versified methodologies are needed to treat such systems. Nevertheless, there is a

common thread, the use of an online recursive stochastic approximation (SA) algo-

rithm. There is extensive literature on consensus control in a variety of application

areas, including load balancing in parallel computing [22, 40, 38, 42], sensor networks

[1, 9, 28, 29], team formation [4], decentralized filtering, estimation, and data fu-

sion [3, 17, 23, 4, 35], mobile agents [13, 26, 31, 32], flocking behavior and swarms

[21, 33, 37], physics [37], etc. Applications of stochastic approximation algorithms

and theoretical developments in related consensus control problems were reported in

[5, 10, 11]. Switching network topologies were studied in [24, 26, 12]. More recently,

[14] employed a method on the convergence of products of stochastic matrices that

uses randomly switching Laplacian matrices together with observation noises that

may be state-dependent and Markovian based. In [47], we used a Markov model and

treated a much larger class of noises, where the network graph is modulated by a

discrete-time Markov chain. In addition to convergence and rates of convergence,
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a multi-scale structure, which captures differences between state adaptation speeds

and topology switching frequencies, was explored fully. Related stochastic differential

equations and switching stochastic equations were obtained.

As an application, imagine we have a collection of UAV assets tasked with search-

ing a forward operating location for the presence of targets. Decisions must be made

about individual UAV task assignments, since the collections of UAVs might be het-

erogeneous with regard to capabilities. In addition, tracking potential targets over

long distances may require“target hand-off” that must be coordinated among teams

of UAVs. As another application, we consider for instance the problem of networked

computing [40, 48]. A computational job is assigned to a network of r computers.

The goal is to achieve approximately equal workload distribution for each computer

to avoid idle or overloaded running states. A workload transfer from node i to node

j results in a decrease of workload at node i and an increase of the same amount

at node j. This control structure does not change the total workload amount of

the whole system and provides a natural constraint to bound the node states. This

scenario can be easily recognized in different application domains such as material

distribution systems, data fusion in distributed sensor networks, deployment of sen-

sors, coordination of unmanned aerial vehicles (UAVs). It will be shown that this

constraint leads to a Markovian dynamic system that connects seamlessly with the

Markov chain descriptions of the network topology switching dynamics.

To model inherent uncertainties, this dissertation considers consensus control

problems with regime-switching network topologies. In our setup, we quantify the
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time-varying parameter process as a Markov chain with a transition matrix that in-

cludes a small parameter ε > 0, which characterizes the rates of network switching.

We then use a stochastic recursive algorithm to carry out the consensus control task.

The algorithm uses a small stepsize µ > 0, which defines how fast the network node

states are updated. The impact of network switching rates on convergence proper-

ties of consensus control algorithms is captured by the relationship between ε and

µ. There are three cases concerning the relative sizes of ε and µ: 0 < ε = O(µ),

0 < ε � µ, and 0 < µ � ε. Asymptotic behaviors of consensus control algorithms

under these cases are fundamentally different. When ε = O(µ), through appropriate

interpolations, the limit is described by regime-switching ordinary differential equa-

tions. When ε � µ, the network topology rarely changes and is essentially fixed

during the transient interval of active consensus control. We thus practically deal

with a fixed network. When µ � ε, the network is changing so fast that it acts like

a noise, and consequently only its average with respect to the stationary measure

determines convergence properties of the consensus control.

To summarize, in this dissertation, we investigate the asymptotic properties of

consensus-type algorithms using iterate averaging and regime-switching topologies.

In each setting, theoretical results (e.g., algorithms, convergence, and asymptotic

efficiency, ect.) are developed, and numerical experiments are presented to illustrate

the tracking performance of the identification algorithms.

The remainder of the dissertation is arranged as follows. Chapter 2 introduces

the networked systems and consensus control problems. Some basic properties of
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networked systems are derived for time-invariant systems, which are to be used in

subsequent convergence analysis. We propose the two-stage recursive algorithm in

Chapter 3. We obtains convergence, rate of convergence, and asymptotic efficiency

using stochastic approximation iterate averaging algorithms. Numerical examples

to illustrate the asymptotes are provided. Chapter 4 sets the stage for networked

systems with randomly time-varying topologies. The problem formulation of regime-

switching network topologies is introduced. Convergence analysis under the scenario

ε = O(µ) is presented. We also focuses on convergence analysis for the cases of

fast-switching and slow-switching network topologies, as well as simulation examples

to illustrate the asymptotes. Finally, we end this dissertation with conclusions and

further remarks in Chapter 5.
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2 Networked System and Consensus Control

Consider a networked system of r nodes, given by

xin+1 = xin + uin, i = 1, . . . , r, (2.1)

where uin is the node control for the ith node, or in a vector form xn+1 = xn+un with

xn = [x1
n, . . . , x

r
n]′, un = [u1

n, . . . , u
r
n]′. The nodes are linked by a sensing network,

represented by a directed graph G whose element (i, j) indicates estimation of the

state xjn by node i via a communication link, and a permitted control vij on the link.

For node i, (i, j) ∈ G is a departing edge and (l, i) ∈ G is an entering edge. The total

number of communication links in G is ls. From its physical meaning, node i can

always observe its own state, which will not be considered as a link in G.

2.1 Networked Observation and Control

In this dissertation, we limit the control structures to the link control among nodes

permitted by G. The node control uin is determined by the link control vijn . Since a

positive transportation of quantity vijn on (i, j) means a loss of vijn at node i and a

gain of vijn at node j, the node control at node i is uin = −
∑

(i,j)∈G v
ij
n +

∑
(j,i)∈G v

ji
n .

The most relevant implication in this control scheme is that for all n,
∑r

i=1 x
i
n =∑r

i=1 x
i
0 := ηr, for some η ∈ R that is the average of x0. That is, η =

∑r
i=1 x

i
0/r.

Consensus control seeks control algorithms that achieve xn → η11, where 11 is the

column vector of all 1s. A link (i, j) ∈ G entails an estimate, denoted by x̂ijn , of xjn by
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node i with estimation error dijn , i.e.,

x̂ijn = xjn + dijn . (2.2)

The estimation error dijn is usually a function of the signal xjn itself and depends on

communication channel noises ξijn in a nonadditive and nonlinear relation

dijn = g(xjn, ξ
ij
n ) (2.3)

and can be spatially and temporally dependent. Most existing literature considers

much simplified noise classes dijn = ξijn with i.i.d. assumptions.

This dissertation will consider general noise classes of type (2.3). Such extensions

are necessary when dealing with networked systems. A sampled and quantized signal

x in a networked system enters a communication transmitter as a source. To enhance

channel efficiency and reduce noise effects, source symbols are encoded [6, 15]. Typical

block or convolutional coding schemes such as Hamming, Reed-Solomon, or more

recently the low-density parity-check (LDPC) code and Turbo code, often introduce

a nonlinear mapping v = f1(x). The code word v is then modulated into a waveform

s = f2(v) = f2(f1(x)) which is then transmitted. Even when the channel noise is

additive, namely the received waveform is w = s + d where d is the channel noise,

after the reverse process of demodulation and decoding, we have y = g(w) = g(s +

d) = g(f2(f1(x)) + d). As a result, the error term g(f2(f1(x)) + d) − x in general is

nonadditive and signal dependent. In addition, block and convolution coding schemes

introduce temporally dependent noises. In our formulation, this aspect is reflected in

dependent φ-mixing noises on ξijn . These will be detailed later.
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For simplification on system derivations, we use first dijn = ξijn in this section. Let

η̃n and ξn be the ls dimensional vectors that contain all x̂ijn and ξijn in a selected order,

respectively. Then, (2.2) can be written as η̃n = H1xn + ξn, where H1 is an ls × r

matrix whose rows are elementary vectors such that if the `th element of ζ̃n is x̂ij then

the `th row in H1 is the row vector of all zeros except for a “1” at the jth position.

Each sensing link provides information δijn = xin− x̂ijn , an estimated difference between

xin and xjn. This information may be represented, in the same arrangement as η̃n, by

a vector δn of size ls containing all δijn in the same order as η̃n. δn can be written

as δn = H2xn − η̃n = H2xn − H1xn − ξn = Hxn − ξn, where H2 is an ls × r matrix

whose rows are elementary vectors such that if the `th element of ζ̃(k) is x̂ij then the

`th row in H2 is the row vector of all zeros except for a “1” at the ith position, and

H = H2 −H1. The reader is referred to [2] for basic matrix properties in graphs and

to [39] for matrix iterative schemes. Due to network constraints, the information δijn

can only be used by nodes i and j. When the control is linear, time invariant, and

memoryless, we have vijn = µgijδ
ij
n where gij is the link control gain on (i, j) and µ is

a global scaling factor that will be used in state updating algorithms as the recursive

stepsize. Let G be the ls × ls diagonal matrix that has gij as its diagonal element.

In this case, the node control becomes un = −µH ′Gδn. For convergence analysis,

we note that µ is a global control variable and we may represent un equivalently as

un = −µ(H ′GHxn −H ′Gξn) = µ(Mxn +Wξn), with M = −H ′GH and W = H ′G.
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2.2 Convergence to Consensus

Under the link-based state control uin, the state updating scheme (2.1) becomes

xn+1 = xn − µH ′Gδn. (2.4)

Since 11′M = 0, 11′W = 0, 11′xn+1 = 11′xn = rη hold for all n, which is a natural

constraint to the stochastic approximation algorithm. Starting at x0, xn is updated

iteratively by using (2.4), which for the analysis is

xn+1 = xn + µ(Mxn +Wξn). (2.5)

Throughout the paper, the noise {ξn} is allowed to be correlated, both spatially and

temporally. We will assume the following conditions.

(A0) (1) All link gains are positive, gij > 0. (2) G contains a spanning tree.

(A1) The observation noise {ξn} is a sequence of stationary φ-mixing sequence

such that Eξn = 0, E|ξn|2+∆ < ∞ for some ∆ > 0, and that the mixing measure

φ̃n satisfies
∑∞

k=0 φ̃
∆/(1+∆)
n < ∞, where φ̃n = supA∈Fn+m E(1+∆)/(2+∆)|P (A|Fm) −

P (A)|(2+∆)/(1+∆), F ξ<n = σ{ξn; k < n}, F ξ≥n = σ{ξn; k ≥ n}.

Remark 2.1. Recall that a square matrix Q̃ = (q̃ij) is a generator of a continuous-

time Markov chain if q̃ij ≥ 0 for all i 6= j and
∑

j q̃ij = 0 for each i. Also, a

generator or the associated continuous-time Markov chain is irreducible if the system

of equations


νQ̃ = 0,

ν11 = 1

has a unique solution, where ν = [ν1, . . . , νr] ∈ R1×r with

νi > 0 for each i = 1, . . . , r is the associated stationary distribution.
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Under (A1), the noise is generally unbounded but has bounded (2 + ∆)th mo-

ments. In addition, it is a sequence of correlated noise, much beyond the usual i.i.d.

(independent and identically distributed) noise classes. A φ-mixing sequence has the

property that the remote past and the distant future are asymptotically independent.

The asymptotic independence is reflected by the condition on the underlying mixing

measure.

Theorem 2.2. Under Assumption (A0), (1) M has rank r− 1 and is negative semi-

definite. (2) M is a generator of a continuous-time Markov chain, and is irreducible.

Proof. (1) Under the hypothesis, G is full rank, positive definite. Since G contains

a spanning tree, by [2, Lemma 2.5.1], H has rank n − 1. From the expression M =

−H ′GH, these imply that M is negative semi-definite and has rank r − 1.

(2) By M = −H ′GH, it can be readily verified that all off-diagonal elements of

M are in the form of 0 or gij > 0. From H11 = 0, all row sums and column sums

of M are zero. Consequently, M is a generator of a continuous-time Markov chain.

