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CHAPTER 1  

INTRODUCTION 

Music and language require complex cognitive systems of the human mind. Both types of 

information processing depend on temporal memory storage, and there is some evidence that 

working memory systems for language and music may overlap.  Despite an increasing interest 

in the comparison of working memory for language and music, there is a lack of behavioral 

paradigms for directly comparing these forms of working memory, especially as related to 

reading.  No study has examined working memory for linguistic tone information in a tonal 

language, and few studies have examined working memory for musical tone (Berz, 1995; 

Ockelford, 2007), especially comparisons between musicians and non-musicians.  There is little 

research on how working memory for phonological information compares to working memory 

for tone information, both of which are involved in working memory for tonal languages such as 

Mandarin Chinese (Jing & Lu, 2009; Lu & Zhang, 2007; So & Siegel, 1997; Xu & Li, 2009). 

Studies addressing the relationship between verbal working memory and musical working 

memory have focused on the presumed effect of musical training on central executive function 

(Degé, Kubicek & Schwarzer, 2011; Hargreaves & Aksentijevic, 2011; Moreno, Bialystok, Barac, 

Schellenberg, Cepeda & Chau, 2011; Schellenberg, 2011). There is some evidence that musical 

training results in improved executive function, inhibitory control and verbal ability (Degé, 

Kubicek & Schwarzer, 2011; Moreno et al., 2011). Musical training appears to alter working 

memory for music, such that in recalling musical tones musicians are better able to discriminate 

pitches that are close together as compared to non-musicians (Williamson, Baddeley & Hitch, 

2010). Musical skill training has been found to influence working memory capacity (Lee, Lu & 

Ko, 2007). There is some evidence that musical training not only changes musical working 
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memory, but also verbal working memory (Franklin, 2008). Theoretical models of reading in 

English include verbal working memory as a necessary component of oral reading that operates 

prior to and during pronunciation. In English reading models, the same verbal working memory 

mechanism is thought to be involved in short-term storage of lexical (whole-word) or sublexical 

phonological information derived from print. There have been few studies of how verbal 

working memory functions in Mandarin Chinese, and no studies of working memory for 

linguistic tone. Musical working memory has received little research attention to date, 

particularly as related to how musical tone information is derived from visual musical notation. 

The current study focused specifically on working memory in four visual recognition tasks, 

in which working memory load (n-back) was varied orthogonally while subjects judged English 

rhyming, Mandarin homophones, Mandarin tones, and musical notes. Musicians and 

non-musicians were included to examine the influence of musical training on task performance. 

The effects of increased task demands on working memory were also examined across tasks.  
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CHAPTER 2 

REVIEW OF THE LITERATURE 

This dissertation explored the translation from print to sound of the tonal language 

Mandarin and other reading stimuli in healthy volunteers. The performance of musicians and 

non-musicians was compared across a variety of reading tasks to examine whether musical 

training can facilitate reading of Mandarin tone. The effects of increasing working memory load 

on reading performance across tasks were also examined. This chapter will review current 

theoretical models of reading, verbal working memory, and working memory for tone 

information. 

Cognitive-Linguistic Processes in Reading 

Most research regarding cognitive-linguistic processes in reading has involved English 

reading (Acheson & MacDonald, 2009a; Binder & Borecki, 2008; Grainger, et al., 2005; Soto & 

Humphreys, 2007; Tydgat & Grainger, 2009). Theoretical models of reading have been based on 

studies of normal reading in healthy volunteers and evidence for how reading breaks down in 

brain-damaged individuals (Greenwald & Berndt, 1999; Greenwald, 2004; Rapp & Goldrick, 

2000; Goldrick & Rapp, 2007; Chialant & Caramazza, 1998; Miozzo & Caramazza, 1998; 

Rosazza, Appollonio, Isella & Shallice, 2007). Patterns observed in acquired dyslexia provide a 

window into reading processes that are difficult to isolate in healthy volunteers for whom 

translation of print to meaning or sound occurs very rapidly. Normal reading and patterns of 

acquired dyslexia have also been simulated in computational models of normal reading and its 

disorders (Rapp & Goldrick, 2000; Jacobs & Grainger, 1992; Rey, Dufau, Massol & Grainger, 

2009; Oberauer & Lange, 2009). To date, there have been relatively few studies of how specific 

reading subprocesses may be differentially impaired in acquired dyslexia in languages other than 
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English. Some current theoretical models of English reading are reviewed below, and then 

theories of reading in Mandarin Chinese are discussed. 

A theoretical model of English reading. There are a variety of approaches to describing 

how print is translated to meaning and/or sound in English. In general, reading comprehension of 

words is thought to involve visual perception, visual word recognition, and semantic 

comprehension of word meaning. Oral reading is thought to require activation of an abstract 

phonological word form that is subsequently held in verbal working memory during 

pronunciation. However, there are different descriptions of how visual, semantic and 

phonological information are activated during reading, with various degrees of interactivity 

incorporated into theoretical models of reading. 

Different versions of a dual-route model of reading English have been put forth, with the 

basic distinction between English reading by a whole-word (i.e., lexical-semantic) route and 

English reading via a grapheme to phoneme (i.e., nonlexical or sublexical) route that supports 

direct translation of print to sound without recognition or comprehension of the whole word (e.g., 

Marshall & Newcombe, 1973). The lexical-semantic route often has been described as 

supporting reading of all real words, both regularly spelled (e.g., PLANT) and irregular (e.g., 

YACHT) (Greenwald, 2004). The sublexical route (i.e., grapheme-to-phoneme conversion) has 

been described as supporting oral reading of regularly spelled words and nonwords (e.g., BERK) 

(Beeson & Hillis, 2001). There are differences in the way theoretical reading models represent 

the interaction of lexical and sublexical information, with variations of the dual-route models 

depicting the routes as distinct (e.g., Coltheart, Curtis, Atkins et al., 1993) and other models 

allowing for substantial influence of the lexical route on the sublexical route (e.g., Patterson & 

Hodges, 1992). The dual-route reading model has been challenged and in some models of 
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reading there are not separate routes for lexical and sublexical processing (e.g., Plaut, 

McClelland & Seidenberg et al., 1996). 

There is evidence for a third route in English reading: a lexical non-semantic route. For 

example, Schwartz, Saffran and Marin (1980) described an individual with dementia who was 

able to read aloud irregularly spelled words without comprehending their meaning. This pattern 

suggests that the patient was using a lexical route to pronounce the irregular words, but without 

semantic mediation. Although many individuals with semantic disruption may retain partial 

semantic knowledge of irregular words (Hillis & Caramazza, 1992), there is evidence for this 

lexical non-semantic reading route from other patients with severe damage to semantic memory 

(Greenwald & Berndt, 1998).  

In addition to differences in the way that lexical and sublexical information are represented 

across English reading models, there are also differences in the degree to which activation of 

information of one type or “level” of cognitive processing is thought to influence activation of 

other levels of information. In a description of normal reading processes, Goldrick and Rapp 

(2007) reviewed five mechanisms of interactivity: 1) cascading activation: the flow of activation 

to a later level before a computation has been completed at the earlier level; 2) feedback: the 

flow of information from later to earlier levels; 3) connectivity distance: the directness of 

connections between levels; 4) domains of interactivity: the number and types of cognitive 

processes that are assumed to interact; and 5) seriality: the degree to which there are processing 

steps or decision points between input and output.  

In the Interactive Activation Model (Rey et al., 2009), cognitive processing among reading 

subcomponents is conceived to be cascaded and interactive, including feedback of information to 

previous levels. There is some evidence that in cascaded-interactive processing early letter 
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activation feeds forward and partially engages word representations, and feedback to the letter 

level influences subsequent processing (e.g., Behrmann, Plaut & Nelson, 1998). Based on 

behavioral and event-related potential (ERP) results from healthy volunteers, Rey and colleagues 

(2009) described letter perception with feedforward excitatory connections from the feature to 

the letter levels, as well as lateral inhibition at the letter level and excitatory feedback from the 

feature levels. 

In contrast, restrictive models of lexical interactivity depict little or no interaction of one 

level to the next. For example, in the Discrete Feedforward Account (DFA), as reviewed by 

Goldrick and Rapp (2000), semantic, lexical, and phoneme information is activated in a strictly 

forward direction. That is, stimuli are confined to the current processing stage only, and only the 

item selected at the end of a given stage is processed at the following stage. On this account, 

there is a clear selection point at the end of each processing stage. For example, conceptual 

information is selected at the semantic level (e.g., furry, feline, pet, and warm), subsequently the 

corresponding word form is selected at the lexical level (e.g., CAT), and next the corresponding 

phonemes are selected (e.g. /k/ /æ/ /t/). Roelofs and colleagues (Levelt, Roelofs & Meyer, 1999; 

Roelofs, 2004) have argued for such restricted interaction among semantic and phonological 

processes in verbal production tasks. To date, researchers have yet to agree on the degree of 

interactivity among cognitive subprocesses involved in reading 

Despite differences in the way that lexical and sublexical information are represented across 

these different theoretical models of English reading, and the extent to which the models include 

interactivity among reading subprocesses, it is generally accepted that reading comprehension 

requires activation of word meaning in semantic memory and that oral reading requires 

activation of abstract phonological information needed for pronunciation. Lexical (i.e., 
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whole-word) phonological information also can be used to perform other related tasks such as 

deciding whether two printed words rhyme with one another. The English rhyming task has often 

been used to examine the integrity of an individual’s “phonological output lexicon,” that is, the 

memory store of abstract whole-word phonological forms (Beeson & Hillis, 2001). The rhyming 

task consists of deciding whether two words rhyme or not, and the stimuli can be two written 

words or two pictures. This task would be difficult for individuals who fail to activate a full 

lexical phonological representation from the visual stimulus (Raymer & Rothi, 2001). In the 

rhyming task, the examiner would want to control the visual similarity of stimuli to ensure that 

the individual is not performing the task based solely on the visual similarity of the printed words. 

For example, stimuli should include word pairs that rhyme but are visually dissimilar (e.g., loose 

vs. juice) as well as word pairs that do not rhyme but are visually similar (e.g. fever vs. never).  

The rhyming task described above requires verbal working memory in that two 

phonological word forms must be held in memory temporarily while their phonological 

characteristics are compared. Working memory refers to the capacity to hold information online 

for some purpose, such as understanding conversation (Crosson, 2000). The concept of working 

memory assumes “… a limited capacity system, which temporarily maintains and stores 

information, supports human thought processes by providing an interface between perception, 

long-term memory and action” (Baddeley, 2003, p. 829). Verbal working memory also has been 

termed verbal short-term memory (Campoy & Baddeley, 2008; Lee, Lu & Ko, 2007; Tree, 

Longmore & Besner, 2011) or the phonemic buffer (Beeson & Hillis, 2001; Blumstein, 1998). 

Verbal working memory is a component of most theoretical models of English reading in that 

once the abstract phonological information is obtained (either lexically or sublexically) it must 

be held in working memory during pronunciation.  
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Verbal working memory is thought to be required for pronunciation of any reading stimulus, 

whether English or a different language. However, comparatively few studies have examined 

reading and verbal working memory in languages other than English. The unique characteristics 

of some writing systems, such as Chinese, may not be captured fully by theoretical models of 

reading in alphabetic languages. Details of the Chinese writing system are reviewed below, as 

well as theoretical models of Chinese reading. 

The Chinese writing system. The modern Chinese writing system is considered to be 

logographic, in that the basic unit or symbol (i.e., the character) of Chinese is associated with a 

unit of meaning (i.e., morpheme) in the spoken language (Weeks, Chen & Gang, 1997). Chinese 

includes different dialects, such as Mandarin and Cantonese. Mandarin is the official language in 

Mainland China and Taiwan and is used most all over the world. Cantonese is mainly spoken in 

Guangdong, Guangxi, and Hong Kong, and is the most extensively spoken Chinese dialect after 

Mandarin. The current study will be focused on Mandarin Chinese. Mandarin is known as a tonal 

language in that every syllable is differentiated according to one of four tones or voice inflections 

(Lin, Wu, Ting & Wang, 1996; Shriberg & Kent, 2003; Taft & Chen, 1992; Wang, Jongman & 

Sereno, 2001).  

Written Chinese is always presented using characters having a square shape as a basic 

writing unit. The principles of formation of Chinese characters are derived from the six 

categories of characters: pictographs, ideographs, compound ideographs, loan characters, 

analogous characters, and phonetic compounds (So & Siegel, 1997; Leong, 1986). Pictographs 

mean form imitation; that is, stylized drawings of the objects they represent. Ideographs, 

so-called indicatives, express an abstract idea through an iconic form, including iconic 

modification of pictographic characters. Compound ideographs, so-called compound indicatives, 
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mean two or more pictographic or ideographic characters combined to form a third meaning. 

Loan characters, so-called borrowed characters, are “borrowed” to write another homophonous 

or near-homophonous morpheme (i.e., a morpheme pronounced the same or nearly the same as 

another morpheme with a different meaning). Analogous characters, so-called derived characters, 

have similar meanings and often the same etymological root, but diverge in pronunciation. 

The sixth category of Chinese written character is the phonetic compound, so-called 

phono-semantic compound characters. The majority of all Chinese characters are phonetic 

compounds, accounting for over 80% of all Chinese characters (So & Siegel, 1997; Leong, 1986). 

Phonetic compounds consist of two parts, a phonetic component radical and a semantic radical. 

The phonetic radical is an existing character pronounced approximately the same as the new 

target word, and the semantic radical is an often graphically simplified element with the same 

general meaning as the new target word. The phonetic radical of the compound acts as a rhyming 

clue, whereas the semantic radical part suggests the semantic domain of the word. For example, a 

compound character (e.g. 櫻 /Ying1/, cherry) typically consists of a semantic radical (e.g.木, 

wood) that provides the clue about the meaning of the character, and a phonetic radical (e.g. 嬰 

/Ying1/) that gives information about the character’s pronunciation (Shu et al., 2005).  

The square shape of the written Chinese character conveys two parts of phonological 

information: phonetic segments (consonant and vowel) and a suprasegmental phonological 

feature (tone) (Hallé, Chang & Best, 2004; Lee, Tao & Bond, 2008; Leong, 2002; Siok & 

Fletcher, 2001; Spinks, Liu, Perfetti & Tan, 2000, Tong, Francis & Gandour, 2007; Taft & Chen, 

1992; Wang, Jongman & Sereno, 2001; Wang, et al., 2008). Each character corresponds to one 

syllable and one tone, making up a Chinese monosyllable. The typical Chinese monosyllable 

consists of three elements: 1) the onset (an initial consonant preceding the vowel), 2) the rime (at 
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least one vowel and any consonant sounds that come after the vowel), and 3) the tone (Siok & 

Fletcher, 2001).  However, some syllables consist only of an initial sound (onset) or a final 

sound (rime) and a tone. 

Word meanings in tonal languages vary as a function of the tone associated with each 

syllable (Shriberg & Kent, 2003). Tone (i.e., lexical tone) includes many phenomena that 

determine the patterns of pitch rises and falls in a language. Lexical tone refers to how pitch is 

used to convey semantic meaning in speech. Lexical tone is part of the phonemic structure used 

to distinguish words. It indicates the regulation of fundamental frequency to produce contrast, 

such as falling pitch, rising pitch, rising-falling pitch (a rising pitch segment followed by a 

falling pitch segment) or level pitch (no change in vocal pitch). 

In Mandarin Chinese, four different tones are used as suprasegmental phonological features 

that change the pitch of the syllable and provide lexical contrast (Siok & Fletcher, 2001). Based 

on the pattern of pitch contour, the 1st tone is the high-level tone, the 2nd tone is mid-rising tone, 

the 3rd tone is mid-falling-rising tone, and the 4th tone is the high-falling tone. Mandarin also 

includes one neutral tone (referred to as Tone 5). This 5th tone does not have a specific pattern of 

pitch contour (Lin et al., 1996). 

Taft and Chen (1992) provided evidence that words bearing the same rime with different 

tones may sound perceptually more similar to the Chinese listener than words with different 

rimes. This implies that Chinese listeners may find it more difficult to differentiate and identify 

words with different tones and the same rime (e.g. 曲 /qu 3 /, song vs.去 /qu 4/, go) than those 

with the same tone but different rime (e.g.氣 /qi 4 /, air vs.去 /qu 4/, go). 

Because spoken Chinese has only 1200 syllables but over 5000 commonly used morphemes, 

characters often have the same pronunciation (i.e., they are homophones). Somewhat like 
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English homophones (e.g., “allowed” and “aloud”), these Chinese homophones are pronounced 

exactly the same way, with the same phonetic information and the same tone. To understand the 

meaning of a character, the Chinese reader has to distinguish among homophonic morphemes. 

For example, in Chinese characters, homophonic morphemes indicate 是 (/shi4/ yes), 試(/shi4/ 

try), 室(/shi4/ room), and 市 (/shi4/ city) (Shu et al., 2005). The meaning of the homophone is 

determined based on how the character looks and also based on sentence context. 

Although it has been argued that orthography plays a more important role than phonology in 

Chinese reading (Lu & Zhang, 2007), the importance of phonological skills has been emphasized 

in several studies of Chinese reading (Li & Ho, 2011; Taft & Chen, 1992; So & Siegel, 1997; 

Shu et al., 2005). Skill level in oral reading of Chinese has been found to be highly correlated 

with performance in tone and rhyme discrimination tasks (So & Siegel, 1997).  

Learning to read Chinese appears to progress from an early logographic stage in which 

visual-orthographic skill is paramount, to a later orthographic-phonological stage in which 

conversion of the visual stimulus to phonology plays an important role. Soik and Fletcher (2001) 

investigated the roles of phonological awareness and visual-orthographic skills in Chinese 

reading development. Phonological awareness is the ability to conceive of spoken words as 

smaller units of sound segments, including syllable onsets and rimes. Based on evidence from 

Chinese children in Grades 1 to 5, Soik and Fletcher (2001) suggested that phonological 

awareness and visual skill both are important factors in Chinese reading development and that 

the overall success of Chinese reading can be predicted by the level of phonological awareness 

(Soik & Fletcher, 2001; Tan, Hoosain & Siok, 1996).  

Wang, Jongman and Sereno (2001) studied how native Mandarin Chinese-speaking children 

perceived and learned Mandarin tones. Their results indicated that the lexical tone system, along 
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with other pitch-related abilities such as intonation, was acquired before the segmental system of 

consonants and vowels. Also, the children in this study first perceived and processed lexical 

Mandarin tone as part of the intonation system of the tonal language. 

A theoretical model of Chinese reading. Due to the characteristics of the Chinese writing 

system, theoretical models of reading in alphabetic languages may not provide an adequate 

framework for understanding normal reading and dyslexia in Chinese. Tan and colleagues (1996) 

argued that because written Chinese is a meaning-based logography, the reader first must know 

the meaning associated with the Chinese written character to activate its correct pronunciation. 

