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A Rank-based Estimation Procedure For Linear Models With Clustered Data 
 

Suzanne R. Dubnicka 
Department of Statistics 
Kansas State University 

 
 
A rank method is presented for estimating regression parameters in the linear model when observations 
are correlated.  This correlation is accounted for by including a random effect term in the linear model. A 
method is proposed that makes few assumptions about the random effect and error distribution.  The main 
goal of this article is to determine the distributions for which this method performs well relative to 
existing methods. 
 
Key words: R-estimate, random effect, pseudo-sample 
 
 

Introduction 
 
Consider a situation in which individuals 
selected for study are not independent of one 
another.  In particular, we consider the situation 
in which clusters of individuals are observed.  
These clusters may be families, siblings, 
littermates, classmates in school, etc. Whatever 
the origin of the cluster, we consider individuals 
to be in the same cluster if these individuals are 
members of a group which, due to this group 
membership, are more likely to give similar 
responses than individuals in different groups.  
Therefore, responses from individuals within a 
cluster are considered to be correlated while 
responses from individuals in different clusters 
are not. 

To account for this correlation within 
clusters, we add a random effect term to the 
usual linear regression model and consider the 
following model: 
 

,1      , ,...,m i b iniini ii
=+++= eβXY 11α  

                                                                         (1) 
 
     (1) 
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where iY  is a ni × 1 vector of responses for 

cluster i,  Xi is a ni × p matrix with jth row, T
ijx , 

corresponding to the p covariates for observation 
j in cluster i,  is the common unknown intercept, 
β  is a p × 1 vector of unknown parameters, bi is 

the random effect for cluster i, and  
in1  is a 

vector of ones of length ni.  We assume that b1, 
..., bm are iid continuous random variables, that 

mmnee ,...,11  are iid continuous random 
variables, and that the bi and the eij but these 
assumptions will depend on the method used for 
predicting the random effects.  These 
assumptions are discussed in Section 2.1.  Thus, 
there are m clusters with ni observations within 
each cluster ( )mi ,...,1= , and the total sample 

size is given by ∑= i inN . 

Our main interest is to estimate the 
unknown parameters  and β .  Linear models 
and generalized linear models with random 
effects have been studied extensively in a variety 
of parametric and semiparametric settings in 
which specific distributions are assumed for the 
random effects, bi, and/or the random errors, eij.  
For example, Laird and Ware (1982), Ware 
(1985), Lindstrom and Bates (1988), Schall 
(1991), Zeger and Rezaul (1991), Waclawiw and 
Liang (1993), and Chen (2001) all provide 
methods for fitting such models.  In addition, 
other approaches which also account for 
correclation within clusters, such as GEE, have 
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also been developed. For example, see Zeger 
and Liang (1988) and Lin and Carroll (2001). 
 In this article, we propose a method for 
estimating the unknown regression parameters 
which does not assume a specific distributional 
form for either bi or eij.  The proposed method 
uses rank methods to estimate β  and pseudo-
samples to predict the random effects bi.  Chen 
(2001) presents a similar method in which the 
regression parameters are estimated via rank 
methods but the random effects are assumed to 
be normally distributed and are predicted using 
the best linear unbiased predictor under 
normality. In using pseudo-samples to estimate 
the random effects, we do not assume a specific 
distributional form for these random effects. In 
addition, unlike Chen, we do not need to 
estimate the variance of the bis or the eijs with 
each iteration. 

The main purpose of this paper is to 
evaluate the performance of the proposed 
method, relative to some existing methods, for a 
variety of distributions for the random effects 
and random errors.  The more theoretical aspects 
relating to the proposed method, including 
asymptotics, are the subject of another paper 
currently in review (Dubnicka 2004). 
 The method for estimating β  proposed in 
this paper is an iterative procedure with two 
major components:  the estimation of β  given 
bi and the prediction of bi given β .  These two 
components are detailed in Methodology.  In 
Simulations, we evaluate the proposed method 
and compare it to existing methods via computer 
simulations.  We conclude with a summary of 
our findings. 
 

Methodology 
Consider the model given in (1).  We estimate 
β  and bi using the following iterative steps until 

the convergence: 
1. Estimate β  as if the N subjects are 

independent by solving the usual rank 
estimating equations given below. 

2. Predict the random effects, bi, using a 
pseudo-sample approach. 

3. Given the estimates of bi, obtain a rank-
based estimate β  by solving (13). 

4. Repeat steps 2 and 3 until convergence. 

Steps 2 and 3 are detailed in the next two 
sections. 
 
