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CHAPTER 1 

INTRODUCTION 

Traumatic brain injury (TBI) is a serious health concern that is associated with a variety 

of behavioral and cognitive deficits. The severity and duration of these deficits varies greatly and 

depends on a number of factors. Currently, there is an estimated 5.3 million people living with 

TBI related deficits in the United States alone (Langlois, Rutland-Brown, & Wald, 2006). 

Following injury, the ability to diagnose TBI accurately, predict future outcomes, and 

provide the most useful rehabilitative treatments relies heavily on information obtained through 

neuropsychological assessments. The validity of information obtained through these 

assessments, however, is greatly influenced by the amount of effort put forth by the examinee. 

Effort can account for as much as 50% of the variability in neuropsychological test scores 

(Meyers, Axelrod & Reinsch-Boothby 2011; Green, Lees-Haley & Allen 2001). An examinee 

providing suboptimal effort could, therefore, receive test scores that indicate drastically greater 

deficits than they truly have. Consequently, suboptimal effort negatively impacts the validity and 

utility of test results. 

Feigned impairment or purposeful suboptimal effort associated with TBI is common, 

especially in compensation and litigation settings. Evidence suggests that base rates of 

suboptimal effort in this context approach 40% (Larrabee, Millis, & Meyers, 2009). As such, a 

great deal of research has been directed at creating standardized tests of effort to detect feigned 

impairment. Although advancements have been made, the accuracy of these tests in 

distinguishing bona fide TBI from feigned impairment is unacceptable. Moreover, many of these 

tests are vulnerable to coaching (Gunstad & Suhr, 2001; Rose, Hall, & Szalda-Petree, 1998) and 

information that threatens their security is readily available on the internet (Bauer & McCaffrey 
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2006). The aim of the proposed study is to determine the extent to which adding a covert 

measure to established tests of effort will improve diagnostic accuracy. Specifically, this study 

will examine the extent to which analysis of response time (latency) on a computerized version 

of the Test of Memory Malingering (TOMM-C; Tombaugh, 1996) improves its diagnostic 

accuracy in distinguishing between healthy adults providing full effort, TBI simulators, and 

individuals with bona fide TBI. 

 

Section 1.1- Malingering 

The validity of psychological assessments is contingent on the assumption that examinees 

provide full effort. The term malingering has been used to describe one type of suboptimal 

effort. The Diagnostic and Statistical Manual of Mental Disorders- Fifth Edition (DSM-5) 

defines malingering as “the intentional production of false or grossly exaggerated physical or 

psychological symptoms, motivated by external incentives such as avoiding military duty, 

avoiding work, obtaining financial compensation, evading criminal prosecution, or obtaining 

drugs” (American Psychiatric Association, 2013, p. 726). There are two key features of this 

definition. First, the presentation of symptoms is conscious or “intentional.” Second, these 

symptoms are presented in the context of an identifiable external incentive (i.e. material gain, 

avoiding punishment/formal responsibilities). Both of these concepts help differentiate 

malingering from other disorders in which inaccurate symptom presentation is common, namely 

factitious disorder and conversion disorder. Inaccurate symptom presentation in factitious 

disorder is thought to be volitional, or under conscious control, whereas the incentive is thought 

to be internal/psychological (i.e., play the sick role, receive attention). Symptom presentation in 
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conversion disorder is thought to be unconscious, and incentive also is considered 

internal/psychological (i.e. manage stress/conflict; Slick, Sherman & Iverson, 1999). 

Although this definition provides a framework for conceptualizing malingering and 

distinguishes it from other disorders, its clinical utility is limited because the DSM-5 provides no 

concrete criteria for identifying and labeling malingering. Malingering is located in the V-Code 

section of the DSM-5 (V65.2). It is not classified as a mental disorder, but rather a behavior 

worthy of clinical attention. Without formal diagnostic criteria, the identification of malingering 

would rely almost entirely on clinical judgment. Although clinical judgment is critical to the 

assessment process, research has shown that it is vulnerable to individual biases and heuristics 

(mental shortcuts; Millis 2009). In an effort to improve identification, classification, and 

communication, researchers have offered their own definitions of malingering that include 

diagnostic criteria (Greiffenstein, Gola, & Baker, 1995; Rogers, 1990). 

Slick, Sherman, and Iverson (1999) developed a definition and set of diagnostic criteria 

for malingering specific to neurocognitive dysfunction. Today, it is the most commonly used 

diagnostic system for assessing malingering in neuropsychological settings. Slick et. al. define 

malingered neurocognitive deficit (MND) as “the volitional exaggeration or fabrication of 

cognitive dysfunction for the purpose of obtaining substantial material gain, or avoiding or 

escaping formal duty or responsibility” (p. 552). Diagnosis of MND is a multi-method, multi-

dimensional approach that requires the integration of data from self-reported symptoms, medical 

histories, behavioral observations, and neuropsychological testing.  

Slick et. al. note that even with explicit, reliable criteria that integrate all possible sources 

of evidence, there remains uncertainty when inferring a client’s volition, or conscious intent. 

Accordingly, their system provides three levels of classification corresponding to the degree of 
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diagnostic certainty: definite, probable, and possible malingering. Two criteria are common to all 

three of these diagnostic levels: a substantial external incentive must be present (e.g., 

compensation and pension, personal injury litigation) and the client’s behavior must not be fully 

explained by psychiatric, neurological, or developmental factors. Definite, probable, and possible 

malingering are differentiated by the type (i.e., test data vs. self report) and the amount of 

evidence that indicates a volitional exaggeration/fabrication of symptoms.  

Base rates of malingering vary depending on the context of the assessment (e.g., civil, 

criminal, medical) and the diagnosis from which the deficits are claimed to arise (Mittenberg, 

Patton, Canyock & Condit, 2002). A survey of members of the American Board of Clinical 

Neuropsychology revealed a staggering result: Approximately 30% of civil cases, 20% of 

criminal cases, and 8% of medical cases involved probable malingering (Mittenberg et al., 2002). 

Moreover, base rates of probable malingering are estimated to be 40-50% when external 

incentives are present (Larrabee, Millis & Meyers, 2009). With such high prevalence, it is clear 

that the ability to assess malingering accurately is critical, especially in areas where external 

incentives are common.  

 

Section 1.2-Clinical Significance 

Traumatic brain injury is the leading cause of disability in individuals under the age of 

40, with an estimated 1.7 million individuals sustaining a TBI in the United States each year 

(Draper & Ponsford, 2008; Faul, Xu, Wald, & Coronado, 2010). Since 1991, the number of TBI 

related hospitalizations and visits to emergency rooms has steadily increased (Coronado, 

McGuire, Sarmiento, et al., 2012; Faul et al., 2010). This increase does not likely reflect a true 

increase in occurrence, but rather increased public knowledge and awareness of TBI and its 



5 
 
 

 
 

associated deficits. TBI has received significant media coverage, as it has been a major health 

concern for professional sports and veterans returning home from Iraq and Afghanistan 

(Coronado et al., 2012). With such prevalence and growing public awareness, it is not surprising 

that TBI-related cases are among the most common referrals in forensic neuropsychology 

(Larrabee, 2005; Ruff & Richardson, 1999). The forensic setting provides a variety of potential 

external incentives that increase the likelihood of malingering. Most notably, the potential 

monetary gain in TBI litigation is tremendous, with median rewards of $271,350 for mild TBI 

and $1,375,000 for moderate TBI (Kaiman, 2003). Multiple studies and reviews of the literature 

have converged to estimate the prevalence of malingering in mild TBI compensation cases and 

found it to be approximately 40% (see Larrabee, 2009, 2011). Clearly the risk and prevalence of 

malingering in the context of forensic traumatic brain injury assessment is great.  

Beyond the forensic setting, TBI accounts for significant medical and rehabilitation costs. 

The annual direct medical costs of TBI are estimated to range between $9.1 billion and $14.6 

billion in the United States alone (Finkelstein, Corso & Miller, 2006; Orman, Kraus, Zaloshnja & 

Miller, 2011). When accounting for indirect costs, such as loss of productivity, estimates exceed 

$76.5 billion annually (Finkelstein, Corso & Miller, 2006). The appropriate allocation of the 

medical and rehabilitation resources that contribute to these costs is contingent on the ability to 

diagnose TBI accurately; however, this cannot be done without assessing the amount of effort 

put forth during testing and the potential risk for malingering. Clearly, the inability to accurately 

distinguish between bona fide TBI and feigned cognitive impairment has drastic economic and 

social consequences for patients, the healthcare system, and the legal system.  

 

Section 1.3-Assessment of Effort 
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A great deal of research has been directed at developing methods to detect suboptimal 

effort. Assessment of effort in the context of TBI is a particular focus of research due to its 

prevalence in settings where the risk of malingering is high and the fact that the majority of 

effort tests were developed using TBI samples (Millis, 2008). 

The assessment of effort requires the integration and interpretation of information from a 

number of various methods. One fundamental approach is to look at discrepancies between 

reliable sources of information. For example, one set of the behavioral criteria in the Slick et al. 

classification system for MND pertain to discrepancies between test data and/or self report data 

and: observed behavior, reliable collateral reports, and documented medical history. This type of 

qualitative discrepancy analyses, however, relies heavily on clinical judgment. Studies have 

consistently shown that even expert clinicians are unable to identify suboptimal effort accurately 

using behavioral observations and test data alone (Ekman, O’Sullivan, & Frank 1999; Faust, 

1995). These findings signaled the need for a more quantitative measure of effort, and led to the 

developmental of a number of tests designed to assess suboptimal effort.  

Tests of effort have been called many things (e.g., malingering tests, tests of response 

bias, symptom validity tests, etc.). Larrabee (2012) has recommended the term performance 

validity test (PVT) for tests assessing effort, as it is more descriptive and makes no inferences 

regarding the examinees’ volition. Stand-alone PVTs are tests created for the sole purpose of 

assessing suboptimal effort. They are the most frequently used, extensively studied, and best 

validated single measures of suboptimal effort (Constantinou, et al., 2005; Millis, 2008). 

Accordingly, their usage in nearly all neuropsychological evaluations has been deemed 

“medically necessary” by the National Academy of Neuropsychology (Bush et al., 2005) and the 

American Academy of Clinical Neuropsychology (Heilbronner et al., 2009). Although a number 
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of different PVTs used in cognitive assessment have been created, many share common features.  