Since M is of rank r − 1 and M11 = 0, ν = 11′/r satisfies νM = 0 and ν11 = 1, and is

the unique nonnegative solution. Therefore, M is irreducible. 2

Studying algorithm (2.5) is within the framework of standard stochastic approxi-

mation methods; see [20, Chapter 8]. Associated with the algorithm, there is a limit

ordinary differential equation

ẋ = Mx. (2.6)

Letting Mx = 0, we obtain the equilibria of (2.6). Since M is a generator of a
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continuous-time Markov chain, the equilibria of (2.6) constitute the set Z = {z ∈

Rr, z = c11 for any real number c ∈ R}. That is, the equilibria are the set of r-

dimensional vectors spanned by the vector 11. When c = 0, we get the equilibrium

point 0, so Z is the set of consensus. Convergence of the recursive algorithms is closely

related to the associated ODE (2.6). To analyze algorithm (2.5), using the ODE

methods [20], we take a continuous-time interpolation xµ(t) = xn for t ∈ [µn, µn+µ)

and study the limit dynamics through the trajectories of differential equations whose

stationary points belong to Z. Recall (see [20, p. 104]) that a set S is said to be

locally stable in the sense of Liapunov if for each δ > 0 there is a δ1 > 0 such

that all trajectories starting in the δ1-neighborhood Nδ1(S) of S never leave the δ-

neighborhood Nδ(S) of S. If the trajectories ultimately go to S, then S is said to be

asymptotically stable in the sense of Liapunov. If this holds for all initial conditions,

then the asymptotic stability is said to be global. Following from the standard line

of argument of stochastic approximation [20] with the utilization of the structure of

M matrix, we obtain the proposition below.

Proposition 2.3. Consider the algorithm (2.5) together with the constraint

11′xn = ηr. (2.7)

Under Assumptions (A0) and (A1), for any tµ → ∞ as µ → 0, xµ(· + tµ) converges

in probability to η11.

Sketch of Proof. We only highlight the main ideas. Consider first (2.6). Define

V : Rr 7→ R by V (x) = x′x/2. Then V (0) = 0, V (x) > 0 for x 6= 0, and V (x) →
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∞ as |x| → ∞. Moreover, the derivative of V (x) along the solution of (2.6) is

(d/dt)V (x(t)) = x′(t)Mx(t). By Theorem 2.2, M is negative semi-definite which

implies (d/dt)V (x(t)) = x′(t)Mx(t) ≤ 0. The stationary points of the above ODE are

given by the solutions to the equation Mx = 0. Since M is a generator, the stationary

points to (2.6) is precisely the set Z. By the invariant set theorem (see for example,

[20, p.104]), as t → ∞, the solution to (2.6) converges to Z. That is, Z is a globally

asymptotically stable set. Using the methods in [20, Chapter 8], we can show that

xµ(·) converges weakly to x(·) such that x(·) is a solution of (2.6). Moreover, taking

tµ →∞ as µ→ 0, xµ(·+ tµ) converges to the set Z in probability. Furthermore, since

the intersection of Z and 11′z = ηr is the single point x = η11, we obtain xµ(· + tµ)

converges in probability to the unique consensus solution η11. The desired result thus

follows.
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3 Asymptotic Optimality for Consensus-Type SA

Algorithms using Iterate Averaging

The benefits of the iterate averaging algorithm can be summarized by the following

items. (1) The difficulty of selecting a good stepsize sequence {µn} in application is

a handicap, and iterate averaging alleviates this difficulty by providing a systematic

approach. (2) With the use of a large stepsize, i.e. one going to zero slower than

O(1/n), the algorithm forces the estimates to move towards the true parameter more

quickly. (3) Iterate averaging smoothes out the noise effect and reduces the “variance”

of the noise. As a result, it gives the best convergence rate with the best scaling factor

and the “smallest asymptotic covariance.” Further insight on this can be found in [20,

Chapter 11]. It can also be shown that this optimality is related to the well-known

Cramér-Rao lower bound (see [25]).

Using such an idea in this chapter, we build algorithms using iterate averaging for

the purpose of reaching consensus. Rather than dealing with well-known consensus

algorithms, we treat general classes of noise that can cover many communication

schemes as an integrated part of networked systems. Nevertheless, neither the rate

of convergence nor the optimality of a consensus-type algorithm can be obtained

directly from existing results in SA theory. The matrix Ĥ in the above paragraph

needs to be Hurwitz. However, for our consensus problem, the corresponding matrix

M (to be precisely defined in the following section) is a generator of a continuous-

time Markov chain, which has a zero eigenvalue that makes the existing results not
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applicable. To overcome this difficulty, we use the irreducibility of M , which indicates

that apart from zero, all other eigenvalues have negative real parts. We use the

ordinary differential equation (ODE) approach (see [20]) in our analysis. In lieu of

working with the discrete iterates directly, we take a continuous-time interpolation

of the iterates. Then using compactness, we can show that the resulting sequence of

functions converges to a solution of the ODE.

3.1 Algorithms

Based on the discussion of last section, we propose a class of stochastic approximation

algorithms. In consideration of extensive early work on consensus control, we shall go

to the algorithms directly. For previous work on such algorithms, we refer the reader

to the references in [47]. Suppose x ∈ Rr and W ∈ Rr×r1 , Ŵ : Rr × Rr1 7→ Rr. We

begin by considering the following state updating algorithm

xn+1 = xn + µnMxn + µnWξn + µnŴ (xn, ζn), (3.1)

together with the constraint

11′xn = βr, (3.2)

where {µn} is a sequence of stepsizes, M is an irreducible generator of a continuous-

time Markov chain (hence 11′M = 0 and rank M = r − 1), {ξn} and {ζn} are noise

sequences taking values in Rr1 , β is the team average, and consensus control aims

to control each team member’s state towards β. For example, in computer load

balancing problems, β is the average per-processor work load. Equal distribution
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of the total work load on multiple processors permits efficient utility of computing

resources. In flight coordination of team UAVs, β may be the average speed of the

team. In terms of the consensus control in this paper, the goal is to move the team in

a uniform speed, without changing the team speed as a pack. The algorithm includes

an additive noise as well as a non-additive noise. Therefore the solution is sufficiently

general to include many practical senarios in the setup. The stepsize satisfies the

following conditions: µn ≥ 0, µn → 0 as n → ∞, and
∑

n µn = ∞. Some commonly

used stepsize sequences include µn = a/n and µn = a/nγ for 0 < γ ≤ 1. Since

the algorithm (3.1) is a stochastic approximation procedure, we can use the general

framework in Kushner and Yin [20] to analyze the asymptotic properties. Before

proceeding further, we make a remark. If we assume that W11 = 0 and Ŵ (x, ζ)11 = 0

for each x and each ζ, then 11′xn+1 = 11′xn = rβ hold for all n and for some β ∈ R

(In the algorithms considered in the literature, one often begins with Ŵ = 0 and W

having the condition mentioned above). Thus, in this case, the constraint 11′xn = rβ

is always satisfied by the algorithm structure.

(A1) The noise {ξn} is a stationary, φ-mixing sequence such that Eξn = 0, E|ξn|2+∆ <

∞ for some ∆ > 0, and the mixing measure φ̃n satisfies
∑∞

k=0 φ̃
∆/(1+∆)
n <

∞, where φ̃n = supA∈Fn+m E(1+∆)/(2+∆)|P (A|Fm) − P (A)|(2+∆)/(1+∆), Fn =

σ{ξn; k < n}, Fn = σ{ξn; k ≥ n}.

(A2) (i) The noise sequence {ζn} is a stationary sequence that is uniformly bounded

and φ-mixing with mixing measure φ̂n such that for each x ∈ Rr, EŴ (x, ζn) = 0,
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and the mixing rate condition holds with φ̃n replaced by φ̂n. (ii) Ŵ (·, ζ) is a

continuous function for each ζ and
∣∣∣Ŵ (x, ζ)

∣∣∣ ≤ K(1 + |x|) for each x ∈ Rr and

ζ. (iii) {ξn}, and {ζn} are mutually independent.

Recall that we have assumed that M is a generator of a continuous-time Markov

chain and is irreducible. One of the consequences of this above assumption is that M

has zero as an eigenvalue with multiplicity one and all other eigenvalues have negative

real parts. Another distinct feature of M is that the null space of M is spanned by

the vector 11 = (1, . . . , 1)′ ∈ Rr. This characteristic is precisely why we can reach

consensus. As a consequence of (A2), φ-mixing implies that the noise sequences {ξn}

and Ŵ (x, ζn) for each fixed x are strongly ergodic [16, p. 488] implying that as

n→∞, we have

1

n

m+n−1∑
j=m

ξj → 0 w.p.1,

1

n

m+n−1∑
j=m

Ŵ (x, ζj)→ 0 w.p.1.

(3.3)

If we are only interested in weak convergence, then we only need 1
n

∑m+n−1
j=m EmŴ (x, ζj)→

0 in probability, whereEm denotes the conditioning on the σ-algebra Fm = {ξj−1, ζj−1 :

j ≤ m}.

Idea of Technical Development. To study the convergence of the algorithm using

the stochastic approximation methods developed in [20] instead of working with the

discrete-time iterations, we examine sequences defined in an appropriate function

space. This will enable us to get a limit ordinary differential equation (ODE). The
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significance of the ODE is that the stationary points are exactly the true parameters

we wish to estimate. We define

tn =
n−1∑
j=0

µj, m(t) = max{n : tn ≤ t}, (3.4)

the piecewise constant interpolation x0(t) = xn for t ∈ [tn, tn+1), and the shift se-

quence xn(t) = x0(t + tn). We shall outline the main steps involved below. We can

first derive a preliminary estimate on the second moments.

Lemma 3.1. Under (A1) and (A2), for any 0 < T <∞,

sup
n≤m(T )

E|xn|2 ≤ K and sup
0≤t≤T

E|xn(t)|2 ≤ K,
(3.5)

for some K > 0, where m(·) is defined in (3.4).

Proof. We only indicate the main ideas and leave most of the details out. Concerning

the first estimate, because of the boundedness of the second moment E|ξn|2, the

condition
∑∞

j=1 µ
2
j <∞, the boundedness of the nonadditive noise Ŵ (x, ζn), and the

linear growth of Ŵ (·, ζ) for each ζ, we can derive

E|xn| ≤ K +K

n∑
j=1

µjE|xj|2. (3.6)

Here and henceforth, K is used as a generic positive constant, whose values may

change for different usage. After an application of Grownwall’s inequality to (3.6),

and then taking the supremum over all n ≤ m(T ), the first error bound is obtained.

Likewise, we can obtain the second estimate. 2
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Theorem 3.2. Under Assumptions (A1) and (A2), the iterates generated by the

stochastic approximation algorithm (3.1) satisfy xn → β11 w.p.1 as n→∞.

Proof. We only present the main idea below. We show that {xn(·)} is equicontinuous

in the extended sense (see [20, p. 102] for a definition) w.p.1. To verify this, we note

that by the argument in the first part of the proof in [43, Theorem 3.1],

∞∑
j=1

µjξj converges w.p.1 and

∞∑
j=1

µjŴ (x, ζj) converges w.p.1 for a fixed x.

Define Φ0(t) =
∑m(t)−1

j=1 µj[ξj+Ŵ (x, ζj)] and Φn(t) = Φ0(tn+t), where m(·) is defined

in (3.4). Then we can show that for each T > 0 and ε > 0, there is a δ > 0 such that

lim sup
n

sup
0≤|t−s|≤δ

|Φn(t)− Φn(s)| ≤ ε w.p.1.

The above estimate together with the form of the recursion then implies that xn(·) is

equicontinuous in the extended sense. Next, we can extract a convergent subsequence,

which will be denoted by xn`(·). Then the Arzela-Ascoli theorem concludes that xn`(·)

converges to a function x(·) which is the unique solution (since the recursion is linear

in x) of the ordinary differential equation (ODE)

ẋ(t) = Mx(t). (3.7)

Owing to the law of large numbers, the noise is averaged out. What is the sig-

nificance of the limit ODE? To answer this question, we set the right-hand side of
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(3.7) equal to zero (Mx = 0). We then obtain the stationary point of the ODE.