Prediction of the Random Effects 

The random effects b1, ..., bm are 
predicted using pseudo-samples.  Since we know 
only the Yij, the random effects bi and the errors 
eij are not observable.  However, we can use the 
information in the Yij to construct a sample of 
size m that, as ∞→N , is asymptotically 
equivalent to the bi.   In particular, we follow the 
approach of Groggel, Wackerly and Rao (1988) 
who use pseudo-samples of random effects and 
random errors to conduct inference on the 
intraclass correlation in a one-way random 
effects model.  They propose two methods for 
constructing pseudo-samples:  one based on 
means and another based on medians.  We 
modify their approach in order to predict the 
random effects in the linear model.  The creation 
of such pseudo-samples requires only a few 
assumptions regarding the distributions of the 
random effects, bi, and the random errors, eij.  
The particular assumptions depend on the 
method used to create the pseudo-samples and 
are discussed below. 
 The two methods for creating pseudo-
samples proposed by Groggel, Wackerly, and 
Rao (1988) are the means method and the 
medians method.  With a small adjustment, we 
can construct a pseudo-sample of the bi using 
these methods.  Let 
 
                    .βxT

ijijij YU −=       (2) 
Then Uij =  + bi + eij which is in the form of a 
one-way random effects model considered by 
Groggel, Wackerly, and Rao (1988). 
 Pseudo-samples based on means are given 
by 
 

⋅⋅ −=−= iijiijij eeUUV          (3) 
 

⋅⋅⋅⋅⋅⋅ −−+=−= ebebUUW iiii          (4) 
 
where ∑ ∑∑−

⋅⋅
−

⋅ ==
j i j ijijii UNUUnU ,, 11  

∑−
⋅ = j ijii ene ,1  ∑∑−

⋅⋅ = i j ijeNe ,1   and 
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∑−=
i ibmb 1 ,  If the random effects and the 

random errors distributions have mean 0, Vij 
converges in distribution to eij and Wi converges 
in distributions to bi (Dubnicka 2004; Groggel 
1983). 
 Pseudo-samples based on medians are 
defined in an analogous manner.  Let 
 

iijiijij eeUUV ˆˆ −=−=′        (5) 
 

bebUUW iiii
ˆˆˆˆ −−=−=′        (6) 

 
where { },,...,ˆ

1 iinii UUmedU =  

{ },ˆ,...,ˆˆ
1 imUUmedU =  { },,...,ˆ 1 iinii eemede =  

and { }.ˆ,...,ˆˆ
11 mm ebebmedb ++=   If the 

random effects and the random errors 
distributions are bounded, ′Vij  converges in 

distribution to eij and ijV ′  converges in 
distribution to bi (Dubnicka 2004; Groggel 
1983).  Note that for ni = 1 or 2, .ijij VV ′=  
 Therefore, under general conditions, the Wi 
and ),...,1( miWi =′  asymptotically equivalent 
to the true random effects bi, i = 1,...,m.  Thus, 
the Wi and iW ′  represent pseudo-samples which 
predict the random effects bi, i = 1,…,m.  
Throughout the remainder of this paper ib̂  
represents the predicted value of bi based on one 
of these two methods; that is, ii Wb =ˆ  or iW ′ .  
Note that in creating pseudo-samples to predict 
bi, we can also create pseudo-samples which 
predict the eij.  These predicted errors are 
provided by the Vij and the ijV ′ .  However, we do 
not need these pseudo-samples in our iterative 
estimation procedure. 
 
Estimation of Regression Parameters 

In the proposed iterative procedure, the 
regression parameters are estimated using rank 
methods.  Rank-based regression requires only 
very general assumptions on the underlying 
error distribution.  There are several rank-based 
regression methods from which we can choose.  

We present several variations below but focus 
on the most basic approach. 