On this account, Chinese characters map onto the morpheme (meaning) and cannot be 

pronounced by direct access to phonology. Because Chinese characters represent morphemes, 

awareness of morphemes as linguistic units is necessary for understanding the Chinese writing 

system (Shu, Meng, Chen, Luan & Cao, 2005).   

However, Weekes, Chen and Gang (1997) proposed that oral reading of Chinese characters 

does not require initial access to meaning prior to activation of phonology but can be 

accomplished via an alternative non-semantic route. Based on evidence from a Chinese patient 

with impaired oral picture naming (58% accurate) but perfect performance in oral reading of 

Chinese, Weekes and colleagues argued that Chinese readers can map orthographic units directly 

onto phonological output without semantic mediation. In contrast, picture naming requires 

mapping onto orthographic units via semantic pathway before verbal production. The pattern of 

performance of the patient in this study was interpreted as reflecting impairment to the 

connection between the semantic system and phonology, which reduced oral picture naming 

performance but did not impair oral reading.   

Weekes and colleagues (1997) have proposed a model of Chinese reading based on the 
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dual-route model of English reading described above. In this model, normal reading of Chinese 

is conceptualized as involving three interconnected levels of representations: orthographic, 

semantic, and phonological. As in the English reading models, normal visual recognition 

precedes activation of the meaning of the visual stimulus with the semantic system, or activation 

of phonological codes directly via a non-semantic route. Chinese radicals and characters are 

represented in this model as independent orthographic units in the Chinese word recognition 

system. This is because many radicals are pronounced differently than the whole characters that 

contain them, and some dyslexic Chinese readers are able to retrieve the names of radical 

components but not the names of the whole characters that contain them. According to Weekes 

and colleagues (1999), it is possible that morphemes are also represented as independent units in 

the Chinese word recognition system. They noted that to read a Chinese character correctly, the 

reader must know the pronunciation that is associated with the character as a whole-word.  

The relationship between semantic activation and phonological activation in Chinese 

reading is further described in a semantic priming study by Zhou and Marslen-Wilson (1999a). 

The semantic priming design allows experimenters to measure the extent to which semantic 

processing of a target stimulus is aided by the prior presentation of a related or unrelated 

stimulus (i.e., the prime). In a semantic priming task with healthy volunteers, Zhou and 

Marslen-Wilson (1999a) examined whether phonological and orthographic information in the 

primes affected semantic activation in reading of Chinese. They found that semantic activation of 

base words was influenced by the phonological characteristics of the prime, but that it was the 

interactions among phonology, orthography and morphology that determined semantic activation. 

They suggested that interactive processes in semantic activation also involve feedback from 

semantic activation to orthographic and phonological activation. From their point of view, this 
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study does not support the hypothesis that the Chinese reader must understand the meaning of 

the written character prior to accessing phonology.  

There is evidence from eye movements during Chinese reading that phonological codes 

influence the identification of Chinese characters. Pollatsek, Tan and Rayner (2000) studied eye 

movements during oral reading of target Chinese characters. Participants were presented with a 

“preview” stimulus (i.e., a single Chinese character) in the parafovea to the right of visual 

fixation. When the participant moved their eyes to the character location, a target character 

replaced the preview during the eye movement to the target. The relationship between preview 

and target characters was controlled to be visually similar or dissimilar, homophones or 

nonhomophones, synonyms or non-synonyms, sharing a phonetic radical or sharing a semantic 

radical, and considered to be a phonetically regular compound character (i.e., the phonetic 

radical in isolation was pronounced the same as the compound character) or a phonetically 

irregular character (i.e., the phonetic radical in isolation was pronounced differently from the 

compound character). 

Participants obtained a similar degree of preview benefit from both the orthographically 

similar and the orthographically dissimilar homophones, which is evidence that the effect cannot 

be due to the orthographic similarity of preview and target. However, the regular Chinese 

characters were pronounced faster than the irregular Chinese characters, suggesting that 

phonological codes were involved in the identification of the Chinese target characters. Based on 

the results of this experiment, Pollatsek and colleagues (2000) hypothesized that for phonetically 

regular characters, phonological processing of phonetic radicals cooperates with phonological 

processing of whole characters, leading to a faster activation of phonological information than 

for phonologically irregular characters. 
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The Chinese reading performance of three children with developmental dyslexia described 

by Shu and colleagues (2005) provided support for the model of Weekes, Chen and Gang (1997). 

The results showed that the development of the semantic pathway and the non-semantic pathway 

can be selectively delayed in learning to read Chinese. The dissociation between the two types of 

developmental dyslexia suggested in these cases provided evidence that a semantic and a 

non-semantic pathway exist independently in Chinese reading. Shu and colleagues (2005) 

hypothesized that the reading model of Weekes and colleagues can be extended to account for 

deficits in morphological and phonological awareness that impeded normal developmental of the 

semantic and non-semantic reading pathways in these three children.  

Li and Ho (2011) reported that tone discrimination and tone production were found to 

correlate significantly with Chinese word reading ability. They found that Chinese dyslexic 

children show weaknesses in tone awareness. They concluded that accurate tone processing 

appears to clarify or eliminate confusions between phonological and morphological 

representations. Moreover, some Chinese characters, such as homophonic words with different 

tones, may confuse non-skilled readers, such as dyslexic children. 

As noted above in regard to English reading, it is generally believed that phonological 

information is held short-term in a verbal working memory store prior to and during oral reading. 

Few empirical studies have addressed the issue of verbal working memory with phonemic 

information (consonant and vowel) in a tonal language, as discussed below. No empirical study 

has been reported to address the issue of suprasegmental feature (tone) in verbal working 

memory. Translation of tone information from print to sound also can be accomplished in 

reading of musical notation. A theoretical model of translation of tone in music reading is 

discussed in the following section. 
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A theoretical model of reading music. Reading of musical notation (Western music) 

involves figure-ground integration or perception. As shown in Figure 2.1, the ground reveals a 

stave, whereas figures are other symbols, including clefs, time signatures, types of notes, types of 

rests, other symbols (e.g., sharp, fermata, repeat), loudness level of notes (e.g., ff), jargon 

affecting notes (e.g.. legato), and jargon affecting speed of notes (e.g., rit.). Most of these 

symbols are in the time-based domain and the pitch-based domain, whereas spatial 

representation indicates pitch height. The pitch-based domain is used to map vertically organized 

spatial location, whereas the time-based domain is used to map horizontally to a sequence of 

musical events from left to right on a stave (Steward, Walsh & Frith, 2004). Deriving pitch from 

reading musical notes requires translation of the visual stimulus into pitch. 

 

Figure 2.1 An example of musical notation. 

Tone in music means pitch. As defined by Deutsch (1999): “Pitch is the most characteristic 

property of tones, both simple (sinusoidal) and complex. Pitch systems (like the 

diatonic-chromatic and the 12-tone systems) are among the most elaborate and intricate ever 

developed in Western and non-Western music. Pitch is related to the frequency of a simple tone 

and to the fundamental frequency of a complex tone (pp. 93-94).” 

The Western tonal music system is highly structured and contains a set of twelve semitones 

in an octave. The twelve semitones are combined into subsets of seven tones that make up a scale; 

a scale contains seven pitches per octave. Pitches separated by an octave are heard as very 

similar and are typically given the same name, referred to as the pitch class (e.g., all the notes 
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called “A” on a piano keyboard) (Krumhansl & Toiviainen, 2003; Patel, 2008).  

Schön (2002) offered a preliminary model of music sight-reading that includes three phases: 

visual encoding, transcoding, and production levels. However, this model does not include a 

detailed description of abstract internal representations that would be involved in the transcoding 

of print to sound, and there are no other theoretical models of cognitive processes involved in 

reading musical notation. Based on the English reading model described above, it could be 

hypothesized that transcoding from musical notation to sound involves visual perception, visual 

recognition, comprehension, and musical working memory before production. 

Although there are no theoretical models of reading musical notation in the literature that 

include a music working memory component, Gudnubdsdittur (2010) claimed that sight reading 

required general mental capacities such as working memory and mental speed. Lehman (2007) 

also suggested that the task of music reading is demanding of short-term (i.e., working) memory. 

Furthermore, for singing or instrumental production, tone information would need to be held in 

working memory as is needed for verbal production of English or Chinese in the reading models 

above. Verbal working memory is described below, and the nature of working memory for tones 

in music also will be addressed below. 

Components of verbal working memory 

The multi-component model of working memory developed by Baddeley and colleagues 

(Baddeley & Hitch, 1974; Baddeley, 2003) includes four main components: the phonological 

loop (which deals with sound, phonological and verbal information); the visual-spatial sketchpad 

(which temporally stores spatial and visual information such as color and shape information); the 

episodic buffer (which links different domains such as spatial, visual, sound and verbal 

information); and the central executor (a flexible system for controlling and regulating cognitive 
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processes). Of these four components, the phonological loop has been linked to language 

function more often than the other components (Baddeley, 2003; Repovs & Baddeley, 2006; 

Williamson, Baddeley & Hitch, 2010).  

In verbal production tasks, including oral reading of English and Chinese, abstract 

phonological information is generally believed to be held short-term in a verbal working memory 

store prior to and during verbal production. Verbal working memory is a key component for 

verbal production tasks in general, and plays an important role in language learning (Song & 

Cheng, 2006; Gottardo, Chiappe, Yan, Siegel & Gu, 2006; Wang, 2001; Yeung, 2007). Verbal 

working memory is often described as including the phonological loop and the central executor 

(i.e., the central executive; Crosson et al., 1999; Mueller et al., 2003; Nadeau et al., 2000) 

The phonological loop. The phonological loop is proposed to be the verbal working 

memory subsystem that is used to hold verbal or tone information, whether the stimulus is 

presented in auditory form or from other input modalities (Baddeley, 2003; Sweet et al., 2008). 

Three main phenomena of working memory are proposed to be associated with the phonological 

loop (Acheson & MacDonald, 2009b; Buchsbaum & D’Esposito, 2008; Mueller, Seymour, 

Kieras & Meyer, 2003). The first of these (i.e., phonological coding of stored word sequences) is 

based on the assumption that during verbal working memory tasks word sequences have to be 

memorized, coded and stored as temporary phonological representations. The second 

phenomenon (i.e., information loss through time-based decay) is based on the assumption that it 

requires time to refresh the memory trace for storing items in verbal working memory. The third 

phenomenon (i.e., memory-trace retention by strategic articulatory rehearsal) is based on the 

assumption that articulatory rehearsal can refresh working memory and that articulatory 

durations measured for word sequences are reliable predictors of memory spans. 
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 The phonological loop has been described as being composed of two parts: 1) a 

phonological store; and, 2) an articulatory rehearsal process (Repovs & Baddeley, 2006; Awh et 

al., 1996; Chen & Desmond, 2005; Baddeley & Larsen, 2007; Buchsbaum & D’Esposito, 2008; 

Baddeley, 2003). The phonological store, or buffer, has been described as that component of 

verbal working memory that interfaces with other perceptual and mnemonic systems. It is also 

known as an input storage system, which can hold speech related information for one to two 

seconds (Rudner & Rönnberg, 2008; Vallar, 2006). The phonological store is thought to enable 

the formation and maintenance of multidimensional representations (Rudner & Rönnberg, 2008). 

It is assumed to have a limited capacity of about four chunks or episodes, and to be accessible 

through conscious awareness (Baddeley, 2010). Auditory memory traces in the phonological 

store are thought to decay over a period of one to two seconds, unless refreshed by articulatory 

rehearsal (Rudner & Rönnberg, 2008). The articulatory rehearsal process (i.e., the output 

rehearsal process or articulatory mechanism) serves to refresh contents of the phonological store 

subvocally, thus allowing the system to maintain short sequences of verbal items in memory for 

an extended interval. 

Characteristics of the phonological loop. Findings from a variety of working memory 

experiments have allowed researchers to elaborate descriptions of the phonological loop. These 

findings include the phonological similarity effect, the word length effect, the serial position 

effect, the irrelevant sound effect, and the concurrent articulation effect, described below. Many 

researchers argue that all five effects support the assumption of a separable phonological store 

and an articulatory mechanism (Acheson & MacDonald, 2009a; Acheson & MacDonald, 2009b; 

Mueller et al., 2003) though Buchsbaum and D’Esposito (2008) maintained that the serial 

position effect is not related to the phonological loop.  
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Experimental analysis of the phonological store usually depends on measures of memory 

capacity and interference tasks (Repovs & Baddeley, 2006). Jones, Hughes and Macken (2007) 

defined the phonological store concept in terms of six key characteristics: 1) encoding of verbal 

materials in phonological form, 2) direct access to the store by auditory stimuli, 3) indirect 

access to the store via a grapheme-to-phoneme conversion process of visual-verbal stimuli, 4) 

rapid loss of phonological representation through decay, 5) restoration of phonological 

representations, and 6) loss of information in the store through interference based on phoneme 

similarity.  

Experimental analyses of the articulatory mechanism have incorporated a variety of tasks in 

which experimenters examine the effects of disruption to articulatory rehearsal with concurrent 

articulation, described below. For example, concurrent articulation has been observed to interfere 

with repetition (Coltheart, 1993), rhyme judgments and homophone judgments (Tree, Longmor 

& Besner, 2011), immediate serial recall (Gupta & MacWhinney, 1995), reading in the Stroop 

task (Chmiel, 1984), and reproduction of rhythm (Saito & Ishio, 1998).  

The phonological similarity effect.  There is evidence that it is much more difficult to 

recall a set of phonologically similar than dissimilar words (Acheson & MacDonald, 2009a; 

Baddeley, 2003; Jones, Hughes & Macken, 2007; Lobley, Baddeley & Gathercole, 2005; Mueller, 

Seymour, Kieras & Meyer, 2003).  This effect is thought to result because items that are 

specified by each cue are encoded phonologically, with similar items having fewer distinguishing 

cues (Baddeley, 2003). The phonological similarity effect has been observed in a listening span 

task in healthy volunteers, and interpreted as reflecting reliance on a phonological code during 

information retention in the working memory store (Lobley, Baddeley & Gathercole, 2005).  

When phonologically similar stimuli are presented, a common type of speech error is an 
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onset exchange in which the initial consonants in a bi-syllable exchange their serial positions (e.g. 

She sells seashells…as She shells sea sells). Another variation of exchange error in recalling 

phonologically similar stimuli is to misorder initial phonemes (e.g., incorrectly saying /piy/ and 

/siy/ for the target utterance /siy/ and /piy/) (Acheson & MacDonald, 2009a). Acheson and 

MacDonald (2009a) argued that phonological similarity is a type of contextual similarity, 

reflecting interaction between phonological similarity and phoneme position. On this account, 

serial ordering errors in different syllable positions emerge when there is greater activation for an 

incorrect phoneme than for a correct one at a given position.  

After reviewing data from several studies in which the phonological effect was observed 

(e.g., Caplan et al., 1992; Caplan and Waters, 1994; Lovatt et al., 2000), Mueller and colleagues 

(2003) concluded that different experimental task instructions induced different experimental 

results. For example, instructions that discouraged participants from using verbal rehearsal to 

perform the serial recall task but encouraged participants to adopt other nonverbal rehearsal 

strategies caused relatively little difference between serial recall accuracy for phonologically 

similar versus phonologically dissimilar words (Caplan, Rochon & Water, 1992; Mueller et al., 

2003). In contrast, instructions that encouraged participants to use articulatory rehearsal resulted 

in significantly lower serial recall accuracy for phonologically similar than for phonologically 

dissimilar words (Caplan & Water, 1994). Other linguistic variables such as frequency, 

familiarity, number of phonemes, and semantic associations also modified the phonological 

similarity effect (Lovatt et al., 2000). With high error rates (e.g., > 50%) the phonological 

similarity effect tends to disappear, indicating that subjects are abandoning the loop for 

alternative strategies such as semantic or visual coding (Baddeley, 2003). 

The word length effect.  It is easier to recall a set of short words than a set of longer words 
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(i.e., with length defined as number of phonemes) (Acheson & MacDonald, 2009a). The most 

widely accepted account of this word length effect is that it reflects time-based decay of 

information in the phonological store, in that longer words take longer to produce and thus allow 

more decay (Acheson & MacDonald, 2009a; Neath, Bireta & Surprenant, 2003).  Caplan and 

colleagues (1992) investigated the articulatory determinants of the word length effect on memory 

span tasks. They found that when words are equated for number of phonemes, it is the 

phonological structure of a word, not features of its actual articulation, that determines the word 

length effect in span tasks. However, they noted that if overt or subvocal articulatory rehearsal is 

used as an optional memory strategy it also can result in a word length effect.  

Neath, Bireta and Surprenant (2003) suggested that the word length effect might be an 

artifact of the particular set of stimuli used in the recall task. They used stimuli from previous 

studies and their own new stimuli to examine the word length effect by pronunciation time. They 

found that only one set of stimuli from Baddeley et al. (1975) showed the expected word length 

effect. The stimuli from Caplan and colleagues (1992) showed a reverse word length effect (i.e., 

long items recalled more than short items), and the stimuli from Lovatt and colleagues (2000) 

and from Neath and colleagues (2003) resulted in no significant differences in recall for short 

versus long words. 

Mueller and colleagues (2003) reported that most evidence for the word length effect in 

verbal serial recall derives from studies in which articulatory duration (i.e., the time taken to 

pronounce a word) and phonological complexity (i.e., the number of phonemes and syllables in a 

word) were confounded. Their review indicated that stimuli that differed in both number of 

phonemes and articulatory duration produced a word length effect, whereas the stimuli that 

differed only in their articulatory duration and not in number of phonemes did not produce a 
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word length effect. 

Another factor that can impact the word length effect is list length. Baddeley (2010) noted 

that when list length is increased from four to eight words, and several learning trials are allowed, 

the expected pattern reverses such that the longer word list is recalled more accurately than the 

shorter word list (Baddeley & Hitch, 1974; Baddeley, Chincotta, Stafford & Turk, 2002). They 

attributed this finding to the influence of long-term memory in that repeated learning trials 

appear to force greater reliance on long-term memory, making word meaning the crucial factor in 

facilitating recall. 

The serial position effect. The serial position effect is a phenomenon in which recall of 

auditory stimuli presented in a list is affected by list position. Stimuli in the first and second 

positions and stimuli in the final position are remembered better than stimuli in the middle list 

positions (Baddeley, 1986; Acheson & MacDonald, 2009a). Better recall of the initial stimulus in 

the list (i.e., the primacy effect) is thought to result because the first one or two items receive a 

greater amount of rehearsal than the latter stimuli and thus are stored in long-term memory. 

Superior recall of the last stimulus in the list as compared to middle stimuli (i.e., the recency 

effect) is thought to result because the last stimulus has less decay due to its more recent 

presentation (Baddeley, 1986; Medin, Ross & Markman, 2004). 