First, most stand-alone PVTs used in TBI assessment tap aspects of memory 

performance. Memory is a frequent target of symptom dissimulation during testing, as memory 

deficits are a common and well-known symptom of a wide variety of disorders (Binder & 

Rohling 1996; Suhr & Barrash, 2007). Over 80% of the general public is aware that a brain 

injury can result in memory deficits (Gouvier, Pretholdt, & Warner, 1988). Further, feigned 

memory impairment is among the most common strategies used by individuals instructed to 

simulate TBI (Bashem et al., 2014; Iverson 1995). Many PVTs also share a common structure: A 

simple target stimulus (i.e., line drawing, number, or symbol) is presented followed by a forced-

choice recognition task in which the target stimulus is paired with a foil. Individuals must 

correctly identify the previously seen stimulus. This structure enables clinicians to detect a 

negative response bias. For example, if an individual performs significantly below chance, it is 

concluded that they were purposefully choosing incorrect items, or malingering.  

Although below chance responding provides strong evidence for suboptimal effort, 

individuals suspected of malingering or those asked to simulate TBI rarely perform below 

chance on PVTs (Millis, 2008). They do, however, commonly perform significantly below 

healthy controls and individuals with bona fide TBI (Tombaugh, 1997). The majority of PVTs 

are tasks that are easy enough for individuals with neurocognitive deficits to respond correctly to 

nearly all items. Consequently, they utilize a concept known as “the floor effect,” or empirically-

derived cut off scores that are well above chance (Bender & Rogers 2002; Neudecker & Skeel 

2008). In doing so, they are able to increase sensitivity (the proportion of individuals providing 

suboptimal effort correctly identified as such by the test) while maintaining a clinically 
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acceptable specificity (the proportion of individuals providing optimal effort correctly identified 

as such). 

 The Test of Memory Malingering (TOMM; Tombaugh, 1996) is a 50-item forced-choice 

PVT that requires individuals to identify simple line drawings of common objects. The TOMM 

is a relatively easy task that has a cutoff score well above chance performance. It is one of the 

most commonly used and highly regarded measures of suboptimal effort among 

neuropsychologists (Sharland & Gfeller, 2007; Slick et al. 2004). Research has shown the 

TOMM is robust to differences in age, education, TBI, dementia, anxiety, and depression 

(Constantinou & McCaffrey, 2003; Tombaugh, 1996; Ashendorf, Constantinou, & McCaffrey, 

2004; Rees, Tombaugh, & Boulay, 2001). Further, multiple studies have found the TOMM to 

have high specificity (Tombaugh, 1997; Rees, Tombaugh, Gansler, & Moczynski, 1998). 

Research on the sensitivity of the TOMM is far more variable. For example, studies with a 

known-groups design have used Slick et al. criteria to define MND and obtained sensitivity of 

40-50% (Greve, Bianchini, & Doane 2006; Greve, Ord, Curtis, Bianchini, & Brennan, 2008). 

Conversely, several analogue studies in which college students were instructed to simulate TBI 

have shown sensitivities above 85% (Rees et al. 1998; Powell, Gfeller, Hendricks, & Sharland, 

2004). These findings are similar to other well-established and validated PVTs, in which 

specificity tends to be high and sensitivity is moderate (Bianchini, Mathias, & Greve, 2010). 

 There are several potential explanations for the moderate sensitivity observed across most 

PVTs. First, most PVTs use cutoff scores that maximize specificity at the expense of reduced 

sensitivity (Bianchini et al., 2010). In clinical contexts, specificity is given precedence over 

sensitivity, as inaccurately labeling someone as malingering and denying them due resources is 

considered far more harmful than providing a true malingerer with undue resources. Next, 
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research has shown that PVTs are highly susceptible to coaching (Suhr & Gunstad 2007), and 

information that jeopardizes their security is readily available on the internet (Bauer & 

McCaffrey 2006). Moreover, a number of studies have shown that attorneys are likely to coach 

litigating clients prior to neuropsychological assessments. Surveys of practicing attorneys found 

that almost 50% believe they should provide specific information about tests (including validity 

measures) to their clients (Wetter & Corrigan 1995), and they will typically spend up to an hour 

discussing test content, detection of malingering, and common brain injury symptoms (Essig, 

Mittenberg, Peterson, Strauman, & Cooper 2001). Lastly, evidence suggests that PVTs have 

fairly high face validity. Tan, Slick, Strauss, and Hultsch (2002), found that fewer than 10% of 

participants asked to simulate TBI considered the TOMM to be a test of cognition, correctly 

identifying it as a measure of effort. As such, an increasing amount of research has been directed 

at developing new, covert measures of suboptimal effort.  

Covert or ‘embedded’ measures of effort are scores or indices derived from standard 

cognitive tests. As such, these embedded PVTs may be less easily identified as measures of 

effort, and therefore less susceptible to coaching. Moreover, they provide useful information 

concerning both cognitive ability and effort without increasing the time required for testing. 

Although embedded PVTs are less robust to cognitive impairment than stand-alone PVTs 

(Miller, et. al., 2011), they have been shown to improve the diagnostic accuracy of suboptimal 

effort when used in combination with other PVTs (Larrabee, 2008). Consequently, a variety of 

embedded PVTs have been developed, and their usage is common in neuropsychological 

assessments (Meyers, et. al., 2011). Some of the most commonly used and extensively studied 

embedded PVTs include the Reliable Digit Span index derived from the Digit Span subtest of the 

Wechsler Adult Intelligence Scale 4th Edition (WAIS-IV; Greiffenstein, Baker, & Gola, 1994; 
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Miele et. al., 2012), and indices created for recognition and forced-choice trials of list-learning 

tasks such as the Rey Auditory Verbal Learning Test (AVLT; Meyers & Volbrecht, 2003) and 

the California Verbal Learning Test (CVLT; Coleman, Rapport, Millis, Ricker, & Farchione, 

1998; Wolfe, Millis, Hanks, Fichtenberg, Larrabee, & Sweet, 2010). 

Response time (RT) has been identified as a promising covert measure to distinguish 

between honest and feigned performance. Evidence suggests that slowed responding is one of the 

most common techniques deliberately employed by individuals instructed to simulate brain 

injury (Tan, Slick, Strauss, & Hultsch, 2002). Moreover, RT has been shown to be more resistant 

to coaching than performance accuracy (Rose et al., 1995, 1998). Therefore, several studies have 

looked at combining RT with conventional PVTs to improve their specificity and sensitivity. 

These studies have established that TBI simulators have longer average response times (Bolan, 

Foster, Schmand, & Bolan, 2002; Rees et al., 1998) with increased variability (Willison & 

Tombaugh 2006; Reicker 2008; van Hooff, Sargeant, Foster, & Schmand, 2007) compared to 

healthy controls putting forth full effort. 

 

Section 1.4-Limitations of the Extant Literature 

The most common research design in the study of malingering or performance validity is 

the analogue design (Suhr & Gunstad, 2007; Bianchini et al. 2010). In the analogue design, 

healthy adults are assigned to one of two groups: those instructed to perform to the best of their 

ability, and those instructed to feign TBI (sometimes being coached on how to do so). Although 

analogue design affords researchers great experimental control, its ecological validity has been 

questioned (Suhr & Gunstad, 2007). Characteristics found to differentiate healthy adults 

providing full effort and TBI simulators will not necessarily generalize to distinguish individuals 
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with bona fide TBI from those feigning impairment. Known-group designs, which are less 

common than the analogue design, use verified clinical groups and therefore have greater 

ecological validity. However, known-group designs typically do not include verified malingerers 

because few patients admit their status, and studies that include verified TBI groups tend to be 

limited by relatively small sample sizes (Greve et al., 2008). Thus, the strongest design would 

combine the strengths of analog and known-groups designs.  

Unfortunately, very few studies have compared patterns of RT on PVTs among 

individuals with verified TBI and those simulating TBI. Of those studies that exist, investigations 

have generally been limited to simple comparisons of average RTs, neglecting the potential for 

complex patterns and analytic strategies. Additionally, mixed results have been found regarding 

which group (bona fide TBI or simulators) displays longer average RTs (Willison & Tombaugh 

2006; Rose et al., 1995). In order to determine the clinical utility of RTs in improving the 

detection of suboptimal effort, additional research comparing individuals with bona fide TBI and 

those simulating TBI is necessary. 

 To date, only one study has combined RT data with a computerized version of the 

TOMM (TOMM-C) to distinguish controls, TBI simulators, and individuals with bona fide TBI 

(Vagnini, Berry, Clark & Jiang 2008). The results from this study, however, are constrained by a 

small sample size and a potential methodological flaw. The extreme variation in RT for 

simulators’ correct trials on the TOMM-C reported is inconsistent with previous studies and 

indicates potential outliers. As such, the current study seeks to examine differences in response 

time for correct and incorrect responses across trials of the TOMM-C among healthy controls, 

TBI simulators, and individuals with bona fide TBI. These data will provide information 
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regarding the incremental utility of combining RT with one of the most commonly used PVTs, 

the TOMM. 

 

Section 1.5-Aims of the current study 

 The current study sought to add to the literature concerning the use of RT to distinguish 

individuals with verified TBI from those instructed to feign memory impairment. The primary 

objective of the proposed study was to use information obtained from RT data to improve the 

diagnostic accuracy of a computerized version of one of the most well established PVTs, the 

TOMM-C. The main hypothesis was that individuals with bona fide TBI would display unique 

patterns of RT across trials of the TOMM-C, and that analysis of these patterns would improve 

the TOMM-C’s diagnostic accuracy. This hypothesis was tested through the completion of two 

key objectives. 

 

Objective 1: Compare patterns of response times between full-effort healthy controls, individuals 

with bona fide TBI, and TBI simulators across correct and incorrect trials of the TOMM-C. 

 Hypothesis 1a. It was predicted that average response times would be significantly longer 

for TBI simulators compared to individuals with bona fide TBI and full-effort healthy controls. 

 Hypothesis 1b. It was predicted that average variability in response time for correct and 

total responses would be greater for TBI simulators compared to individuals with bona fide TBI 

and full-effort healthy controls. 