Consider the linear model 
 

i
T
ii eY ++= βxα  

 
where the ei are iid random variables.  Then the 
most common rank-based estimate of β , 
introduced by Jaeckel (1972), is found by 
minimizing the dispersion function 
 

( )( )βxβxβ T
ii

n

i

T
ii YYRD −−=∑

=1

* )(      (7) 

 
where ( )βxT

iiYR −  is the rank of  βxT
iiY −  

among βxβx T
nn

T YY −− ,...,11 .  Estimates of  
β  found by minimizing (7) are called R-

estimates. 
 One generalization of (7) is given by 
 

( )[ ]( )βxβxβ T
ii

n

i

T
iia YYRaD −−=∑

=1
)(     (8) 

where )()2()1( naaa ≤≤  is a set of scores 
generated by ( )[ ]1/)( += niia φ  for some 
nondecreasing score function )(uφ which is 

defined on (0,1) and satisfies ∫ = 0)( duuφ  and 

∫ = 1)(2 duuφ .  Two commonly used score 

functions are Wilcoxon scores and sign scores 
given by ( )2112)( −= uuWφ  and 

( )21)( −= usgnuSφ , respectively.   
Using Wilcoxon scores produces a 

dispersion function which is equivalent to (7) 
and which will produce the usual R-estimate for 
β .  Sign scores will produce the L1 estimate of  
β .  Other score functions which are optimal for 

specific error distributions have also been 
proposed.  In addition, there are score functions 
which may be more appropriate for asymmetric 
errors (Hettmansperger and McKean 1998). 

Note that minimizing ( )β*D  is 
equivalent to minimizing 
( ) ( ) ( ).βxβxβ T

jj
T
ii

ji
YYD −−−=

<
∑∑       (9) 
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That is, minimizing ( )βD  will also provide the 
R-estimate for β . A related approach, 
introduced by Sievers (1983) and further 
developed by Naranjo and Hettmansperger 
(1994), estimates β  by minimizing 
 

( ) ( ) ( )βxβxβ T
jj

T
ii

ji
b YYD −−−=

<
∑∑   (10) 

where ( )jiij bb xx ,= .  Properly chosen weights 

ijb  will produce estimates of  β  with a bounded 
influence function and high breakdown.  The 
bounded-influence estimate, however, tends to 
be less efficient than the usual R-estimate.  
Estimates produced by minimizing ( )βbD  are 
called generalized rank estimates, or GR-
estimates. 

The proposed iterative procedure can be 
performed using R-estimation, general score R-
estimation, or GR-estimation.  In practice, one 
would carefully evaluate the particular 
application to determine which is most 
appropriate. For the remainder of this paper, 
however, we will use the more common R-
estimates of  β . 
 Return now to our model (1) which 
includes the random effect.  Let iijij bYY −=* .  
Then, given the random effects, we can estimate 
the regression parameters using the usual rank 
estimating equations where the ijY s are replaced 

by *
ijY s.   

To simplify notation, let { }**
2

*
1 ,...,, NYYY  

represent 
{ }**

1
*

2
*

21
*

1
*

11 ,...,,...,,...,,,...,
21 mmnmnn YYYYYY .  The 

vectors of covariates corresponding to these 
rsponses can be written in an analogous manner.  
Then Rβ̂  is the estimators of β which minimizes 
     
 
( ) ( ) ( ).** βxβxbβ T

kk
T
ll

kl
YYD −−−=

<
∑∑  

                                                                       (11) 
The gradient of ( )bβD  is given by 

( ) ( )
( )

( ) ( )* *

l k
l k

T T
l l k k

S D

sgn

Y Y
<

= −∇

= −

⎡ ⎤− − −⎣ ⎦

∑∑
β b β b

x x

x β x β

    (12) 

As ( )bβD  is a piecewise linear, 
continuous, convex function, minimizing 
( )bβD  is equivalent to solving 

 
( ) .0=bβS                             (13) 

Note that it is unlikely ( )bβS  will equal 0 for 

any value of β .  In the case of one covariate, 
( )bβS  is a nondecreasing step function of β 

which steps down at each sample slope.  There 
may be an interval of solutions ( ) 0=bβS  or 

( )bβS  may “step across” the horizontal axis.  

We let Rβ̂  denote this rank estimate of  β  in 
either case. 
 Once an estimate for  β  has been obtained, 
α can be estimated by solving  
 

( ) ( ) 0ˆˆ,
1 1

1 =−−=∑∑
= =

iR
T
ijij

m

i

n

j
bYsgnS

i

βxbβα    

                                                                       (14) 
where Rβ̂  is the estimate of β  obtained from 

solving (13) and ib̂  is the predicted value of 

ib using one of the pseudo-sample methods of 
the previous section.  The solution to equation 
(14) is simply the median of the residuals 

iR
T
ijij bY ˆˆ −− βx .  That is, 

 
{ }.ˆˆˆ iR

T
ijijR bYmedian −−= βα x     (15) 

 
Simulations 

Simulations were conducted to evaluate 
the performance of our proposed method.  These 
simulations were performed with the intent of 
answering two questions: 

1. How large must m and the in  be to 
produce “good” estimates of α and β ? 
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2. How does this method perform as the 
random effects distribution and the 
random error distribution vary? 