Since M is a generator of a continuous-time Markov chain and is irreducible, the

solutions to Mx = 0 constitute precisely the null space of M . The null space of M

is spanned by the vector 11. That is, the set can be represented by Γ = {γ : γ =

γ011, γ0 ∈ R}. Moreover, from basic properties of Markov chains (see [50, Appendix

A.1]), as t → ∞, the solution x(t) to (3.7) satisfies that x(t) converges to the set Γ.

That is, dist(x(t),Γ) → 0 as t → ∞, where dist(·, ·) is the usual distance function

defined by dist(x,Γ) = infy∈Γ |x − y|. Consequently, as n → ∞ and q(n`) → ∞,

xn`(·+ q(n`))→ Γ.

Furthermore, the algorithm (3.1) together with x′n11 = rβ leads to the desired

conclusion. The equilibria of the limit ODE (3.7) and this constraint lead to the

following system of equations 
Mx = 0

11′x = rβ.

(3.8)

The irreducibility of M then implies that (3.8) has a unique solution x∗ = β11. In

fact, by defining an augmented matrix Ma =


M

11′


∈ R(r+1)×r, the above system
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may be written as

Max =


0

rβ


:= ba ∈ R(r+1)×1. (3.9)

Note that M ′
aMa has full rank owing to the irreducibility of M . Thus the solution of

(3.9) can be written as x∗ = (M ′
aMa)

−1M ′
aba = β11.

3.2 Asymptotic Efficiency

To improve the efficiency we average iterates, resulting in a two-stage stochastic

approximation algorithm. The idea is that we first obtain a coarse approximation

by using a relatively large stepsize, and then we refine the approximation by taking

an iterate average. For definiteness and simplicity, we take µn = 1/nγ for some

(1/2) < γ < 1. The algorithm is given as follows:

xn+1 = xn +
1

nγ
Mxn +

1

nγ
Wξn +

1

nγ
Ŵ (xn, ζn),

xn+1 = xn −
1

n+ 1
xn +

1

n+ 1
xn+1.

(3.10)

If we assume that W11 = 0 and Ŵ (x, ζ)11 = 0 for each x and each ζ, then 11′xn = rβ.

Theorem 3.3. Suppose the conditions of Theorem 4.4 are satisfied. For iterates

generated by algorithm (3.10) (together with the constraint 11′xn = rβ), xn → β11

w.p.1 as n→∞.
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Similar to what was alluded to in the introduction, the benefits of iterate averaging

for the consensus algorithm include a faster approach to a neighborhood of the true

parameter in its initial stage, a straightforward way of selecting the stepsize sequences,

and the optimal convergence rate. To emphasize the dimension of the vector 11, we

sometimes write 11κ for an integer κ in what follows. Since M has rank r−1, without

loss of generality, assume that the first r− 1 columns are independent. Partition the

matrices M and W as

M =


M11 M12

M21 M22


, W =


W11 W12

W21 W22


(3.11)

where M11 ∈ R(r−1)×(r−1), M12 ∈ R(r−1)×1, M21 ∈ R(r−1)×1, M22 ∈ R1×1, and similarly

for Wij. Then M11 is nonsingular. Accordingly, we partition xn, xn, and W as

xn =


x̃n

xn,r


, xn =


Θn

xn,r


, (3.12)

respectively, with compatible dimensions as those of M . We will assume another

condition. This condition essentially is a linearization of Ŵ about the point x∗. Note

that in (A3) below, Ŵ0 = Ŵx(x∗, ζ). Partition Ŵ0, ξ, and x∗ similar to that of W

and x, respectively. Our rate of convergence is a local analysis.

(A3) Ŵ (x, ζ) = Ŵ (x∗, ζ) + Ŵ0(x− x∗) +O(|x− x∗|2).
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Note that xn,r = βr − 11′r−1x̃n and xn,r = βr − 11′r−1Θn. Using this together with

the partition and (A3), we can convert the constrained stochastic approximation to

an unconstrained one. That is, we can concentrate on the first r − 1 components of

xn. It follows from (3.10) that

x̃n+1 = x̃n +
1

nγ
M̃x̃n +

1

nγ
[ξ̂n + Ŵ1(x∗, ζn)]

+
1

nγ
[W̃0(x̃n − x̃∗) +M12βr +O(|x̃n − x̃∗|2)]

Θn+1 = Θn −
1

n+ 1
Θn +

1

n+ 1
x̃n+1,

(3.13)

where

M̃ = M11 −M1211′r−1, ξ̂n = W11ξ̃n +W12ξn,r,

W̃0 = Ŵ0,11 − Ŵ0,1211′r−1,

and Ŵ1(x∗, ζ) is an (r−1)-vector consisting of the first (r−1) components of Ŵ (x∗, ζ).

Similar to Theorem 4.4, we can show that x̃n → x̃∗ = −M̃−1M12βr. Furthermore,

we can show that Θn → x̃∗ w.p.1 as n → ∞. Note that when we define z̃ = x̃ − x̃∗

and substitute it into (3.13), the term involving M12βr will disappear. To study the

rates of convergence of xn, we need only examine that of x̃n. To proceed, define

Bn(t) =
1√
n

bntc∑
k=0

[ξ̂k + Ŵ (x∗, ζn)], t ∈ [0, 1], (3.14)

where btc denotes the integer part of t. We have the following lemma.
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Lemma 3.4. Under condition (A2), Bn(·) converges weakly to B(·) an Rr−1-dimensional

Brownian motion such that EB(t) = 0 and covariance Σ0t, where

Σ0 = E[ξ̂1ξ̂
′
1 + Ŵ1(1)Ŵ ′

1(1)] +
∞∑
k=2

E[ξ̂1ξ̂
′
k + ξ̂kξ̂

′
1]

+
∞∑
k=2

E[Ŵ1(k)Ŵ ′
1(1) + Ŵ1(1)Ŵ ′

1(k)],

(3.15)

where Ŵ1(k) is an abbreviation of Ŵ1(x∗, ζk).

Proof. Note that Eξ̂n = 0, and it is also a mixing sequence satisfying the conditions

of (A2). The same observation holds for the sequence {Ŵ1(x∗, ζn)}. Next, Bn(t) =

B1
n(T ) + B2

n(t), where B1
n(t) and B2

n(t) are rescaled sequences of sums of ξ̂k’s and

Ŵ (k), respectively. It can be shown that (see [49, Lemma 3.1]), Bi
n(·) converges

weakly to a Brownian motion Bi(·). Next,
{
ξ̂n

}
and

{
Ŵ1(x∗, ζn)

}
are independent.

The sum of B1(t)+B2(t) is again a Brownian motion and with the desired covariance

given by (3.15). 2

Working with (3.13), we obtain

x̃n+1 − x̃∗ = [x̃n − x̃∗] +
Γ

nγ
(x̃n − x̃∗)

+
1

nγ
[ξ̂n + Ŵ1(x∗, ζn)] +

1

nγ
(|x̃n − x̃∗|2),

(3.16)

where Γ = M̃ + W̃0.
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Define

Anj =



n∏
k=j+1

(I + Γ/kγ) , n ≥ j + 1;

I; n = j.

Then for any κ ≥ 0,

x̃n+1 − x̃∗ = An,κ−1[xκ − x̃∗]

+
n∑
j=κ

1

jγ
AnjO(|x̃n − x̃∗|2)

+
n∑
j=κ

1

jγ
Anj[ξ̂j + Ŵ1(j)],

and

√
n+ 1[Θn+1 − x̃∗]

=
1√
n+ 1

κ−1∑
k=1

[x̃k − x̃∗]

+
1√
n+ 1

n∑
k=ν

Ak,κ−1[x̃κ − x̃∗]

+
1√
n+ 1

n∑
k=ν

k∑
j=κ

1

jγ
AkjO(|x̃j − x̃∗|2)

+
1√
n+ 1

n∑
k=ν

k∑
j=κ

1

jγ
Akj[ξ̂j + Ŵ1(j)].

Note that

|Anj| ≤ exp

(
−λ

n∑
k=j+1

k−γ

)



25

for some λ > 0. In what follows, we choose

κ = κ(n) =

[(
1− γ
λ

)
ln lnn

] 1
1−γ

.

To proceed, we define

Bn(t) =
bntc√
n

(Θbntc+1 − x̃∗). (3.17)

We next show that asymptotically, the “effective” term of the normalized error above

is given by −Γ−1Bn(t).

Lemma 3.5. In addition to the assumptions of (A1)–(A3), assume Γ is a stable

matrix (all of its eigenvalues have negative real parts). Then for t ∈ [0, 1],

Bn(t) = −Γ−1Bn(t) + o(1), where o(1)→ 0

in probability uniformly in t as n→∞.

Remark 3.6. In the absence of the nonadditive noise, Γ becomes M̃ . The stability

of M̃ is verified by using the irreducibility of the generator M .

We are now ready to present the following theorem.

Theorem 3.7. Under the conditions of Lemma 3.5, we have the following assertions:

• Bn(·) converges weakly to B(·), a Brownian motion with covariance Γ−1Σ0(Γ−1)′t;

• x̃n− x̃∗ converges in distribution to a normal random variable with mean 0 and

asymptotic covariance Γ−1Σ0(Γ−1)′t.
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Proof. We will be very brief. To prove the first part of the theorem, we need only to

evaluate its covariance, which follows by the well-known Slutsky theorem. To obtain

the second part, set t = 1 in part one. Using Lemma 3.5 and part of the theorem,

the desired result follows. 2

3.2.1 Matrix Stepsize and Optimality

The rate of convergence of algorithm (3.1) is equivalent to that of the first recursion

in (3.13). This algorithm satisfies the sensing topology constraint and is strongly

convergent, but the convergence speed of x̃n is usually not optimal. Then, what is the

optimal convergence speed? How can the optimal convergence speed be achieved? To

compute the optimal convergence rates, we consider matrix step sizes, rather than the

scalar µn. Recall that the rates of convergence of stochastic approximation algorithms

are determined jointly by the scaling factor in the centered and scaled estimation

errors, and its asymptotic covariance. Among the step sizes of the order O(n−γ),

γ = 1 gives the best order of convergence. Then, we need to find the best covariance

matrix. One may use a matrix step size sequence µn = H̃/n, where H̃ is a matrix-

valued parameter to be used as a variable to optimize the asymptotic covariance. It

is known that by choosing the matrix H̃ suitably, it is possible to achieve optimal

convergence speed [20, Chapter 10]. To study the rate of convergence, let us begin

with

x̃n+1 − x̃∗ = x̃n − x̃∗ − µn[Γ(x̃n − x̃∗) + ξ̂n + Ŵ1(n)],
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with µn = H̃/n. Recall that we used the notation Ŵ1(n) = (Ŵi(x∗, ζn) : i ≤ r − 1).

We can take a continuous time interpolation of vn = n1/2(x̃n−x̃∗). Using the approach

in [20, Chapter 10], we obtain the limit of the interpolated (and shifted) sequence of

vn denoted by V n(·). The limit is a solution of the following stochastic differential

equation

dV =

(
H̃Γ +

I

2

)
V dt+ H̃Σ

1/2
0 dB̃(t),

where B̃(·) is a standard Brownian motion and Σ0 is the error covariance as given in

(3.15). The asymptotic covariance as a function of H̃ is then given by

Σ̌(H̃) =

∫ ∞
0

exp

(
D +

I

2
t

)
DΣ0D

′ exp

(
D′ +

I

2
t

)
dt,

where D = H̃Γ. This can be alternatively represented as a solution to a Liapunov

equation (or algebraic Riccati equation). Thus, n1/2(x̃n−x̃∗) is asymptotically normal

with mean zero and asymptotic covariance given by Σ̌(H̃). To find the “smallest”

asymptotic covariance, we either minimize Σ̌(H̃) as a function of H̃ or minimize the

trace of the covariance. The optimal asymptotic covariance is given by

Σ∗ = Γ−1Σ0(Γ′)−1. (3.18)

However, as far as implementation is concerned, the matrix step size approach is usu-

ally impractical. The iterate averaging provides a viable alternative; see Theorem 3.7.