 Hypothesis 1c. Response time analysis would reveal a distinct pattern across trials of the 

TOMM-C that reliably differentiates TBI simulators and individuals with bona fide TBI. 
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Objective 2: Determine the extent to which RT characteristics provide incremental utility to the 

diagnostic accuracy of the TOMM-C. 

 Hypothesis 2a. Predictive models that combine RT data with TOMM-C accuracy results 

would successfully distinguish controls, TBI simulators, and individuals with bona fide TBI. 

 Hypothesis 2b. The diagnostic accuracy of the TOMM-C would be improved by 

combining RT data with standard accuracy scores. 
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CHAPTER 2  

METHOD 

Section 2.1-Participants 

 Participants were 151 adults (96 men, 52 women) in three groups: TBI Group, Healthy 

Comparison Group (HC), and TBI Simulators (SIM). The TBI Group included 45 adults 

recruited from the Southeastern Michigan TBI Model System (SEMTBIS). All participants in the 

TBI group had a history of moderate to severe TBI indicated by: post-traumatic amnesia ≥ 24 

hours, loss of consciousness ≥ 30 minutes, and Glasgow Coma Scale (GCS) < 13 at emergency 

department admission or abnormal neuroimaging. GCS at the time of admission to the 

emergency department ranged from 3 to 12 (M = 7.3, SD = 2.8). Participants in the SEMTBIS all 

sustained injuries severe enough to warrant inpatient rehabilitation treatment, were > 16 years 

old at the time of injury, and used English as their primary language. Additionally, participants in 

the TBI Group were at least 1 year post injury and able to participate in a valid assessment (e.g., 

sufficient attention capacity).  

Neurologically healthy adults were recruited from the Detroit metropolitan area (n = 

106). Inclusion criteria for these adults included English as their primary language and no history 

of neurological conditions. Forty-five healthy adults were assigned to the TBI Simulator Group. 

Sixty-one adults were assigned to the Healthy Comparison Group. 

Age of participants ranged from 18 to 78 years. The HC (M = 45.7, SD = 16.8), SIM (M 

= 43.6, SD = 16.4), and TBI (M = 45.6, SD = 12.8) groups were equivalent on years of age, F 

(2, 148) = 0.25, p = .78. Education ranged from 18 to 20 years. The HC (M =13.9, SD = 2.4) and 

SIM (M = 14.6, SD = 2.0) did not differ significantly with respect to years of education; 
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however, both groups had more years of education than the TBI (M = 12.3, SD = 2.3) group, F 

(2, 148) = 12.57 p < .001. 

 

Section 2.2- Measures 

Test of Memory Malingering (TOMM; Tombaugh 1996). The TOMM is a 50-item visual 

recognition test designed to assess effort. The TOMM consists of two learning trials in which 

individuals view 50 consecutive line drawings of common objects for approximately 3 seconds 

each. The order of presentation is different between the two trials, but both are followed by a 

forced-choice recognition task in which the target item is paired with a foil. Individuals must 

correctly identify the previously seen item. The number of correct responses for each trial is 

tallied and can be compared to two cutoffs: below chance or criteria based on the performance of 

head injured and cognitively impaired individuals. According to the test manual, a raw score 

below 45 on Trial 2 suggests insufficient effort.  

 

Section 2.3-Procedure 

Section 2.3.1-Recruitment 

The TBI Group (n = 45) was recruited from the pool of participants in the SEMTBIS who 

indicated willingness to be contacted for additional research opportunities. Participants in the 

SEMTBIS were pre-screened for suitability to participate and capacity to consent. The 

SEMTBIS provided data on injury severity as assessed via the Glasgow Coma Scale at the time 

of injury admission to the Emergency Department. The TBI participants were instructed to put 

forth full effort on all measures administered. 

Neurologically healthy participants (n = 106) were recruited from the Detroit 
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Metropolitan area through newspaper advertisements and flyers posted around the campus of 

Wayne State University. Potential participants were screened over the telephone to determine 

their eligibility. Participants recruited for the neurologically healthy groups were excluded from 

the study if they reported a history of neurological conditions (e.g., Alzheimer’s disease, seizure 

disorder, etc.) or a history of TBI. The Healthy Comparison Group (n = 61) was instructed to put 

forth full effort on all measures administered. 

The TBI simulator group (SIM, n = 45) participants were read a scenario that describes 

their involvement in litigation for a TBI they sustained following a motor vehicle accident. The 

script from this scenario has been used successfully in TBI simulation studies with similar 

research designs (DenBoer & Hall, 2007; Tombaugh, 1997). SIM participants were then given 

time to read a pamphlet that describes common symptoms that can occur following TBI 

(Coleman, Rapport, Millis, Ricker, & Farchione, 1998; Rapport, Farchione, Coleman, & 

Axelrod, 1998). After the induction procedure SIM group participants completed the remainder 

of the assessment battery under instructions to feign TBI.  

Informed consent procedures were completed with all participants in accordance with the 

institutional review board guidelines. All testing took place at the research laboratory of the 

primary investigator and the Rehabilitation Institute of Michigan. Testing for each participant 

was completed in a single session lasting approximately 2 hours. All study participants were 

compensated $30. 

 

Section 2.3.2- Debriefing 

Following completion of the battery, all SIM participants were administered a 6-item 

questionnaire. Questions included whether they tried to simulate TBI as instructed, their 
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strategies to do so, and how difficult they rate the experience of simulating TBI. SIM participants 

were excluded from analysis if they reported not attempting to simulate TBI.  

 

Section 2.4-Statistical Analyses 

 Prior to analysis, the data were screened according to recommendations by Tabachnick 

and Fidell (2012), including assumptions of parametric model (e.g., skewness, winsorizing 

outliers > 3 z, homogeneity of variance, and collinearity). Per standard protocol for RT data, 

responses < 250ms were considered invalid because it is faster than could be cognitively 

processed. Fortunately, there were very few invalid data points of this nature. Of the few cases 

that had these invalid data points, none had more than two in either of the 50-item trials of the 

TOMM. Descriptive statistics were conducted to describe the sample demographics and TOMM-

C performance. To establish that the groups are demographically equivalent, they were compared 

across age and years of education using one-way analysis of variance (ANOVA). 

Hypotheses 1a and 1b were tested using a mixed-design ANOVA, with Group (HC, SIM, 

TBI) as the between-subjects factor, and TOMM Trial (1, 2) and index (Mean RT, CV 

variability) as within-subject factors. For this analysis, the variables Mean RT and Mean CV 

were converted to a common metric (z) in order to compare within-group profile of RT 

performance. Further analyses incorporated ANOVA and Kruskal-Wallis tests, as appropriate 

(for tests with severely skewed distributions), with group (TBI, HC, SIM) as the between-

subjects factor. Per the hypotheses, these tests assessed group differences on average RT 

(Hypothesis 1a) and RT variability (Hypothesis 1b). These group comparisons were performed 

for both Trial 1 and Trial 2 of the TOMM-C. Post hoc comparisons were conducted as 

appropriate, using LSD tests (p < .05). 
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Hypothesis 1c sought to extend RT analysis by identifying novel patterns of RT capable 

of distinguishing TBI simulators from individuals with bona fide TBI. Analyses included 

comparisons of frequencies of lengthy RTs for responses (TOMM 1&2 Lengthy), ratios of 

average RT for incorrect to correct trials (TOMM 1&2 RT C/I), and differences in average RT 

for correct and incorrect trials (TOMM 1&2 RT Difference). 

Classification accuracy statistics (hit rate, sensitivity, specificity) examined the diagnostic 

validity of the TOMM-C accuracy and RT indices. Negative Predictive Powers (NPP) and 

Positive Predictive Powers (PPP) were calculated at base rates of clinical relevance (40% and 

10%). Hypothesis 2a and 2b were tested using multivariable binary logistic regressions, testing 

the individual and combined predictive values of the traditional accuracy index and various 

indices derived from RT data. Logistic regression models with group membership (TBI vs. SIM 

and SIM vs. HC) as the outcome variable were fitted for each RT index separately. Nagelkerke 

R2 values were generated to evaluate the variance accounted for by individual and combined 

indices. Multivariable logistic regression models combined TOMM-C accuracy and RT variables 

as covariates, with group membership (TBI vs. SIM and SIM vs. HC) as the outcome variables. 

The combined models were examined to determine the extent to which RT data could improve 

model classification over standard scoring using TOMM2 accuracy (number correct) through 

analysis of Bayesian information criterion (BIC) and receiver operating characteristics (ROC) 

curve analysis.  
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CHAPTER 3  

RESULTS 

Table 1 presents descriptive statistics and group comparisons of TOMM-C indices. To 

conduct the mixed-design ANOVA, which tested within-group profile of RT performance, the 

variables Mean RT and Mean CV were converted to a common metric (z). The analysis tested 

Group (HC, SIM, TBI) as the between-subjects factor, and TOMM Trial (1, 2) and index (Mean 

RT, CV variability) as within-subject factors. The results of the mixed-design ANOVA revealed 

a main effect of group and a group x index interaction. The main effect of group indicated that 

across both average time and variability, SIM scored significantly higher than TBI, who scored 

significantly higher than HC, F(1, 148) = 33.89, p < .001, η2 = .31. Figure 1 depicts the Group x 

Index interaction, F(1, 148) = 11.44, p < .001, η2 = .13. No other main effects or interactions 

(TOMM Trial x Group Membership, TOMM Trial x Index, or TOMM Trial x Index x Group 

Membership) were significant (ps > .141).   

Table 1 also presents univariate group comparisons of TOMM-C indices. ANOVAs 

indicated that a number of TOMM-C indices differed significantly across group. TOMM-C 

accuracy and RT indices differing significantly across groups with large effect sizes (η2 > .26) 

included: TOMM1 Correct, TOMM2 Correct, TOMM1 RT correct, TOMM2 RT correct, 

TOMM1 RT mean, and TOMM2 RT mean. Of the RT indices, TOMM 2 RT mean had the 

largest effect size (F (2, 148) = 43.98, p < .001, η2 = .37). Post hoc analyses (LSD tests) revealed 

that nearly all of the RT indices differed significantly between SIM and HC. All of the RT 

indices were significantly larger for SIM compared to HC, with the exception of TOMM1 RT 

difference, TOMM2 RT difference, and TOMM2 RT C/I. Slightly fewer RT indices differed 
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significantly between SIM and TBI; however, all of the RT indices that showed significant group 

differences were larger for SIM compared to TBI. 