 
 Recall that the pseudo-samples are only 
asymptotically equivalent to the true random 
effects.  For small samples, there is some 
concern that this method will not produce 
estimates of β and α which are reasonably on 
target.  In this first simulation study, we focus on 
the cluster sizes and number of clusters rather 
than the distributions of the random effects and 
random errors.  Therefore, with m clusters of n 
subjects per cluster, a single covariate x ~ 
lognormal(2, 0.52), and (α,β) = (2, 2), 1000 
samples were generated in which the random 
effects and the random errors were both  
 
 

 
 
 
 
 

normally distributed:  ib  ~ N(0, 0.52) and ije  ~ 
N(0, 0.42).  Note that, for simplicity, we have 
chosen all of the clusters sizes to be the same 
( )mnn == ...1 .   

For comparison, estimates of α and β 
were also obtained using maximum likelihood 
(ML) and restricted maximum likelihood 
(REML) since these methods are included in 
most existing statistical software. 
 Results of this first simulation study appear 
in Table 1.  For each method, the means of the 
1000 estimates are given with the standard 
deviations of the 1000 estimates below the 
estimates in parentheses. 

 
 

 
 

 
 
 

 
 

 

Table 1:  Parameter Estimates for Various m and n, bi ~ N(0,0.52), eij ~ N(0,0.42) 
 

 Mean Method Median Method ML REML 

(m,n) βα ˆ,ˆ  βα ˆ,ˆ  βα ˆ,ˆ  βα ˆ,ˆ  
 (StDev) (StDev) (StDev) (StDev) 
(5,2) 2.00902,1.99751 2.015,1.99747 2.00592,1.99819 2.003934,1.99783 
 (0.53457,0.0625) (0.54577,0.06239) (0.48297,0.05278) (0.47995,0.05272) 
(5,5) 1.99484,2.0008 2.00185,2.00077 1.99704,2.00077 1.99697,2.0078 
 (0.29678.0.02253) (0.31546,0.02366) (0.28749,0.02159) (0.28703,0.02155) 
(5,8) 2.00099,2.00031 2.00178,2.00029 2.00078,2.00019 2.00079,2.00019 
 (0.27815,0.01747) (0.28995,0.01755) (0.27389,0.01702) (0.27386,0.01699) 
(15,2) 1.98592,2.00158 1.98717,2.00158 1.98907,2.00135 1.98894,2.00136 
 (0.26826,0.0278) (0.28243,0.0278) (0.24222,0.0239) (0.24184,0.02386) 
(15,5) 1.99979,2.00004 2.00222,2.00002 1.99953,2.00008 1.99954,2.00008 
 (0.17499,0.01245) (0.18033,0.01283) (0.16884,0.01215) (0.16884,0.01215) 
(15,8) 2.00682,1.99933 2.0056,1.99942 2.00641,1.99942 2.00643,1.99942 
 (0.159,0.00919) (0.16353,0.00925) (0.15728,0.00901) (0.15724,0.009) 
(30,2) 1.99458,2.00071 1.99312,2.00071 1.99318,2.00088 1.9932,2.00088 
 (0.1843,0.01814) (0.19196,0.01814) (0.16987,0.01601) (0.16981,0.016) 
(30,5) 1.99352,2.00001 1.99409,2.00012 1.99282,2.0007 1.99284,2.00007 
 (0.11875,0.00846) (0.12621,0.00875) (0.1152,0.00813) (0.11519,0.00813) 
(30,8) 2.00049,2.00001 2.0003,2 2.00023,2.00005 2.00023,2.00005 
 (0.11341,0.00648) (0.11765,0.00661) (0.11055,0.00628) (0.1055,0.00628) 
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Note that the estimates of  and  obtained 
from the proposed iterative method using either 
mean or median pseudo-samples seem to be 
reasonably unbiased even for small m and n; see 
Table 1.  As one would expect, when both the 
random effects and the random errors are 
normally distributed the standard deviations of 
the estimates obtained through maximum 
likelihood and REML are smaller.  However, the 
standard deviations of the estimates obtained 
through the proposed iterative method are not 
much larger. 
 Although the proposed method, using 
mean or median pseudo-samples, provides 
estimates which are reasonably on target for 
small m and n, the procedure failed to converge 
for some samples regardless of the pseudo-
sample method used.  Table 2 shows the 
percentage of times that the mean method and 
the median method converge for each of the 
combinations of m and n in the first simulation 
study.  Upon closer investigation, we found that 
for some of the samples the estimates of  
continued to increase (or decrease) as more 
iterations were completed.  For some of the 
samples, however, the estimates of  seemed to 
“bounce” between two values.  This happened 
more frequently when both m and n were small 
 