3.2.2 Optimal Convergence Rates

We now illustrate the optimality of the algorithms from another angle. For conver-

gence speed analysis, let en = xn−x∗. Decompose en = [ẽ′n, en,r]
′ where ẽn = x̃n− x̃∗.
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Remark 3.8. For simplicity, assume there is no nonadditive noise, i.e., Ŵ (x, ζ) =

0. Suppose that {ξn} is a sequence of i.i.d. random variables with mean zero and

covariance Eξnξ
′
n = Σ0. Then the consensus errors satisfy that

√
n(x̃n−x̃∗) converges

in distribution to a normal random variable with zero mean and covariance given by

Γ−1Σ0(Γ−1)′.

Note that the above result does not require any distributional information on the

noise {ξn}, other than the zero mean and finite second moments. We now state the

optimality of the algorithm when the density of ξ1 is a smooth function.

Theorem 3.9. Suppose that the noise {ξn} is a sequence of i.i.d. noise with a density

f that is continuously differentiable. Then the recursive sequence {x̃n} is asymptoti-

cally efficient in the sense of the Cramér-Rao lower bound on Eẽ′nẽn being asymptot-

ically attained, nEẽ′nẽn → tr
(

Γ−1Σ̃0(Γ−1)′
)

as n→∞.

The convergence speed and optimality of the iterate xn are directly related to those

of x̃n. Under the conditions of Theorem 3.9, the sequence {xn} from the algorithm

(3.10) is asymptotically efficient in the sense of the Cramér-Rao lower bound on Ee′nen

being asymptotically attained.

3.3 Illustrative Examples

In this section, we use an example to illustrate the benefits of employing the post-

iterate averaging technique. The main advantages include more consistent control

accuracy and faster convergence speeds.
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Example 3.10. Since our algorithm maintains the total average of the node states

at every step of control,
∑r

i=1 x
i
1/r = β is a constant. The consensus error at the

index n will be plotted by using the error norm [(xn − β11)′(xn − β11)]1/2 the error

norm.

In this example, we consider a networked system with five nodes. The initial states

are x1
0 = 12, x2

0 = 34, x3
0 = 56, x4

0 = 8, x5
0 = 76. The state average is β = 37.2, which

will not change in the state update. Initial consensus error is [(x0−β11)′(x0−β11)]1/2 =

57.94.

The network interconnection is defined by the topology matrices

H1 =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 0 0 1 0



, H2 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0



.
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The link control gain matrix is

G =



2 0 0 0 0 0

0 0.6 0 0 0 0

0 0 2.4 0 0 0

0 0 0 2 0 0

0 0 0 0 2.4 0

0 0 0 0 0 2


Consequently, from H = H2 −H1, we have

M = −H ′GH =



−6.4 2 0 2 2.4

2 −2.6 0.6 0 0

0 0.6 −3 2.4 0

2 0 2.4 −6.4 2

2.4 0 0 2 −4.4
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and noise impact matrix W = H ′ ∗G (with a = 0.9997) is

W =



a −a 0 0 0 0

0 a −a 0 0 0

0 0 a −a 0 0

0 0 0 a −a 0

0 0 0 0 a −a



.

The observations are corrupted by noises on each link, represented by the (vector)

sequence {ξn}, whose elements are i.i.d. random variables with zero mean and vari-

ance σ2 = 40. The noises are spatially independent, specifically observation noises on

different links are independent. The SA algorithm is implemented with a fixed step

size µn = 0.005. The simulation runs for 400 steps.

Two algorithms are executed. The first one is the SA without post-iterate aver-

aging. State trajectories of this algorithm are shown in the plots of Figure 1. The

second algorithm adds the post-iterate averaging. The resulting state trajectories are

illustrated in the left two plot of Figure 1. In both cases, the states converge to the

team average. However, the SA with post-iterate averaging demonstrates improved

convergence features with less volatility and faster convergence. This is consistent

with our previous theoretical analysis. A further comparison of these two algorithms
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is shown in Figure 2 by their respective consensus error trajectories. The SA with

post-iterate averaging displays faster convergence with less fluctuations.
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Figure 1: State trajectories of the two SA algorithms. Top plot: the standard SA

algorithm. Bottom plot: The SA with added post-iterate averaging
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iterate averaging



34

4 Time-Varying Network Topologies and Regime-

Switching System

In this chapter, we carry out an extensive study of dealing with randomly regime-

switching network topologies, whose parameters are time-varying and can be modeled

by a discrete-time Markov Chain.

Switching network topologies were studied in [24, 26], and more recently in [12, 14].

This dissertation differs from the existing literature in several essential aspects. Ref-

erences [24, 26] do not use Markov formulations. In [12], the authors considered

stochastic consensus over lossy wireless networks, in which the proposed measure-

ment model has a random link gain, an additive noise, and a Markov lossy signal

reception; arbitrary switching was also considered there. Reference [14] employs ran-

domly switching Laplacian matrices together with observation noises that may be

state dependent and Markovian. The Laplacian matrices share a common average.

Its main approach is based on convergence of products of stochastic matrices. Thus,

system analysis and consensus are established from the averaged network. We treat

a more general Markov model and treat a much larger class of noises. In this dis-

sertation, the graph is modulated by a discrete-time Markov chain. In addition to

the traditional additive structure of the noise, we allow the noise to be nonadditive,

correlated and non-Markovian. The function involved in the nonadditive noise can

be time varying and depend on both the analog states and Markov chain states; see

the remark section at the end of this paper. In lieu of examining the product of
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random matrices, our analysis is based on stochastic analysis of random processes.

Thus far reaching results are obtained that better delineate the system dynamics and

evolution. We establish convergence and rates of convergence of the algorithm, and

study the intrinsic properties of the random dynamic systems involved. Interacting

with consensus control strategies, we show that the limit system depends on relative

speeds of the control and topology switching frequencies, and it may still be a stochas-

tic system whose convergence is much harder to derive. By treating different rates of

variation of the control and time-varying Markov parameter, our results depart from

typical consensus control conclusions, initiate a multi-scale modeling and analysis,

and potentially better reflect the needs of adjusting consensus control strategies in

light of topology switching. Furthermore, the expanded classes of noises can cover

many communication schemes.

The rest of the chapter is organized as follows. Section 4.1 begins with the al-

gorithms under time-varying topologies and regime-switching. Section 4.2 proceeds

with asymptotic properties concentrated on the case ε = O(µ). Cases of ε� µ, and

µ� ε are discussed in section 4.3 and section 4.4. Finally, numberical examples are

provided in section 4.5.

4.1 Algorithms

Suppose the network topology depends on a discrete-time Markov chain. In our

setup, the graph can take m0 possible values. The Markov chain is used to model,

for example, capacity of the network, random environment, and other random factors
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such as interrupts and rerouting of communication channels etc. Thus G(αn) =∑m0

l=1 G(l)I{αn=l}. To illustrate, suppose that initially, the Markov chain is at α0 = i.

Then the graph takes the value G(i). At a random instance τ1, the first jump of the

Markov chain takes place so that ατ1 = j 6= i, Then the graph switches to G(j) and

holds that value for a random duration until the next jump of the Markov chain takes

place.

To include topology switching and the extended noise class (2.3), the updating of

network states is extended from (2.5) into

xn+1 = xn + µM(αn)xn + µW̃ (xn, αn, ξ̃n), (4.1)

where µ > 0 is the step size of consensus control. For each i ∈M, M(i) is a generator

of a continuous-time Markov chain. The noise term W̃ (·, ·, ·) : Rr ×M×Rr 7→ Rr is

allowed to have the following general structure: for each x ∈ Rr and i ∈M,

W̃ (x, i, ξ̃) = W (i)ξ + Ŵ (x, i, ζ). (4.2)

That is, it includes additive noise as well as nonadditive noise, When W (i) = W a

constant and W̃ ≡ 0, (4.2) reduces to the traditional additive noise. The nonadditive

portion is a general nonlinear function of the analog state x, the Markov chain state

i ∈M, as well as the noise source ζn. To state more explicitly dependence on ξn and

ζn, in lieu of using the notation ξ̃n, we rewrite the algorithm as

xn+1 = xn + µM(αn)xn + µW (αn)ξn + µŴ (xn, αn, ζn) (4.3)

in what follows. To proceed, we first give the assumptions needed for the noise

sequence and the Markov chain αn.
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(A2) Assume the following conditions.

(a) αn is a discrete-time Markov chain with a finite state space M = {1, . . . ,m0}

representing the random environment and other random factors. The transition

probability matrix of αn is given by

P ε = I + εQ, (4.4)

where ε > 0 is a small parameter, I is an m0 ×m0 identity matrix, and Q =

[qij] ∈ Rm0×m0 is the generator of a continuous-time Markov chain, (i.e., Q

satisfies qij ≥ 0 for i 6= j,
∑m0

j=1 qij = 0 for each i = 1, . . . ,m0).

(b) The noise sequence {ξn} is given in (A1).

(c) The {ζn} is a stationary sequence that is uniformly bounded such that for each

x ∈ Rr and each i ∈M, EŴ (x, i, ζn) = 0, and for any positive integer m,

1

n

m+n−1∑
j=m

EmŴ (x, i, ζj)→ 0 in probability,
(4.5)

where Em denotes the conditioning on the σ-algebra Fm = {x0, αj, ξj−1, ζj−1 :

j ≤ m}.

(d) Ŵ (·, i, ζ) is a continuous function for each i ∈M and each ζ and |Ŵ (x, i, ζ)| ≤

K(1 + |x|) for each x ∈ Rr, i ∈M, and ζ.

(e) {αn}, {ξn}, and {ζn} are mutually independent.

Remark 4.1. Concerning the assumptions above, we would like to make the following

remarks. In our setup, {ζn} is another sequence of random variables. Suppose that
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it is a stationary mixing process then it is strongly ergodic, so for each fixed x ∈ Rr,

each i ∈ M, and for any positive integer m > 0, the mixing and hence ergodicity

implies that 1
n

∑m+n−1
j=m Ŵ (x, i, ζj) → 0 w.p.1. However, (4.5) is sufficient for this

paper. Condition (d) indicates that Ŵ (x, i, ζ) grows at most linearly in x.

Although (4.3) is a stochastic approximation type algorithm, when switching

topologies are present, its convergence is much harder to analyze. In the traditional

setup of stochastic approximation problems, the limit or averaged system is an ordi-

nary differential equation (ODE). Very often these limits are autonomous. Even if

they are sometimes time inhomogeneous ordinary differential equations, these equa-

tions are non-random. As can be seen later, in certain problems treated here, the limit

is no longer an ODE, but a randomly varying ODE subject to switching, owing to

the Markov switching process. In the literature of stochastic approximation, the rate

of convergence study is normally associated with a limit stochastic differential equa-

tion. In our case, some of the limits are Markovian-switching stochastic differential

equations (i.e., switching diffusions [53]).

There are three possibilities concerning the relative sizes of ε and µ: (i) µ = O(ε),

(ii) ε � µ, and (iii) µ � ε. We first treat case (i) in detail, and then cover the

other two cases. This idea also appears in related treatments of LMS-type algorithms

under regime-switching dynamic systems, see [44, 45, 46]. In treating the three dif-

ferent cases, careful analysis is needed to examine convergence, stability, and related

consensus issues. The next two sections will analyze the three cases.
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4.2 Asymptotic Properties: ε = O(µ)

This section will concentrate on the case ε = O(µ). For notational simplicity, in what

follows, we simply consider ε = µ, although general discussions do not incur further

technical difficulties.

4.2.1 Basic Properties

To proceed, we first present a moment estimate for the recursive algorithm (4.3).

In what follows and throughout the paper, we use K to denote a generic positive

constant with the convention K +K = K and KK = K.

Lemma 4.2. Under Assumptions (A1) and (A2), for any 0 < T <∞, sup0≤n≤T/εE|xn|2 <

K exp(T ) <∞ where K > 0 is a constant.

We are now ready to proceed to the convergence study of the algorithm. We need

an additional assumption concerning the irreducibility of the generator Q. This is

used when we are dealing with large time behavior (t→∞), which is concerned with

the case that µ→ 0, n→∞, and µn→∞.

(A3) The generator Q is irreducible.