 Table 2 presents descriptive correlations for TOMM-C indices and demographic 

variables. As would be expected, the component RT variables (e.g., TOMM1 RT Correct, 

TOMM1 RT Incorrect) were highly correlated with the average RT for total items of the 

corresponding trial (e.g., TOMM1 RT mean). Pearson correlations between component RT 

variables and their inclusive RT trials ranged from .66 to .99. Of note, the difference scores (e.g., 

TOMM1 RT difference, TOMM2 RT difference) and ratio scores (e.g., TOMM1 RT C/I, 

TOMM1 RT C/I) within corresponding trials were very highly correlated (r ≥ .90), indicating 

that these indices were essentially redundant. Accordingly, the difference scores were dropped 

from further analyses. Also of note, neither age nor education showed meaningful correlations 

with any TOMM-C accuracy or RT variables (all but one correlation r < .20). 

 

Overall Classification Accuracy of the TOMM-C 

 As expected, TOMM-C pass/fail classification dictated by the standard cutoff score was 

significantly related to group membership and displayed excellent group discrimination, (χ2 2, N 

= 151) = 94.96, p < .001, φ = .79. None of the HC, 2.2% (n = 1) of the TBI, and 73.3% (n = 33) 

of the SIM failed the TOMM-C.  

Logistic Regressions for Single-Variable Models (SIM vs. HC) 

 Table 3a presents classification accuracy statistics for the TOMM indices as individual 

predictors of group status (SIM vs. HC). TOMM2 Correct displayed the largest hit rate (91%) 

and specificity (98%). The largest sensitivity (100%) was observed when using RT indices that 
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incorporated TOMM Trial 2 errors (e.g., TOMM2 RT incorrect, TOMM2 RT C/I). However, 

this result is largely due to the fact that so few HC (n = 13) had at least one error on Trial 2 in 

comparison to SIM (n = 38) and were, therefore, all predicted to be SIM. Excluding these two 

RT indices, TOMM1 Correct displayed the largest sensitivity (87%). The RT indices performed 

modestly with respect classification accuracy. Of the RT indices, TOMM2 RT mean performed 

the best, with a hit rate of 82%, sensitivity of 73%, and specificity of 82%.  

 Table 3b provides statistics from the logistic regressions, including the chi-square 

statistics testing the significance (reliability) of the models, as well as the odds ratios and 

information on the significance of these models. The following single-variable models were 

significant (p < .05) predictors of group membership: TOMM1 Correct, TOMM2 Correct, 

TOMM1 RT correct, TOMM2 RT correct, TOMM1 RT mean, TOMMM2 RT mean, TOMM2 

RT CV, and TOMM1 RT C/I. In order to quantify the discriminability of these models, area 

under the receiver operating characteristics (ROC) curve values were calculated (see Table 3a). 

Area under the curve (AUC) range from .50 to 1.0, with larger values indicating better 

discrimination. AUC values can be considered “acceptable” (.70 ≤ AUC ≤ .79), “excellent” (.80 

≤ AUC ≤ .89), or “outstanding” (AUC ≥ .90; Hosmer & Lemeshow, 2000). The following 

variables showed “outstanding” discriminability: TOMM1 Correct, TOMM2 Correct, TOMM2 

RT correct, and TOMM2 RT mean. Discrimination was “excellent” with TOMM1 RT correct 

and TOMM1 RT mean and “acceptable” with TOMM 1 RT C/I and TOMM2 RT CV.  

Discrimination with the remaining models (TOMM1 RT incorrect, TOMM2 RT incorrect, 

TOMM1 RT CV, and TOMM2 RT C/I ) was unacceptable (AUC < .70; range .56 to .65). The 

remaining significant models all displayed “acceptable” or “excellent” discriminability. TOMM1 

RT incorrect, TOMM2 RT incorrect, TOMM1 RT CV, and TOMM2 RT C/I each showed AUC 
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< .70 “acceptable” (range .56 to .65). 

Classification Accuracy of Two-Variable Models (SIM vs. HC) 

 Tables 3a and 3b show classification and model fit statistics for the multivariable logistic 

regression models predicting group membership (SIM or HC). Each of the two-variable models 

combined TOMM2 Correct with one of the RT indices to determine the extent to which the RT 

index could add incremental predictive value to TOMM2 Correct (continuous score) in 

predicting group membership (SIM or HC). Table 3b shows that all of the two-variable models 

were significant (p < .001); however, RT indices that added incremental predictive value (p < 

.05) to TOMM2 Correct were: TOMM1 RT correct, TOMM1 RT incorrect, TOMM2 RT correct, 

TOMM1 RT mean, and TOMM2 RT mean. These combined models led to increased AUC 

values that ranged from .94 to .99 (i.e., increments in AUC of .04 to .09 as compared to TOMM2 

Correct AUC = .90). It is important to note, however, that AUC values are fairly insensitive to 

changes in model fit when multiple covariates are used within the same model. Accordingly, 

Bayesian information criterion (BIC) statistics were calculated. The BIC statistic is used to 

quantify a covariate’s incremental predictability to the model while favoring model parsimony. 

In other words, an added covariate must contribute enough incremental predictability in order to 

overcome the “penalty” for increasing the number of covariates and be “preferred.” BIC statistics 

are interpreted by comparing differences in BIC values across models. Model preference is then 

classified as weak, positive, strong, or very strong (Raftery, 1996), with negative values being 

desirable. According to Raftery, 1996), an absolute BIC difference of 0 – 2 is considered a 

“weak preference,” 2 – 8 is considered a “positive preference,” 8 – 10 is considered “strong” 

preference, and a difference greater than 10 is considered “very strong” preference for the model. 
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As compared to BIC for the single-variable model with TOMM2 Correct (-427.54), four two-

variable models were “very strongly” preferred: TOMM1 RT Correct, TOMM2 RT Correct, 

TOMM1 RT mean and TOMM2 RT mean. The remaining two-variable models were not 

preferred over the single-variable model for TOMM2 Correct. 

Classification Accuracy of Single-Variable Models (SIM vs. TBI) 

Table 4a presents classification accuracy statistics for the TOMM indices as individual 

predictors of group status (SIM vs. TBI). TOMM2 Correct displayed the largest hit rate (87%), 

sensitivity (78%), and specificity (96%). Once again, the large sensitivities observed in RT 

indices that incorporated errors were greatly influenced by the fact that so few TBI had at least 

one error. Of the other RT indices, TOMM2 RT mean had the largest hit rate (66%), sensitivity 

(53%), and specificity (78%).   

Table 4b shows the single-variable models that were significant (p < .05) predictors of 

group membership. Indices based on TOMM continuous accuracy scores were significant 

predictors with TOMM1 Correct (AUC = .85) and TOMM2 Correct (AUC = .88) having 

excellent discriminability. A number of RT indices were significant predictors; however, only 

TOMM1 C/I displayed adequate discriminability (AUC = .70). Notably, TOMM2 RT mean was 

once again a significant predictor (χ2 = 15.35, p < .001, Nagelkerke R2 = .21) and had an AUC 

very near acceptable discriminability (AUC = .69, 95% C.I. = 0.58-0.80).  

Classification Accuracy of Two-Variable Models (SIM vs. TBI) 

Tables 4a and 4b show classification and model fit statistics for the multivariable logistic 

regression models predicting group membership (SIM vs. HC). A number of the two-variable 
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models had “outstanding” discriminability (AUC > .9) that was larger than the single-variable 

TOMM2 Correct model (AUC = .88). The two-variable TOMM2-C + TOMM1 RT mean models 

had the largest AUC (.97). The two-variable TOMM2-C + TOMM1 RT mean and TOMM2-C + 

TOMM1 RT correct led to slight increases in hit rate, sensitivity, specificity, AUC, and 

Nagelkerke R2 above the single-variable TOMM2 Correct model. However, the magnitude of the 

BIC difference indicated only a “weak” preference for the two-variable models that tested  

TOMM1 RT correct, TOMM2 RT correct, TOMM1 RT mean and TOMM2 RT mean. In sum, 

the gains in classification accuracy and model fit did not far exceed the cost associated with loss 

in parsimony. 
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CHAPTER 4 

DISCUSSION 

 Findings provide support for the hypothesis that combining RT data with performance 

accuracy on the Test of Memory Malingering (TOMM) can improve its diagnostic accuracy. A 

number of models that combined novel and previously investigated RT indices with TOMM-C 

accuracy led to excellent diagnostic accuracy. Moreover, several of these RT indices added 

incremental predictive value that was preferred over using TOMM-C accuracy in isolation. The 

extent of this incremental predictive value and preference was greatly influenced by two factors. 

First, TOMM-C accuracy was an excellent individual predictor of group membership, making 

very few errors in classification. Accordingly, it was very difficult for new indices to add 

incremental predictive value. Second, preference for RT indices was greatly influenced by which 

groups were compared. There was a strong preference for combining RT indices with TOMM-C 

accuracy to distinguish healthy adults from individuals instructed to feign TBI. In contrast, there 

was weak preference for combining TOMM-C accuracy with RT indices to distinguish 

individuals with TBI from those feigning TBI. These findings highlight the importance of 

including individuals with bona fide TBIs when evaluating and developing performance validity 

measures.  

 

Objective 1: Compare patterns of response times across groups 

Consistent with previous research, findings show that individuals simulating TBI have longer 

RTs (Bolan, Foster, Schmand, & Bolan, 2002; Rees et al., 1998) with increased variability 

(Willison & Tombaugh 2006; Reicker 2008; van Hooff, Sargeant, Foster, & Schmand, 2007) 

compared to healthy controls putting forth full effort. Findings add to the limited and conflicted 
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literature concerning whether individuals feigning TBI or individuals with verified TBI display 

longer RTs (Willison & Tombaugh, 2006; Rose et al., 1995). Consistent with Hypothesis 1a, 

individuals feigning TBI had longer average RTs than individuals with verified TBI, who had 

longer average RTs than healthy adults. This difference in RT is likely due, in part, to simulators 

adopting the strategy of slowed responding and overestimating the tendency toward slowed 

cognitive processing among people with TBI. Slowed responding has been identified as one of 

the most common techniques deliberately employed by individuals instructed to simulate brain 

injury (Tan, Slick, Strauss, & Hultsch, 2002). Additionally, it is possible that this difference in 

RT is partly due to the additional cognitive processing simulation requires. For example, a 

person providing full effort must identify the correct response option and select it. In contrast, a 

person simulating TBI must not only identify the correct response option, but also decide 

whether to select the correct or incorrect response option. This decision requires additional time 

and can be further lengthened by other cognitive processes (i.e., trying to remember how many 

items one has answered incorrectly to that point). Taken together, these two explanations could 

account for longer RTs for simulators who adopted a strategy of slowed responding, and also 

those who did not.   