Table 2:  Convergence Percentage for Various m 
and n, bi ~ N(0,0.52), eij ~ N(0,0.42) 
 

(m,n) Mean Method Median Method 
(5,2) 99.1% 99.1% 
(5,5) 96.7% 99.8% 
(5,8) 99.0% 93.0% 
(15,2) 99.7% 99.7% 
(15,5) 98.2% 100% 
(15,8) 99.1% 96.5% 
(30,2) 99.8% 99.8% 
(30,5) 98.8% 100% 
(30,8) 99.7% 98.4% 

 
The remaining simulations were 

designed to help answer the second question.  
That is, we wanted to determine the distributions 
under which the proposed method is superior to 
the existing methods considered.  In these 
simulations, a variety of distributions for both 
the random effects and the random error were 

used.  Table 3 gives the abbreviations for the 
particular distributions chosen for these 
simulations. 
 The simulations conducted are divided into 
three cases:  (1) the random effects distribution 
is normal and the error distribution varies, (2) 
the error distribution is normal and the random 
effects distribution varies, and (3) both 
distributions are nonnormal but from the same 
family of distributions.  As with the first 
simulation, 1000 random samples were 
generated with a single covariate x ~ 
lognormal(2, 0.52) and (α,β) = (2,2).  
Furthermore, each sample consists of m = 50 
clusters of n = 3 subjects per cluster.  For 
comparison, estimates of α and β were also 
obtained using Chen’s method and restricted 
maximum likelihood (REML).  Recall that 
Chen’s method differs from the proposed 
method in that the random effect is assumed to 
be normally distributed.  Maximum likelihood 
estimates were also computed but there were 
almost identical to the REML estimates. 

Table 4 shows the simulation results for 
normally distributed random effects. Since 
Chen’s method assumes normality for the bi but 
does not assume a specific distribution for the 
eij, one would expect Chen’s method to perform 
better than the proposed methods and REML.  
To some extent, the simulations support this 
theory.  When the errors follow a contaminated 
normal or double exponential distribution, the 
standard deviations of the β estimates using 
Chen’s method are smaller than those of the 
other methods.  When the errors follow a 
Cauchy distribution, the standard deviation of 
the β estimates based on the proposed method 
with median pseudo-samples is smaller than that 
of the other approaches.  Notice, however, that 
the standard deviation of the α estimates is 
smaller for the median method than the other 
methods.  In particular, the estimates of α using 
the mean method and REML were highly 
variable in the case of Cauchy errors. 
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Table 3: Distributions used in Simulations 

 
Abbreviation Name of Distribution Description 
CN1 Contaminated Normal 0.9 N(0,0.42) + 0.1 N(0,1.22) 
CN2 Contaminated Normal 0.9 N(0,0.32) + 0.1 N(0,0.92) 

DE1 Double Exponential ( )1
2 2 5λ λ λexp , .− =x  

DE2 Double Exponential ( )1
2 3λ λ λexp ,− =x  

C1 Cauchy 0.16 Cauchy(0.1) 
C2 Cauchy 0.12 Cauchy(0,1) 
U1 Uniform Uniform(-1.2,1.2) 
U2 Uniform Uniform(-0.9,0.9) 

 
 

Table 4:  Parameter Estimates for m = 50, n = 3, bi ~ N(0, 0.32) 
 