4.2.2 Convergence

This subsection is devoted to obtaining asymptotic properties of the recursive algo-

rithm (4.3). The first result concerns the property of the algorithm as ε→ 0 through

an appropriate continuous-time interpolation. We define xε(t) = xn, αε(t) = αn,
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for t ∈ [εn, εn + ε). Then (xε(·), αε(·)) ∈ D([0, T ] : Rr ×M), which is the space of

functions that are right continuous and have left limits endowed with the Skorohod

topology [20, Chapter 7]. Before proceeding further, we first state a lemma that gives

the weak convergence of the discrete iterates.

Lemma 4.3. Under condition (A2), the following claims hold:

(a) Denote pεn = [P (αεn = 1), . . . , P (αεn = m0)] and the n-step transition probability

by (P ε)n with P ε given in (4.4). Then

pεn = p(t) +O(ε+ e−k0t/ε),

(P ε)n−n0 = Ξ(εn, εn0) +O(ε+ e−k0(n−n0)),

(4.6)

where p(t) ∈ R1×m0 and Ξ(t, t0) ∈ Rm0×m0 are the continuous-time probability

vector and transition matrix satisfying

dp(t)

dt
= p(t)Q, p(0) = p0,

dΞ(t, t0)

dt
= Ξ(t, t0)Q, Ξ(t0, t0) = I,

(4.7)

with t0 = εn0 and t = εn.

(b) αε(·) converges weakly to α(·), which is a continuous-time Markov chain gener-

ated by Q.

The proof of assertion (a) is essentially in that of Theorem 3.5 and Theorem 4.3
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of [?], whereas the proof of (b) can be found in [52]; see also [51]. Thus the proof is

omitted. We next obtain the weak convergence result.

Theorem 4.4. Assume (A1) and (A2). Then (xε(·), αε(·)) is tight in D([0, T ] :

Rr ×M). Moreover, as ε→ 0, (xε(·), αε(·)) converges weakly to (x(·), α(·)) that is a

solution of the martingale problem with operator L1. For any f(·, ·) : Rr ×M 7→ R

satisfying for each α ∈M, f(·, α) ∈ C1
0 (space of continuously differentiable functions

with compact support), L1 is defined as follows:

L1f(x, i) = (∇f(x, i))′M(i)x+Qf(x, ·)(i), i ∈M, (4.8)

where Qf(x, ·)(i) =
∑m0

j=1 qijf(x, j).

Remark 4.5. An equivalent way of stating the martingale problem is to consider its

associated differential equation. In this case, different from the traditional stochastic

approximation problems, the limit dynamic system is not a deterministic differential

equation, but a system of differential equations with random switching given by

dx(t)

dt
= M(α(t))x(t). (4.9)

Proof of Theorem 4.4. The proof is divided into three steps. First, we prove that

the tightness of (xε(·), αε(·)). Once the tightness is verified, we proceed to obtain the

convergence using martingale problem formulation in the following three steps.

Step (i) Tightness. We treat the tightness of {xε(·)} and {αε(·)} separately. The

tightness of {αε(·)} can be proved as in that of [51, Theorem 4.3]. Next we prove the

tightness of xε(·), which is stated as a lemma below. In order to keep better flow of
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presentation, in what follows, we postpone some longer proofs of the technical results

to the appendix.

Lemma 4.6. Under the conditions of Theorem 4.4, {xε(·)} is tight in D([0, T ] : Rr),

which is the space of Rr-valued functions that are right continuous and have the left

limits, endowed with the Skorohod topology.

Step (ii) By Lemma 4.6, (xε(·), αε(·)) is tight. As a result, it is sequentially

compact. Thus we can extract convergent subsequences. Next, it is important to

ensure the limit of the convergent subsequence is unique. Thus we demonstrate

that the solution for the martingale problem with operator L1 has a unique solution

(unique in the sense of in distribution).

Lemma 4.7. Under the conditions of Theorem 4.4, the martingale problem with

operator L1 has a unique solution for each initial condition.

Step (iii) To complete the proof, we characterize the limit process. Thus by virtue

of the Prohorov theorem [20, p.229], we can extract a weakly convergent subsequence.

For notational simplicity, we still denote the subsequence by {(xε(·), αε(·))} with limit

denoted by (x(·), α(·)). To continue on our proof of the convergence result, we next

show that the limit of (xε(t), αε(t)) is a solution of the martingale problem with

operator L1.

To characterize the limit property, we need to work with a continuously differen-

tiable function with compact support f(·, α) for each α ∈ M. Choose mε so that
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mε →∞ but δε = εmε → 0. Using the recursion (4.3),

f(xε(t+ s), αε(t+ s))− f(xε(t), αε(t))

=

(t+s)/δε∑
l=t/δε

[f(xlmε+mε , αlmε+mε)− f(xlmε , αlmε)]

= ε

(t+s)/δε∑
l=t/δε

{
(∇f(xlmε , αlmε))

′
lmε+mε−1∑
k=lmε

[M(αk)xk

+W (αk)ξk + Ŵ (xk, αk, ζk)]

+[f(xlmε+mε , αlmε+mε)− f(xlmε+mε , αlmε)]
}
.

(4.10)

The above representation will also be used in the rate of convergence study. We

proceed to establish the next lemma, whose proof is provided in the appendix.

Lemma 4.8. Under Theorem 4.4, (xε(·), αε(·)) converges weakly to (x(·), α(·)), which

is the solution of the martingale problem with operator L1.

Finally, piecing together the results obtained, the proof of the theorem is com-

pleted. 2

4.2.3 Invariance Theorem

Note that the limit dynamics are not given by an ordinary differential equation, but

rather a system of differential equations with Markov switching (4.9). How should

we study the long-time behavior. It turns out a suitable way is the use of invariant

set of the switched system. Following the discussion in [53, Chapter 9], recall that a
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Borel measurable set U ⊂ Rr ×M is invariant with respect to the solutions of (4.9)

or simply, U is invariant with respect to the process (x(t), α(t)) if P ((x(t), α(t)) ∈ U ,

for all t ≥ 0) = 1, for any initial (x, i) ∈ U . That is, a process starting from U will

remain in U w.p.1. We also need the notion of stability of sets in probability. They are

defined naturally as follows. A closed and bounded set Kc ⊂ Rr is said to be stable in

probability if for any δ > 0 and ρ > 0, there is a δ1 > 0 such that starting from (x, i),

P (supt≥0 d(x(t), Kc) < ρ) ≥ 1 − δ, whenever d(x,Kc) < δ1; asymptotically stable in

probability if it is stable in probability, and moreover P (limt→∞ d(x(t), Kc) = 0)→ 1,

as d(x,Kc) → 0. In the above, we have used the usual distance function d(x,D) =

inf(|x− y| : y ∈ D). We proceed to obtain the following result, whose proof is in the

appendix.

Theorem 4.9. Assume that for each α ∈ M, M(α) is irreducible. Under the

conditions of Theorem 4.4, the following assertions hold.

(i) The set Z = span{11} is an invariant set.

(ii) The set Z is asymptotically stable in probability.

With the above proposition, we can further obtain the following result as a corol-

lary of Theorem 4.4.

Corollary 4.10. Assume the conditions of Theorem 4.9. In the recursive algorithm,

we also use the constraint (2.7). Then for any tε →∞ as ε→ 0, xε(·+ tε) converges

to the consensus solution η11 in probability. That is for any δ > 0, limε→0 P (|xε(· +

tε)− η11| ≥ δ) = 0.
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4.2.4 Normalized Error Sequences

This subsection is devoted to analyzing the rates of variations of scaled sequence of

the errors and can be regarded as “rates of convergence” results. It is particularly

interesting to derive results on the rate of convergence of xn towards the limit x(t).

This can be examined through xε(εn) − x(εn) for n ≤ O(1/ε). For convenience, we

work with a particular form of the nonadditive noise Ŵ (xn, αn, ζn). Extension to

more general case is presented in a later section.

(A2’) Condition (A2) holds with the following modifications. Either Ŵ (x, α, ζ) =

diag(x)Ψ(α, ζ) or Ŵ (x, α, ζ) = xψ1(α, ζ), where Ψ(α, ζ) :M×Rr 7→ Rr and ψ1(α, ζ) :

M× Rr 7→ R such that Ψ(·, ·) (resp. ψ1(α, ζ)) is a bounded function, and that for

each fixed α ∈M and each positive integer m, (4.5) is replaced by

1

n

m+n−1∑
j=m

EmΨ(α, ζj)→ 0 in probability,

∞∑
j=n

|EnΨ(α, ζj)| <∞, or

(4.11)

1

n

m+n−1∑
j=m

Emψ1(α, ζj)→ 0 in probability,

∞∑
j=n

|Enψ1(α, ζj)| <∞,

(4.12)

where diag(x) = diag(x′, . . . , x′).

For simplicity and definiteness, we use Ŵ (x, α, ζ) = diag(x)Ψ(α, ζ) in what fol-

lows. The argument for the use of ψ1(x, α, ζ) is exactly the same. To facilitate the
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analysis, we define an auxiliary sequence {yn} by

yn+1 = yn + εM(αn)yn + εdiag(yn)Ψ(αn, ζn), y0 = x0. (4.13)

This is a sequence having randomness only due to αn and the non-additive noise.

Define yε(t) = yn for t ∈ [εn, εn + ε). Then a similar analysis to the proof of

Theorem 4.4 yields the following result.

Lemma 4.11. Under (A2’), yε(·) converges weakly to y(·) such that y(·) is a solution

of the switching ordinary differential equation

ẏ(t) = M(α(t))y(t). (4.14)

Remark 4.12. Clearly, (4.14) is identical to the limit in Theorem 4.4. Compared with

(4.13), (4.14) can be thought as an “averaged” system with the average interpreted

in an appropriate sense.

To proceed, define

zn =
xn − yn√

µ
=
xn − yn√

ε
since µ = ε. (4.15)

Then it is readily verified that

zn+1 = zn + εM(αn)zn +
√
εW (αn)ξn + εdiag(zn)Ψ(αn, ζn). (4.16)

We are in a position to study the asymptotic properties of the tracking error through

weak convergence of appropriately interpolated sequence of zn. Before proceeding

further, we first obtain a second moment bound.
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Lemma 4.13. Assume that (A1) and (A2’) hold. For any T <∞ and for some Nε,

E supNε≤n≤T/εE|zn|2 = O(1).

Note that normally, the bound obtained above can only be obtained after a

“transient” period, which is reflected by the use of Nε. Define zε(t) = zn for

t ∈ [(n−Nε)ε, (n−Nε)ε+ ε).

Lemma 4.14. {zε(·)} is tight on D([0, T ] : Rr).

Next extract a convergent subsequence {zε(·)}. Without loss of generality, still

denote the subsequence by {zε(·)} with limit z(·). For any t, s > 0,

zε(t+ s)− zε(t) = ε
t+s∑
lδε=t

lmε+mε−1∑
j=lmε

M(αj)zj

+ε
t+s∑
lδε=t

lmε+mε−1∑
j=lmε

diag(zj)Ψ(αj, ζj)

+
√
ε
t+s∑
lδε=t

lmε+mε−1∑
j=lmε

W (αj)ξj.

(4.17)

The way to derive the limit is similar to that of Theorem 4.4. Keeping in mind that

the limit will be a system of stochastic differential equations in which the switching

process will come into play, we can then proceed to show that the limit is a solution

of a martingale problem with a unique solution (in distribution). Baring this in mind,

we will directly work with the sequence.

To proceed with the characterization of the limit process, define B̂ε(t) =
√
ε
∑Nε+t/ε−1

j=Nε
ξj.

Then the mixing condition implies that B̂ε(·) converges weakly to B̂(·), a Brownian
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motion with covariance tΣ, where Σ is given by

Σ = Eξ0ξ
′
0 +

∞∑
j=1

Eξjξ
′
0 +

∞∑
j=1

Eξ0ξ
′
j. (4.18)

A proof of this fact may be found in [8, pp. 351–353]. Note that for any j ∈

[lmε, lmε +mε) and εlmε → v, αj can be replaced by αε(v),

√
ε
t+s∑
lδε=t

lmε+mε−1∑
j=lmε

W (αj)ξj

=
t+s∑
lδε=t

W (αε(v))[B̂ε((l + 1)δε)− B̂ε(lδε)]

→
∫ t+s

t

W (α(v))dB̂(v).