Findings support Hypothesis 1b that variability in RTs would be different across the 

groups; however, this difference was only observed on Trial 2 of the TOMM-C. It is unclear why 

this pattern did not hold for Trial 1 of the TOMM-C. The pattern of findings indicates that 

simulators maintained relatively high variability across both trials of the task, whereas adults 

with TBI and healthy adults providing full effort showed relatively reduced variability on the 

second trial. It could be that variability among the three groups was equivalent during the first 

trial, while adjusting to a novel task (i.e., task instructions, method of responding, etc.). By Trial 
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2, however, participants had become accustomed to the task. Thus, in Trial 2, individuals putting 

forth full effort (i.e., verified TBI and healthy adults) commit fewer errors, and RT variability 

drops as a natural consequence of speed and certainty on correct trials relative to incorrect trials. 

In contrast, simulators override natural patterns of responding, and variability remains stable 

despite increased familiarity with the task. Of note, consistent with prior research, adults with 

TBI showed greater variability compared to healthy adults providing full effort.  

Hypothesis 1c sought to extend the research literature by examining whether group 

differences existed with respect to a novel set of RT indices. Specifically, the current study 

investigated whether examination of RTs for incorrect trials could distinguish groups. Findings 

show that indices that utilize RTs for incorrect trials (e.g., ratio of RT for correct to incorrect 

trials, mean difference between incorrect and correct trials) do differ among the groups. 

Individuals providing full effort (e.g., healthy adults and individuals with TBI) had RTs for 

incorrect items that were longer than their RTs for correct items. In contrast, individuals 

simulating TBI had item RTs that were comparable, regardless of accuracy. This finding lends 

further support for the hypothesis that differences in cognitive processing contribute to RT 

differences. Individuals providing full effort may have longer RTs for incorrect than correct trials 

because there is likely greater uncertainty in the answer. In contrast, individuals feigning TBI 

have similar RTs for incorrect and correct trials because their processing is the same (e.g., 

identifying the correct answer and deciding whether to answer correctly). It is important to note 

that group differences on RT indices incorporating incorrect trials were not observed on Trial 2 

of the TOMM. This finding is likely due to the fact that very few individuals providing full effort 

commit any errors on Trial 2, which translates to reducing the number of cases for the index; the 

remaining cases represent a select subgroup and reduce statistical power considerably. In sum, 
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comparing errors and correct trials seems somewhat promising; however, the TOMM-C yields 

such limited variability in performance accuracy that this area of study would be better 

investigated using a PVT that yields greater performance accuracy variability. 

 

Objective 2: Determine the incremental utility of combining RT indices with TOMM-C accuracy 

To date, one study has combined RT data with the TOMM-C with a similar three-group 

design (Vagnini, Berry, Clark & Jiang 2008). However, the results from this study were 

constrained by a very small sample and extreme variation in RT for one group, suggesting the 

presence of unaccounted outliers. Moreover, the TOMM-C classified their entire sample with 

100% accuracy. As such, the study by Vagnini and colleagues was unable to assess the effect of 

combining RT indices with TOMM-C accuracy in distinguishing individuals feigning TBI from 

individuals with verified TBI. The central hypothesis of the present study was that combining RT 

indices with traditional TOMM-C accuracy (total correct) could enhance its diagnostic accuracy. 

Findings provide some support for this hypothesis. A number of models that combined novel and 

previously investigated RT indices with TOMM-C accuracy led to excellent diagnostic accuracy. 

Moreover, several of these RT indices added incremental predictive value that was preferred 

over using TOMM-C accuracy in isolation.  

As expected, traditional accuracy scores for Trial 1 and 2 of the TOMM were the best 

single predictors of group membership, showing “excellent” (TBI vs. SIM) and “outstanding” 

(SIM vs. HC) group discrimination. Of the RT indices, average RT for Trial 1 and 2 of the 

TOMM-C were the best predictors of group membership, showing “excellent” (Trial 1) and 

“outstanding” (Trial 2) discrimination of individuals feigning TBI and healthy adults. However, 

all RT indices were less successful in discriminating individuals feigning TBI from those with 
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verified TBI. Only average RT for Trial 2 approached near “acceptable” discrimination for these 

groups.  

The process of evaluating enhancements in diagnostic accuracy relied on investigating 

changes in hit rate, sensitivity, specificity, and AUC values. Unfortunately, there is no standard 

for weighting the importance of these statistics in evaluating changes in diagnostic accuracy. For 

the purposes of this study, AUC was ranked as the most important statistic, followed by hit rate, 

specificity, and sensitivity (Hosmer & Lemeshow, 2000). AUC was chosen as the most 

important statistic because it is an objective measure that considers the ranges of sensitivities and 

specificities in the sample. 

Findings show that a number of the predictive models that combined TOMM-C accuracy 

with RT indices led to improved diagnostic accuracy over prediction using TOMM-C accuracy 

alone. However, only average RT for total and correct items on Trial 1 and 2 of the TOMM-C 

added incremental predictive value to TOMM-C accuracy with respect to group discrimination 

(TBI vs. SIM and HC vs. SIM). It is important to note that this incremental predictive value does 

come at the cost of using more than one measure to predict group membership. Statistics like the 

BIC take this cost into consideration and classify a predictive model’s preference for added 

variables while favoring parsimony (Raftery, 1996).  

The degree to which the incremental predictive value provided by the aforementioned RT 

indices was preferred by the model was greatly influenced by which groups were compared. 

There was a strong preference for using the RT indices when distinguishing healthy adults from 

individuals feigning TBI. In contrast, there was a weak preference for using the RT indices when 

distinguishing individuals feigning TBI from those with verified TBI. One could argue, however, 
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that RT data should not pay a heavy price for decreasing model parsimony. Parsimony is 

important when the added index would be costly in meaningful ways, such as increased time in 

testing or financial cost associated with adding an additional test to the assessment battery, or if 

calculating the new index would be labor intensive. Although the process of creating the 

computerized version programming the TOMM was moderately labor-intensive, adding RT 

indices in the clinical setting could be very low investment of resources, because it is inherent in 

the task, adding no time to the assessment battery and little added effort from clinicians. 

Regardless, it is interesting that RT adds more incremental predictive value to discriminating 

healthy adults from individuals feigning TBI than discriminating individuals feigning TBI from 

individuals with verified TBI. This finding suggests that RT indices are less robust to TBI than 

TOMM-C accuracy. Although individuals feigning TBI have longer average RTs than 

individuals with TBI, there is greater overlap in their RT distributions than their accuracy 

distributions. This makes sense given that slowed processing speed is one of the hallmark 

symptoms of TBI (Cicerone et al., 2011; Dikmen et al., 2009; Axelrod et al., 2001, 2002).  

Limitations 

The most prominent limitation of the present study is related to the sample of participants 

and its generalizability. In order to increase experimental control, the TBI group consisted of 

individuals with well-documented histories of moderate to severe TBI. Accordingly, the extent to 

which findings generalize to individuals with uncomplicated, mild or very severe TBI is 

unknown, and independent replication with these populations is necessary.  

Additionally, the generalizability of the simulator group to individuals who feign TBI in 

clinical and forensic settings may be limited. This is a common limitation of analog designs has 
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been previously noted (Larrabee, 2007; Rogers, 1997; Suhr & Gunstad, 2007), with studies 

showing far greater TOMM sensitivity in analog (Rees et al. 1998; Powell, Gfeller, Hendricks, & 

Sharland, 2004) as compared to known-groups designs (Greve, Bianchini, & Doane 2006; Greve, 

Ord, Curtis, Bianchini, & Brennan, 2008). In contrast to the significant incentives for 

successfully feigning TBI in forensic settings, the simulator group in the present study did not 

have any external incentive for avoiding detection. Additionally, simulators did not have the time 

to prepare (i.e., utilize the information on the internet that threatens PVT test security; Bauer & 

McCaffrey 2006) for testing that an individual in a clinical or forensic setting would. Lastly, the 

method of coaching used in the present study has been common practice in analog designs. 

However, research shows that the coaching individuals receive from their attorneys is far more 

sophisticated and detailed (Wetter & Corrigan 1995; Essig et al., 2001). All of these factors may 

have contributed to less sophisticated and effective feigning strategies that enabled only 26.7% 

of simulators to pass the TOMM-C. It is important to note that TOMM-C sensitivity in the 

present study was comparable to those observed in other studies employing analog designs (Rees 

et al. 1998; Powell, Gfeller, Hendricks, & Sharland, 2004).  

Another limitation is that our groups were not equivalent with respect to education. More 

specifically, the simulator and healthy adult comparison group had significantly more years of 

education than the TBI group. However, education was not meaningfully related to any of the 

TOMM-C RT indices. Moreover, because IQ and education facilitate ability to feign successfully 

(Rapport et al., 1998), one could argue that an advantage in years of education favored the 

simulator group, making it more likely for them to avoid detection using TOMM-C traditional 

accuracy scores. Even in this context of increased challenge to the TOMM, it performed well 

using traditional accuracy and via added RT indices. 
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Conclusions and Future Directions 

This study contributes to the limited body of research examining the incremental utility 

of combining RT with traditional PVTs in distinguishing feigned and bona fide TBI. Findings 

validate previous RT research that has consistently shown individuals feigning TBI produce 

longer RTs than healthy adult comparisons (Bolan et al., 2002; Rees et al., 1998; Willison & 

Tombaugh 2006; Reicker 2008; van Hooff et al., 2007). It also provides some clarity to the 

limited, mixed findings surrounding whether or not individuals feigning TBI display longer RTs 

than individuals with verified TBI (Willison & Tombaugh 2006; Rose et al., 1995). Analyses 

comparing RTs for correct to incorrect items show promise as measures of performance validity, 

providing the task difficulty is increased such that a majority of examinees commit some errors. 