In a recent review, Acheson and MacDonald (2009a) described three important 

characteristics of the serial position effect, and described it as being involved in recall of word 

list positions and also in recall of phoneme positions within a syllable. First, they noted 

positional constraints that appear to affect error production in list recall. That is, a common error 

in serial recall tasks is the production of a correct element but in an incorrect serial position only 

one or two positions earlier or later than its correct location. Second, they noted primacy and 
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recency effects in syllable position and noted that onset and offset syllable positions are “edges” 

of the syllable, which means that both of these (first and last) positions in the syllable are 

particularly distinct because there are no items preceding or succeeding them. Lastly, these 

authors note that because the first and last positions have fewer positions over which 

transposition errors can occur, their recall is better than the middle items. These three 

characteristics of the serial position effect appear to reflect features of the phonological store, 

which has a limited capacity to hold information. 

In a study of visual identification of letters, digits, and symbols presented in strings, Tydgat 

and Grainger (2009) found that viewing fixation, viewing position, and visual field interact with 

the serial position effect to influence letter and word recognition. Experimental manipulations of 

visual presentation revealed that letters and digits were recalled with much higher accuracy than 

symbols in the first position of the string, and there was a final-position advantage for recall of 

letters and digits compared with symbol stimuli. The authors concluded that the receptive field 

size of retinotopic letter and digit detectors has adapted to the need to optimize the processing of 

letter and digit strings. In other words, the size and shape of the visual receptive fields has 

changed as a result of experience in reading words and numbers; for example, the smaller the 

receptive field the less interference there would be from neighboring characters in the string. 

The irrelevant sound effect. The irrelevant sound effect occurs when performance in 

immediate list recall is significantly impaired by the presence of to- be- ignored irrelevant sound 

(i.e., an irregularly changing acoustic stream) during presentation of list items visually (Johns & 

Macken, 1993; Schendel, 2006) or auditorily (Schendel, 2006). Jones and colleagues (1993) 

found that this effect can be induced with a variety of forms of irrelevant stimuli including 

variable tones, speech or music (Repovs & Baddeley, 2006; Acheson & MacDonald, 2009a).  



25 

 

The irrelevant sound effect is thought to reflect the results of competition between the 

irrelevant sound and the presented list stimuli, disrupting storage and representation of serial 

order within the phonological store (Baddeley, 2003; Repovs & Baddeley, 2006). It appears that 

acoustic information that varies irregularly (e.g., a foreign language) may be noisier and thus 

more disruptive to serial list recall than “regular” sound (e.g., white noise or one’s native 

language) (Colle & Welsh, 1976).  

Alley and Greene (2008) explored the effects of three different types of irrelevant sound on 

verbal working memory: vocal music (i.e., music with lyrics), equivalent instrumental music (i.e., 

the same melody of vocal music without lyrics), and irrelevant speech. In a digit span task, 

participants showed the best recall performance in the silent (control) condition, followed by the 

instrumental music condition and then the irrelevant speech condition, whereas the worst 

performance was demonstrated in the vocal music condition. Because the two most difficult 

conditions involved language (i.e., lyrics and speech), the authors concluded that the participants 

used their phonological store to memorize verbal information and therefore irrelevant speech or 

lyrics presented simultaneously interfered with recall. 

The concurrent articulation effect. Concurrent articulation, also known as articulatory 

suppression, occurs when an individual says continuous irrelevant speech sounds (e.g., “the, the, 

the…”) while simultaneously listening to stimuli in an immediate serial recall task (e.g., Gupta & 

MacWhinney, 1995). Concurrent articulation can disrupt performance in nonspeech tasks such as 

rhyme judgments, homophone judgments (Tree, Longmor & Besner, 2011) and reproduction of 

rhythm (Saito & Ishio, 1998). Concurrent articulation is thought to block rehearsal and thus to 

prevent the transformation and storage of information in the phonological store (Baddeley, 2010). 

This effect supports the idea that subvocal articulation in real time refreshes the decaying 
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memory trace within the phonological store (Repovs & Baddeley, 2006). Also, overt concurrent 

articulation may provide acoustic masking of the stimuli that could disrupt perception of 

phonologically similar letters, such as CDGPTV (Baddeley & Larsen, 2007). As noted below, the 

effect of concurrent articulation can vary depending on stimulus modality and type.  

Other factors affecting the phonological loop. The five characteristics of the phonological 

loop described above can diverge under different experimental conditions, such as presentation 

of stimuli through different sensory modalities. Long-term memory also interacts with operation 

of the phonological loop, as described below. 

Visual-orthographic factors. The results of verbal working experiments can differ for word 

stimuli presented in written versus auditory format. Concurrent articulation erases the 

phonological similarity and word length effects in serial recall for visual stimuli but not auditory 

stimuli (Acheson & MacDonald, 2009a; Baddeley & Larsen, 2007; Rudner & Ronnberg, 2008). 

That is, for visual stimuli there is no significant difference in performance given phonologically 

similar versus dissimilar stimuli and no significant difference given short versus long words lists.  

One explanation for this pattern is that concurrent articulation blocks visual information 

from being recoded into phonological form and entering the phonological store whereas 

auditory-verbal stimuli have direct access to the phonological store without requiring recoding 

from orthography (Acheson & MacDonald, 2009a; Baddeley & Larsen, 2007).  This may be a 

learning effect in that adults compared with Children have more experience in mapping from 

auditory stimuli to meaning or articulation than they do in mapping from orthographic stimuli. 

There is some evidence that speech production processes may be involved in developing the 

phonological code for written input, and concurrent articulation would interfere with this process 

(Acheson & MacDonald, 2009a). 
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To examine the concurrent articulation effect in the visual modality, Tree, Longmore and 

Besner (2011) conducted experiments with healthy volunteers involving phonological judgments 

of print. They found that in a rhyme judgment task, concurrent articulation increased errors for 

both printed word and nonword stimuli, whereas it slowed reaction times for words but not for 

nonwords. The authors interpreted these results as reflecting the dual-route reading model in that 

whole words read via the lexical route must be phonologically segmented in short-term memory, 

while nonwords read via the sublexical grapheme-to-phoneme conversion route are already 

segmented. Concurrent articulation is thought to disrupt the segmentation of words as reflected 

in slower reaction times. 

In the Tree et al. (2011) study, participants demonstrated faster reaction times in making 

auditory rhyme judgments of similarly spelled word pairs (e.g., COT-POT) as compared to word 

pairs that rhymed but had less orthographic overlap (e.g., YACHT-POT). When given visual 

stimuli in the rhyme judgment task, the participants were more likely to respond ‘Yes’ to 

non-rhymes that were orthographically similar as compared to orthographically dissimilar stimuli, 

and they were more likely to respond ‘No’ to rhymes that were orthographically dissimilar as 

compared to orthographically similar. Both of these patterns reflect reliance on 

visual-orthographic information rather than on phonological information in performing rhyme 

judgments. 

Orthographic similarity also affected performance in the homophone judgment task in the 

same study. With concurrent articulation false positive rates (i.e., incorrectly judging word pairs 

to be homophones) increased for orthographically similar items as compared to orthographically 

dissimilar non-homophone pairs, and false negatives increased with orthographically dissimilar 

items (i.e., incorrectly rejecting visually dissimilar homophone pairs) as compared to 
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orthographically similar homophone pairs. 

 Tree and colleagues (2011) demonstrated that there is a complex interaction between 

phonological and orthographic codes and the degree of phonological disruption from concurrent 

articulation. They suggested that researchers take more notice of how orthographic similarity can 

affect performance in phonological working memory experiments. Baddeley and Larsen (2007) 

also suggested when examining verbal working memory, researchers should consider the results 

based on visual versus verbal input. 

Stimuli controlled for visual similarity at the word level (e.g., similar: fly, cry; dissimilar:  

lie, sigh) and at the letter level (e.g., similar: Kk, Ww; dissimilar: Dd, Rr) were incorporated into 

a verbal serial recall experiment with healthy volunteers (Logie, Della Sala, Wynn & Baddeley, 

2000). At both the word and letter levels, participants recalled fewer visually similar items, with 

or without concurrent articulation. When working memory experiments involve visual stimuli 

(e.g., random letter sequences), normal healthy subjects may use more than one form of coding 

for retention. Use of multiple (visual, phonological, and semantic) codes may augment recall 

performance, relative to use of single codes. Logie and colleagues (2000) assumed that 

sequential orthographic stimuli can be held in some kind of visual temporary memory store. 

Logie and colleagues noted that participants report various strategies in performing verbal 

serial recall, including visual imagery, semantic coding, or subvocal rehearsal. In part, this 

heterogeneity may reflect task instructions in that subjects may use a visual code if they are 

required to retain information about visual form, but in contrast rely heavily on a phonological 

code if they are asked to recall information about letter identity (Logie et al., 2000). Slower 

stimulus presentation rates also lead participants to use a wider range of strategies. 

Baddeley and Larsen (2007) conducted three experiments in which healthy volunteers 
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attempted to recall sequences of similar or dissimilar consonants (6 letters), presented visually or 

auditorily under concurrent articulation. They found that the phonological similarity effect 

occurred for auditory stimuli but was erased when the stimuli were visual, an outcome pattern 

discussed above. However, an unexpected result from this study was that performance was better 

with visual than with auditory presentation, whereas the typical trend is for the opposite. The 

authors suggested that the concurrent articulation and phonological similarity may have 

encouraged participants to use supplementary visual or semantic codes, which possibly are more 

readily accessible with visual presentation. 

Vallar (2006) and Baddeley (2010) hypothesized that there is a visual short-term store 

before orthographic to phonological recoding or grapheme-to-phoneme conversion, in which 

visual stimuli are encoded in terms of shape. This visual short-term store (sometimes referred to 

as iconic memory) is depicted in Figure 2.2 (Vallar, 2006). In this theoretical model, verbal input 

is analyzed phonologically and then has direct and automatic access to the phonological store 

and to long-term memory. A rehearsal process is thought to involve recirculation of the memory 

trace between the phonological store and a phonological output mechanism (i.e., buffer) before 

speech production. In contrast to verbal input, visual input must be converted to phonology prior 

to accessing the phonological output buffer and interacting with the phonological store and 

long-term memory. 

The schematic in Figure 2.2 can be used as a framework for interpreting performance in 

working memory tasks involving visual stimuli. For example, if participants are influenced by 

the visual-orthographic characteristics of the stimuli (i.e., orthographic similarity effect), one 

could hypothesize that they are attempting to perform the task using visual short-term memory 

and not phonological information. In contrast, if participants are not influenced by visual 
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similarity and instead are influenced by phonological similarity then one could hypothesize that 

they are relying on the phonological output buffer in performing the working memory task. 
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Figure 2.2 Schematic of the phonological loop with visual and auditory input (Vallar, 2006). 

The influence of long-term memory. In addition to the characteristics of verbal working 

memory described above, there is evidence that verbal working memory can be influenced by 

long-term memory (LTM). Long-term memory refers to the retention of information for more 

than 30 seconds with larger capacity than working memory. Forgetting from long-term memory 

is usually due to retrieval failure caused by interference from other knowledge (Medin, Ross & 

Markman, 2004).  

Language is a learning process, and is therefore impacted by top-down knowledge, which 

refers to high-level information (e.g., stored phonological, lexical and semantic representations) 

that guides the search for lower-level information (e.g., letters from that word) (Medin, Ross & 

Markman, 2004). It is widely accepted that long-term memory interacts with working memory, 

but the crucial question is how they interact (Baddeley, 2010). As depicted above in Figure 2.2, 
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the relationship between working memory and LTM includes bidirectional influence between the 

phonological short-term store and LTM.   

One example of how long-term knowledge can be used to aid immediate recall is that 

performance in immediate recall of nonwords is better when stimuli are similar in phonetic 

structure to the native language as compared to a non-native language (Baddeley, 2003). 

Similarly, it is easier for bilingual speakers to memorize a telephone number using their native 

language rather than using a second language or unfamiliar language, reflecting the importance 

of long-term phonological knowledge in short-term verbal memory (Baddeley, 2003; 2010). 

Other evidence for the influence of long-term memory on verbal working memory is that 

participant strategies strongly impact the effects of phonological similarity and word length on 

working memory, as mentioned above. For example, Campoy and Baddeley (2008) instructed 

participants to use a phonological strategy, a semantic strategy or no strategy in a serial recall 

paradigm and found evidence that the semantically instructed group did attempt to use the 

strategy of associating items based on word meaning to remember the information. This semantic 

associative information consists of rich long-term linguistic knowledge that can influence verbal 

working memory. 

 Long-term linguistic knowledge is also reflected in a variety of lexical effects observed in 

verbal working memory experiments, such as improvements in recall due to lexicality (words > 

nonwords), lexical frequency (high frequency > low frequency words), and lexical-semantic 

representation (concrete > abstract words; and high image > low image words) (Acheson & 

MacDonald, 2009a). Sublexical factors also affect performance in verbal working memory 

experiments. Long-term knowledge about syllable structure influences the serial ordering of 

verbal information in verbal working memory, and errors reflect syllable position constraints.  
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Other types of long-term sublexical phonological knowledge affect performance in verbal 

working memory experiments, including phonotactic frequency and phonological neighborhood 

density (Acheson & MacDonald, 2009a). Phonotactic frequency refers to the frequency with 

which sounds are combined in a language (Davidson, 2011). In verbal recall, nonwords with high 

phonotactic frequency (i.e., composed of common verbal sounds and sound combinations) are 

easier to recall than are those with low phonotactic frequency. Phonological neighborhood 

density is defined as the number of words that differ from a target by only one phoneme in the 

same position (Acheson & MacDonald, 2009a). In verbal working memory, words that come 

from dense phonological neighborhoods (i.e., with more phonologically related words in the 

language) are recalled more accurately than are those from sparse neighborhoods. Both 

phonotactic frequency and phonological neighborhood effects reflect top-down knowledge (i.e., 

long-term memory). 

Skilled performers such as musicians and chess players appear to have an expanded 

working memory capacity that can activate acquired knowledge and special memory skills (i.e., 

long-term memory) (Chase & Simon, 1973; Stigler, 1984). Ericsson and Walter (1995) proposed 

the notion of “long-term working memory” to describe the large demands on working memory 

during these forms of expert performance or in tasks such as text comprehension. 

In Figure 2.2 above (Vallar, 2006), connections from verbal LTM to the phonological 

short-term store and the rehearsal process illustrate the support of LTM systems in aspects of 

immediate retention. In addition to LTM influencing performance in working memory tasks, 

there is evidence from different subject populations that the phonological short-term store 

contributes to long-term learning. For example, the capacity of phonological memory in children 

is a main predictor of vocabulary acquisition (Gathercole & Baddeley, 1993).  
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The central executive. Based on Baddeley’s model of working memory (2003), the central 

executive component is a supervisory activating system that controls behavior by habit patterns 

or schemas. In other words, the central executive is a cognitive control function that regulates the 

encoding, retrieval, and integration or manipulation of information entering working memory 

from different sensory storage systems or from long-term memory (Miller & Kupfermann, 

2009).  

Hedden and Yoon (2006), based on results from Miyake et al. (2000), suggested that 

executive function can be decomposed into three distinctive processes: shifting among multiple 

tasks or mental sets, updating and monitoring of representations in working memory, and 

inhibition of responses. According to these authors, shifting among multiple task demands 

involves loading a new goal set into working memory and inhibiting prior, non-relevant goal sets 

and their corresponding task dimensions. Updating involves the manipulation of representations 

stored in working memory, such as reordering or recombining according to task demands. 

Inhibition involves the suppression of unwanted or irrelevant representations, goals, and 

responses.  

Bao and colleagues (2006) discussed the concept of shifting and suggested that normal 

adults have two abilities of shifting: the goal of stability, which is to complete one response 

while resisting the tendency to jump to another one; and the goal of flexibility, which refers to 

switching from one goal or action plan to another when necessary. They noted that shifting is 

accompanied by inhibition of the previous response set, which is referred to as “backward 

inhibition.” They provided evidence that backward inhibition occurs not only during response 

switching but also during working memory attention switching, which implies that backward 

inhibition could be a general mechanism that serves to reduce interference from all potentially 
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competing cognitive stimuli (Bao et al., 2006).  

A commonly used measure of central executive function is the n-back task (Baddeley. 2003). 

In the n-back task, participants are presented with a series of stimuli and are asked to indicate 

whether the current stimulus matches the stimulus presented n stimuli back in the series, where n 

equals a number between 0 and 3 (Simmons, 2000). The n-back task can be structured to include 

various types of stimuli, including letters (Lieberman & Rosenthal, 2001; Sweet et al., 2008), 

words (Crosson et al., 1999), and viewed objects (Christensen & Wright, 2010). The tendency of 

participants to accept or reject various types of distractor items (e.g., orthographically, 

semantically or phonologically similar or dissimilar) can be informative about varying linguistic 

processing demands in the task and strategies the participants may be using to complete the task 

(e.g., Crosson et al., 1999). 

Evidence for the components of verbal working memory (i.e., the phonological store, the 

articulatory mechanism, and the central executive) primarily has come from research involving 

non-tonal languages such as English. Differences between the Mandarin Chinese and English 

writing systems may influence the results of verbal working memory experiments. However, 

there has been little work examining working memory for the tonal component in Mandarin 

reading. Another unresolved issue of working memory is the relationship of tone information in 

tonal language versus music. In the next section, working memory for Mandarin tone and for 

music will be discussed.  

Working memory for tone information 

There are different definitions of tone information in the field of linguistics as compared to 

music. Few studies have directly examined how linguistic tone and musical tone compare, 

especially in the working memory field. No research has been conducted on links between 
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lexical tone and verbal working memory in Chinese or other tonal languages. Studies of how 

working memory relates to other aspects of reading in Mandarin Chinese are reviewed below, in 

addition to studies of working memory for musical tone.  

Working memory and reading Mandarin Chinese. There is evidence that working 

memory plays an important role in reading Chinese. Deficits in both linguistic and working 

memory processes appear to contribute to the difficulties of poor readers of Chinese (So & Siegel, 

1997). Leong, Tse, Loh and Hau (2008) examined the relationships among children’s 

performance on several cognitive tasks, including verbal working memory tasks (memory span 

and tongue twister tasks), text comprehension, and Chinese pseudoword1 reading. The results 

showed that children with better verbal working memory performed much better in nonword 

reading and text comprehension. 

Chung, Ho, Chan, Tsang and Lee (2011) assessed cognition in Chinese Cantonese-speaking 

adolescents with versus without developmental dyslexia and found that the dyslexic group was 

weaker than controls in rapid naming, visual-orthographic knowledge, morphological awareness, 

and verbal working memory. These four cognitive measures were also associated with word 

reading, word spelling, and reading comprehension.  