To summarize what have been obtained, we have the following theorem.

Theorem 4.15. Under conditions (A1), (A2’), and (A3), (zε(·), αε(·)) converges

to (z(·), α(·)) such that z(·) is a solution of the following Markov regime-switching

stochastic differential equation

dz = M(α(t))zdt+W (α(t))dB̂(t). (4.19)

4.3 Slowly Varying Markov Chains

Suppose that ε� µ, where ε is the parameter appeared in the transition probability

matrix of the Markov chain and µ is the stepsize of the algorithm (4.3). Intuitively,

because the Markov chain changes so slowly, the time-varying parameter process is

essentially a constant. We reveal the asymptotic properties of the recursive algorithm.
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To facilitate the discussion and to simplify the notation, we take ε = µ2 in what

follows.

Note that Lemma 4.3 still holds. We next use these to analyze the algorithm

(4.3). As in the previous case, we can prove sup0≤n≤O(1/ε) E|xn|2 < ∞. Define the

piecewise constant interpolation xµ(t) = xn for t ∈ [µn, µn + µ). Then as in the

previous section, we have {xµ(·)} is tight in D([0, T ],Rr). We proceed to characterize

its limit.

Since xµ(·) is tight, we can extract a convergent subsequence. For notational

simplicity, still index the subsequence by µ with limit denoted by x(·). Note that

xµ(t+ s)− xµ(t) = µ

m0∑
j=1

(t+s)/µ−1∑
k=t/µ

[M(j)xk +W (j)ξk

+Ŵ (xk, j, ζk)]I{αk=j}

=

m0∑
j=1

t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

[M(j)xk +W (j)ξk

+Ŵ (xk, j, ζk)]I{αk=j}.

(4.20)

To figure out the limit, let us first look at

m0∑
j=1

1

mµ

lmµ+mµ−1∑
k=lmµ

M(j)xkI{αk=j}

=

m0∑
j=1

M(j)xlmµ
1

mµ

lmµ+mµ−1∑
k=lmµ

I{αk=j} + o(1),

(4.21)
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where o(1)→ 0 in probability as µ→ 0 uniformly in t. Next,

m0∑
j=1

M(j)xlmµ
1

mµ

lmµ+mµ−1∑
k=lmµ

ElmµI{αk=j}

= M(ι)xlmµ
1

mµ

lmµ+mµ−1∑
k=lmµ

P (αk = j|αlmµ = ι)

+

m0∑
j=1

cj

lmµ+mµ−1∑
k=lmµ

P (αk = j|αlmµ = ι)[I{αlmµ=ι} − 1]

+

m0∑
j=1

cj

lmµ+mµ−1∑
k=lmµ

∑
j1 6=ι

P (αk = j|αlmµ = j1)I{αlmµ=j1},

(4.22)

where cj = M(j)xlmµ/mµ. For the last term above, we have

E
∣∣∣ 1

mµ

lmµ+mµ−1∑
k=lmµ

∑
j1 6=ι

P (αk = j|αlmµ = j1)I{αlmµ=j1}

∣∣∣
=

1

mµ

lmµ+mµ−1∑
k=lmµ

∑
j1 6=ι

P (αk = j|αlmµ = j1)

×P{αlmµ = j1|α0 = ι}P (α0 = ι)

=
1

mµ

lmµ+mµ−1∑
k=lmµ

∑
j1 6=ι

P (αk = j|αlmµ = j1)

×[Ξι,j1(0, εlmµ) +O(ε+ exp(−lmµ))]P (α0 = ι),

(4.23)

where Ξι,j1(0, εlmµ) denotes the entry of the transition matrix (see Lemma 4.3)

at the ιth row and j1th column. Note that εlmµ → 0 as ε → 0 since ε = µ2.

Since Ξ(0, εlmµ) → I the identity matrix, and for an off diagonal entry for ι 6= j1,
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Ξι,j1(0, εlmµ) → 0. In addition,
∑(t+s)/δµ

lmµ=t/δµ
δµ exp(−lmµ) → 0 as µ → 0. We can also

show

E

∣∣∣∣∣∣
(t+s)/δµ∑
lmµ=t/δµ

1

mµ

lmµ+mµ−1∑
k=lmµ

P (αk = j|αlmµ = ι)× [I{αlmµ=ι} − 1]

∣∣∣∣∣∣
2

→ 0 as µ→ 0.

Thus, to find the limit in (4.22), it suffices to examine the term

M(ι)xlmµ
1

mµ

lmµ+mµ−1∑
k=lmµ

P (αk = j|αlmµ = ι).

Then the martingale averaging techniques in [20] lead to

µ

m0∑
j=1

(t+s)/µ−1∑
k=t/µ

M(j)xkI{αk=j} →
∫ t+s

t

M(ι)x(u)du. (4.24)

Likewise, using detailed estimates similar arguments as in the previous section to

handle the additive noise and nonadditive noise terms, we obtain

µ

m0∑
j=1

(t+s)/µ−1∑
k=t/µ

W (j)ξkI{αk=j} → 0

µ

m0∑
j=1

(t+s)/µ−1∑
k=t/µ

Ŵ (xk, j, ζk)I{αk=j} → 0.

(4.25)

Finally, since α0 =
∑m0

ι=1 ιI{α0=ι}, we obtain the desired result with M(ι) in (4.24)

replaced by
∑m0

ι pιM(ι). We summarize the discussions above into the following

result.

Theorem 4.16. Assume the conditions of Theorem 4.4 with the modification that

the stepsize in (4.3) satisfies ε = µ2. Then xµ(·) converges weakly to x(·), which is a

solution of the ordinary differential equation

ẋ(t) =

m0∑
ι=1

pιM(ι)x(t). (4.26)
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Note that for each ι ∈M, M(ι) is a generator of a continuous-time Markov chain.

Since pι represents the initial probability distribution, it is nonnegative. As a result,

Ms =
∑m0

ι=1 pιM(ι) is also a generator of a continuous-time Markov chain. We have

used Ms to signify that the generator correspond to slowly varying Markov chains.

In view of the result in Section 2.2, we obtain the following corollary.

Corollary 4.17. Assume the conditions of Theorem 4.16 and Ms is irreducible. In

the recursive algorithm, we also use the constraint (2.7). Then for any tµ → ∞ as

µ → 0, xµ(· + tµ) converges to the consensus solution η11 in probability. That is for

any δ > 0, limµ→0 P (|xµ(·+ tε)− η11| ≥ δ) = 0.

Remark 4.18. Note here we do not need the irreducibility of each of M(ι) but only

the irreducibility of the average Ms. As was mentioned in the introduction, to avoid

degeneracy, we require ε > 0. However, in fact, the result includes the degenerate

case. If ε = 0, in lieu of a time-varying random parameter, there is only one “regime.”

Then there is only one M matrix. The requirement of Ms becomes that of M .

Furthermore, we may defined yn as in (4.13) and define zn as in (4.15). Then it

can be shown that {zn : n ≥ Nµ} is tight. Define zµ(t) to be the piecewise constant

interpolation of zn on t ∈ [(n−Nµ)µ, (n−Nµ)µ+ µ), then zµ(·) converges weakly to

z(·) such that z(·) is the solution of the stochastic differential equation

dz(t) =

m0∑
ι=1

pιM(ι)z(t)dt+

m0∑
ι=1

pιW (ι)dB̂(t),

and B̂(·) is a Brownian motion with covariance Σt given in (4.18). We shall not dwell

on the details here.
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4.4 Fast Changing Markov Chains

This section takes up the issue that the Markov chain is fast varying comparing to

the adaptation. By that, we mean µ� ε. For concreteness of the discussion, we take

a specific form of the stepsizes, namely, ε = µ1/2. Intuitively, the Markov chain vary

relatively fast and can be thought of as a noise process. Eventually it is averaged out.

Consider again (4.3). Again, we can show that xµ(·) is tight. Then we can extract

a convergent subsequence. For simplicity, still index the subsequence by µ with limit

denoted by x(·). As in (4.20)–(4.22), choose a sequence mµ such that mµ → ∞ as

µ→ 0, but µmµ → 0. Let us concentrate on the term

m0∑
j=1

M(j)xlmµ
1

mµ

lmµ+mµ−1∑
k=lmµ

ElmµI{αk=j}

=

m0∑
j=1

M(j)xlmµ
1

mµ

lmµ+mµ−1∑
k=lmµ

P{αk = j|αlmµ}.

(4.27)

For αlmµ = i,

P{αk = j|αlmµ} = Ξij(εlmµ, εk) +O(ε+ exp(−κ0(k − lmµ)).

In view of (4.7) and noting ε = µ1/2 and the irreducibility ofQ, we have Ξij(εlmµ, εk) =

νj + O
(

exp
(
−κ0

k−lmµ√
µ

))
, where νj is the jth component of the stationary dis-

tribution ν = (ν1, . . . , νm0) associated with the generator Q of the corresponding

continuous-time Markov chain. This indicates that Ξ(s, t) can be approximated by a

matrix 11ν with identical rows or what is equivalent, the initial state i is unimportant.
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Thus detailed estimates yield that

µ

m0∑
j=1

(t+s)/µ−1∑
k=t/µ

M(j)xkI{αk=j} →
∫ t+s

t

νjM(j)x(u)du,

µ

m0∑
j=1

(t+s)/µ−1∑
k=t/µ

W (j)ξkI{αk=j} → 0

µ

m0∑
j=1

(t+s)/µ−1∑
k=t/µ

Ŵ (xk, j, ζk)I{αk=j} → 0.

(4.28)

Thus we obtain the limit ordinary differential equation.

Theorem 4.19. Assume the conditions of Theorem 4.4 with the modification that

the stepsize in (4.3) satisfies ε = µ1/2. Then xµ(·) converges weakly to x(·), which is

a solution of the ordinary differential equation

ẋ(t) =

m0∑
j=1

νjM(j)x(t). (4.29)

Similar to the slowly varying Markov chain case, for each j ∈ M, M(j) is a

generator of a continuous-time Markov chain. The nonnegativity then yields that

Mf =
∑m0

j=1 νjM(j) is also a generator of a continuous-time Markov chain. We have

used Mf to indicate that the generator correspond to fast varying Markov chains.

The formulae (4.26) and (4.29) are similar in their appearance. The intuition behind

is that for the slowly changing Markov chain case, the parameter is almost a constant

resulting in a limit dynamic system “almost” like a constant parameter, whereas for

the fast changing Markov chain, within a very short period of time, the system is

replaced by an average with respect to the stationary distribution of the Markov

chain. In view of the result in Section 2.2, we obtain the following corollary.
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Corollary 4.20. Assume that the conditions of Theorem 4.19 hold and that Mf is

irreducible. In the recursive algorithm, we also use the constraint (2.7). Then for any

tµ →∞ as µ→ 0 and for any δ > 0, limµ→0 P (|xµ(·+ tµ)− η11| ≥ δ) = 0.

Remark 4.21. The above result covers potentially interesting cases. We do not need

the topology in each regime to be good (or irreducible), but only need the combined

matrix Mf to have rank r− 1. This will allow the possible loss of communications to

happen that may create a topology that is not good on its own, but on average the

combined network topologies provide sufficient linkage to achieve consensus.

Furthermore, we may defined yn as in (4.13) and define zn as in (4.15). Then

it can be shown that {zn : n ≥ Nµ} is tight. Define zµ(t) to be the piecewise

constant interpolation of zn on t ∈ [(n−Nµ)µ, (n−Nµ)µ + µ), then zµ(·) converges

weakly to z(·) such that z(·) is the solution of the stochastic differential equation

dz(t) =
∑m0

j=1 νjM(j)z(t)dt +
∑m0

j=1 νjW (j)dB̂(t), and B̂(·) is a Brownian motion

with covariance Σt given in (4.18) Again, the details are omitted here.