 Mean Method Median Method Chen REML 

Error βα ˆ,ˆ  βα ˆ,ˆ  βα ˆ,ˆ  βα ˆ,ˆ  
Distribution (StDev) (StDev) (StDev) (StDev) 
CN1 1.99406,2.00087 1.9978,2.00054 1.99548,2.00074 1.99809,2.00047 
 (0.11152,0.01085 (0.10595,0.01008) (0.12488,0.00974) (0.10788,0.01052)
DE1 1.99851,2.00024 1.99718,2.00015 1.99368,2.00024 1.99763,2.00033 
 (0.11973,0.01232) (0.11261,0.01101) (0.12384,0.01081) (0.11517,0.01183)
C1 2.12036,2.00034 1.99724,2.00004 1.99743,1.99999 2.1836,1.99199 
 (4.5088,0.01205 (0.09558,0.00919) (0.10268.0.00988) (7.35446,0.68516)
U1 2.00417,1.99981 2.00281,1.99973 2.0028,1.99971 2.0028,1.99974 
 (0.16375,0.01667) 0.15796,0.0147) (0.18557,0.01459) (0.13293,0.01367)

 
Table 5:  Convergence Percentage m = 50, n = 3, bi ~ N(0, 0.32) 

 
Error Distribution Mean Method Median Method Chen 
CN1 98.5% 100% 96.2% 
DE1 98.9% 100% 98.8% 
C1 99.2% 100% 66.3% 
U1 97.8% 100% 92.1% 
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The major disadvantage of Chen’s 
method is this situation is that it does not always 
converge.  This is also true, to a lesser extent, for 
the proposed method with mean pseudo-
samples.  Table 5 gives the convergence 
percentage of the three rank-based methods for 
the simulations in Table 4.  Notice that the 
median method always converged.  The mean 
method and Chen’s method converged most of 
the time when the error distribution was a 
contaminated normal, double-exponential, or 
uniform.  The mean method also converged 
most of the time when the error distribution is 
Cauchy but Chen’s method had difficulty 
converging in this case.  Chen (2001) also notes 
this problem.  The main source of the problem is 
that the Chen’s method requires the estimation 
of the error variance (and the random effect 
variance) at each iteration, and convergence of 
the algorithm depends on the convergence of the 
error variance.  In distributions for which the 
variance is undefined, convergence problems 
will exist for Chen’s method. 

Table 6 gives the results for cases in 
which the errors are normally distributed but the 
distribution of the random effects is non-normal.  
In addition, Table 7 gives the convergence 
percentages of the rank-based methods for these 
simulations.  For the four situations considered, 
the standard deviations of the REML estimates 
of β are the smallest.  This seems to imply that 
REML is a relatively efficient method for 
estimating β even when the random effect 
distribution is non-normal.  Notice that the 
standard deviations of the median method β 
estimates are the largest of the four methods but 
they are not much larger than the REML 
standard deviations.  Also, REML estimates of α  
also tend to be more precise (smallest standard 
deviation of the α estimates) except when the 
random effects distribution is Cauchy. 

When the random effects follow a 
Cauchy distribution the median method provides 
the most precise estimate of α. 

 
 
 
 
 
 

As in the previous simulations, Chen’s 
method did not converge for all samples.  In 
fact, when the error distribution was normal and 
the random effects distribution was Cauchy, 
Chen’s method only converged half of the time.  
Notice again that the proposed method with 
median pseudo-samples always converged, and 
the proposed method with mean pseudo-samples 
converged most of the time. 
 Finally, we consider situations in which 
neither the error distribution nor the random 
effects distribution are non-normal.  For each 
situation, the error and random effects 
distributions are from the same family of 
distributions.  The results appear in Tables 8 and 
9.  In these situations, there is no clear “winner” 
with respect to the estimation of β.  Under the 
contaminated normal distributions and double 
exponential distributions, Chen’s β estimates 
have the smallest standard deviations.  Under 
Cauchy distributions and uniform distributions, 
REML estimates of β are less variables.  
However, the proposed method with median 
pseudo-samples provided the most precise 
estimates of α under the distributions 
considered.  Again note that the median method 
converged for all samples while the mean 
method converged most of the time and Chen’s 
method converged most of the time except under 
the Cauchy distributions.  Under Cauchy 
distributions, Chen’s method only converged 
half of the time. 

