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An Alternative Q Chart Incorporating A Robust Estimator Of Scale 
 

Michael B.C. Khoo 
School of Mathematical Sciences 

Universiti Sains Malaysia  
 
 
In overcoming the shortcomings of the classical control charts in a short runs production, Quesenberry 
(1991 & 1995a – d) proposed Q charts for attributes and variables data. An approach to enhance the 
performance of a variable Q chart based on individual measurements using a robust estimator of scale is 
proposed. Monte carlo simulations are conducted to show that the proposed robust Q chart is superior to 
the present Q chart. 
 
Key words: short runs; Q chart; MSSDQ  chart; in-control; out-of-control (o.o.c.) 
 

Introduction 
 
Short runs production or more commonly known 
as short runs is given more emphasis in 
manufacturing industries nowadays. The trend 
which is emphasized now is low volume 
production. This trend is a result of extra 
emphasis on just-in-time (JIT) techniques, job 
shop settings and synchronous manufacturing. 
Classical SPC charting methods such as X , R 
and S charts which assume high volume 
manufacturing processes require at least 25 or 30 
calibration samples of size 4 or 5 each to be 
available in the estimation of the process 
parameters before on-line charting begins.  

In a short runs production, there is often 
a paucity of relevant data available for 
estimating the process parameters and 
establishing control limits prior to a production 
run. It is desirable to begin charting at or very 
near the beginning of the run in these cases. 
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In a short runs environment, the process mean, 
µ, and variance, 2σ , cannot be known before the 
production run is begun because they change 
from run to run. For the individual 
measurements situation based on variables data, 
Quesenberry (1991 & 1995a) proposed the 
following four statistics for cases where µ and 

2σ  are known and unknown. The notations in 
Table 1 are used: 

 
1. Case KK: 0µ=µ , 0σ=σ , both known 
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3. Case KU: 0µ=µ  known, 2σ  unknown 

 For this case, let   
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4. Case UU: µ and 2σ  both unknown    
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Note that in eqs. (1) – (4) above, rX  represents 
the sample mean estimated from the first r 

observations, i.e., 
r

X
X

r

i
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Table 1. Notations for distribution functions. 
 

)(1 ⋅Φ−  - The inverse of the standard normal 
distribution function. 

)(⋅vG  - The student-t distribution function with 
v degrees of freedom. 
 
 
Q Chart Incorporating A Robust Estimator Of 
Scale 

The Q chart statistics in eqs. (1) and (2) 
are based on known variance while that of eqs. 
(3) and (4) are based on the estimated variance. 
A simulation study performed by Quesenberry 
(1995a) shows that the performance of a Q chart 
for cases KK and UK are superior to that of 
cases KU and UU. In this paper, a method to 
improve the performance of a basic Q chart 
using a robust estimator of scale will be 
suggested. The robust estimator of scale is based 
on a modified mean square successive difference 
(MSSD) approach. 

Holmes and Mergen (1993) provide 
some discussion on this approach. Let the new 
estimator of the process dispersion be denoted 
by MSSDS  while the new Q statistics be 
represented by .MSSDQ  The standard normal 

MSSDQ  statistics are shown below for cases KU 
and UU. All the notations which are used here 
are similar to that defined in Table 1. Let 

,..., 21 XX  represent measurements made on a 
sequence of parts as they are produced in time 
and assume that these values are independently 
and identically distributed (i.i.d.) with a normal, 
( )2,σµN  process distribution. The two cases 

are: 
 
1. Case KU: 0µ=µ  known, 2σ  unknown 
      For odd numbered observations, i.e., 
when r is an odd number, 
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     For even numbered observations, i.e., when r 
is an even number, 
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2. Case UU: µ and 2σ  both unknown    

 For this case, let 
r

X
X
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i
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== 1 . For odd 

numbered observations, i.e., when r is an odd 
number, 
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     For even numbered observations, i.e., 
when r is an even number, 
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Note that the MSSDQ  statistics in Eqs. (5a), (5b), 
(6a) and (6b) are standard normal random 
variables. 
 
Tests For Shifts In The Process Mean 
 To enable a comparison in the 
performances of the proposed MSSDQ  chart and 
the basic Q chart to be made in the next section, 
the following tests which are used by 
Quesenberry (1995a) will be considered: Given 
a sequence of say, Q statistics, ,...,, 1−tt QQ  these 
tests are defined as follow: 
 

The 1-of-1 test: When tQ  is plotted, the 
test signals an increase in µ if tQ  > 3, and 
signals a decrease in µ if tQ  < −3. 