4.5 Illustrative Examples

This section presents several simulation examples. To obtain the desired consensus,

we use
∑r

i=1 x
i
0/r = η. Then we call (xn− η11)′(xn− η11) the consensus error variance

at time n. We also term (xn − yn)/
√
µ the tracking error or scaled tracking error

sequence.

Example 4.22. We consider the case that the Markov chain αn has only 2 states,
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i.e., M = {1, 2}. The probability transition matrix is P ε = I + εQ =


1 0

0 1


+

ε


−0.4 0.4

0.3 −0.3


. For a given system, if the link gains G1 = diag(1, 0.3, 1.2, 4, 7, 10)

and G2 = diag(2, 0.5, 1, 6, 9, 14) with regime-switching at two different states. Sup-

pose the initial states are x1
0 = 12, x2

0 = 34, x3
0 = 56, x4

0 = 8, x5
0 = 76. The state

average is η = 37.2, which will not change in the state update. Initial consensus error

is (x0 − η11)′(x0 − η11) = 3356.8. Take ε = 0.02 and step size µ = ε = 0.02. The

updating algorithm runs for 1000 steps, and the stopped consensus error variance is

(x1000 − η11)′(x1000 − η11) = 0.2355. In what follows, we plot the Markov chain state

trajectories, the system state trajectories. The consensus variance is shown to be

fairly small.

Example 4.23. Here we consider the case that the Markov chain changes very slowly

compared with the adaptation stepsize. That is, ε � µ. To be specific, suppose

ε = µ2, where µ = 0.02. The numerical results are showing in Figure 4. From the

trajectory of the Markov chain, there is only one switching take place in the first 1000

iterations. The convergence of the consensus is also demonstrated.

Example 4.24. Here we consider the fast changing Markov chain µ� ε. Specifically,
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Figure 3: Trajectories of the case ε = µ = 0.02: (Horizontal axes–discrete time or

iteration numbers)
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Figure 4: Slowly varying Markov parameter µ = 0.02 and ε = µ2: (Horizontal axes–

discrete time or iteration numbers)

we take µ = ε2 with µ = 0.02 The corresponding trajectories plotted in Figure 5. The

frequent Markov switching is clearly seen.
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Figure 5: Fast varying Markov chain ε = µ1/2 and µ = 0.02: (Horizontal axes–discrete

time or iteration numbers)

4.6 Proofs of Results

Proof of Lemma 4.2. Note that for any 0 < T < ∞ and 0 ≤ n ≤ T/ε, by the

familiar Cauchy-Schwarz inequality,∣∣∣ε n∑
k=0

M(αk)xk

∣∣∣2 ≤ ε2
( n∑
k=0

12
)( n∑

k=0

|M(αk)|2|xk|2
)
, (4.30)

so,

ε2E

∣∣∣∣∣
n∑
k=0

M(αk)xk

∣∣∣∣∣
2

≤ Kε

n∑
k=0

E|xk|2. (4.31)

Also, ε2E
∣∣∣∑n

k=0 Ŵ (xk, αk, ζk)
∣∣∣2 ≤ Kε

∑n
k=0E|xk|2 +K. Likewise,

ε2E

∣∣∣∣∣
n∑
k=0

W (αk)ξk

∣∣∣∣∣
2

≤ K(εn)2 ≤ K. (4.32)

Iterating on E|xn|2 with the use of (4.3), and using (4.31) and (4.32), we obtain

E|xn+1|2 ≤ (E|x0|2 +K) +Kε

n∑
k=0

E|xk|2.
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An application of the Gronwall inequality then leads to E|xn+1|2 ≤ K exp(nε) ≤

K exp(ε(T/ε)) ≤ K exp(T ). Taking sup over n, the desired estimate follows. 2

Proof of Lemma 4.6. For any δ > 0, let t > 0 and s > 0 such that s ≤ δ, and

t, t+ δ ∈ [0, T ]. Note that

xε(t+ s)− xε(t) = ε

(t+s)/ε−1∑
k=t/ε

M(αk)xk

+ε

(t+s)/ε−1∑
k=t/ε

W (αk)ξk + ε

(t+s)/ε−1∑
k=t/ε

Ŵ (xk, αk, ζk).

In the above and hereafter, we use the convention that t/ε and (t + s)/ε denote

the corresponding integer parts, i.e., bt/εc and b(t + s)/εc, respectively. However,

for notational simplicity, in what follows, we will not use the floor function notation

unless it is necessary.

Since αk is a finite-state Markov chain, |M(αk)|2 ≤ maxi∈M |M(i)|2 ≤ K and

|W (αk)|2 ≤ maxi∈M |W (i)|2 ≤ K a.s. Using the Cauchy-Schwarz inequality as in
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(4.30) (with
∑n

k=0 replaced by
∑(t+s)/ε−1

k=t/ε ) together with Lemma 4.2,

E|xε(t+ s)− xε(t)|2

≤ Kε2E
[∣∣∣ (t+s)/ε−1∑

k=t/ε

M(αk)xk

∣∣∣2 +
∣∣∣ (t+s)/ε−1∑

k=t/ε

W (αk)ξk

∣∣∣2]

+Kε2E
∣∣∣ (t+s)/ε−1∑

k=t/ε

Ŵ (xk, αk, ζk)
∣∣∣2

≤ Kεs

(t+s)/ε∑
k=t/ε

sup
t/ε≤k≤(t+s)/ε−1

E|xk|2 +Ks2 ≤ Kδ2.

(4.33)

As a result, limδ→0 lim supε→0E|xε(t+s)−xε(t)|2 = 0. The tightness of {xε(·)} follows

from [19, p.47]. 2

Proof of Lemma 4.7. Let (x(t), α(t)) be a solution of the martingale problem

with operator L1. We proceed to show that the solution is unique in the sense in

distribution. Define

g(x, k) = exp(γ′x+ γ0k), ∀γ ∈ Rr, γ0 ∈ R, k ∈M.

Consider ψjk(t) = E[I{α(t)=j}g(x(t), k)], j, k ∈M. It is readily seen that ψjk(t) is the

characteristic function associated with (x(t), α(t)). By virtue of the Dynkin’s formula

ψj0k0(t)− ψj0k0(0)−
∫ t

0

L1ψj0k0(s)ds = 0. (4.34)

Direct calculation also shows that

L1ψj0k0(s) = γ′M(k0)xψj0k0(s) +

m0∑
j=1

qjj0ψjk0(s). (4.35)
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Let ψ(t) = (ψι`(t) : ι ≤ m0, ` ≤ m0). Combining (4.34) and (4.35), we then obtain

ψ(t) = ψ(0) +

∫ t

0

ψ(s)Gds, (4.36)

where G is an m0 ×m0 matrix. Thus (4.36) is an ordinary differential equation with

an initial condition ψ(0). As a result, it has a unique solution. 2

Proof of Lemma 4.8. Our focus here is to characterize the limit below. By Sko-

rohod representation [20, p. 230], with a slight abuse of notation, we may assume

that (xε(·), αε(·)) converges to (x(·), α(·)) w.p.1 and the convergence is uniform on

any bounded time interval. To show that (x(·), α(·)) is a solution of the martin-

gale problem with operator L1, it suffices to show that for each i ∈ M and any

f(·, i) ∈ C1
0 , the class of functions that are continuously differentiable with compact

support, f(x(t), α(t))− f(x(0), α(0))−
∫ t

0
L1f(x(s), α(s))ds is a martingale. To ver-

ify the martingale property, we need only show that for any bounded and continuous

function h(·), any positive integer κ, any t, s > 0, and ti ≤ t with i ≤ κ,

Eh(x(ti), α(ti) : i ≤ κ)[f(x(t+ s), α(t+ s))

−f(x(t), α(t))−
∫ t+s

t

L1f(x(u), α(u))du] = 0.

(4.37)

To verify (4.37), we begin with the process indexed by ε. For notational simplicity,

denote

h̃ = h(x(ti), α(ti) : i ≤ κ), h̃ε = h(xε(ti), α
ε(ti) : i ≤ κ). (4.38)

The w.p.1 convergence (using the weak convergence and the Skorohod representation)
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together with the boundedness and the continuity of f(·) and h(·) yields that as ε→ 0,

Eh̃ε[f(xε(t+ s), αε(t+ s))− f(xε(t), αε(t))]

→ Eh̃[f(x(t+ s), α(t+ s))− f(x(t), α(t))].

First, for the last term in (4.10), as ε→ 0,

lim
ε→0

ε

(t+s)/δε∑
l=t/δε

[f(xlmε+mε , αlmε+mε)− f(xlmε+mε , αlmε)]

= lim
ε→0

ε

(t+s)/δε∑
l=t/δε

[f(xlmε , αlmε+mε)− f(xlmε , αlmε)]

=

∫ t+s

t

Qf(x(u), ·)(α(u))du,

(4.39)

where Qf(x, ·)(i) is as defined at the end of Theorem 4.4. Next, let us consider the

term involving the noise. Since h(xε(ti), α
ε(ti) : i ≤ κ) is F εt measurable, we can

insert a conditional expectation with respect to F εt . Using assumption (A1) and [8,

Corollary 7.2.4], for all k ≥ lmε and t/δε ≤ l ≤ (t+ s)/δε,

E|Elmεξk| = E|E(ξk|Flmε)|

≤ Kφ̃
1+∆
2+∆

1 (k − lmε)|ξk|2+∆

≤ Kφ̃
1+∆
2+∆ (k − lmε)|ξ1|2+∆,

where

φ̃1(k) = sup
B∈Fn+m

|P (B|Fn)− P (B)|1
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and |z|q denotes the q-norm E1/q|z|q. Note that W (αk) =
∑m0

`=1 W (`)I{αk=`}. By the

independence of {αk} and {ξk} and using (4.38),

ẽ = |Eh̃εε
(t+s)/δε∑
l=t/δε

lmε+mε−1∑
k=lmε

(∇f(xlmε , αlmε))
′W (αk)ξk|

= |Eh̃εε
(t+s)/δε∑
l=t/δε

(∇f(xlmε , αlmε))
′

×
lmε+mε−1∑
k=lmε

ElmεW (αk)Elmεξk|.

Thus,

ẽ ≤ εEh̃ε
(t+s)/δε∑
l=t/δε

m0∑
ι,`=1

|∇f(xlmε , αlmε))|

×
lmε+mε−1∑
k=lmε

P (αk = `|αlmε = ι)|W (`)||Elmεξk|I{αlmε=ι}

≤ Kε

(t+s)/δε∑
l=t/δε

lmε+mε−1∑
k=lmε

E|Elmεξk|

≤ Kε

(
t+ s

δε
− t

δε

) ∞∑
k=lmε

φ̃
∆

1+∆ (k − lmε)

≤ K
ε

δε
s ≤ K

mε

→ 0 as ε→ 0.
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For the nonadditive noise, by the continuity of Ŵ (·, `, ζ), we have

lim
ε→0

Eh̃εε

(t+s)/δε∑
l=t/δε

lmε+mε−1∑
k=lmε

(∇f(xlmε , αlmε))
′Ŵ (xk, α,ζk)

= lim
ε→0

Eh̃εε

(t+s)/δε∑
l=t/δε

lmε+mε−1∑
k=lmε

(∇f(xlmε , αlmε))
′

×
m0∑
`=1

Ŵ (xlmε , `, ζk)I{αk=`}.

Thus,

|Eh̃εε
(t+s)/δε∑
l=t/δε

lmε+mε−1∑
k=lmε

(∇f(xlmε , αlmε))
′

×
m0∑
`=1

Ŵ (xlmε , `, ζk)I{αk=`}|

= |Eh̃εε
(t+s)/δε∑
l=t/δε

lmε+mε−1∑
k=lmε

(∇f(xlmε , αlmε))
′

×
m0∑
`=1

ElmεŴ (xlmε , `, ζk)I{αk=`}|.
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As before, we can replace ε by δε(1/mε). Using a partial summation,

m0∑
`=1

1

mε

lmε+mε−1∑
k=lmε

ElmεŴ (xlmε , `, ζk)I{αk=`}

=

m0∑
`=1

m0∑
ι=1

1

mε

[
P (αlmε+mε−1 = `|αlmε=ι)

×
lmε+mε−1∑
k=lmε

ElmεŴ (xlmε , `, ζk)

+
1

mε

lmε+mε−1∑
k=lmε

[P (αk = `|αlmε=ι)− P (αk+1 = `|αlmε=ι)]

×
k∑

j1=lmε

ElmεŴ (xlmε , `, ζj1)
]
I{αlmε=ι}.