 
Conclusion 

 
The paper introduced a new rank-based method 
for parameter estimation in linear model with a 
random effect term.  Such a model is useful in 
accounting for the correlation between subjects 
that are correlated, as is the case when clusters 
of subjects are observed.  The proposed method 
uses rank-based regression to estimate the 
parameters of the linear model and pseudo-
samples to predict the random effects.  As a 
result the proposed method requires few 
assumptions regarding the underlying 
distributions of the errors and the random 
effects. 
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Table 6:  Parameter Estimates for m = 50, n = 3, eij ~ N(0, 0.42) 
 

 Mean Method Median Method Chen REML 

Error βα ˆ,ˆ  βα ˆ,ˆ  βα ˆ,ˆ  βα ˆ,ˆ  
Distribution (StDev) (StDev) (StDev) (StDev) 
CN2 2.00057,2.00014 1.99799,2.00033 2.00262,2.00023 1.99829,2.00035 
 (0.10673,0.00946) (0.11103,0.00984) (0.22225,0.00911) (0.10245,0.00883)
DE2 1.99463,2.00048 1.99765,2.00025 2.00305,2.00039 1.99458,2.00037 
 (0.10983,0.00934) (0.11096,0.01001) (0.28775,0.00898) (0.10303,0.00859)
C2 2.0442,2.00018 1.99758,1.99998 1.99871,2.00012 2.04528,1.99997 
 (4.77186,0.00953) (0.10331,0.00993) (0.83112,0.00947) (4.77105,0.00919)
U2 2.00176,1.99979 1.99978,1.99998 1.98411,1.99978 2.00285,1.99982 
 (0.10811,0.00911) (0.13954,0.01103) (0.32091,0.00884) (0.10519,0.00871)

 
 

Table 7:  Convergence Percentage m = 50, n = 3, bi ~ N(0, 0.42) 
 

Error Distribution Mean Method Median Method Chen 
CN2 98.3% 100% 89.8% 
DE2 98.6% 100% 87.4% 
C2 99.3% 100% 47.9% 
U2 98.7% 100% 83.8% 

 
Table 8:  Parameter Estimates for m = 50, n = 3 

 
 Mean Method Median Method Chen REML 

 βα ˆ,ˆ  βα ˆ,ˆ  βα ˆ,ˆ  βα ˆ,ˆ  
Distributions (StDev) (StDev) (StDev) (StDev) 
b  ~ CN2, e 
~ CN1 

2.00216.2.00001 2.0031, 1.99981 2.00374, 1.99999 2.00268,1.99983 

 (0.11928, 0.01108) (0.11469,0.01081) (0.17199,0.01014) (0.1196,0.01118) 
b  ~ DE2, e 
~ DE1 

1.99352,2.00026 1.9962,2.0001 1.99604,2.00036 1.99336,2.0002 

 (0.13154,0.01244) (0.1285,0.01238) (0.2035,0.0116) (0.13173,0.01256) 
b  ~ C2, e ~ 
C1 

1.07711,1.99969 2.00552,1.9996 1.99952,1.99971 1.07733,1.99966 

 (27.68038,0.00957) (0.09885,0.00989) (0.82259,0.00941) (27.68138,0.00913)
b  ~ U2, e ~ 
U1 

2.01073,1.99879 2.00585,1.99932 2.02594,1.99903 2.00635,1.99907 

 (0.17553,0.01733) (0.17511,0.01654) (0.33254,0.01616) (0.15331,0.01504) 
 

Table 9:  Convergence Percentage m = 50, n = 3, bi ~ N(0, 0.42) 
 

Distributions Mean Method Median Method Chen 
,2~ CNb  1~ CNe 98.6% 100% 98.0% 
,2~ DEb  1~ DEe 98.3% 100% 98.3% 

,2~ Cb  1~ Ce  99.0% 100% 48.5% 
,2~ Ub  1~ Ue  98.4% 100% 96.6% 
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Results from the simulation studies showed 
that REML often provided estimates β  which 
were less variable than those of other  methods.  
If the goal of a study is to see how the response 
changes as the predictors change, then REML 
might provide the best means for assessing this.  
However, if the goal is to predict a response for 
certain values of the predictors, REML may 
provide inaccurate predictions under some 
distributions since the REML estimate of α can 
be highly variable.  The three rank-based 
methods considered (mean pseudo-samples, 
median pseudo-samples, and Chen) all produce 
estimates of β  with comparable precision to 
REML.  Only the median method seems to 
provide consistently precise estimates of α under 
all distributions considered.  In general, the 
proposed method with median pseudo-samples 
is robust to the underlying distribution of the 
random effects and errors as it is relatively 
efficient for all distributions considered.  
Therefore, if prediction of the goal of study, the 
proposed method with median pseudo-samples 
is recommended. 

 As a final note, it may be possible for 
the proposed method to perform better that 
REML with properly chosen scores in (8), but 
this has not yet been explored. 
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