The 9-of-9 test: When tQ  is plotted, the 
test signals an increase in µ if 81 ,...,, −− ttt QQQ  all 
exceed 0, and a decrease in µ if 81 ,...,, −− ttt QQQ  
are all less than 0. This test can only be 
employed if nine consecutive Q statistics are 
available. 

The 3-of-3 test: When tQ  is plotted, the 
test signals an increase in µ if 1, −tt QQ  and 2−tQ  
all exceed 1, and a decrease in µ if 1, −tt QQ  and 

2−tQ  are all less than –1. This test can only be 
employed if three consecutive Q statistics are 
available. 

The 4-of-5 test: When tQ  is plotted, the 
test signals an increase in µ if at least four of the 
five values 41 ,...,, −− ttt QQQ  exceed 1, and a 
decrease in µ if at least four of the five values 

41 ,...,, −− ttt QQQ  are less than –1. This test can 
only be employed if five consecutive Q statistics 
are available. 

The EWMA test: The EWMA statistic 
tZ  is given by  

 
        ,)1( 1−λ−+λ= ttt ZQZ   t = 1, 2, …         (7) 

 
with .00 =Z  The tZ , t = 1, 2, …, values are 
plotted on a chart with limits at )2( λ−λ± K . 
The same values of (λ, K) = (0.25, 2.90) 
considered by Quesenberry (1995a) which gives 
control limits at ±1.096 are used in the next 
section. These limits give an in-control ARL of 
372.6. If tZ  > 1.096, an increase in µ is signaled 
and if tZ  < −1.096, a decrease in µ is signaled. 
The CUSUM test: The CUSUM statistics are 
defined as follow: 
 
                     { }sttt kQSS −+= +

−
+

1,0max        (8a) 
and 
          { }sttt kQSS ++= −

−
−

1,0min       (8b) 
 
where .000 == −+ SS  An increase in µ is detected 
if st hS >+  and a decrease in µ if st hS −<− . 
Similar to Quesenberry (1995a), the values of 

75.0=sk  and 34.3=sh  are used in this study. 
These values of sk  and sh  give an in-control 
ARL of 370.5.  
 
Evaluating The Performance Of The MSSDQ  
Chart 
 A Monte Carlo simulation study is 
conducted using SAS version 8 to study the 
performance of the MSSDQ  chart based on cases 
KU and UU. Let the in-control mean be 0µ  and 
the o.o.c. mean be δσ+µ=µ 0S . Here, µ shifts 
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from 0µ  to Sµ  after r = c, where c ∈ {5, 20, 
100} and δ ∈ {0, 0.5, 1, 1.5, 2, 3, 4, 5, 6}. c 
observations are generated from a N(0,1) 
distribution and then 30 additional observations 
from a N(δ,1) distribution. The MSSDQ  statistics 
in Eqs. (5a), (5b), (6a) and (6b) are computed as 
soon as enough values are available to define the 
particular statistic. This procedure is repeated 
5000 times and the proportions of times a signal 
is observed for the MSSDQ  chart from c + 1 to c 
+ 30, for the first time are recorded and are 
given in Tables 2, 3 and 4 for c = 5, 20 and 100 
respectively. Note that this simulation study is 
conducted under the same condition as that in 
Quesenberry (1995a) so that a comparison 
between the performances of the MSSDQ  chart 
and the basic Q chart can be made.  

All the six tests discussed in the 
previous section are used in the simulation 
study. The results of the six tests for the basic Q 
chart are obtained from Quesenberry (1995a). 
Since we are interested to detect positive shifts 
in the process mean, only the upper sided tests 
are considered. Here, an o.o.c. is signaled if the 
chart’s statistics plot above the upper control 
limit of the test. 
 The results in Tables 2, 3 and 4 show 
that the proportions of o.o.c. for the 1-of-1 test 
when δ = 0 for both the MSSDQ  and Q charts are 
about the same, thus the two charts have almost 
similar Type-I errors. For the 1-of-1 test where δ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

> 0, the MSSDQ  chart has higher o.o.c. 
proportions compared to the Q chart. Therefore, 
the new approach based on the 1-of-1 test has 
increased the sensitivity of the basic Q chart 
while maintaining the same rate of Type-I error. 
On the whole, the Type-I errors of the 9-of-9, 3-
of-3, 4-of-5, EWMA and CUSUM tests for c = 5  
and 20 are higher for the MSSDQ  chart compared 
to the Q chart. However, for c = 100, these tests 
produce similar Type-I errors for both the 