(4.40)

Using (A2)(c) or (4.5), for all lmε ≤ k ≤ lmε+mε−1, 1
mε

∑k
j1=lmε

ElmεŴ (xlmε , `, ζj1)→

0 in probability. Using the transition matrix P ε = I+εQ, for lmε ≤ k ≤ lmε+mε−1,

(I + εQ)k−lmε − (I + εQ)k+1−lmε = O(ε). Using these estimates in (4.40), we obtain

that

Eh̃εε

(t+s)/δε∑
l=t/δε

lmε+mε−1∑
k=lmε

(∇f(xlmε , αlmε))
′Ŵ (xlmε , α,ζk)→ 0.

Next, we consider the term involving M(αk)xk. We have

lim
ε→0

εEh̃ε
(t+s)/δε∑
l=t/δε

(∇f(xlmε , αlmε))
′
lmε+mε−1∑
k=lmε

M(αk)xk

= lim
ε→0

εEh̃ε
(t+s)/δε∑
l=t/δε

(∇f(xlmε , αlmε))
′
lmε+mε−1∑
k=lmε

M(αk)xlmε .

(4.41)

Thus, to get the desired limit, we need only examine the last line above. Let εlmε → u

as ε→ 0. Then for all k satisfying lmε ≤ k ≤ lmε +mε − 1, εk → u since δε → 0. In
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addition, αk = αε(εk). Thus

lim
ε→0

Eh̃ε
(t+s)/δε∑
l=t/δε

δε(∇f(xlmε , αlmε))
′

mε

lmε+mε−1∑
k=lmε

M(αk)xlmε

= lim
ε→0

Eh̃ε
(t+s)/δε∑
l=t/δε

δε(∇f(xlmε , αlmε))
′

mε

×
lmε+mε−1∑
k=lmε

M(αε(εlmε))xlmε

= Eh̃

∫ t+s

t

[∇f(x(u), α(u))]′M(α(u))x(u)du.

(4.42)

The desired result then follows. 2

Proof of Theorem 4.9. To prove (i), we divide the time intervals by the associated

switching times. Since we begin at (x(0), α(0)) = (x0, i), we follow the dynamic

system by considering its associated switching ordinary differential equation (4.9).

Define τ1 to be the first switching time, i.e., τ1 = inf{t : α(t) = i1 6= i}. Note that

x(t) = x(t, ω), where ω ∈ Ω is the sample point. Then in the interval [0, τ1], for

almost all ω, the system (4.9) is a system with constant matrix M(i). Thus the

solution can be represented by x(t) = exp(M(i)t)x0 for all t ∈ [0, τ1]. If x0 ∈ Z, i.e.,

x0 = c11 for some c ∈ R, since M(i) is a generator of a continuous-time Markov chain,

and exp(M(i)t) =
∑∞

k=0
(M(i)t)k

k!
, exp(M(i)t) is orthogonal to 11. Thus x(t) ∈ Z for all

t ∈ [0, τ1]. Now, define τ2 = inf{t > τ1 : α(t) = i2 6= i1}. Similar as in the previous

paragraph, we can show for all t ∈ [τ1, τ2], x(t) = exp(M((i1)(t − τ1))x(τ1) w.p.1.

Moreover, x(t) ∈ Z. Continue in this way. For any T > 0, consider [0, T ]. Then
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0 < τ1 < τ2 · · · < τn+1 ≤ T , where τn is defined recursively such that α(τn) = in

and τn+1 = inf{t > τn : α(t) = in+1 6= in}. Suppose that we have for all t ≤ τn

x(t) ∈ Z w.p.1. Using the argument as before, we have x(t) = exp(M(in)(t−τn))x(τn)

w.p.1 and x(t) ∈ Z. Next, we work with the interval [τn, T ], this establishes the first

assertion.

To prove (ii), define V (x) = x′x/2. Note that since V (x) is independent of the

switching component,
∑m0

j=1 qijV (x) = 0. Thus, L1V (x) = x′M(α)x ≤ 0, for each

α ∈ M. The rest of the proof of the stability in probability of the set Z is similar in

spirit to that of [53, Theorem 9.3]. We omit the details for brevity. 2

Proof Lemma 4.13. The proof is carried out by using methods of perturbed Lia-

punov functions, which entitles to introduce small perturbations to a Liapunov func-

tion in order to make desired cancellation. We begin by introducing V (z) = z′z/2.

Then

EnV (zn+1)− V (zn) = εz′nM(αn)zn +
√
εz′nW (αn)Enξn

+εz′ndiag(zn)Ψ(αn, ζn) +O(ε2)V (zn)

+O(ε)|W (αn)|2En|ξn|2 + ε2|diag(zn)Ψ(αn, ζn)|2,

(4.43)

where En denotes the conditional expectation conditioned on the σ-algebra Fn =

{(xj, αj) : j < n}.
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Define

V ε
1 (z, n) =

√
ε
∞∑
j=n

z′W (αn)Enξj,

V ε
2 (z, n) = ε

∞∑
j=n

z′diag(z)EnΨ(αn, ζj).

Using (A1) and (A2’), we obtain

|V ε
1 (z, n)| ≤ K|z|

√
ε

∣∣∣∣∣
∞∑
j=n

Enξj

∣∣∣∣∣ ≤ K
√
ε(V (z) + 1)

|V ε
2 (z, n)| ≤ KεV (z).

(4.44)

Moreover,

EnV
ε

1 (zn+1, n+ 1)− V ε
1 (zn, n)

= O(ε)(V (zn) + 1)−
√
εz′nW (αn)Enξn

EnV
ε

2 (zn+1, n+ 1)− V ε
1 (zn, n)

= O(ε2)(V (zn) + 1)− εz′ndiag(zn)Ψ(αn, ζn).

(4.45)

Define V ε(z, n) = V (z) + V ε
1 (z, n) + V ε

2 (z, n). Using (4.43) and (4.45), we obtain

EnV
ε(zn+1, n+ 1)− V ε(zn, n)

= εz′nM(αn)zn +O(ε)En|ξn|2 +O(ε)(V (zn) + 1).
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Thus for some κ1 > 0,

EnV
ε(zn+1, n+ 1) ≤ (1− κ1ε)V

ε(zn, n) +O(ε)ψ̃n, (4.46)

where ψ̃n satisfies E|ψ̃n| <∞. Iterating on (4.46) and taking expectation, we obtain

that

EV ε(zn+1, n+ 1) ≤ (1− κ1ε)
nEV ε(z0, 0)

+O(ε)
n∑
j=0

(1− κ1ε)
j.

For sufficiently large n, (1−κ1ε)
nEV ε(z0, 0) can be made sufficiently small. Therefore,

sup0≤n≤T/ε EV
ε(zn, n) = O(1). Using the definition of V ε(z, n) together with (4.44),

we also have EV (zn) = O(1). The desired result thus follows. 2

Proof of Lemma 4.14. As in the proof of Theorem 4.4, for any δ > 0, t, s > 0 with

s < δ, (4.17) holds. Note that

E
∣∣∣ (t+s)/ε−1∑

j=t/ε

W (αj)ξj

∣∣∣2

= εE

(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

tr[Et/εW (αj)W
′(αk)Et/εξjξ

′
k]

≤ Kε
(t+ s

ε
− t

ε

)
= Ks ≤ Kδ.

The rest of the argument is similar to that of Lemma 4.6. A few details are omitted.

2



70

5 Concluding Remarks

This dissertation has been devoted to consensus type algorithms. In the first part,

we developed a two-stage averaging algorithm and demonstrated its asymptotic op-

timality. In the setup of this part of the work, the topology is fixed. It would be a

worthwhile effort to consider iterate averaging for algorithms with topology switching.

In the second part of the dissertation, we study asymptotic behavior of consensus-

type algorithms for networked systems with randomly-switching topologies. Our re-

sults have demonstrated distinct convergence properties of three different scenar-

ios. They are classified by the relative sizes of the Markov chain switching dy-

namics and the adaptation stepsizes. For convenience and notational simplicity, we

have used the current setup. Several extensions and generalizations can be car-

ried out. (a) In studying the rates of convergence, we used (A2’). This condi-

tion can be much relaxed. In lieu of (A2’), we can assume that Ŵ (x, α, ζ) =

Ŵ (xc, α, ζ) +∇Ŵ (xc, α, ζ)(x− xc) +O(|x− xc|2), where xc = η11. In place of (4.11),

we assume

1

n

m+n−1∑
j=m

Em∇Ŵ (xc, α, ζj)→ 0 in probability,

∞∑
j=n

|En∇Ŵ (xc, α, ζj)| <∞.

(5.1)

Proceeding in the same way as that of Theorem 4.15, we obtain the same limit

switched stochastic differential equation. (b) So far, the noise sequences are correlated

random processes. For convenience, we used mixing type of noise processes. All the
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development up to this point can be generalized to more complex x-dependent noise

processes [20, Sections 6.6 and 8.4]. One possibility is to assume that the joint process

{xn, αn−1, ξn−1, ζn−1} is a Markov process and use the probabilistic structure of the

joint process to carry out the analysis. (c) The nonadditive noise can be extended

to incorporate time variations. That is, in lieu of a fixed function Ŵ (x, α, ζ), we can

treat time-varying Ŵn(x, α, ζ). The main technique needed is a local average as in

[20, p. 245, pp. 269-283]. For the extensions (a)–(c) mentioned above, the main line

of developments will be along the line of the previous sections, but the notation will

be more complex.

To conclude, this dissertation provides a class of general algorithms for consensus

type of problems. This study opens new arenas for subsequent studies on consensus

type control problems when time-varying and random dynamics of network systems

are involved.
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ABSTRACT

CONSENSUS-TYPE STOCHASTIC APPROXIMATION ALGORITHMS
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Degree: Doctor of Philosophy

This work is concerned with asymptotic properties of consensus-type algorithms

for networked systems whose topologies switch randomly. The regime-switching pro-

cess is modeled as a discrete-time Markov chain with a finite state space. The con-

sensus control is achieved by designing stochastic approximation algorithms. In the

setup, the regime-switching process (the Markov chain) contains a rate parameter

ε > 0 in the transition probability matrix that characterizes how frequently the

topology switches. On the other hand, the consensus control algorithm uses a step-

size µ that defines how fast the network states are updated. Depending on their

relative values, three distinct scenarios emerge. Under suitable conditions, we show

that when 0 < ε = O(µ), a continuous-time interpolation of the iterates converges

weakly to a system of randomly switching ordinary differential equations modulated

by a continuous-time Markov chain. In this case, a scaled sequence of tracking errors

converges to a system of switching diffusion. When 0 < ε� µ, the network topology

is almost non-switching during consensus control transient intervals, and hence the

limit dynamic system is simply an autonomous differential equation. When µ � ε,

the Markov chain acts as a fast varying noise, and only its average is relevant, result-

ing in a limit differential equation that is an average with respect to the stationary
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measure of the Markov chain. Simulation results are presented to demonstrate these

findings.

By introducing a post-iteration averaging algorithm, this dissertation demon-

strates that asymptotic optimality can be achieved in convergence rates of stochastic

approximation algorithms for consensus control with structural constraints. The algo-

rithm involves two stages. The first stage is a coarse approximation obtained using a

sequence of large stepsizes. Then the second stage provides a refinement by averaging

the iterates from the first stage. We show that the new algorithm is asymptotically

efficient and gives the optimal convergence rates in the sense of the best scaling fac-

tor and “smallest” possible asymptotic variance. Numerical results are presented to

illustrate the performance of the algorithm.
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