Xu and Li (2009) manipulated the content of Chinese word lists used in a serial recall task 

to examine the effects of working memory in Chinese reading. The expected word length effect 

(greater recall of short words than long words2) was observed when word lists were made up of 

only short words or only long words. However, when word lists consisted of mixed short and 

long words, the results were inconsistent. That is, when one long word was embedded in a list of 

                                                 
1 A Chinese pseudoword reading consists of a meaningless two-character word; for example from Leong, et al. 

(2008): 炮喻 [pau3 jy4]. 
2 Short words refer to two-characters, whereas long words refer to four-character words. Xu and Li (2009) used 

country names such as Switzerland /瑞士/ (two characters) vs. Australia /澳大利亞/ (four characters). 
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four short words, the long word was recalled more accurately than a short word embedded in a 

list of four long words. Through a variety of such manipulations of word list stimuli and 

presentation, Xu and Li (2009) also found that total pronunciation time influenced recall 

performance. They also examined the effect of visual encoding on the memory process by using 

a technique of output delay. That is, after the final item in the word list was presented on a 

computer screen, a white cross was presented in the same location for two seconds. This 

manipulation disrupted the normal word length effect, suggesting that aside from phonological 

encoding, visual encoding also contributed to the working memory process in Chinese reading. 

Based on these results, the authors concluded that working memory may involve multiple, 

parallel, and different encodings that are both competitive and complementary in memory 

processing.   

Mandarin Chinese speakers have demonstrated greater memory spans on forward digit span 

and spatial span than English speakers (Chen et al., 2009). Chincotta and Underwood (1997) 

reported that Chinese speakers obtained a larger digit span without concurrent articulation than 

English, Finnish, Greek, Spanish and Swedish speakers, but that with concurrent articulation 

there were no differences across languages. With concurrent articulation, the normal translation 

of visual stimuli into phonological codes was prevented, thus reducing the contribution of the 

phonological loop. This indicated that superior digit span in Chinese speakers was determined by 

phonological loop function, as concurrent articulation eliminated the advantage of Chinese over 

other languages. The high performance by Chinese speakers in digit span may be a feature of the 

language itself. Digit names in Chinese are monosyllabic and shorter in terms of articulation 

duration than other languages (Hoosain, 1984). An alternative explanation is that the digit span 

of the Chinese speakers was mediated by the phonological loop functioning at a faster rate of 
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subvocal rehearsal (Chincotta & Underwood, 1997). 

Lu and Zhang (2007) investigated the role of the phonological loop in Chinese reading 

comprehension. Participants read text samples normally or under conditions of concurrent 

articulation or irrelevant sound, and then judged whether the meaning of the text was acceptable 

or not. Selected words in the text passages were controlled for word frequency (high or low) and 

for phonological or orthographic similarity. They found that accuracy in the normal reading 

condition was higher than the concurrent articulation condition or the irrelevant sound condition, 

suggesting that the phonological store and articulatory rehearsal play an important role in 

Chinese reading. Not surprisingly, accuracy was higher given high frequency (i.e., more common) 

words as compared to low frequency words. Accuracy for the text containing correct words was 

higher than text containing the phonologically similar distracters. Text comprehension was worse 

given the orthographically similar distracter words as compared to the correct target words or the 

phonologically similar distracters. Moreover, within the difficult low frequency words, accuracy 

and reaction time given the orthographically similar words were significantly worse as compare 

to the phonologically similar words. This study provided evidence for the importance of the 

visual-orthographic code in Chinese text comprehension.  

As noted above, there have been no studies reported about working memory for lexical 

tones. Studies of working memory in Mandarin Chinese have been limited to other aspects of 

reading skill as described above. Unlike working memory for lexical tones, musical working 

memory has been the focus of a number of studies over the past two decades. In the next section, 

features of musical tone and musical working memory will be reviewed. 

Working memory for musical tone. Although no theoretical models of reading musical 

notation have included a working memory component, Berz (1995) was the first investigator 
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who presented a theoretical model of musical working memory. This theoretical model of music 

was centered around the central executive controller with “loops” of different types of 

information interacting with it, including multiple sensory loops (such as smell and taste 

components), a phonological loop (verbal component), a visual-spatial sketchpad (visual 

component), and a music memory loop (musical component). Berz made two major assumptions: 

1) that the central executive is a key component of musical working memory; and 2) that there 

are two different loops to support language and music: a phonological loop and a musical loop. 

The musical memory components from Berz (1995) were very similar to the phonological loop 

of Baddeley’s (1990) verbal working memory model with a musical store (i.e., similar to the 

phonological store) and an articulatory mechanism based on musical inner speech. However, 

Berz did not provide empirical evidence to support this theoretical model.  

There are some parallels in the characteristics of musical working memory and verbal 

working memory in terms of how performance patterns observed experimentally may relate to 

subcomponents of working memory. That is, the effects of phonological similarity, serial position, 

irrelevant sound and concurrent articulation in verbal working memory are similar to the effects 

of pitch similarity, serial position, irrelevant sound, and concurrent articulation in musical 

working memory. However, unlike verbal working memory, there is a lack of a word length 

effect (i.e., note length) in studies of musical working memory.  

The pitch similarity effect. The effect of pitch similarity in serial recall of tones is to make 

recall of tones that are similar in pitch more difficult than recall of tones that are not close in 

pitch. This pitch similarity (i.e., pitch proximity) effect was observed in non-musicians who 

participated in a study of serial recall of verbal and musical materials (Williamson, Baddeley & 

Hitch, 2010). Musicians who also participated in this study did not exhibit the pitch proximity 
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effect. Both musicians and non-musicians demonstrated the expected phonological similarity 

effect in recalling verbal materials in this study. Based on these findings, the authors proposed 

that verbal and musical information are stored separately but share the same articulatory 

mechanism. They also hypothesized that musicians may use a different strategy than 

non-musicians in memorizing tonal information, such as multidimensional auditory and visual 

codes. 

The serial position effect.  In several studies the possibility of a serial position effect was 

examined in tasks of recall with auditory stimuli, specifically musical tone information 

(Leshowitz & Hanzi, 1974; Surprenant, Pitt & Crowder, 1993; Silverman, 2007). Consistent with 

previous research with verbal information, a serial position effect was observed for musical tone 

stimuli such that tones in earlier (primacy) and final (recency) positions were recalled more 

accurately than tones in the middle positions of a sequence. 

The irrelevant sound effect.  As noted above in regard to verbal working memory, the 

irrelevant sound effect means that immediate recall is impaired by the concurrent or subsequent 

presentation of irrelevant verbal or tonal information. In a study of serial recall for digits and for 

tones, Schendel (2006) examined whether the irrelevant sound effect is a result of the ‘similarity 

of content’ (i.e., acoustic overlap) or ‘similarity of process’ (i.e., the changing state of the 

auditory sequence) between the to-be-remembered information and the to-be-ignored 

information. He reported evidence that both similarity of content and similarity of process 

reduced accuracy of serial recall in digit recall and in tone recall. In tone recall, greater pitch 

overlap resulted in greater interference of the irrelevant sound on recall of the to-be-remembered 

information. Based on the similar patterns of results in working memory experiments involving 

language or music stimuli, Schendel (2006) argued that working memory for language and music 
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are controlled by a single acoustic loop. This acoustic loop or acoustic store would take the place 

of the phonological store working memory for language. Because singing or listening to music 

impairs performance in language and working memory tasks, Schendel also argued that there is a 

single articulatory rehearsal mechanism for language and music.    

The concurrent articulation effect. As described above in relation to verbal working 

memory, concurrent articulation tasks require participants to repeat a certain phrase or word 

aloud while simultaneously doing a working memory task. This concurrent articulation requires 

that participants suppress the articulatory mechanism. Few studies have examined this effect in 

musical working memory; however, Koelsch and colleagues (2009) used concurrent articulation 

in a study of brain imaging involving working memory for tones. The brain regions that underlie 

working memory for verbal or tonal information have been examined in several brain imaging 

studies (Hickok, Buschsbaum, Humphrise & Muftuler, 2003; Koelsch, Schulze, Sammler, Fritz, 

Müller & Gruber; 2009; Schulze, Zysset, Mueller, Friederici & Koelsch, 2011). Koelsch and 

colleagues (2009) presented healthy volunteers with strings of sung syllables and asked them to 

remember either the pitch (tonal information) or the syllable (verbal information) from the 

German alphabet under six different experimental conditions: 1) verbal (syllable) rehearsal, 2) 

verbal suppression, 3) tonal (pitch) rehearsal, 4) tonal suppression, 5) no memorization, rehearsal 

or singing, and 6) no memorization but sing a song. In the rehearsal conditions, participants 

covertly rehearsed either syllables or pitches. During the suppression conditions (i.e., concurrent 

articulation), participants covertly sang a children’s song while trying to maintain either verbal or 

tonal information. Based on patterns of brain activation across conditions, the authors suggested 

that both rehearsing verbal and musical tonal information, as well as storage of verbal and 

musical tonal information relied on overlapping neural networks.  
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In summary, based on the few studies of musical working memory to date, it appears that 

musical working memory is similar to verbal working memory in terms of having a storage 

component (i.e., possibly a tonal store similar to the phonological store) and an articulatory 

mechanism. Like verbal working memory, musical working memory appears to be influenced by 

stimulus similarity, serial position, irrelevant sound, and concurrent articulation. There is some 

evidence that music and language may share elements of the same working memory process.  

Central executive function in musical working memory. Given that musical working 

memory appears similar to verbal working memory in having a storage component and an 

articulatory mechanism, one can hypothesize that musical working memory also includes a 

central executive. As noted above, the central executive is thought to be a cognitive control 

function that regulates the encoding, retrieval, and integration or manipulation of information 

entering working memory from different sensory storage systems or from long-term memory 

(Miller & Kupfermann, 2009). 

Ockelford (2007) offered a new construct of musical working memory based on previous 

theoretical models of Baddeley (1986) and Berz (1995). Unlike previous studies, he described a 

“musical executive” component of musical working memory. He hypothesized that this musical 

executive could be related to the central executive (Baddeley, 1986). On this account, the musical 

executive processes perception and strategic encoding of notes in memory. However, this report 

by Ockelford (2007) is a case observation in which the participant demonstrated the ability to 

“listen and play” chromatic blues. Blues is a specific musical structure and includes a lot of 

improvisation. It is questionable how much we can infer about the Western musical system from 

this case observation. 

Studies addressing the relationship between central executive function and musical working 
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memory have focused on the musical training effect (Degé, Kubicek & Schwarzer, 2011; 

Hargreaves & Aksentijevic, 2011; Moreno, Bialystok, Barac, Schellenberg, Cepeda & Chau, 

2011; Schellenberg, 2011). These studies examine whether the association between music 

lessons and intelligence (IQ) was mediated by executive function. In one of these studies, Degé, 

Kubicek and Schwarzer (2011) found that musical training could predict inhibitory control.  

There were three groups of children in this study: 1) no musical training, 2) one to four years of 

music instrumental training, and 3) more than four years of music instrumental training. All 

participants were administered tests of set shifting (i.e., an animal sorting task), selective 

attention (an auditory attention and response set task), planning and organization ability (a 

drawing condition; e.g., “draw a clock”), inhibition (inhibit automatic responses in favor of novel 

responses), and design fluency, which measured the ability to generate multiple unique designs 

by connecting dots presented in structured or random arrays. The fluid intelligence of 

participants was also measured as an index of IQ. The study results supported the hypothesized 

association between musical training and intelligence mediated by executive function. Selective 

attention and inhibition were the strongest contributors to the observed association. These results 

support the argument that daily practice of instrumental music enhances executive function and 

that musical training predicts inhibitory control. 

In another recent study, short-term musical training was found to enhance verbal 

intelligence and executive function (Moreno, Bialystok, Barac, Schellenberg, Cepeda & Chau, 

2011). Study participants were 48 preschool children between the ages of four and six years, and 

24 children received musical-listening training while the other 24 received visual art training of 

visuospatial skills. The training programs consisted of two daily sessions of one hour each, five 

days a week for four weeks. After 20 days of training, only the children who had received the 
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musical training exhibited enhanced performance on a measure of verbal intelligence (i.e., one 

vocabulary subset from the Wechsler Preschool and Primary Scale of Intelligence, WPPSI-III, 

Wechsler, 2002), with 90% of children in the music group showing this improvement. The 

investigators concluded that the music-listening training improved not only musical listening 

skills, but also transferred to improved verbal ability. Their explanation of their results is that 

music processing overlaps with cognitive mechanisms used in language.  

Other studies of functional brain plasticity related to musical training include a study of the 

neuroarchitecture of verbal and tonal working memory in 17 non-musicians and 16 musicians 

using fMRI (Schulze, Zysset, Mueller, Friederici & Koelsch, 2011). The auditory stimuli were a 

spoken syllable and a sine wave tone presented simultaneously. Participants were asked to listen 

to sequences of five auditory (verbal + tonal) stimuli and to rehearse internally either syllables 

(during a verbal condition) or tones (during a tonal condition). At the end of each trial, a test 

stimulus was presented consisting of one syllable and one tone. Participants had to press a button 

to indicate whether the syllable (in the verbal condition) or the sine wave tone (in the tonal 

condition) had been presented in the initial sequence. The fMRI data showed overlapping brain 

regions hypothesized to be involved in both verbal and tonal working memory. Additionally 

musicians activated a specific region only during the verbal condition (right insular cortex) or 

only during the tonal working memory condition (right globus pallidus, right caudate nucleus, 

and left cerebellum). Thus, Schulze and colleagues (2011) suggested that two working memory 

systems may exist in musicians: a phonological loop supporting phonological information, and a 

tonal loop supporting musical tone information. Based on these results, Schulze and colleagues 

(2011) hypothesized that auditory (verbal- syllable and tonal- sine wave tone) working memory 

was not a unique system in that maintenance of pitch information appears to require a tonal loop 
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just as maintenance of verbal information in working memory appears to require a phonological 

loop. They also provided results from participants’ behavioral performance3, which indicated 

somewhat more accurate performance of the musicians in the verbal and tonal conditions as 

compared to the non-musicians. 

Based on the findings summarized here, it appears that musical training results in improved 

executive function, inhibitory control and verbal ability (Degé, Kubicek & Schwarzer, 2011; 

Moreno et al., 2011). Musical training presumably involves musical working memory. However, 

none of these previous studies have mentioned the relationship between central executive 

function and musical working memory specifically. As noted above, Berz (1995) proposed a 

theoretical model of music that was centered on a central executive controller and different forms 

of memory loops interacting with it, including multiple sensory loops, a phonological loop, a 

visual-spatial sketchpad, and a musical memory loop. In this framework, these memory loops 

interact with central executive function before production. However, it remains unclear whether 

central executive function is one component of musical working memory or if it is an 

independent system. 

There is a general lack of research comparing musical working memory and verbal working 

memory. Lu, Greenwald and Bowyer (2010) investigated musical and verbal working memory 

using a task of musical transposition from print to sound in a brain activation study using 

magnetoencephalography (MEG). Transposition of print to sound was compared for musical 

notation versus written words in three healthy volunteers. Musical transposing from print 

                                                 
3 Schulze and colleagues (2011) collected behavioral data during MRI scans. The auditory input stimuli consisted of 
a spoken syllable and a sine wave tone simultaneously. Participants subsequently listened to sequences of five 
auditory (verbal + tonal) stimuli and rehearsed internally (syllables in the verbal condition or tones in the tonal 
condition). At the end of each trial, a probe stimulus was presented, and participants had to indicate by pressing a 
button whether a stimulus has been presented (YES) or not (NO) in the initial sequence. Participants’ responses were 
collected. 
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involves mental conversion of notes to a different key than what is written, by raising or 

lowering all the notes by a given interval. The influence of working memory was examined in 

this study by comparing subject performance on short versus long stimulus lists of musical or 

verbal information. Brain activation results of this study are preliminary, but the behavioral 

design of the study can be useful in further studies comparing musical and verbal working 

memory. 

Behavioral paradigms for directly comparing musical working memory and verbal working 

memory are lacking, including paradigms for comparing memory for linguistic tone and musical 

tone. In the current dissertation, translation from print to sound was examined in healthy 

volunteers across four levels of phonological or tonal information: 1) phonological alone 

(English print); 2) phonological and tonal in a task emphasizing phonological information 

(Mandarin homophones); 3) phonological and tonal in a task emphasizing tonal information 

(Mandarin tones); and 4) tonal alone (musical notation). The performance of musicians and 

non-musicians was compared across reading tasks, in an attempt to examine whether musical 

training can facilitate reading or working memory of linguistic tone information. Also, the effects 

of increased working memory load across task were examined in musicians and non-musicians. 

Specifically, this study addressed the following research questions: 

Research Question 1: How is accuracy of performance in musicians and non-musicians in 

four visual recognition tasks influenced by increased task demands on working memory? Null 

Hypothesis: There are no significant differences in accuracy of performance of musicians and 

non-musicians on four visual recognition tasks with increased task demands on working 

memory. 

 Research Question 2: How is speed of performance in musicians and non-musicians in 
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four visual recognition tasks influenced by increased task demands on working memory? 

Null Hypothesis: There are no significant differences in speed of performance of musicians and 

non-musicians in four visual recognition tasks with increased task demands on working memory. 

 Research Question 3: How is accuracy of performance in musicians and non-musicians in 

visual recognition tasks influenced by increased visual similarity of task stimuli?  

Null Hypothesis: There are no significant differences in accuracy of performance of musicians 

and non-musicians in visual recognition tasks with increased visual similarity of task stimuli. 

 Research Question 4: How is speed of performance in musicians and non-musicians in the 

visual recognition tasks influenced by increased visual similarity of task stimuli?  

Null Hypothesis: There are no significant differences in speed of performance of musicians and 

non-musicians in visual recognition tasks with increased visual similarity of task stimuli. 
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CHAPTER 3  

METHOD 

The goal of the current study was to examine the translation from print to sound of the tonal 

language Mandarin and other reading stimuli in healthy volunteers. The performance of 

musicians and non-musicians was compared across a variety of reading tasks in an attempt to 

examine whether musical training can facilitate reading of Mandarin tone. The effects of 

increasing working memory load on reading performance across tasks were also examined. This 

chapter describes study participants, experimental materials, the study design and procedure, 

experimental tasks, and data screening.  

Participants 

Sixty participants from Taipei, Taiwan with the ability to speak and read English and 

Mandarin completed the study voluntarily. All participants had normal vision and hearing (with 

or without correction), and normal motor and cognitive abilities. Thirty participants (6 male, 24 

female; 26 right-handed, 2 left-handed and 2 ambidextrous) self-reported no professional musical 

training. Their mean age was 22.97 (SD = 4.86); years of education ranged from 12-20 (M = 

15.58, SD = 2.87). The other thirty participants (30 females; 28 right-handed and 2 ambidextrous) 

were musicians with at least 11 years of musical training who were able to read standard music 

notation. They reported a mean of 16.53 years of music training (range = 11-23 years). Their 

mean age was 22.27 (SD = 3.81); years of education ranged from 13-20 (M = 15.63, SD = 2.28). 