MSSDQ  and Q charts.  
The percentage of an increase in the 

sensitivity of the MSSDQ  chart using these tests 
in detecting shifts in the mean is greater than its 
increase in the Type- I error in comparison to the 
Q chart. For example, in Table 2, using the 3-of-
3 test for case UU with δ = 0.5, an increase of 
about 2.7 fold in the sensitivity of the MSSDQ  
chart over the Q chart is recorded. For this case, 
the false alarm rate of the MSSDQ  chart increase 
by only about 1.9 fold in comparison to that of 
the Q chart. The results in Tables 2, 3 and 4 
clearly indicate that the MSSDQ  chart is superior 
to the Q chart. 

It should be noted that case UU has 
lower o.o.c. proportions than case KU for δ > 0 
irrespective of the test that is used. The MSSDQ  
and Q charts become more sensitive to process 
shifts as the value of c increases. 
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Table 2. Proportions of signaling an out-of-control for the Q and MSSDQ  charts based on c = 5. 
 c = 5 
 1-of-1 9-of-9 3-of-3 4-of-5 EWMA CUSUM δ 
 Q MSSDQ  Q MSSDQ  Q MSSDQ  Q MSSDQ  Z MSSDZ  +S  +

MSSDS  
0.0 KU 0.044 0.035 0.026 0.026 0.096 0.125 0.048 0.077 0.039 0.056 0.043 0.068 

 UU 0.044 0.043 0.026 0.103 0.096 0.178 0.048 0.144 0.040 0.144 0.045 0.132 

0.5 KU 0.086 0.104 0.270 0.270 0.385 0.449 0.291 0.384 0.347 0.429 0.280 0.371 
 UU 0.049 0.106 0.064 0.346 0.165 0.448 0.098 0.395 0.093 0.427 0.087 0.386 

1.0 KU 0.074 0.226 0.767 0.779 0.676 0.826 0.614 0.802 0.728 0.877 0.701 0.834 
 UU 0.051 0.213 0.158 0.682 0.244 0.732 0.165 0.707 0.143 0.757 0.129 0.724 

1.5 KU 0.057 0.388 0.979 0.981 0.862 0.976 0.838 0.974 0.907 0.991 0.958 0.994 
 UU 0.045 0.355 0.294 0.911 0.332 0.921 0.243 0.907 0.195 0.938 0.194 0.926 

2.0 KU 0.057 0.548 1.000 0.999 0.949 0.998 0.947 0.999 0.965 1.000 0.999 1.000 
 UU 0.042 0.509 0.473 0.984 0.410 0.987 0.317 0.985 0.243 0.991 0.278 0.991 

3.0 KU 0.134 0.799 1.000 1.000 0.994 1.000 0.993 1.000 0.997 1.000 1.000 1.000 
 UU 0.072 0.762 0.776 1.000 0.525 1.000 0.415 1.000 0.281 1.000 0.472 1.000 

4.0 KU 0.279 0.920 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 0.148 0.906 0.934 1.000 0.631 1.000 0.518 1.000 0.305 1.000 0.666 1.000 

5.0 KU 0.471 0.973 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 0.259 0.966 0.985 1.000 0.701 1.000 0.582 1.000 0.344 1.000 0.807 1.000 

6.0 KU 0.664 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 0.403 0.989 0.998 1.000 0.758 1.000 0.617 1.000 0.375 1.000 0.895 1.000 

 

Table 3. Proportions of signaling an out-of-control for the Q and MSSDQ  charts based on c = 20. 
 c = 20 
 1-of-1 9-of-9 3-of-3 4-of-5 EWMA CUSUM 

δ  Q 
MSSDQ  Q 

MSSDQ  Q 
MSSDQ  Q 

MSSDQ  Z 
MSSDZ  

+S  +
MSSDS  

0.0 KU 0.044 0.035 0.030 0.029 0.095 0.113 0.047 0.065 0.041 0.048 0.042 0.056 
 UU 0.045 0.037 0.033 0.046 0.091 0.131 0.052 0.089 0.038 0.083 0.042 0.081 

0.5 KU 0.116 0.125 0.270 0.271 0.425 0.455 0.333 0.376 0.421 0.447 0.360 0.400 
 UU 0.083 0.128 0.140 0.304 0.278 0.450 0.191 0.377 0.210 0.446 0.183 0.399 