Future studies should investigate this avenue of research using PVTs that generate more 

accuracy variability.  

The ability of RT indices to add incremental predictive value to TOMM-C accuracy was 

somewhat limited by the TOMM-C’s excellent group discrimination. Future studies using analog 

designs should consider employing techniques that could lead to more sophisticated feigning 

strategies and, therefore, classification rates that are comparable to those in clinical/forensic 

settings. Despite the excellent classification accuracy of the TOMM-C through traditional 

scoring, RT indices provided incremental predictive value to group distinction. The degree of 

preference for these RT indices depended on what groups were being discriminated, revealing 

the importance of including a group with bona fide TBI when developing and adapting PVTs. 

Future research using a more sophisticated group of individuals feigning TBI and a group of 

individual with mild TBI may prove beneficial in further evaluating the clinical utility of 
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combining RT indices with TOMM-C.  
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Appendix A (Tables) 

 

Table 1. Descriptive Statistics and Group Comparisons of TOMM Performance for TBI (n = 45), HC (n = 61) and SIM (n = 45) 

Groups. 
 

 HC  SIM  TBI      

Variable M SD  M SD  M SD F df p η2 
Significant 
Contrasts 

TOMM1 Correct  47.7 (2.8)  33.5 (7.9)  43.3 (5.0) 92.05 2, 148 < .001 .55 HC > TBI > SIM 

TOMM2 Correct  49.7 (0.7)  35.8 (11.1)  49.2 (1.4) 79.52 2, 148 < .001 .52 HC = TBI > SIM 

TOMM1 RT correct 1401 (335)  2445 (1010)  1913 (462) 34.43 2, 148 < .001 .32 SIM > TBI > HC 

TOMM1 RT incorrect 2421 (1182)  2694 (1169)  2575 (998)   0.66 2, 125 .520 .01 -- 

TOMM2 RT correct 1109 (237)  2018 (792)  1513 (374) 42.71 2, 148 < .001 .37 SIM > TBI > HC 

TOMM2 RT incorrect 2058 (1131)  2210 (1000)  1861 (743)   0.84 2, 67 .438 .02 -- 

TOMM1 RT mean 1441 (355)  2476 (983)  1989 (504) 34.02 2, 148 < .001 .32 SIM > TBI > HC 

TOMM2 RT mean 1114 (246)  2017 (770)  1515 (364) 43.98 2, 148 < .001 .37 SIM > TBI > HC 

TOMM1 RT CV  0.45 (0.19)  0.49 (0.16)  0.46 (0.16)   1.02 2, 148 .364 .01 -- 

TOMM2 RT CV 0.32 (0.14)  0.42 (0.12)  0.37 (0.10)   7.48 2, 148 .001 .09 SIM = TBI > HC 

TOMM1 RT difference 979 (1142)  208 (670)  646 (705)   8.78 2, 125 < .001 .12 HC > TBI > SIM 

TOMM2 RT difference 661 (819)  118 (467)  272 (701)   3.83 2, 67 .027 .10 HC > TBI = SIM 

TOMM1 RT C/I 0.72 (0.35)  0.94 (0.20)  0.79 (0.20)   8.13 2, 125 < .001 .12 SIM > TBI = HC 

TOMM2 RT C/I 0.33 (0.15)  0.33 (0.15)  0.33 (0.15)   2.59 2, 67 .083 .07 HC > TBI = SIM 

TOMM1 Lengthy1 3.8 (4.0)  18.4 (14.3)  10.5 (8.3) 45.46 2 < .001 .30 SIM > TBI > HC 

TOMM2 Lengthy1 2.2 (3.1)  18.9 (15.5)  8.3 (7.5) 62.92 2 < .001 .35 SIM > TBI > HC 

Note. TOMM1 = Test of Memory Malingering–Trial 1; TOMM2 = Test of Memory Malingering–Trial 2; RT CV = Response Time 
coefficient of variation; RT difference = RT incorrect – RT correct; RT C/I = ratio correct / incorrect.  
1. Kruskal-Wallis and Mann-Whitney tests.
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Table 2. Descriptive Correlations for TOMM Accuracy and Response Time (RT) Indices. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. TOMM1 Correct  1.00               

2. TOMM2 Correct  .83** 1.00              

3. TOMM1 RT correct -.52** -.38** 1.00             

4. TOMM1 RT incorrect -.01 .05 .57** 1.00            

5. TOMM2 RT correct -.57** -.45** .86** .41** 1.00           

6. TOMM2 RT incorrect -.15 -.01 .66** .52** .71** 1.00          

7. TOMM1 RT mean -.51** -.34** .99** .66** .84** .66** 1.00         

8. TOMM2 RT mean -.56** -.42** .86** .41** .99** .76** .83** 1.00        

9. TOMM1 RT CV  -.16* -.18* .16* .34** .06 -.18 .19** .04 1.00       

10. TOMM2 RT CV -.38** -.27** .28** .01 .41** .18 .28** .41** .23** 1.00      

11. TOMM1 RT difference .46** .41** -.21** .67** -.26** -.16 -.10 -.25** .24** -.19* 1.00     

12. TOMM2 RT difference .23* .32** .00 .03 -.11 .62** .01 -.03 -.28* -.10 .08 1.00      

13. TOMM1 RT C/I -.43** -.39** .25** -.56** .28** .08 .15* .27** -.16* .29** -.90** -.10 1.00   

14. TOMM2 RT C/I -.14 -.20* .03 -.03 .17 -.52** .02 .09 .23* .20* -.11 -.91** .13 1.00  

15. Age .16* .17* -.02 .12 -.08 -.12 -.02 -.07 .12 -.09 .17* .05 -.13 -.01 1.00 

16. Education -.14* -.22** .17* .19* .09 .13 .18* .10 .13 .03 .06 .00 -.09 -.17 .14* 

Note. TOMM1 = Test of Memory Malingering–Trial 1; TOMM2 = Test of Memory Malingering–Trial 2; RT CV = Response Time 
coefficient of variation; RT difference = RT correct – RT incorrect; RT C/I = ratio correct / incorrect.  
*p < .05, **p < .01. 
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Table 3a. Classification Statistics: TOMM Performance for Single and Two-variable Models Predicting Simulator (SIM) and Full 

Effort Healthy Comparison (HC) Group Membership. 

 Hit Rate Sn Sp 
PPP 

BR 40% 

NPP 

BR 40% 

PPP 

BR 10% 

NPP 

BR 10% 
R2 AUC 

AUC 

95% CI 
BIC 

One-Variable Models:            

1. TOMM1 Correct  .89 .87 .90 .86 .90 .47 .99 .79 .97 [.94, .99] -434.76 

2. TOMM2 Correct  .91 .80 .98 .97 .89 .80 .98 .75 .90 [.83, .98] -427.54 

3. TOMM1 RT correct .78 .67 .87 .78 .80 .37 .97 .50 .83 [.75, .91] -389.90 

4. TOMM1 RT incorrect .54 .53 .55 .44 .63 .12 .92 .02 .58 [.46, .70] -268.36 

5. TOMM2 RT correct .81 .71 .89 .81 .83 .44 .97 .61 .90 [.83, .96] -404.34 

6. TOMM2 RT incorrect .75 1.00 .00 .39 .00 .10 .00 .01 .56 [.36, .76] -134.98 

7. TOMM1 RT mean .78 .69 .85 .74 .81 .33 .96 .50 .84 [.75, .92] -390.55 

8. TOMM2 RT mean .82 .73 .82 .74 .83 .32 .96 .62 .91 [.85, .97] -405.95 

9. TOMM1 RT CV  .57 .11 .90 .45 .60 .09 .91 .02 .62 [.51, .72] -342.28 

10. TOMM2 RT CV .63 .36 .84 .60 .66 .21 .92 .15 .77 [.68, .86] -353.04 

11. TOMM1 RT C/I .71 .71 .70 .61 .79 .20 .95 .17 .74 [.64, .85] -279.52 

12. TOMM2 RT C/I .86 1.00 .46 .54 1.0 .17 1.0 .18 .65 [.44, .86] -141.31 

Note. Sn = Sensitivity (detection of simulated TBI), Sp = Specificity (bona fide TBI); PPP = Positive Predictive Power, NPP = 
Negative Predictive Power (each presented for 40% and 10% base rate); AUC = ROC area under the curve, R2 = Nagelkerke R2; BIC 
= Bayesian information criterion; TOMM1 = Test of Memory Malingering–Trial 1; TOMM2 = Test of Memory Malingering–Trial 2; 
RT CV = Response Time coefficient of variation; RT C/I = Ratio RT correct / incorrect. 
 
 (Table continues…) 
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Hit  
Rate 

Sn Sp 
PPP 

BR 40% 

NPP 

BR 40% 

PPP 

BR 10% 

NPP 

BR 10% 
R2 AUC 

AUC  

95% CI 
BIC 

Two-Variable Models:            

TOMM2-C + TOMM1 RT correct .92 .87 .95 .93 .91 .64 .99 .87 .98 [.97, 1.0] -447.31 

TOMM2-C + TOMM1 RT incorrect .89 .82 .95 .91 .89 .64 .97 .75 .94 [.90, .99] -336.86 

TOMM2-C + TOMM2 RT correct .94 .91 .97 .95 .94 .77 .99 .89 .99 [.98, 1.0] -449.67 

TOMM2-C + TOMM2 RT incorrect .92 .92 .92 .90 .93 .56 1.0 .87 .99 [.98, 1.0] -176.12 

TOMM2-C + TOMM1 RT mean .93 .89 .97 .95 .93 .75 .99 .88 .99 [.97, 1.0] -447.65 

TOMM2-C + TOMM2 RT mean .93 .89 .97 .95 .93 .75 .99 .88 .99 [.97, 1.0] -447.78 

TOMM2-C + TOMM1 RT CV .91 .80 .98 .97 .89 .80 .98 .75 .92 [.86, .98] -423.17 

TOMM2-C + TOMM2 RT CV .91 .80 .98 .97 .89 .80 .98 .75 .89 [.81, .97] -422.88 

TOMM2-C + TOMM1 RT C/I .89 .80 .98 .97 .88 .78 .98 .73 .91 [.85, .98] -332.84 

TOMM2-C + TOMM2 RT C/I .94 .95 .92 .90 .97 .56 1.0 .89 .99 [.98, 1.0] -178.05 

Note. Sn = Sensitivity (detection of simulated TBI), Sp = Specificity (bona fide TBI); PPP = Positive Predictive Power, NPP = 
Negative Predictive Power (each presented for 40% and 10% base rate); AUC = ROC area under the curve, R2 = Nagelkerke R2; BIC 
= Bayesian information criterion; TOMM1 = Test of Memory Malingering–Trial 1; TOMM2 = Test of Memory Malingering–Trial 2; 
RT CV = Response Time coefficient of variation; RT C/I = Ratio RT correct / incorrect.
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Table 3b. Logistic Regressions: TOMM Predicting HC and SIM Group Membership. 