There were no significant differences between the two groups in gender (30 female musicians; 6 

male and 24 female non-musicians), age, years of learning English, years of education, with the 

exception of years of learning music [t (58) = 20.733, p < .000**]. The demographic data for the 

two groups are listed in Table 3. 1.  
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Table 3.1 

Demographic Data of Musicians and Non-musicians 

 Musicians a Non-musicians b 

 Mean SD Mean SD

Age 22.27 3.81 22.97 4.86

Years of learning English 12.07 3.51 11.3 3.29

Years of Education 15.63 2.28 15.58 2.87

Years of learning Music* 16.53 3.64 0.97 1.90

a n = 30 b n = 30 

Experimental Materials 

Three types of visual stimuli were incorporated into the experimental tasks: English, 

Mandarin Chinese, and written musical notation. All English word stimuli (n = 280; 40 for the 

practice trial and 240 for the experimental trial) were chosen from previous studies (Reinarz, 

1997; Pexman, Cristi & Lupker, 1999; Kielar & Joanisse, 2009; Rueckl et al., 1997, Binder & 

Borecki, 2008; Schwartz, Kroll & Diaz, 2006) and from the Psycholinguistic Assessments of 

Language Processing in Aphasia (PALPA; Kay, Lesser & Coltheart, 1997) to control for length 

(3-6 letters), orthographic similarity / dissimilarity, phonological similarity / dissimilarity, and 

word frequency (Francis & Kučera, 1982). To ascertain that the vocabulary level matched the 

English language skills of Taiwanese high school graduates, all selected stimuli were compared 

with the list of English Vocabularies compiled by the College Entrance Examination Center, 

Taiwan.  

The first set of Mandarin Chinese stimuli was incorporated into a Mandarin homophone 

task (n=280; 40 for the practice trial and 240 for the experimental trial). These stimuli were 
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chosen from previous studies (Bi, 2006; Tan, Hoosain & Siok, 1996; Tan & Perfetti, 1997; Zhou 

& Marslen-Wilson, 1999a; Zhou & Marslen-Wilson, 1999b; Xu, Pollatsek & Potter, 1999; 

Pollatsek, Tan & Rayner, 2000; Leong, Cheng & Tan, 2005) to control for orthographic and 

phonological similarity / dissimilarity. The frequencies of stimulus words were verified against 

the Mandarin Chinese Character Frequency List Based on National Phonetic Alphabets (CKIP, 

1995). 

The second set of Mandarin Chinese stimuli was incorporated into a Mandarin tone task, 

including the 1st tone (level), the 2nd tone (rising), the 3rd tone (dipping), and the 4th tone (falling) 

(Taft & Chen, 1992; Leong, 2002). All Mandarin tonal word stimuli (n = 280, 40 for the practice 

trial and 240 for the experimental trial) were chosen from previous studies (Tan, Hoosain & Siok, 

1996; Pollatsek, Tan & Rayner, 2000; Hallé, Chang & Best, 2004; Lee, Tao & Bond, 2008; 

Mitterer, Chen & Zhou, 2011; Tong, Francis & Gandour, 2007; Wang et al., 2004; Malins & 

Joanisse, 2010) to control for phonological similarity / dissimilarity, homophone versus 

nonhomophone, and the same versus different tones. The frequencies of stimuli were checked 

against the Mandarin Chinese Character Frequency List Based on National Phonetic Alphabets 

(CKIP, 1995). 

All musical notation stimuli (n = 280, 40 for the practice trial and 240 for the experimental 

trial) were chosen based on the Western musical system. This study was based on 12 major keys 

presented on the g-clef and the f-clef. 

Design of the Study 

This study used a three-factor mixed design: 2between (group: musicians versus 

non-musicians) x 4within (linguistic: English rhyming versus Mandarin homophone versus 

Mandarin tone versus Musical tone) x 2within (task difficulty: easier versus difficult), with 
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accuracy rate (AR) and reaction time (RT) as the dependent variables.  

Stimuli in each of the English, Mandarin homophone, and music reading tasks were 

carefully controlled for two variables: phonological/pitch similarity and visual-orthographic 

similarity. Participants were instructed to judge phonological/pitch similarity. For these tasks, 

half of the correct responses and half of the incorrect target responses were similar to the target 

in terms of visual-orthographic features. This manipulation of experimental stimuli was included 

so that the effect of visual-orthographic similarity on task performance could be assessed. 

Visual similarity for stimuli in the musical note task was defined by location on the musical 

staff, in that the same location was visually similar. Stimuli were divided into notes that were in 

the same location (LS) and having the same pitch names (PS), notes in a different location on 

different clefs but with the same pitch names with the same pitch names (LDPS), notes that were 

in the same location (LS) with different pitch names (PD), and notes that were in different 

locations with different pitch names (LDPD). (The same pitch only occurs in the same location. 

However, if both stimuli are in the same pitch class, which means they have the same pitch name 

but in a different octave, they have the same pitch name with different pitch height. In this task, 

pitch similarity was judged by whether it was the same pitch name, such as middle c and high C.) 

Examples of the musical notation stimuli are presented in Figure 3.1. 
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Figure 3.1 Example stimuli for the Musical note task. Left to Right: notes are in the same 

location with the same pitch name (LSPS), different locations (i.e., different clefs) with the same 

pitch name (LDPS), the same location with different pitch names (i.e., different clefs) (LSPD), 

and different locations with different pitch names (LDPD). 

The stimuli in the Mandarin tone task were carefully controlled for two variables: 

homophone similarity and tone similarity. Participants were instructed to judge tone similarity. 

Stimuli were divided into homophones with the same tone (HTS), homophones with different 

tones (HTD), non-homophones with the same tone (nHTS), and non-homophones with different 

tones (nHTD). All stimuli are presented in the Appendix. 

A modified version of the n-back task was adopted for use in this study and was similar to 

the one used by Kim and colleagues (2002). As described above (Baddeley, 2003), in the n-back 

paradigm participants are presented with a series of stimuli and are instructed to indicate whether 

the current stimulus matches the stimulus presented n stimuli back in the series, where n equals a 

number between 0 and 3 (Simmons, 2000). In the current study, each linguistic task was 

presented in both the 1-back and 2-back paradigms. 
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In the 1-back design (the design was the same across all linguistic tasks), each linguistic 

task consisted of 120 target items for which the participant had to respond. Of these, a ‘yes’ 

response was correct for 60 items and a ‘no’ response was correct for 60 items (see Figure 3.2). A 

correct ‘yes’ response indicated that the target item rhymes with or has the same homophonic or 

the same linguistic tone or the same pitch name (e.g., phonologically similar; PS) to the item 

immediately preceding it 1-back (i.e., the “probe”), and a correct ‘no’ response indicated that the 

target is different in sound (e.g., phonologically dissimilar, PD) compared to the probe item 

1-back. Half of correct ‘yes’ responses looked similar (e.g.., orthographically similar, OS) to the 

probe item immediately preceding it 1-back, and half of correct ‘yes’ responses looked different 

(e.g., orthographically dissimilar, OD) to the probe item 1-back. Also, half of correct ‘no’ 

responses looked similar to the probe item, and half of correct ‘no’ responses looked different 

from the probe item. 

 

Figure 3.2 Number of items under each category in 1-back paradigm. 

In the 1-back task, the total number of stimuli was 240, including the 120 probe items and 

120 target items. Participants were asked to respond to each of the 240 items, which were 



53 

 

presented in a pseudorandom sequence of pairs (probe  target). The correct response to the 

probe items was always ‘no,’ and the probe items were not included in calculations of 

performance accuracy or reaction time. 

 

Figure 3.3 An example of 1-back paradigm shown in a graphic format. 

Each item was presented in a fixed central location on a laptop monitor for 1500ms, 

followed by a blank screen for 500ms. The duration of each task was 8 minutes (2000ms * 240 

items). To reduce fatigue, each task was divided into 2 blocks (4 minutes each) with a short (30 

second) break in between. Thus, each linguistic task took a total of 8 minutes, 30 seconds (see 

Figure 3.3). The 2-back task was designed the same as the 1-back task, except that only half as 

many target words were included to keep the total number of stimuli and the total task duration 

the same as the 1-back task. In the 2-back task, more non-target words were included because 

probe words had to be 2-back from the target. The design was the same across all linguistic tasks. 

Because only 60 target words were included, consisting of 30 correct ‘yes’ responses and 30 

correct ‘no’ responses, there were fewer subtypes of stimuli in the 2-back task as compared to the 

1-back task. For example, for the English rhyming, Mandarin homophone, and musical note 
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tasks in the 2-back paradigm, the correct ‘yes’ responses were all similar to the probe 2-back in 

terms of visual-orthographic features, and the correct ‘no’ responses were all dissimilar to the 

probe 2-back in terms of visual-orthographic features (see Figure 3.4). To reduce participants’ 

expectations, additional distracting filler stimuli were inserted. The probe items and distracter 

and filler lists were not included in calculations of performance accuracy or reaction time.  

 

Figure 3.4 Number of items in each category in 2-back paradigm. 

In the 2-back task, a probe stimulus was first presented, follow by a distracter; next a target 

stimulus was shown, followed by a distracter as well (see Figure 3.5). Other aspects of 

presentation and task duration were the same as the 1-back task. 
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Figure 3.5 An example of the 2-back paradigm. 

Procedure 

Screening tasks. Screening measures included a questionnaire for self-report of 

demographic information, years learning English in Taiwan, and years of education. For 

musicians, the questionnaire also included self-report of years learning music and major 

instruments. 

 All participants were examined by the administrator with a vision screening, speech 

discrimination screening, the Edinburgh Handedness Inventory (Oldfield, 1971), Mini-Mental 

State Examination (MMSE; Folstein, Folstein & McHugh, 1975), which screened for cognitive 

impairment, and the digit span task from the Wechsler Adult Intelligence Scale-III (WAIS III; 

Wechsler, 1997), which was used to measure of working memory storage capacity. There were 

no significant differences between the two groups in Edinburgh Handedness Inventory [t (58) = 

1.87, p = .067], MMSE [t (58) = -1.43, p = .160], and digit span [t (58) = .59, p = .558].  

Participants also were asked to complete four discrimination tasks: rhyming discrimination 
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(English stimuli), Mandarin homophone discrimination (Chinese stimuli), Mandarin tone 

discrimination (Chinese stimuli), and note discrimination (musical notation). In each of the four 

tasks, two visual stimuli were presented simultaneously one above the other on the computer 

screen. Participants had to decide whether these two stimuli sounded the same in terms of rhyme 

/ homophone / tone / or pitch name. The purpose of these discrimination tasks was to ensure that 

participants understood how to do all experimental tasks. The average accuracy rates for each 

discrimination task across all participants were as follows: English rhyming, 78%; Mandarin 

homophone, 97.5%; Mandarin tone, 91.5%; and Music, 82.5%. 

 Experimental Procedure. There was one experimental site: Taipei Jingmei Girls High 

School, Taipei, Taiwan. Each participant was tested individually in a quiet room. Informed 

consent was obtained from the participants upon their arrival. Next, participants were asked to 

complete the self-report questionnaire and the Edinburgh Handedness Inventory. Afterwards, the 

investigator administered the vision screening, speech discrimination, Mini-Mental State 

Examination and digit span tasks. The procedure including screening tasks and experimental 

tasks consisted of two visits of approximately one and a half hours each for a total of three hours 

during one month. 

Experimental tasks. A total of eight experimental tasks were administered (i.e., each of the 

four experimental tasks presented in the 1-back and the 2-back paradigms). Stimuli were 

presented electronically using E-Prime Professional 2.0 software (Psychology Software Tools, 

Pittsburgh, PA) presented on an IBM ThinkPad R60e laptop with a 15" screen size (13.1” x 10.6”) 

monitor. An external number pad was connected with the laptop, providing “YES” and “NO” 

response keys. Participants sat in front of the laptop screen and they were instructed to use only 

the right index finger to press the buttons. (The few participants who were not right-handed were 
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instructed to use either their right or left index finger to press the buttons. These participants did 

not make more mistakes than right-handed participants.) Participants were instructed to press any 

key when they were ready to start a trial, and to response within 2 seconds of each stimulus or 

their response for the particular trial would not be recorded. They also were instructed that if they 

were unable to respond within 2 seconds, they should skip the immediate stimulus pair and focus 

on the next one. 

In both the 1-back and 2-back tasks for all four experimental tasks (rhyming / homophone / 

Mandarin tone / musical tone), participants were instructed to press the ‘yes’ button if the target 

stimulus sounded similar in rhyme / homophone / Mandarin tone / musical tone as the probe 

stimulus. Otherwise, participants were instructed to press the ‘no’ button. Descriptions of the 

response patterns for the 1-back and 2-back tasks are given in Table 3.2.  

Table 3.2  

Response Patterns of 1-back and 2-back Tasks 

 1-back  
“YES” response 

2-back 
 “YES” response 

“NO” 
response 

Rhyming 

 

If a word rhymes with the one 

that came before it 

If a word rhymes with the one 

that came 2 before it 

Others 

Homophone 

 

If a word is homophonic with 

the one that came before it 

If a word is homophonic with 

the one that came 2 before it 

Others 

Mandarin 

tone 

If a word has the same tone as 

the one that came before it 

If a word has the same tone as 

the one that came 2 before it 

Others 

Music If a note has the same pitch 

name as the one that came 

before it  

If a note has the same pitch 

name as the one that came 2 

before it.  

Others 

Scoring and Data Screening  

As noted above, only responses to the target stimuli were included in calculations of 
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accuracy and reaction time. The 1-back paradigm was computed for 120 target responses (60 

correct ‘yes’ responses and 60 correct ‘no’ responses). The 2-back paradigm was computed for 

60 target responses (30 ‘yes’ responses and 30 ‘no’ responses). To know about the performance 

of all subjects across all experimental tasks, the number of correct acceptance, correct rejection, 

incorrect acceptance, and incorrect rejection responses were calculated. Participants’ accuracy 

rate in each task was computed by: 

 

Speed (reaction time) was computed the same way as the accuracy rate. Participants’ reaction 

time in each task was computed by: 

 

Attempts were made to ensure results were not biased due to missing data. Three 

non-musician participants exceeded 25% missing response rate in the 2-back music task (missing 

18 to 21 items). Data from these three participants were removed from subsequent analysis of 

this task; thus, analyses of the 2-back music task were conducted on 30 musicians and 27 

non-musicians. For all other tasks, analyses were conducted on 30 musicians and 30 

non-musicians. 

The remaining data were examined for normality, specifically kurtosis and skewness. The 

subsets of data for each task fitted the criteria for normality; kurtosis and skewness were within 

the acceptable range under a conservative alpha level (Z score between ± 3.29) (Tabachnick & 

Fidell, 2007) so that transforming the data was not necessary. 
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CHAPTER 4  

RESULTS 

Three general areas of interest were addressed in this study: 1) comparing print to sound 

translation of written English versus written Mandarin Chinese versus musical notation; 2) 

examining how performance on these reading tasks may relate to musical training (the only 

group variable in this study); and, 3) assessing how increased working memory load may affect 

performance across these reading tasks. The four measures of visual recognition used involved a 

range of visual stimuli that correspond to phonological information (i.e., written English), 

combined phonological and tone information in a task emphasizing phonological information 

(i.e., written Chinese in a Mandarin homophone task), combined phonological and tone 

information in a task emphasizing tone information (i.e., written Chinese in a Mandarin tone 

task), or musical tone information (i.e., Western musical notation system).  

To address the research questions and hypotheses described in Chapter Two, the data 

obtained in this study were assessed with respect to the following comparisons: 1) differences in 

overall accuracy between musical training groups; 2) differences in overall reaction time 

between groups; 3) differences across tasks within each group, and 4) differences in error pattern 

between and within groups. 

Comparisons of Performance Accuracy.  

The first research question posed in Chapter Two addressed the accuracy of task 

performance of the musician group and the non-musician group. It was assumed that the 2-back 

tasks would place more demands on working memory than the 1-back tasks, and that this 

increased task difficulty would be reflected in lower accuracy scores.   

 Research Question 1: How is accuracy of performance in musicians and non-musicians in 
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four visual recognition tasks influenced by increased task demands on working memory?  

Null Hypothesis: There are no significant differences in accuracy of performance of 

musicians and non-musicians in four visual recognition tasks with increased task demands on 

working memory.   

The mean number of correct responses in each 1-back task was computed for each group. 

See Table 4.1 for descriptive statistics. All accuracy scores reported in this chapter are the sum of 

correct acceptances and correct rejections of the target items. 

Table 4.1  

Mean Accuracy Rates of 1-back Tasks by Group 

 Musicians a Non-musicians b 

 Mean SD Mean SD 

English Rhyming .72  .07 .70 .11 

Mandarin Homophone .96 .02 .94 .04 

Mandarin Tone .96 .02 .92 .04 

Music .94 .05 .70 .10 

a n = 30 b n = 30. 

The mean accuracy rates were computed for the musician group and the non-musician 

group for each 2-back task. See Table 4.2 for descriptive statistics. 
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Table 4.2 

Mean Accuracy Rates of 2-back Tasks by Group 

 Musicians a Non-musicians b 

 Mean SD Mean SD 

English Rhyming .50 .09 .49 .11 

Mandarin Homophone .91 .06 .88 .09 

Mandarin Tone .81 .09 .76 .10 

Music .79 .10 .50c  .09 

a n = 30 b n = 30 c n = 27. 

To examine the effects of group, visual task, and difficulty level on performance accuracy, a 

2 x 4 x 2 factorial mixed model analysis of variance (ANOVA) was conducted. The 

between-subjects factor Group included musicians versus non-musicians; for the repeated 

measures factors, Task included English rhyming versus Mandarin homophone versus Mandarin 

tone versus Music tasks; and Difficulty Level included 1-back versus 2-back tasks. Table 4.3 

shows the significant main effects for group, task, and difficulty level. The accuracy rates after 

increased task demands were significantly different in that the accuracy rate of 1-back tasks (M 

= .85, SD = .05) was higher than 2-back tasks (M = .71, SD = .07). There were two significant 

two-way interactions: between group and task, and between task and difficulty level. There was 

no significant three-way interaction. 
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Table 4.3 

Results of Three-Way Mixed Model ANOVA: Accuracy for Group by Task by Difficulty Level 

Source df    F η2 d p 

Group a 1  57.87 .51 <.0005

Difficulty b 1  655.61 .92 <.0005

Group * Difficulty 1 1.66 .03 .203

Within-group-error 55  

   

Tasks c 3  301.21 .85 <.0005

Group* Tasks 3  56.39 .51 <.0005

Tasks * Difficulty 3  43.29 .44 <.0005

Group * Task * Difficulty 3  1.18 .02 .318

Within-group-error 165   

a. Group included musicians versus non-musicians;  

b. Difficulty included 1-back versus -2-back paradigm;  

c. Task included English rhyming versus Mandarin homophone versus Mandarin tone versus 

Music tasks. 

d. η2 (eta-square) refers to effect size, reflecting the proportion of variance in a dependent 

variable associated with different level of an independent variable. 