1.0 KU 0.175 0.330 0.774 0.777 0.798 0.873 0.746 0.857 0.906 0.936 0.888 0.913 
 UU 0.119 0.320 0.412 0.748 0.526 0.828 0.424 0.805 0.538 0.879 0.493 0.853 

1.5 KU 0.237 0.609 0.981 0.978 0.970 0.993 0.967 0.994 0.997 1.000 1.000 0.999 
 UU 0.172 0.579 0.717 0.962 0.751 0.981 0.709 0.980 0.838 0.993 0.848 0.993 

2.0 KU 0.334 0.846 0.999 0.999 0.997 1.000 0.998 1.000 1.000 1.000 1.000 1.000 
 UU 0.253 0.811 0.919 0.997 0.915 0.999 0.903 0.999 0.969 1.000 0.986 1.000 

3.0 KU 0.623 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 0.516 0.989 0.997 1.000 0.994 1.000 0.993 1.000 0.999 1.000 1.000 1.000 

4.0 KU 0.887 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 0.816 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5.0 KU 0.986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 0.962 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

6.0 KU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 



MICHAEL B.C. KHOO 
 
77 

 
 
An Example of Application 
 This example is based on simulated 
data. Observations are generated using SAS 
version 8. The first 10 observations are 
generated from a standard normal, N(0,1) 
distribution followed by 20 additional 
observations from a N(1,1) distribution. The first 
10 observations represent the in-control (stable) 
process while the next 20 the out-of-control 
(o.o.c.) process. The o.o.c. process involves a 
shift of one standard deviation in the mean. The 
simulated data and the corresponding computed 
statistics of )( rr XQ , rZ , +

rS , )(rMSSD, rXQ , 

rZ MSSD,  and +
rSMSSD,  are given in Table 5. The 

control charts plotted from the Q, EWMA (Z) 
and CUSUM ( +S ) statistics are shown in Figure 
1. Figure 2 gives the control charts plotted from 
the MSSDQ , EWMA ( MSSDZ ) and CUSUM 
( +

MSSDS ) statistics. All the six tests which are 
considered in the  simulation study will be  used  

 
 
here. Because a positive shift is simulated, only 
the upper limits of each of the tests are used. The 
upper limits of 1.096 and 3.34 for the EWMA 
and CUSUM tests respectively are used. These 
upper limits correspond to an in-control ARL of 
approximately 370 for the case of the two-sided 
charts.  
 An o.o.c. signal is given by the 3-of-3 
test at observation 25 in Figure 1. Note that the 
other tests fail to detect an o.o.c. in Figure 1. In 
Figure 2, o.o.c. signals are detected for the first 
time at observation 17 by the 3-of-3 test and at 
observation 19 by the 4-of-5 and 9-of-9 tests. 
Here, the EWMA ( MSSDZ ) and CUSUM ( +

MSSDS ) 
tests issue o.o.c. signals for the first time at 
observations 25 and 26 respectively. This 
example shows that the MSSDQ  chart is more 
sensitive to shifts compared to the Q chart 
proposed by Quesenberry (1991 & 1995a). 
 
 
 

Table 4. Proportions of signaling an out-of-control for the Q and MSSDQ  charts based on c = 100. 
 c = 100 
 1-of-1 9-of-9 3-of-3 4-of-5 EWMA CUSUM 

δ  Q 
MSSDQ  Q 

MSSDQ  Q 
MSSDQ  Q 

MSSDQ  Z 
MSSDZ  

+S  +
MSSDS  

0.0 KU 0.042 0.040 0.026 0.030 0.101 0.099 0.048 0.052 0.039 0.046 0.041 0.050 
 UU 0.042 0.039 0.027 0.033 0.100 0.101 0.051 0.055 0.036 0.053 0.038 0.057 

0.5 KU 0.150 0.156 0.276 0.281 0.458 0.457 0.366 0.375 0.486 0.484 0.426 0.430 
 UU 0.133 0.153 0.228 0.286 0.394 0.453 0.308 0.379 0.394 0.484 0.337 0.435 

1.0 KU 0.352 0.435 0.773 0.780 0.892 0.903 0.866 0.888 0.970 0.973 0.958 0.960 
 UU 0.295 0.430 0.661 0.770 0.812 0.888 0.773 0.872 0.910 0.961 0.891 0.948 

1.5 KU 0.614 0.787 0.977 0.981 0.994 0.997 0.993 0.996 1.000 1.000 1.000 1.000 
 UU 0.532 0.776 0.940 0.982 0.977 0.996 0.976 0.996 0.999 1.000 0.999 1.000 

2.0 KU 0.850 0.967 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 0.771 0.963 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

3.0 KU 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4.0 KU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5.0 KU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

6.0 KU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 UU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 5. Simulated data and the computed statistics for 30 observations. 
Obs. 