 Df  Χ2 p Odds Ratio3 
Predictor1 

p 

One-Variable Models:      

TOMM1 Correct  1 94.29 < .001 0.63  

TOMM2 Correct  1 87.06 < .001 0.42  

TOMM1 RT correct 1 49.33 < .001 1.00  

TOMM1 RT incorrect 1 1.22 .270 1.00  

TOMM2 RT correct 1 63.86 < .001 1.01  

TOMM2 RT incorrect 1 0.22 .639 1.00  

TOMM1 RT mean 1 49.09 < .001 1.00  

TOMM2 RT mean 1 65.48 < .001 1.01  

TOMM1 RT CV  1 1.81 .179 4.55  

TOMM2 RT CV 1 12.57 < .001 307.66  

TOMM1 RT C/I1 1 12.38 < .001 14.99  

TOMM2 RT C/I1 1 6.66 .010 45.25  

Two-Variable Models:      

TOMM2-C + TOMM1 RT correct 2 111.50 < .001 1.01 .001 

TOMM2-C + TOMM1 RT incorrect 2 74.21 < .001 1.00 .048 

TOMM2-C + TOMM2 RT correct 2 113.87 < .001 1.01 .001 

TOMM2-C + TOMM2 RT incorrect 2 45.29 < .001 1.00 .489 

TOMM2-C + TOMM1 RT mean 2 111.85 < .001 1.01 .001 

TOMM2-C + TOMM2 RT mean 2 111.97 < .001 1.01 < .001 

TOMM2-C + TOMM1 RT CV 2 87.37 < .001 3.16 .568 

TOMM2-C + TOMM2 RT CV 2 87.07 < .001 0.74 .915 

TOMM2-C + TOMM1 RT C/I 2 70.19 < .001 1.14 .904 

TOMM2-C + TOMM2 RT C/I 2 47.22 < .001 65.77 .197 

Note. TOMM2-C = TOMM2 Correct; RT CV = Response Time coefficient of variation; RT C/I = Ratio RT correct / incorrect.  
1. Refers to RT-variable predictors added on the second step of the two-variable model. 
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Table 4a. Classification Statistics: TOMM Performance for Single and Two-variable Models Predicting Simulator (SIM) and 

Traumatic Brain Injury (TBI) Group Membership. 

 Hit Rate Sn Sp 
PPP 

BR 40% 

NPP 

BR 40% 

PPP 

BR 10% 

NPP 

BR 10% 
R2 AUC 

AUC 

95% CI 
BIC 

One-Variable Models:            

13. TOMM1 Correct  .77 .73 .80 .70 .81 .30 .97 .48 .85 [.78, .93] -311.24 

14. TOMM2 Correct  .87 .78 .96 .93 .87 .70 .98 .67 .88 [.80, .96] -333.85 

15. TOMM1 RT correct .63 .53 .73 .56 .70 .19 .94 .14 .64 [.52, .76] -281.42 

16. TOMM1 RT incorrect .52 .96 .03 .40 .67 .10 1.0 .00 .54 [.41, .66] -247.56 

17. TOMM2 RT correct .63 .49 .78 .60 .70 .18 .93 .20 .68 [.57, .79] -285.76 

18. TOMM2 RT incorrect .67 1.00 .00 .40 .00 .11 .00 .05 .60 [.44, .76] -151.73 

19. TOMM1 RT mean .58 .49 .67 .50 .67 .13 .92 .12 .63 [.51, .75] -279.86 

20. TOMM2 RT mean .66 .53 .78 .61 .71 .22 .94 .21 .69 [.58, .80] -286.57 

21. TOMM1 RT CV  .50 .40 .60 .39 .59 .11 .91 .02 .57 [.45, .69] -272.51 

22. TOMM2 RT CV .59 .49 .69 .51 .67 .14 .92 .05 .62 [.50, .74] -274.43 

23. TOMM1 RT C/I .62 .69 .54 .50 .73 .15 .93 .18 .70 [.59, .81] -259.08 

24. TOMM2 RT C/I .67 1.00 .00 .40 .00 .11 .00 .00 .53 [.35, .72] -149.81 

Note. Sn = Sensitivity (detection of simulated TBI), Sp = Specificity (bona fide TBI); PPP = Positive Predictive Power, NPP = 
Negative Predictive Power (each presented for 40% and 10% base rate); AUC = ROC area under the curve, R2 = Nagelkerke R2; BIC 
= Bayesian information criterion; TOMM1 = Test of Memory Malingering–Trial 1; TOMM2 = Test of Memory Malingering–Trial 2; 
RT CV = Response Time coefficient of variation; RT C/I = Ratio RT correct / incorrect. 
 
 (Table continues…) 
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Hit  
Rate 

Sn Sp 
PPP 

BR 40% 

NPP 

BR 40% 

PPP 

BR 10% 

NPP 

BR 10% 
R2 AUC 

AUC  

95% CI 
BIC 

Two-Variable Models:            

TOMM2-C + TOMM1 RT correct .90 .82 .98 .97 .90 .78 .98 .71 .92 [.86, .98] -334.98 

TOMM2-C + TOMM1 RT incorrect .88 .80 .97 .93 .88 .78 .97 .68 .92 [.86, .98] -302.44 

TOMM2-C + TOMM2 RT correct .86 .78 .93 .88 .86 .54 .97 .71 .91 [.84, .97] -334.36 

TOMM2-C + TOMM2 RT incorrect .91 .89 .95 .91 .91 .63 .98 .80 .97 [.86, .97] -194.40 

TOMM2-C + TOMM1 RT mean .90 .82 .98 .97 .90 .78 .98 .71 .97 [.92, 1.0] -334.92 

TOMM2-C + TOMM2 RT mean .84 .78 .91 .85 .86 .50 .97 .71 .92 [.85, .97] -334.47 

TOMM2-C + TOMM1 RT CV .87 .78 .96 .93 .87 .70 .98 .67 .92 [.86, .97] -329.35 

TOMM2-C + TOMM2 RT CV .87 .78 .96 .93 .87 .70 .98 .67 .87 [.78, .95] -329.79 

TOMM2-C + TOMM1 RT C/I .86 .78 .95 .90 .87 .64 .97 .65 .90 [.83, .97] -298.81 

TOMM2-C + TOMM2 RT C/I .91 .92 .89 .88 .94 .56 .98 .80 .88 [.80, .96] -194.20 

Note. Sn = Sensitivity (detection of simulated TBI), Sp = Specificity (bona fide TBI); PPP = Positive Predictive Power, NPP = 
Negative Predictive Power (each presented for 40% and 10% base rate); AUC = ROC area under the curve, R2 = Nagelkerke R2; BIC 
= Bayesian information criterion; TOMM1 = Test of Memory Malingering–Trial 1; TOMM2 = Test of Memory Malingering–Trial 2; 
RT CV = Response Time coefficient of variation; RT C/I = Ratio RT correct / incorrect.
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Table 4b. Logistic Regressions Statistics: TOMM Predicting TBI and Simulator Group Membership. 

 Df  Χ2 p Odds Ratio 
Predictors1 

p 

One-Variable Models:      

TOMM1 Correct  1 40.03 < .001 1.26  

TOMM2 Correct  1 62.63 < .001 1.61  

TOMM1 RT correct 1 10.21 .001 1.00  

TOMM1 RT incorrect 1 0.25 .614 1.00  

TOMM2 RT correct 1 14.55 < .001 1.00  

TOMM2 RT incorrect 1 1.92 .165 1.00  

TOMM1 RT mean 1 8.64 .003 1.00  

TOMM2 RT mean 1 15.35 < .001 1.00  

TOMM1 RT CV  1 1.30 .255 0.22  

TOMM2 RT CV 1 3.22 .073 0.03  

TOMM1 RT C/I 1 11.77 .001 0.02  

TOMM2 RT C/I 1 0.003 .957 0.94  

Two-Variable Models:      

TOMM2-C + TOMM1 RT correct 2 68.27 < .001 1.00 .027 

TOMM2-C + TOMM1 RT incorrect 2 59.56 < .001 1.00 .061 

TOMM2-C + TOMM2 RT correct 2 67.65 < .001 1.00 .042 

TOMM2-C + TOMM2 RT incorrect 2 48.64 < .001 1.00 .439 

TOMM2-C + TOMM1 RT mean 2 68.21 < .001 1.00 .027 

TOMM2-C + TOMM2 RT mean 2 67.76 < .001 1.00 .044 

TOMM2-C + TOMM1 RT CV 2 62.64 < .001 1.07 .977 

TOMM2-C + TOMM2 RT CV 2 63.08 < .001 8.75 .517 

TOMM2-C + TOMM1 RT C/I 2 56.03 < .001 1.55 .798 

TOMM2-C + TOMM2 RT C/I 2 48.44 < .001 0.31 .513 

Note. TOMM2-C = TOMM2 Correct; RT CV = Response Time coefficient of variation; RT C/I = Ratio RT correct / incorrect.  
1. Refers to RT-variable predictors added on the second step of the two-variable model.
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Table 5a. Classification Statistics: TOMM Performance for Single and Two-variable Models Predicting Full Effort Healthy 

Comparison (HC) and Traumatic Brain Injury Group (TBI) Group Membership. 