 Four paired-samples t-tests were performed to compare the performance of all participants 

in the 1-back vs. the 2-back condition within each task, with accuracy rates as the dependent 

variable. Results indicated significant differences with increasing task difficulty across all 

participants in all tasks. Performance in the 1-back task was significantly more accurate than the 
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2-back task in the rhyming task [t (59) = 22.12, p < .0005], the Mandarin homophone task [t (59) 

= 5.69, p < .0005], the Mandarin tone task [t (59) = 13.32, p < .0005], and the music task [t (56) 

= 15.15, p < .0005] across all participants. Accuracy for all participants in the 1-back vs. 2-back 

tasks is depicted in Figure 4.1. 

 

*p < .05 

Figure 4.1 Accuracy for all participants in the1-back vs. 2-back tasks. 

For the musician group, four paired-samples t-tests were performed to compare the 1-back 

to the 2-back tasks with accuracy rates as the dependent variable. Results indicated significant 

differences with increasing task difficulty for the musician group in all tasks. Performance in all 

1-back tasks was significantly more accurate than in the 2-back tasks for the rhyming task [t (29) 

= 15.51, p < .0005], the Mandarin homophone task [t (29) = 4.59, p < .0005], the Mandarin tone 

task [t (29) = 10.72, p < .0005], and the music task [t (29) = 9.520, p < .0005] in the musician 

group. 
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Non-musicians showed a pattern similar to the musicians. For the non-musician group, four 

paired-samples t-tests were performed to compare the 1-back task to the 2-back task with 

accuracy rates as the dependent variable. Results indicated significant differences with increasing 

task difficulty in the non-musician group in all tasks. Their performance in the 1-back tasks was 

significantly more accurate than the 2-back condition in the rhyming task [t (29) = 15.68, p 

< .0005], the Mandarin homophone task [t (29) = 3.78, p = .001], the Mandarin tone task [t (29) 

= 8.58, p < .0005], and the music task [t (29) = 12.62, p < .0005] in the non-musician group. 

To further compare the performance of musicians versus non-musicians within each task, a 

one-way Group ANOVA was conducted separately for each task. For each 1-back and 2-back 

task, a separate one-way ANOVA was conducted comparing the accuracy of musicians versus 

non-musicians on the task. The results of the 1-back task analyses are depicted in Figure 4.2, and 

the results of the 2-back analyses are depicted in Figure 4.3. As indicated in these figures, the 

musicians performed with significantly higher accuracy than the non-musicians in some tasks. 

Although the musicians were > 20% more accurate in the music task than the non-musicians, the 

overall pattern of accuracy across tasks was similar for the musician and the non-musician 

groups. 

Accuracy data for the 1-back tasks were examined further using a 2 (Group) x 4 (Task) 

mixed model ANOVA. There were two significant main effects and one interaction effect. There 

was a significant main effect of group [F (1, 58) = 67.65, p < .0005] in that the accuracy rate of 

musicians (M = .89, SD = .03) was higher than for non-musicians (M = .81, SD = .04). There 

also was a significant main effect of task [F (3, 174) = 206.80, p < .0005] in that all participants 

showed the highest accuracy in the homophone task (M = .95, SD = .03), followed by the 

Mandarin tone task (M = .94, SD = .04), the music task (M = .82, SD = .14), and then the 
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English rhyming task (M = .71, SD = .09). There was a significant interaction of group and task 

[F (3, 174) = 48.16, p < .0005]. The sources of this interaction will be described below and in 

Figure 4.2. 

 

*p < .05 

Figure 4.2 Accuracy rates for musicians and non-musicians in the 1-back tasks. 

Among two groups, four one-way ANOVA were conducted. In the Mandarin homophone 

task, mean accuracy rates were significantly higher for the musicians than for the non-musicians 

in the 1-back task [F (1, 58) = 6.69, p = .012]. In the Mandarin tone task, the musicians’ mean 

accuracy rate was significantly higher than the non-musicians’ in the 1-back task [F (1, 58) = 

17.69, p < .0005]. Finally, in the music task, mean accuracy rates were significantly higher for 

the musicians as compared to the non-musicians in the 1-back task [F (1, 58) = 138.40, p 

< .0005]. 

Within the musician group, accuracy for the 1-back tasks was examined using a one-way 
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ANOVA. There was a significant difference in the accuracy rates of musicians across 1-back 

tasks [F (3, 87) = 232.16, p < .0005]. Musicians showed the most accurate performance in the 

Mandarin homophone task (M = .96, SD = .02) and the Mandarin tone task (M = .96, SD = .02), 

followed by the music task (M = .94, SD = .05), and the English rhyming task (M = .72, SD 

= .07). Within the non-musician group, accuracy data across tasks was also examined using a 

one-way ANOVA. A significant difference in accuracy across all 1-back tasks was observed [F (3, 

87) = 95.25, p < .0005] in that non-musicians were most accurate in the Mandarin homophone 

task (M = .94, SD = .04), followed by the Mandarin tone task (M = .92, SD = .04), the music task 

(M = .70, SD = .10), and the English rhyming task (M = .70, SD = .11). Mean accuracy scores 

for the 1-back tasks are shown above in Table 4.1 

The accuracy results of the 2-back tasks were examined separately from the 1-back tasks. 

The 2-back task accuracy data were also subjected to a 2 (Group) x 4 (Task) mixed model 

ANOVA. There were two significant main effects and one interaction effect. Significant main 

effect of group [F (1, 55) = 39.00, p < .0005] in that the accuracy rate of musicians (M = .75, SD 

= .05) was higher than non-musicians (M = .67, SD = .06) across all 2-back tasks. There also 

was a significant main effect of task [F (3, 165) = 239.96, p < .0005], in that all participants 

showed the highest accuracy rates in the Mandarin homophone task (M = .90, SD = .08), 

followed by the Mandarin tone task (M = .78, SD = .10), the music task (M = .65, SD = .17), 

and the English rhyming task (M = .50, SD = .10). There was a significant interaction between 

group and task [F (3, 165) = 35.00, p < .0005]. The sources of this interaction will be described 

below and in Figure 4.3. 
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*p < .05 

Figure 4.3 Accuracy rates for musicians and non-musicians in the 2-back tasks. 

Among two groups, four one-way ANOVA were conducted. The musicians’ mean accuracy 

rate was significantly higher than the non-musicians’ in the 2-back Mandarin tone task [F (1, 58) 

= 4.70, p = .034]. Mean accuracy rates were also significantly higher for the musicians as 

compared to the non-musicians in the 2-back music task [F (1, 55) = 125.01, p < .0005]. 

Within the musician group, accuracy data in the 2-back tasks were examined using a 

one-way ANOVA. There was a significant difference in accuracy across tasks [F (3, 87) = 

158.78, p < .0005], with musicians showing the most accurate performance in the Mandarin 

homophone task (M = .91, SD = .06), followed by the Mandarin tone task (M = .81, SD = .09), 

the music task (M = .79, SD = .10), and the English rhyming task (M = .50, SD = .09). Within 

the non-musician group, accuracy data in the 2-back tasks were also subjected to a one-way 

ANOVA. Significant differences in accuracy across all 2-back tasks were observed in the 
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non-musicians [F (3, 78) = 119.63, p < .0005], with the most accurate performance in the 

Mandarin homophone task (M = .88, SD = .09), followed by the Mandarin tone task (M = .75, 

SD = .10), the music task (M = .50, SD = .09), and the English rhyming task (M = .49, SD = .11). 

Mean accuracy scores for the 2-back tasks are shown above in Table 4.2. 

Comparisons of Performance Speed. 

The second research question posed in Chapter Two addressed the speed of task 

performance of the musician group and the non-musician group. It was assumed that the 2-back 

tasks were more demanding of working memory than the 1-back tasks, and that this increased 

task difficulty would be reflected in longer (i.e., slower) reaction times. 

Research Question 2: How is speed of performance in musicians and non-musicians in 

four visual recognition tasks influenced by increased task demands on working memory? 

Null Hypothesis: There are no significant differences in speed of performance of musicians 

and non-musicians in four visual recognition tasks with increased task demands on working 

memory. 

The mean speed of correct responses in each 1-back task was computed for each group (see 

Table 4.4 for descriptive statistics). All reaction times reported in this chapter are based on 

correct responses only (i.e., correct acceptances and correct rejections of the target items). All 

reaction times reported are in milliseconds. 
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Table 4.4 

Mean Reaction Times of 1-back Tasks by Group 

 Musicians a Non-musicians b 

 Mean SD Mean SD 

English Rhyming 939 120 919 130 

Mandarin Homophone 735 83 779 94 

Mandarin Tone 876 131 934 133 

Music 901 134 943 159 

a n = 30 b n = 30.  

The mean accuracy rates were computed for the musician group and the non-musician 

group for each 2-back task. See Table 4.5 for descriptive statistics.  

Table 4.5 

Mean Reaction Times of 2-back Tasks by Group 

 Musicians a Non-musicians b 

 Mean SD Mean SD 

English Rhyming 1002 151 993 204 

Mandarin Homophone 835 128 891 120 

Mandarin Tone 972 193 1076 154 

Music 1013 178 888c 188 

a n = 30 b n = 30 c n = 27. 

To examine the effects of group, visual task, and difficulty level on performance speed, a 2 

x 4 x 2 mixed model analysis of variance (ANOVA) was conducted. The variable Group included 

musicians versus non-musicians; the variable Task included English rhyming versus Mandarin 
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homophone versus Mandarin tone versus Music tasks; and the variable Difficulty Level included 

1-back versus 2-back tasks. Table 4.6 shows the significant main effects for Task and Difficulty 

Level. The reaction times of 1-back tasks (M = 878, SD = 97) were faster than 2-back tasks (M 

= 960, SD = 133). There were two significant two-way interactions: between group and tasks, 

and between tasks and difficulty level. There was also a significant three-way interaction. The 

results of the three-way repeated-measures ANOVA are listed in Table 4.6. 

Table 4.6 

Results of Three-Way Mixed Model ANOVA: Reaction Times for Group by Task by Difficulty 

Level 

Source df F η2   p 

Group a 1  .49 .01 .486

Difficulty b 1  40.56 .42 <.0005

Group * Difficulty 1 1.07 .02 .306

Within-group-error 55  

   

Tasks c 3  43.24 .44 <.0005

Group* Tasks 3  6.28 .10 <.0005

Tasks * Difficulty 3  6.30 .10 <.0005

Group * Task * Difficulty 3  9.49 .15 <.0005

Within-group-error 165   

a. Group included musicians versus non-musicians;  

b. Difficulty included 1-back versus -2-back paradigm;  

c. Task included English rhyming versus Mandarin homophone versus Mandarin tone versus 
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Music 

 Four paired-samples t-tests were performed to compare the performance of all participants 

in the 1-back vs. the 2-back condition within each task, with reaction times as the dependent 

variable. Results indicated significant differences with increasing task difficulty across all 

participants in all tasks. Performance of all 1-back tasks was significantly faster than the 2-back 

condition in the rhyming task [t (59) = -3.93, p < .0005], the Mandarin homophone task [t (59) = 

-8.01, p < .0005], and the Mandarin tone task [t (59) = -6.05, p < .0005]. However, the music 

task showed no significant difference in speed between 1-back vs. 2-back [t (56) = -1.91, p 

= .061] across all participants. Reaction time for all participants in the 1-back vs. 2-back tasks is 

depicted in Figure 4.4. 

 

*p < .05 

Figure 4.4 Reaction times for all participants in the1-back tasks vs. 2-back tasks. 

 For the musician group, four paired-samples t-tests were performed to compare the 1-back 
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to the 2-back tasks with speed as the dependent variable. Reaction time in the 1-back task was 

significantly faster than the 2-back condition in the rhyming task [t (29) = -2.89, p = .007**], the 

Mandarin homophone task [t (29) = -4.89, p < .0005], the Mandarin tone task [t (29) = - 3.95, p 

< .0005], and the music task [t (29) = - 5.10, p < .0005] in the musician group. 

In the non-musician group, four paired-samples t-tests were performed to compare the 

1-back to the 2-back tasks with speed as the dependent variable. Reaction times in the 1-back 

tasks were significantly faster than the 2-back condition in the rhyming task [t (29) = - 2.69, p 

= .012], the Mandarin homophone task [t (29) = -6.57, p < .0005] and the Mandarin tone task [t 

(29) = -4.61, p < .0005]. However, reaction times in the 1-back task were not significantly 

different from the 2-back condition in the music task [t (26) = 1.55, p = .133] in the 

non-musician group. 

To further compare the performance of musicians versus non-musicians within each task, a 

one-way Group ANOVA was conducted for each task. For each 1-back and 2-back task, a 

separate one-way ANOVA was conducted comparing the reaction time of musicians versus 

non-musicians on the task. 

Reaction time data for the 1-back tasks were examined using a 2 (Group) x 4 (Task) mixed 

model ANOVA. There was no significant main effect of group on speed [F (1, 58) = 1.54, p 

= .219] across all 1-back tasks. The overall reaction times of musicians (M = 863, SD = 103) did 

not significantly differ from non-musicians (M = 894, SD = 90). A significant difference in speed 

was observed across all 1-back tasks [F (3, 174) = 47.64, p < .0005] in that all participants 

showed the fastest speed in the Mandarin homophone task (M = 757, SD = 91), followed by the 

Mandarin tone task (M = 905, SD = 134), the music task (M = 922, SD = 147), and the English 

rhyming task (M = 930, SD = 124). There was not a significant interaction effect of 1-back tasks 
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and group on speed [F (3, 174) = 2.17, p = .094]. The results of these 1-back task analyses are 

depicted in Figure 4.5. 

 

Figure 4.5 Reaction times of musicians and non-musicians for the 1-back tasks. 

Within the musician group, a one-way repeated measures ANOVA was used to examine 

reaction time for the 1-back tasks. There was a significant difference in the reaction times of 

musicians across 1-back tasks [F (3, 87) = 50.81, p < .0005], with the fastest speed in the 

Mandarin homophone task (M = 735, SD = 83), followed by the Mandarin tone task (M = 876, 

SD = 131), the music task (M = 901, SD = 134), and the English rhyming task (M = 939, SD = 

120). Within the non-musician group, reaction time data across 1-back tasks were also examined 

using a one-way repeated measures ANOVA. A significant difference in reaction times across all 

1-back tasks was observed [F (3, 87) = 14.76, p < .0005] in that non-musicians showed that the 

fastest speed in the Mandarin homophone task (M = 779, SD = 94), followed by the English 

rhyming task (M = 919, SD = 130), the Mandarin tone task (M = 934, SD = 133), and the music 
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task (M = 943, SD = 159). Mean reaction times for the 1-back tasks are shown above in Table 

4.4. 

The speed results of the 2-back tasks were examined separately from the 1-back tasks. The 

2-back task accuracy data were also subjected to a 2 (Group) x 4 (Task) mixed model ANOVA. 

There were one significant main effects and one interaction effect. There was no significant main 

effect of group [F (1, 55) = .04, p = .836] in speed between musicians (M = 955, SD = 138) and 

non-musicians (M = 964, SD = 131) across all 2-back tasks. There was a significant main effect 

of task [F (3, 165) = 24.30, p < .0005], in that all participants showed the fastest reaction time in 

the 2-back Mandarin homophone task (M = 863, SD = 126), followed by the 2-back music task 

(M = 954, SD = 192), the 2-back English rhyming task (M = 997, SD = 178), and the 2-back 

Mandarin tone task (M = 1024, SD = 181). There was a significant interaction between group 

and task in reaction time [F (3, 165) = 10.65, p < .0005]. The sources of this interaction will be 

described below and in Figure 4.6. 
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*p < .05 

Figure 4.6 Reaction times of musicians and non-musicians for the 2-back tasks. 

Among two groups, four one-way ANOVA were conducted. Significant differences in 

reaction time were observed between the musicians and non-musicians in the 2-back Mandarin 

tone and the 2-back music tasks. In the Mandarin tone task, the reaction times of musicians were 

shorter (i.e., faster) than non-musicians in the 2-back condition [F (1, 58) = 5.34, p = .024]. In 

the music task, the reaction time of musicians was longer (i.e., slower) than the non-musicians in 

the 2-back task [F (1, 58) = 6.64, p = .013]. 

Within the musician group, reaction time data in the 2-back tasks were examined using a 

one-way repeated measures ANOVA. There was a significant difference in reaction time across 

tasks [F (3, 87) = 18.65, p < .0005], with musicians showing the fastest reaction times in the 

Mandarin homophone task (M = 835, SD = 128), followed by the Mandarin tone task (M = 972, 

SD = 193), the English rhyming task (M = 1002, SD = 151), and the music task (M = 1013, SD 

= 178). Within the non-musician group, reaction times in the 2-back tasks also were subjected to 

a one-way repeated measures ANOVA. Significant differences in reaction time across all 2-back 

tasks were observed [F (3, 78) = 16.24, p < .0005] in that non-musicians showed that the fastest 

speed in the Mandarin homophone task (M = 891, SD = 120), followed by the music task (M = 

888, SD = 188), the English rhyming task (M = 993, SD = 204), and the Mandarin tone task (M 

= 1076, SD = 154). Mean reaction times for the 2-back tasks are shown above in Table 4.5. 

Comparing the Effects of Visually Similar Stimuli. 

Research Question 3: How is accuracy of performance in musicians and non-musicians in 

visual recognition tasks influenced by increased visual similarity of task stimuli? 

Null Hypothesis: There are no significant differences in accuracy of performance of 
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musicians and non-musicians in the visual recognition tasks with increased visual similarity of 

task stimuli. 

The visual similarity of target stimuli was controlled in three of the four recognition tasks, 

including the English rhyming task, the Mandarin homophone task, and the music notation task. 

As described in Chapter Three, the English rhyming task and the Mandarin homophone task each 

included four different categories of target stimuli: orthographically similar/ phonologically 

similar (OSPS), orthographically similar/ phonologically dissimilar (OSPD), orthographically 

dissimilar/ phonologically similar (ODPS), and orthographically dissimilar/ phonologically 

dissimilar (ODPD). The music task included four different categories of target stimuli: the same 

visual location with the same pitch names (LSPS), the same visual location with different pitch 

names (LSPD), different visual locations with the same pitch names (LDPS), and different visual 

locations with different pitch names (LDPD). The accuracy rates of the musician group and the 

non-musician group for each stimulus category for these three visual recognition tasks are listed 

in Table 4.7. These accuracy rates are based on the 1-back tasks only. 
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Table 4.7 

Accuracy for Four Categories of Target Stimuli by Group 

  Musicians a Non-musicians b 

  Mean SD Mean SD 

English Rhyming OSPS .93 .06 .90 .14 

 ODPS .62 .18 .56 .28 

 OSPD .37 .15 .40 .22 

 ODPD .97 .05 .96 .05 

Mandarin Homophone OSPS .91 .05 .87 .10 

 ODPS .95 .06 .91 .07 

 OSPD .99 .02 .98 .04 

 ODPD .99 .02 .99 .01 

Music LSPS .91 .09 .77 .15 

 LDPS .90 .07 .28 .26 

 LSPD .95 .06 .83 .24 

 LDPD .99 .04 .91 .07 

a n = 30 b n = 30. 