No., r rX  )( rr XQ  
EWMA 
( rZ ) 

CUSUM 
( +

rS ) )(MSSD, rr XQ  
EWMA 

( rZ MSSD, ) 
CUSUM 

( +
rSMSSD, ) 

1 −0.862 − − − − − − 
2 2.519 − − − − − − 
3 −1.350 −0.700 −0.175 0 −0.535 −0.134 0 
4 −0.332 −0.346 −0.218 0 −0.125 −0.132 0 
5 0.228 0.239 −0.104 0 0.105 −0.072 0 
6 −1.499 −1.571 −0.470 0 −0.660 −0.219 0 
7 0.312 0.515 −0.224 0 0.278 −0.095 0 
8 0.384 0.556 −0.029 0 0.280 −0.001 0 
9 −0.162 −0.100 −0.047 0 −0.056 −0.015 0 

10 −2.233 −2.232 −0.593 0 −1.236 −0.320 0 
11 0.972 1.160 −0.155 0.410 0.793 −0.042 0.043 
12 2.524 2.209 0.436 1.869 1.588 0.366 0.881 
13 0.350 0.234 0.386 1.353 0.437 0.383 0.568 
14 0.457 0.311 0.367 0.914 0.509 0.415 0.327 
15 1.206 0.906 0.502 1.071 1.068 0.578 0.645 
16 1.845 1.354 0.715 1.675 1.466 0.800 1.360 
17 2.349 1.608 0.938 2.533 1.863 1.066 2.473 
18 0.301 −0.072 0.686 1.711 0.473 0.918 2.196 
19 1.317 0.730 0.697 1.691 1.203 0.989 2.649 
20 0.148 −0.234 0.464 0.707 0.346 0.828 2.246 
21 0.638 0.177 0.392 0.135 0.742 0.807 2.238 
22 −1.656 −1.709 -0.133 0 −1.058 0.340 0.429 
23 1.640 1.038 0.160 0.288 1.433 0.614 1.112 
24 2.245 1.457 0.484 0.996 1.824 0.916 2.186 
25 1.871 1.086 0.635 1.332 1.654 1.100 3.090 
26 1.390 0.672 0.644 1.254 1.317 1.155 3.657 
27 1.690 0.888 0.705 1.392 1.592 1.264 4.498 
28 3.085 1.909 1.006 2.551 2.505 1.574 6.253 
29 0.717 0.019 0.759 1.820 0.855 1.394 6.358 
30 1.278 0.451 0.682 1.521 1.303 1.372 6.912 
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Figure 1. The charts constructed from the Q, EWMA (Z) and CUSUM ( +S ) statistics in Table 5. 
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Figure 2. The charts constructed from the MSSDQ , EWMA ( MSSDZ ) and CUSUM ( +
MSSDS ) statistics in Table 5. 
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Conclusion 
 

This article demonstrates that the performance 
of the basic Q chart for cases KU and UU have 
improved tremendously by incorporating a 
robust estimator of scale based on a modified 
mean square successive difference approach. 
The proofs of how the MSSDQ  statistics in eqs. 
(5a), (5b), (6a) and (6b) which are i.i.d. standard 
normal random variables are derived will be 
given in the Appendix. 
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Appendix 

Notation used here were defined above. The following theorem (Mood, Graybill & Boes, 1974) is required. 
 
Theorem: 
       If Z has a standard normal distribution and V has a chi-square distribution with k degrees of freedom, 
and Z and V are independent, then  

 
kV

ZT =  (9) 

has a student-t distribution with k degrees of freedom. 
 
Equation 5(a): Case KU 
       For odd numbered observations, i.e., when r is an odd number, 
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Equation 5(b): Case KU 
 
 It must be shown that for even numbered observations, i.e., when r is an even number, 
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Equation 6(a): Case UU 
 
 It must be shown that for odd numbered observations, i.e., when r is an odd number, 
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