 Hit Rate Sn Sp 
PPP 

BR 40% 

NPP 

BR 40% 

PPP 

BR 10% 

NPP 

BR 10% 
R2 AUC 

AUC 

95% CI 
BIC 

One-Variable Models:            

25. TOMM1 Correct  .76 .58 .90 .81 .76 .38 .96 .32 .77 [.68, .87] -369.32 

26. TOMM2 Correct  .63 .42 .79 .58 .67 .17 .93 .09 .62 [.51, .73] -348.18 

27. TOMM1 RT correct .75 .67 .80 .68 .78 .27 .96 .39 .82 [.74, .90] -377.13 

28. TOMM1 RT incorrect .49 .13 .82 .31 .59 .07 .90 .01 .57 [.44, .69] -243.58 

29. TOMM2 RT correct .76 .64 .85 .73 .78 .33 .95 .41 .82 [.74, .90] -379.38 

30. TOMM2 RT incorrect .66 1.00 .15 .45 1.0 .11 1.0 .02 .46 [.24, .68] -61.11 

31. TOMM1 RT mean .74 .67 .79 .68 .78 .26 .96 .39 .81 [.73, .89] -376.54 

32. TOMM2 RT mean .77 .64 .87 .77 .79 .37 .95 .40 .82 [.74, .90] -378.25 

33. TOMM1 RT CV  .58 .00 1.0 .00 .60 .00 .90 .00 .54 [.43, .65] -340.53 

34. TOMM2 RT CV .61 .20 .88 .50 .62 .15 .91 .05 .69 [.59, .79] -344.67 

35. TOMM1 RT C/I .51 .21 .77 .39 .59 .11 .89 .02 .62 [.50, .74] -244.16 

36. TOMM2 RT C/I .66 .79 .46 .50 .75 .16 .93 .09 .63 [.43, .83] 20.06 

Note. Sn = Sensitivity (detection of simulated TBI), Sp = Specificity (bona fide TBI); PPP = Positive Predictive Power, NPP = 
Negative Predictive Power (each presented for 40% and 10% base rate); AUC = ROC area under the curve, R2 = Nagelkerke R2; BIC 
= Bayesian information criterion; TOMM1 = Test of Memory Malingering–Trial 1; TOMM2 = Test of Memory Malingering–Trial 2; 
RT CV = Response Time coefficient of variation; RT C/I = Ratio RT correct / incorrect. 
 
 (Table continues…)
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Hit  
Rate 

Sn Sp 
PPP 

BR 40% 

NPP 

BR 40% 

PPP 

BR 10% 

NPP 

BR 10% 
R2 AUC 

AUC  

95% CI 
BIC 

Two-Variable Models:            

TOMM2-C + TOMM1 RT correct .77 .69 .84 .74 .80 .32 .96 .40 .82 [.74, .90] -373.17 

TOMM2-C + TOMM1 RT incorrect .64 .46 .80 .60 .69 .21 .94 .10 .65 [.53, .77] -244.98 

TOMM2-C + TOMM2 RT correct .77 .64 .87 .77 .79 .37 .95 .41 .82 [.74, .91] -376.51 

TOMM2-C + TOMM2 RT incorrect .69 .89 .38 .48 .88 .14 1.0 .14 .68 [.49, .88] -60.77 

TOMM2-C + TOMM1 RT mean .75 .62 .84 .72 .77 .32 .95 .40 .82 [.74, .90] -372.82 

TOMM2-C + TOMM2 RT mean .77 .64 .87 .77 .79 .37 .95 .40 .82 [.74, .90] -373.61 

TOMM2-C + TOMM1 RT CV .65 .36 .87 .65 .67 .25 .92 .10 .62 [.51, .73] -343.58 

TOMM2-C + TOMM2 RT CV .64 .40 .82 .61 .68 .19 .93 .12 .70 [.61, .80] -345.98 

TOMM2-C + TOMM1 RT C/I .63 .49 .75 .57 .69 .17 .93 .09 .67 [.56, .79] -244.57 

TOMM2-C + TOMM2 RT C/I .59 1.0 .00 .41 .00 .09 .00 .25 .74 [.57, .92] -63.74 

Note. Sn = Sensitivity (detection of simulated TBI), Sp = Specificity (bona fide TBI); PPP = Positive Predictive Power, NPP = 
Negative Predictive Power (each presented for 40% and 10% base rate); AUC = ROC area under the curve, R2 = Nagelkerke R2; BIC 
= Bayesian information criterion; TOMM1 = Test of Memory Malingering–Trial 1; TOMM2 = Test of Memory Malingering–Trial 2; 
RT CV = Response Time coefficient of variation; RT C/I = Ratio RT correct / incorrect.
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Table 5b. Logistic Regressions: TOMM Performance Predicting HC and TBI Group Membership. 

 Df  Χ2 p Odds Ratio3 
Predictor1 

p 

One-Variable Models:      

TOMM1 Correct  1 28.84 < .001 0.75  

TOMM2 Correct  1 7.71  .006 0.53  

TOMM1 RT correct 1 36.66 < .001 1.00  

TOMM1 RT incorrect 1 0.41 .520 1.00  

TOMM2 RT correct 1 38.91 < .001 1.01  

TOMM2 RT incorrect 1 0.37 .541 1.00  

TOMM1 RT mean 1 36.07 < .001 1.00  

TOMM2 RT mean 1 37.77 < .001 1.00  

TOMM1 RT CV  1 0.06 .811 1.31  

TOMM2 RT CV 1 4.19 .041 27.33  

TOMM1 RT C/I1 1 0.99 .319 2.14  

TOMM2 RT C/I1 1 2.32 .128 5.39  

Two-Variable Models:      

TOMM2-C + TOMM1 RT correct 2 37.36 < .001 1.00  < .001 

TOMM2-C + TOMM1 RT incorrect 2 6.23 .044 1.00 .422 

TOMM2-C + TOMM2 RT correct 2 39.02 < .001 1.00 < .001 

TOMM2-C + TOMM2 RT incorrect 2 3.49 .175 1.00 .304 

TOMM2-C + TOMM1 RT mean 2 37.02 < .001 1.00 < .001 

TOMM2-C + TOMM2 RT mean 2 37.8 < .001 1.00 < .001 

TOMM2-C + TOMM1 RT CV 2 7.77 .021 1.35 .796 

TOMM2-C + TOMM2 RT CV 2 10.17 .006 13.35 .123 

TOMM2-C + TOMM1 RT C/I 2 5.82 .054 1.47 .627 

TOMM2-C + TOMM2 RT C/I 2 6.46 .039 10.92 .065 

Note. TOMM2-C = TOMM2 Correct; RT CV = Response Time coefficient of variation; RT C/I = Ratio RT correct / incorrect.  
1. Refers to RT-variable predictors added on the second step of the two-variable model. 
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ABSTRACT 

 

DETECTION OF MALINGERING IN BONA FIDE TRAUMATIC BRAIN INJURY AND 

SIMULATED TRAUMATIC BRAIN INJURY:  

COMBINING RESPONSE TIME WITH PVT ACCURACY RESULTS 

 

by 

 

ROBERT KANSER 

 

May 2016 

Advisor: Dr. Lisa J. Rapport 

Major: Psychology (Clinical) 

Degree: Master of Arts  

 Threats to performance validity test (PVT) security and utility have increased efforts to 

develop covert measures of performance validity. Response time (RT) is a promising covert 

measure to distinguish between honest and feigned performance; however, research investigating 

RT patterns on PVTs is sparse and troubled by methodological problems. This study examined 

the incremental utility of RT variables on a computerized version of the Test of Memory 

Malingering (TOMM-C) in distinguishing adults with verified traumatic brain injury (TBI) and 

healthy adults coached to feign neurocognitive impairment. Participants were 45 adults with 

moderate to severe TBI, 45 healthy adults coached to feign neurocognitive impairment (SIM), 

and 61 healthy adult comparisons providing full effort (HC). A number of RT indices differed 

significantly across groups. RT indices and traditional TOMM-C accuracy scores were evaluated 

using logistic regression, ROC curve, and Bayesian Information Criterion statistics. Mean RT on 

Trial 1 and 2 provided incremental predictive value to traditional TOMM-C accuracy in 

discriminating groups (SIM vs. HC and SIM vs. TBI). Degree of preference for RT indices 

depended on which groups were being discriminated. 



56 
 

 
 

AUTOBIOGRAPHICAL STATEMENT 

ROBERT KANSER 

Education 

08/2008 - 05/2012  Bachelor of Science 
  University of Michigan  
  Major: Biopsychology, Cognition, and Neuroscience 
    

Clinical Experience 
August 2013 –  
Present 
 

Wayne State University Psychology Clinic, Detroit, MI  

Individual psychological assessment and psychotherapy 
Interpersonal group therapy co-leader 

August 2015 Confident Kids Camp, Ann Arbor, MI 

Thirty hours of intensive individual behavioral therapy for children with 
Selective Mutism 
Advisor: Aimee Kotrba, Ph.D. 
 

September 2015 – 
Present 

Center for Forensic Psychiatry, Ann Arbor, MI 

Psychological assessment and group psychotherapy for inpatients found 
incompetent to stand trial or not guilty by reason of insanity  
Dialectical Behavior Therapy group co-leader 
Advisors: Judith Shazer, Ph.D., and Jay Witherell, Ph.D. 
 

Research Experience 

May 2012 –  
June 2013 

Research Assistant 

Traumatic Brain Injury Clinic  and Community Living Center (inpatient) 
Department of Veteran Affairs-Medical Center, Ann Arbor, MI 
Advisor: Linas Bieliauskas, Ph.D. 

 
January 2012 –  
May 2015 

Research Assistant 

Affective Neuroscience & Biopsychology Lab 
University of Michigan Psychology Department, Ann Arbor, MI 
Advisor: Kent Berridge, Ph.D. 
  

August 13 – 
Present 
 

Research Assistant 

Wayne State University Psychology Department, Detroit, MI 
Advisor: Lisa Rapport, Ph.D. 
  

Honors and Awards 

2010 - 2012 James B. Angel Scholar  
University of Michigan, Ann Arbor, MI 
  

08/2012 Phi Beta Kappa Honor Society 
University of Michigan, Ann Arbor, MI 

 


	Wayne State University
	1-1-2016
	Detection Of Malingering In Bona Fide Traumatic Brain Injury And Simulated Traumatic Brain Injury: Combining Response Time With Pvt Accuracy Results
	Robert John Kanser
	Recommended Citation


	Microsoft Word - 420072_pdfconv_443660_6407E2A0-0B32-11E6-B6F9-19C194EF0FC5.doc