The English Rhyming Task: Effects of Visual Similarity on Accuracy. To examine the 

effects of visual similarity on accuracy rates in the rhyming task, a 2between (group: musicians 

versus non-musicians) x 4within (categories: ODPS versus OSPD versus OSPS versus ODPD) 

two-way ANOVA was conducted. Accuracy rates were not significantly different for the stimulus 

categories between musicians and non-musicians in the rhyming task [F (3, 174) = 1.11, p 

= .345]. However, results from within group comparisons showed significantly different 
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accuracy rates of the four categories in the rhyming task for each group. Among musicians, the 

accuracy rates of the four categories were significantly different [F (3, 87) = 187.36, p < .0005]. 

Musicians showed the most accurate performance for ODPD (M = .97, SD = .05), followed by 

OSPS (M = .93, SD = .06), ODPS (M = .62, SD = .18), and OSPD (M = .36, SD = .15) 

categories in the rhyming task. Among non-musicians, the accuracy rates of the four categories 

were significantly different [F (3, 87) = 60.01, p < .0005]. Non-musicians showed the best 

performance at ODPD (M = .96, SD = .05), followed by OSPS (M = .90, SD = .14), ODPS (M 

= .56, SD = .28), and OSPD (M = .40, SD = .22) categories in the rhyming task. Accuracy rates 

for each group for the four categories of target stimuli in the English rhyming task are shown in 

Figure 4.7. 

 

*p < .05 

Figure 4.7 Accuracy rates for each stimulus category for English rhyming task in both groups. 

To examine further the effect of visual similarity in the rhyming task, the accuracy rates for 
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the four categories of target stimuli were compared within each group. Among musicians, 

performance for the OSPS category was significantly more accurate than for the ODPS category 

[t (29) = 10.37, p < .0005]. In other words, musicians were more likely to accept a correct match 

(i.e. phonologically similar match) when the target word looked similar to the probe than when 

the target word looked different from the probe. Also, musicians were significantly more 

accurate for the ODPD category as compared to the OSPD category [t (29) = 21.70, p < .0005] in 

the English rhyming task. In other words, musicians were more likely to incorrectly accept a 

phonologically dissimilar item (i.e., false positive response) when the target word looked similar 

to the probe than when the target word looked different from the probe. 

Similarly, among non-musicians, performance for the OSPS category was significantly 

more accurate than the ODPS category [t (29) = 8.09, p < .0005] and performance for the ODPD 

category was significantly more accurate than the OSPD category [t (29) = 13.93, p < .0005] in 

the English rhyming task. In other words, for both musicians and non-musicians performance in 

the rhyming task was driven by the visual similarity of the target stimuli. 

The Mandarin Homophone Task: Effects of Visual Similarity on Accuracy. To examine 

the effects of visual similarity on accuracy rates in the Mandarin homophone task, a 2between 

(group: musicians versus non-musicians) x 4within (categories: ODPS versus OSPD versus OSPS 

versus ODPD) two-way ANOVA was conducted. Accuracy rates were not significantly different 

for the four stimulus categories between musicians and non-musicians in the Mandarin 

homophone task [F (3, 174) = 2.35, p = .074]. However, results from within group comparisons 

showed significantly different accuracy rates for the four categories in the homophone task for 

each group. Results of a one-way ANOVA of the musician group showed that accuracy rates for 

the four categories were significantly different [F (3, 87) = 28.29, p < .0005]. Musicians showed 
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the most accurate performance at ODPD (M = .99, SD = .02) and OSPD (M = .99, SD = .02), 

followed by ODPS (M = .95, SD = .06), and OSPS (M = .91, SD = .05) categories in 

homophone task. Results of a one-way ANOVA of the non-musician group showed that accuracy 

rates for the four categories were significantly different [F (3, 87) = 27.19, p < .0005]. 

Non-musicians showed the same pattern as the musicians in that they showed the most accurate 

performance for ODPD (M = .99, SD = .01), followed by OSPD (M = .97, SD = .04), ODPS (M 

= .91, SD = .07), and OSPS (M = .87, SD = .09) categories in the homophone task. Accuracy 

rates for each group for the four categories of target stimuli in the Mandarin homophone task are 

shown in Figure 4.8.  

 

*p < .05 

Figure 4.8 Accuracy rates for each stimulus category for Mandarin homophone task in both 

groups. 

To further compare the performance of musicians versus non-musicians within each 
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category, a one-way ANOVA was conducted for each category. Results from within group 

comparisons showed significantly different accuracy rates for the ODPS category in the 

homophone task [F (1, 58) = 5.34, p = .024] between musicians (M = .95, SD = .06) and 

non-musicians (M = .91, SD = .07). These analyses showed no other significant differences in 

accuracy rates for the other stimulus categories between the two groups in the Mandarin 

homophone task.  

Among musicians, accuracy for the ODPS category was significantly more accurate than 

for the OSPS category [t (29) = -2.82, p = .009] in the homophone task. There was no significant 

difference in accuracy between the ODPD category and the OSPD category [t (29) = .92, p 

= .365] for musicians in the homophone task. Both of these results show that the performance of 

musicians in the homophone task was not driven by the visual similarity of target items. Among 

non-musicians, performance for the ODPS category was significantly more accurate than the 

OSPS category [t (29) = -2.451, p = .020] and performance in the ODPD category was 

significantly more accurate than the OSPD category [t (29) = 3.126, p = .004] in the homophone 

task. These results for both groups are inconsistent in terms of visual similarity in that visual 

similarity did not result in more correct acceptances of phonologically similar (PS) items (in fact, 

the reverse was true), but visual similarity did result in more incorrect acceptances of 

phonologically different (PD) items for non-musicians. 

The Music Task: Effects of Visual Similarity on Accuracy. To interpret the effects of visual 

similarity on the accuracy rates in the music task, a 2between (group: musicians versus 

non-musicians) x 4within (categories: LDPS versus LSPD versus LSPS versus LDPD) two-way 

ANOVA was conducted. Accuracy rates were not significantly different for the four stimulus 

categories between musicians and non-musicians in the music task [F (3, 174) = 30.30, p 
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< .0005]. Results from within group comparisons showed significantly different accuracy rates 

for the four categories in the music task for each group. Results of a one-way ANOVA of the 

musician group showed that accuracy rates for the four categories were significantly different [F 

(3, 87) = 18.24, p < .0005]. Musicians showed the most accurate performance for LDPD (M 

= .99, SD = .04), followed by LSPD (M = .95, SD = .06), LSPS (M = .91, SD = .09), and LDPS 

(M = .90, SD = .07) categories in the music task. Results of a one-way ANOVA of the 

non-musician group showed that accuracy rates for the four categories were significantly 

different [F (3, 87) = 66.50, p < .0005]. Non-musicians showed the most accurate performance 

for the LDPD (M = .91, SD = .07), followed by LSPD (M = .83, SD = .24), LSPS (M = .77, SD 

= .15), and LDPS (M = .28, SD = .26) categories in the music task. Accuracy rates for each 

group for the four categories of target stimuli in the music task are shown in Figure 4.9. 

 

*p < .05 

Figure 4.9 Accuracy rates for each stimulus category for the music task in both groups. 
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To further compare the performance of musicians versus non-musicians within each 

category in the music task, a one-way ANOVA was conducted for each category. Results from 

these comparisons showed that accuracy rates of musicians were significantly more accurate than 

non-musicians for the LDPS category [F (1, 58) = 164.06, p < .0005], the LSPD category [F (1, 

58) = 7.339, p = .009], the LSPS category [F (1, 58) = 20.20, p < .0005], and the LDPD category 

[F (1, 58) = 26.43, p < .0005] in the music task.  

To examine further the effect of visual similarity in the music task, the accuracy rates for 

correct ‘yes’ (phonologically similar, PS) targets were compared (LDPS versus LSPS) and the 

accuracy rates for correct ‘no’ (phonologically dissimilar, PD) targets were compared (LSPD 

versus LDPD) for each group. Among musicians, there was no significant difference in accuracy 

for the LDPS and LSPS categories [t (29) = -.19, p = .851] in the music task. Performance in the 

LDPD category was significantly more accurate than for the LSPD category [t (29) = -4.40, p 

< .0005] for musicians. Thus, visual similarity did not influence performance of musicians given 

the PS (correct ‘yes’) targets, but it did influence their performance given the PD (correct ‘no’) 

targets in that they were more likely to incorrectly accept a PD target if it looked similar to the 

probe. 

Among non-musicians, accuracy of performance for the LSPS category was significantly 

more accurate than the LDPS category [t (29) = 9.00, p < .0005]. In other words, non-musicians 

were more likely to accept a correct match as being phonologically similar if it also looked 

similar as compared to when it looked different from the probe. However, there was no 

significant difference in accuracy for the LDPD category and the LSPD categories [t (29) = 

1.789, p = .084] in the music task. Thus, overall in the music task the influence of visual 

similarity on performance accuracy was inconsistent. 
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Research Question 4: How is speed of performance in musicians and non-musicians on 

visual recognition tasks influenced by increased visual similarity of task stimuli? 

Null Hypothesis: There are no significant differences in speed of performance of musicians 

and non-musicians on visual recognition tasks with increased visual similarity of task stimuli. 

 As described above, target stimuli in the English rhyming task, the Mandarin homophone 

task, and the music task were controlled to allow the possible influence of visual similarity to be 

assessed. The reaction times of the musician group and the non-musician group for each stimulus 

category for these three visual recognition tasks are listed in Table 4.8. These reaction times (in 

milliseconds) are based on correct responses in the 1-back tasks only.  
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Table 4.8 

Reaction Time for Four Categories of Target Stimuli by Group 

  Musicians a Non-musicians b 

  Mean SD Mean SD 

English Rhyming OSPS 873 128 880 135 

 ODPS 1105 172 1049 151 

 OSPD 1071 167 1060 164 

 ODPD 869 140 847 145 

Mandarin Homophone OSPS 751 88 797 86 

 ODPS 723 78 778 108 

 OSPD 775 95 821 112 

 ODPD 691 95 726 117 

Music LSPS 859 113 905 131 

 LDPS 945 142 1093 189 

 LSPD 952 159 960 168 

 LDPD 855 156 946 193 

a n = 30 b n = 30. 

The English Rhyming Task: Effects of Visual Similarity on Reaction Time. To interpret 

the effects of visual similarity on response speed in the English rhyming task, a 2between (group: 

musicians versus non-musicians) x 4within (categories: ODPS versus OSPD versus OSPS versus 

ODPD) two-way ANOVA was conducted. There was no significant difference for the four 

categories between musicians and non-musicians in the rhyming task [F (3, 174) = 1.19, p 

= .315]. However, results from within group comparisons showed significantly different reaction 
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time for the four categories of target stimuli in the rhyming task for each group. Results of a 

one-way ANOVA of the musician group showed that accuracy rates for the four categories were 

significantly different [F (3, 87) = 38.23, p < .0005]. Musicians showed the fastest reaction time 

for ODPD (M = 869, SD = 140), followed by OSPS (M = 873, SD = 128), OSPD (M = 1071, 

SD = 167), and ODPS (M = 1105, SD = 151) categories in the rhyming task. Results of a 

one-way ANOVA of the non-musician group showed that accuracy rates for the four stimulus 

categories were significantly different [F (3, 87) = 44.84, p < .0005]. Non-musicians showed the 

fastest reaction time for ODPD (M = 847, SD = 145), followed by OSPS (M = 880, SD = 135), 

ODPS (M = 1049, SD = 151), and OSPD (M = 1060, SD = 164) categories in the rhyming task. 

Reaction times for each category in the English rhyming task are presented in Figure 4.10. 

 

*p < .05 

Figure 4.10 Reaction time for each stimulus category for the English rhyming task in both 

groups.  
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To further compare the performance of musicians versus non-musicians within each 

category in the music task, a one-way ANOVA was conducted for each category. Results from 

these comparisons showed no significant differences in reaction times across the four stimulus 

categories in the rhyming task.  

Among musicians, reaction times for the OSPS category were significantly faster than the 

ODPS category [t (29) = 9.15, p < .0005] and reaction times for the ODPD category were also 

significantly faster than the OSPD category [t (29) = 7.49, p < .0005] in the rhyming task. 

Non-musicians showed the same pattern as musicians in that their reaction times for the OSPS 

category were significantly faster than the ODPS category [t (28) = 8.15, p < .0005] and reaction 

time for the ODPD category was significantly faster than the OSPD category [t (29) = 9.14, p 

< .0005] in the rhyming task. Thus, visual similarity of stimuli influenced reaction times for both 

groups in that all participants were faster in accepting a correct (PS) match if the target looked 

like the probe (OSPS) as compared to when the target did not look like the probe (ODPS). Also, 

all participants were faster in incorrectly accepting a phonologically dissimilar item (i.e., false 

positive response) when the target word looked similar to the probe (OSPD) than when the target 

word looked different from the probe (ODPD). 

The Mandarin Homophone Task: Effects of Visual Similarity on Reaction Time. To 

interpret the effects of visual similarity on reaction times in the Mandarin homophone task, a 

2between (group: musicians versus non-musicians) x 4within (categories: ODPS versus OSPD versus 

OSPS versus ODPD) two-way ANOVA was conducted. There was no significant interaction 

effect of the four stimulus categories and group in the Mandarin homophone task [F (3, 174) 

= .40, p = .753]. Results from within group comparisons showed significantly different reaction 

times for the four categories in the homophone task for each group. Results of a one-way 
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ANOVA of the musician group showed that reaction times for the four categories were 

significantly different [F (3, 87) = 25.80, p < .0005]. Musicians showed the fastest reaction time 

for ODPD (M = 691, SD = 95), followed by ODPS (M = 723, SD = 78), OSPS (M = 751, SD = 

88), and OSPD (M = 775, SD = 95) categories in the homophone task. Results of a one-way 

ANOVA of the non-musician group showed that reaction times for the four categories were 

significantly different [F (3, 87) = 14.40, p < .0005]. Non-musicians showed the fastest reaction 

times for ODPD (M = 726, SD = 117), followed by ODPS (M = 778, SD = 108), OSPS (M = 

797, SD = 86), and OSPD (M = 821, SD = 112) categories in the homophone task. Reaction 

times for each group for the four categories of target stimuli in the Mandarin homophone task are 

shown in Figure 4.11. 

 

*p < .05 

Figure 4.11 Reaction time for each stimulus category for the Mandarin homophone task in both 

groups.  
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To further compare the performance of musicians versus non-musicians within each 

category in the music task, a one-way ANOVA was conducted for each category. These 

comparisons showed that there was a significant difference between musicians and 

non-musicians in reaction time for the ODPS category [F (1, 58) = 5.12, p = .027] and for the 

OSPS category [F (1, 58) = 4.17, p = .046] in the homophone task. These analyses showed no 

other significant differences in reaction times for the other stimulus categories between the two 

groups in the homophone task. 

Among musicians, reaction times for the ODPS category were significantly faster than for 

the OSPS category [t (29) = 3.78, p = .001], and reaction times for the ODPD category were 

faster than reaction times for the OSPD category [t (29) = 9.21, p < .0005] in the homophone 

task. Among non-musicians, reaction times for the OSPS category and ODPS category showed 

no significant difference [t (29) = 1.47, p = .153], whereas reaction times for the ODPD category 

were faster than the OSPD category [t (29) = 8.41, p < .0005]. Thus, the effects of visual 

similarity on reaction time for both the musician and the non-musician groups in the homophone 

task were inconsistent. 

The Music Task: Effects of Visual Similarity on Reaction Time. To interpret the effects of 

visual similarity on reaction times in the music task, a 2between (group: musicians versus 

non-musicians) x 4within (categories: LDPS versus LSPD versus LSPS versus LDPD) two-way 

ANOVA was conducted. There was no significant difference in reaction times for the four 

stimulus categories between musicians and non-musicians in the music task [F (3, 174) = .40, p 

= .753]. Results from within group comparisons showed significantly different reaction times for 

the four categories in the music task for each group. Results of a one-way ANOVA of the 

musician group showed that reaction times for the four categories were significantly different [F 
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(3, 87) = 19.40, p < .0005]. Musicians showed the fastest reaction times for LDPD (M = 855, SD 

= 156), followed by LSPS (M = 859, SD = 113), LDPS (M = 945, SD = 142), and LSPD (M = 

952, SD = 159) categories in the music task. Results of a one-way ANOVA of the non-musician 

group showed that reaction times for the four categories were significantly different [F (3, 87) = 

12.71, p < .0005]. Non-musicians showed the fastest reaction time for LSPS (M = 905, SD = 

131), followed by LDPD (M = 946, SD = 193), LSPD (M = 960, SD = 168), and LDPS (M = 

1093, SD = 189) categories in the music task. Reaction times for each group for the four 

categories of target stimuli in the music task are shown in Figure 4.12. 

 

*p < .05 

Figure 4.12 Reaction time for each stimulus category for the music task in both groups. 

To further compare the performance of musicians versus non-musicians within each 

category in the music task, a one-way ANOVA was conducted for each category. Results from 

these comparisons showed that showed that reaction times of musicians were significantly faster 
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than non-musicians for the LDPS category [F (1, 54) = 10.98, p = .002] and for the LDPD 

category [F (1, 58) = 4.05, p = .049] in the music task. These analyses showed no other 

significant differences in reaction times for the other stimulus categories between the two groups 

in the music task.  

Results of a one-way ANOVA of the musician group showed that reaction times for the 

LDPD category were significantly faster than the LSPD category [t (29) = 8.86, p < .0005], and 

reaction time for the LSPS category was significantly faster than for the LDPS category [t (29) = 

5.93, p < .0005] in the music task. Results of a one-way ANOVA of the non-musician group 

showed that reaction times for the LSPS category were significantly faster than for the LDPS 

category [t (25) = 5.72, p < .0005]; whereas LSPD category and LDPD categories showed no 

difference [t (29) = .592, p = .558] in speed in the music task. Thus, the effects of visual 

similarity on reaction time for both the musician and the non-musician groups in the music task 

were inconsistent. 

 The results presented in this chapter were presented in relation to the research questions 

stated above in Chapter Two. These similarities and differences between musicians and 

non-musicians on the experimental tasks will be discussed in the next chapter.  
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CHAPTER 5 

DISCUSSION 

The present study addressed three areas of interest: 1) comparison of print to sound 

translation of English versus Mandarin Chinese versus musical notation; 2) comparison of how 

performance on these reading tasks may relate to musical training; and 3) how increased working 

memory load may affect performance across these reading tasks. The effect of visual similarity 

of target stimuli on performance was also examined. The four reading tasks involved a range of 

visual stimuli that correspond to phonological information (i.e., written English), combined 

phonological and tone information in a task emphasizing phonological information (i.e., written 

Chinese), combined phonological and tone information in a task emphasizing tone information 

(i.e., written Chinese), and pitch name information (i.e., Western musical notation system). 

The Effect of Musical Training on Verbal and Tonal Working Memory 

Two of the research questions posed in Chapter Two (Questions 1 and 2) addressed the issue 

of how increased demands on working memory may affect task performance in this study.  It 

was assumed that the 2-back tasks were more demanding of working memory than the 1-back 

tasks, and that this increased task difficulty would be reflected in lower accuracy scores and 

longer reaction times.  

 Research Question 1: How is accuracy of performance in musicians and non-musicians in 

four visual recognition tasks influenced by increased task demands on working memory? Null 

Hypothesis: There are no significant differences in accuracy of performance of musicians and 

non-musicians on four visual recognition tasks with increased task demands on working 

memory.  

 Research Question 2: How is speed of performance in musicians and non-musicians in 
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four visual recognition tasks influenced by increased task demands on working memory? 

Null Hypothesis: There are no significant differences in speed of performance of musicians and 

non-musicians in four visual recognition tasks with increased task demands on working memory. 

The results of this study support the assumption that the 2-back task is more difficult than 

the 1-back task. Accuracy rates in the four visual recognition tasks after increased task demands 

were significantly different in that the accuracy rate of 1-back tasks was higher than 2-back tasks. 

Presumably, this difference relates to working memory in that the 2-back task requires 

comparison of a target to a probe presented two items back in a list, whereas the 1-back task 

requires only a comparison of the target to the item immediately preceding it in the list.  

In the current study, musicians were significantly more accurate than non-musicians in three 

1-back tasks (Mandarin homophone, Mandarin tone, and music tasks) and in two 2-back tasks 

(Mandarin tone and music tasks). Reaction times did not differ across groups in the 1-back tasks, 

but the musicians were faster to respond in the 2-back Mandarin tone task and they were slower 

to respond in the 2-back music task as compared to the non-musicians. These accuracy and 

reaction time results presumably reflect the effects of musical training. Three explanations have 

been proposed to account for superior performance of musicians in verbal tasks as compared to 

non-musicians: 1) musical training results in expanded working memory capacity; 2) musical 

training provides LTM support for normal working memory; and, 3) musical training results in 

improved executive function. 

As noted in Chapter Two, Gudnubdsdittur (2010) claimed that sight reading of the musical 

notation system requires general mental capacities such as working memory and mental speed. 

Lehman (2007) also suggested that the task of music reading is demanding of working memory. 

Skilled performers such as musicians and chess players appear to have an expanded working 
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memory capacity (Chase & Simon, 1973; Stigler, 1984). Thus, one explanation for the better 

performance of musicians as compared to non-musicians in verbal tasks in the current study is 

that musical training resulted in increased working memory capacity in the musicians, making 

them less vulnerable to high working memory demands. 

The notion that working memory capacity can be expanded by musical training may reflect 

the operation of a “single acoustic loop” (Schendel, 2006). Based on evidence from articulatory 

suppression experiments and irrelevant sound effect experiments using verbal versus music 

stimuli (described in Chapter Two), Schendel (2006) proposed that a single acoustic loop with a 

single rehearsal mechanism is the most parsimonious explanation for similarities in language and 

music results. He suggested that using one acoustic loop for both phonological and tonal 

information may allow musicians to conserve cognitive resources. Interestingly, in the current 

study the performance of musicians in the 2-back Mandarin tone task was not significantly 

different in accuracy or speed from their performance in the 2-back music task. These results 

could be interpreted as evidence that working memory for language and working memory for 

music are both governed by a single acoustic loop. On this account, potential improvements in 

tonal working memory as a result of musical training could expand the capacity of this working 

memory loop and consequently improve verbal working memory. 

Superior performance of musicians to non-musicians was also observed by Schulze and 

colleagues (2011) in a study comparing processing of verbal syllables versus sine wave tones in 

the two groups; however, they did not compare linguistic tone and musical tone. Schulze and 

colleagues (2011) proposed that two working memory systems may exist in musicians: a 

phonological loop supporting maintenance of phonological information, and a tonal loop 

supporting maintenance of pitch information. More research is needed to test this hypothesis of 
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two working memory systems in musicians as opposed to the single acoustic loop hypothesized 

by Schendel (2006). However, similar performance of musicians in the Mandarin tone and music 

tasks in the current study appears to support the hypothesis of a single acoustic loop. 

The second explanation for superior performance of musicians in verbal tasks as compared 

to non-musicians noted above is that musical training provides LTM support for normal working 

memory. On this account, long-term memory for musical information could interact with 

working memory. In Figure 2.2 above (Vallar, 2006), connections from verbal LTM to the 

phonological short-term store and the rehearsal process illustrate the support of LTM systems in 

aspects of immediate retention. Presumably, LTM for musical information could function in the 

same way as verbal LTM to support working memory. In the current study, the musicians have 

expertise in musical tone and this may be why they performed significantly more accurately and 

faster than non-musicians in recoding print into linguistic tone in the Mandarin tone task. Similar 

performance of musicians in the Mandarin tone and music tasks in the current study suggests that 

these forms of tonal information may exert a similar influence on working memory. 

Long-term memory does appear to have influenced performance in verbal tasks in the 

current study in that both musicians and non-musicians performed worse in the English rhyming 

task as compared to the Chinese tasks. One possible interpretation of these results is that they 

reflect long-term memory and its effects on verbal working memory. As noted above, language is 

a learning process influenced by top-down knowledge, such that high-level information (e.g., 

stored phonological, lexical and semantic representations) guides the search for lower-level 

information (e.g., from letters to words, character to meaning, or note to melody) (Medin, Ross 

& Markman, 2004). In the current study, Chinese is a native language to all participants. Thus, 

long-term memory may help participants to be less vulnerable under heavy working memory 



96 

 

load in Chinese as compared to English. 

Within the Chinese tasks in the current study, higher accuracy rates and faster speed were 

observed in the homophone task as compared to the Mandarin tone task. This pattern was 

observed in non-musicians for both for the 1-back and 2-back tasks. Musicians also performed 

faster in the homophone task as compared to the Mandarin tone task (for both 1-back and 2-back) 

but only demonstrated this difference in accuracy for the 2-back homophone and Mandarin tone 

tasks. Thus, for the musicians the effects of expert ability (i.e., musical training) diminish under 

conditions of increased working memory load and the differences in difficulty between the 

homophone and the Mandarin tone tasks are revealed. Taken together, these accuracy and 

reaction time for both groups suggest that it is easier to extract phonological information from 

Chinese script than tonal information. An alternative explanation is that it is more difficult to 

maintain linguistic tone information in working memory as compared to phonological 

information. 

A suprasegmental phonological feature, such as a linguistic tone, may be harder to retrieve 

than phonological segments in Mandarin Chinese because tone cues are embedded in 

phonological information (Leong, 2002; Taft & Chen, 1992). A benefit of the current study 

design is that direct comparison of phonological and tonal recoding of Mandarin script was 

possible, allowing the greater difficulty of extracting tone information from Chinese as compared 

to phonological information to become evident. In line with the conclusions of Li and Ho (2011) 

who found that tone processing is harder than phonological processing in Chinese reading for 

dyslexic children, in the current study this pattern was observed in normal skilled readers under 

time pressure and with increased working memory load. 

Interestingly, even though both groups performed best in the Mandarin homophone task 
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among all the experimental tasks in the current study, the non-musicians were less accurate than 

the musicians in this task. Results of the current study show that musicians are better at 

determining the similarities and differences between Mandarin homophone word pairs than 

non-musicians, as reflected in the musicians’ superior accuracy in the Mandarin homophone task. 

This homophone task requires phonological judgments, not tone judgments, and yet musical 

training makes it easier to perform. 

The third explanation noted above for superior performance of musicians in verbal tasks as 

compared to non-musicians is that musical training results in improved executive function. 

Studies addressing the relationship between central executive function and musical working 

memory have focused on the musical training effect (Degé, Kubicek & Schwarzer, 2011; 

Hargreaves & Aksentijevic, 2011; Moreno, Bialystok, Barac, Schellenberg, Cepeda & Chau, 

2011; Schellenberg, 2011). Moreno and colleagues (2011) found short-term musical training 

enhanced verbal intelligence and executive function. They concluded that musical training 

improved not only musical skills, but also transferred to improved verbal ability because 

cognitive processing of music overlaps with cognitive mechanisms used in language (specifically, 

executive function). In the current study, specific tests of executive function were not employed. 

In any case, it is difficult to disentangle the effects of executive function and working memory in 

musical training given the range of behaviors included in musical training and the need to engage 

executive function and other cognitive resources in demanding tasks of expertise such as reading 

musical scores or playing chess. 

Both the musician and non-musician groups in the current study showed the same pattern of 

accuracy across visual recognition tasks in that they were most accurate in the Mandarin 

homophone task, followed by the Mandarin tone task, the music task and then the English 
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rhyming task. It is not surprising that the musicians performed more accurately than the 

non-musicians on the music reading task; however, both groups performed very poorly on the 

English rhyming task. English is not the native language of the participants, and the time 

constraints of the task do not allow effortful articulation or grapheme to phoneme conversion 

strategies during phonological judgments. As discussed below, participants relied on the visual 

similarity of targets and probes in attempting to perform the rhyming task. 

The Effect of Visual Similarity of Target Stimuli 

 Two of the research questions in Chapter Two (Questions 3 and 4) addressed the issue of 

how performance on the visual recognition tasks may relate to the visual characteristics of the 

target stimuli. Few verbal working memory experiments have been conducted using visual 

stimuli although it has been noted that orthographic similarity can affect performance in 

phonological working memory experiments (Tree et al., 2011).  

 Research Question 3: How is accuracy of performance by musicians and non-musicians in 

visual recognition tasks influenced by increased visual similarity of task stimuli?  

Null Hypothesis: There are no significant differences in accuracy of performance of musicians 

and non-musicians in visual recognition tasks with increased visual similarity of task stimuli. 

 Research Question 4: How is speed of performance in musicians and non-musicians in the 

visual recognition tasks influenced by increased visual similarity of task stimuli?  

Null Hypothesis: There are no significant differences in speed of performance of musicians and 

non-musicians in visual recognition tasks with increased visual similarity of task stimuli. 

The visual features and corresponding sound (i.e., phonological or pitch) characteristics of 

stimuli were carefully controlled in three of the four recognition tasks: English rhyming, 

Mandarin homophone, and musical notation. The results of each task will be discussed 
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separately. 

In the English rhyming task, the performance of musicians and non-musicians was driven 

by the visual similarity of the target stimuli, a similar pattern to that reported by Tree and 

colleagues (2011). These results suggest that, given the time constraints of the task, participants 

were unable to transcode print to sound and instead relied on visual similarity to judge whether 

target stimuli rhymed with the probes. This pattern of reliance on visual information was evident 

both in accuracy and reaction time results. Within the conceptual framework of Figure 2.2 (Vallar, 

2006), a visual stimulus can be held briefly in a visual “short-term store” (i.e., iconic memory); 

thus, the n-back task can be performed using this visual information more rapidly than using 

phonological information, which is normally obtained later during the phonological recoding or 

phonological buffer stages.  

In the Mandarin homophone task, accuracy results were inconsistent in regard to the visual 

characteristics of target stimuli. For both groups, visual similarity did not increase correct 

acceptances of phonologically similar (PS) items (in fact, the reverse was true), but visual 

similarity did increase incorrect acceptances of phonologically different (PD) items in the 

non-musician group. Also, the effects of visual similarity on reaction time for both the musician 

and the non-musician groups in the homophone task were inconsistent. The fact that both groups 

performed best in the Mandarin homophone task relative to the other experimental tasks suggests 

that participants were attempting to perform the task by recoding print into sound and were not 

relying merely on visual characteristics of the stimuli to perform the task. 

In the music task, the performance of the musician group is emphasized here because the 

non-musicians were not trained to read musical notation. Regarding the effect of visually similar 

target items, results were inconsistent overall. Non-musicians were more likely to accept a 
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correct match as being phonologically similar if it also looked similar as compared to when it 

looked different from the probe. Musicians’ significantly slower reaction times overall in this 

task, compared to the non-musician group, suggests that the musicians likely attempted to 

transcode the notes into sound. In regard to the visual characteristics of target stimuli, the 

performance of musicians was inconsistent. Visual similarity did not influence accuracy 

performance of musicians given the PS (correct ‘yes’) targets, but it did influence their 

performance given the PD (correct ‘no’) targets in that they were more likely to incorrectly 

accept a PD target if it looked similar to the probe. Visual similarity did influence reaction times 

of the musicians in the music task in that they were faster to accept a correct match when it 

looked similar to the probe than when it did not look like the probe, and they were faster to 

correctly reject mismatches when they looked different from the probe than when they looked 

similar to the probe.  

Conclusion 

In conclusion, for the tasks and stimuli created for this study, participants performed more 

accurately across tasks in the 1-back condition as compared to the 2-back condition, presumably 

as a result of increased demands on working memory in the 2-back condition. Interestingly, in 

the Mandarin homophone and Mandarin tone tasks, musicians and non-musicians showed 

significantly different accuracy rates. Analysis of the effects of visual similarity on task 

performance provided more detailed information than previous studies about the influence of 

visual versus phonological information in working memory tasks involving visual stimuli.  

Although the tonal information in Mandarin is embedded in phonological information, the 

current study provided evidence that musicians more readily (in terms of both accuracy and 

speed) extract this tonal information from print than are non-musicians. A striking result of the 
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current study is that even in the Mandarin homophone task, which requires phonological 

judgments of print, the musicians demonstrated superior performance.  

More accurate performance by musicians as compared to non-musicians in verbal working 

memory tasks may reflect several processes including an expanded working memory capacity, 

the influence of long-term memory on working memory, and/or improved executive function. 

The results of the current study do not rule out any of these hypotheses; however, similar 

performance in musicians for the Mandarin tone task and the music task in the current study 

suggest that linguistic tone and musical tone may involve the same or overlapping processes of 

working memory and/or long-term memory. Moreover, the current study provides evidence that 

musical training facilitates phonological language processing. 

Limitations and Future Studies 

Several limitations of the current study can be identified that may influence the design of 

future studies. First, although the study participants had studied English for an average of more 

than 11 years, the English rhyming task proved to be too difficult for these native speakers of 

Mandarin even in the 1-back condition. Their performance in the rhyming task provided a clear 

example of how the visual similarity of task stimuli can drive performance when participants are 

unable to convert print to sound under time constraints; however, poor performance in this task 

did not allow for further comparisons of English reading versus Mandarin reading in the current 

study.  

In future studies, native English speakers could be included to compare performance of 

musicians versus non-musicians in the English rhyming task versus the music task. Also, future 

studies with native Mandarin speakers could incorporate an n-back task involving stimuli from 

the Zhu-Yin-Fu-Hao phonetic system. Zhu-Yin-Fu-Hao is used in Taiwan to represent 
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pronunciations of Chinese characters in a manner similar to the phonetic system of English. In a 

future study, performance on the English rhyming task could be compared to a homophone task 

that uses stimuli from the Zhu-Yin-Fu-Hao system. Although the results may show better 

accuracy rates for the homophone task compared to the rhyming task, reaction times may show 

no difference between the two tasks because Zhu-Yin-Fu-Hao may require more time to make a 

judgment as compared to reading the Chinese characters directly. The time constraints of the 

English rhyming task could also be modified so that native Mandarin speakers could perform the 

task more successfully.  

A second limitation of the current study as it relates to the study of print to sound translation 

in Mandarin is that the stimuli used did not represent the full range of written Mandarin 

categories, which include pictographs, ideographs, compound ideographs, loan characters, 

analogous characters, and phonetic compounds. Attempting to examine all of these categories of 

written Mandarin in one study would have been too ambitious; however, systematic analysis of 

print to sound translation of these different features of Mandarin in future studies would provide 

the basis for more detailed theoretical models of Mandarin reading.  

A third limitation of the current study is that the Mandarin tone stimuli were not controlled 

for visual similarity, unlike stimuli in the other experimental tasks. The Mandarin tone stimuli 

were controlled for the two variables of phonological similarity and tone similarity, and an 

additional subtest contrasting visual similarity with tone similarity was not included to limit the 

overall time required for each participant to complete the experiment. However, in a future 

experiment, this additional subtest could be included to provide a more direct comparison of 

visual and tonal features as was completed in the music task. 

A fourth limitation noted in this study is that there were more stimuli in the n-back task for 
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which the correct response was ‘no’ as compared to ‘yes’. This reflected the many probe and 

filler items that were included in addition to the target items (for which half were correct ‘yes’ 

responses and half were correct ‘no’ responses). In this context, participants may have become 

biased toward responding ‘no’ on the target items. However, the task design was the same across 

all 1-back and 2-back tasks, allowing for the differential effects of English versus Mandarin 

versus music stimuli to be observed in musicians versus non-musicians. 

Evidence from the current study suggests that musical training can facilitate language 

processing. Although the differences between musicians and non-musicians in the current study 

were often significant but fairly small in terms of proportion correct, the effect of musical 

training on language is likely to be modest in healthy adults with normal reading ability. 

However, for children learning to read, particularly dyslexic children, even a fairly small 

facilitation effect of musical training may have a strong real-world impact in acquisition of 

reading skills. 

In summary, this is the first study to compare similarities and differences between verbal 

and musical working memory using written English, Mandarin Chinese and musical notation in 

musicians and non-musicians. This study provides evidence that music and language share 

cognitive processes related to working memory. 
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APPENDIX 

ALL STIMULI- English Rhyming Task- Phonological Similar 

English Rhyming Task- OSPS English Rhyming Task- ODPS 

probe f target f probe f target f 

mark 83 dark 185 head 424 bed 127 

arm 94 farm 140 pool 111 rule 76 

damp 16 lamp 18 float 3 quote 17 

man 1207 can 1771 wait 88 late 179 

fence 30 hence 58 cope 21 soap 22 

yield 16 shield 8 clue 15 zoo 9 

cold 171 told 413 comb 6 roam 6 

spark 12 bark 14 more 2214 four 360 

smile 58 mile 48 you 3277 two 1398 

win 55 skin 47 fix 14 kicks 3 

soy 1 toy 6 line 298 sign 94 

skip 5 chip 17 chew 2 shoe 14 

coil 6 boil 12 leap 14 peep 2 

hip 10 flip 4 heat 97 meet 149 

peer 8 deer 13 goal 60 hole 58 

nest 20 pest 4 boot 13 flute 1 

cane 12 pane 3 bait 2 skate 1 

cat 23 hat 56 bone 33 thrown 40 

lock 24 rock 75 bead 1 deed 1 

fool 37 cool 62 dual 1 jewel 1 

noon 25 moon 60 fail 37 pale 58 

fill 50 kill 63 low 173 go 626 

boat 73 coat 43 he 9547 key 86 

nine 81 fine 162 break 88 take 610 

beat 67 seat 54 pair 50 bear  57 

zip 1 lip 18 route 43 root 30 

speed 83 feed 122 mail 47 scale 59 

bat 18 mat 5 tail 24 dale 5 

cake 13 fake 10 phone 54 loan 43 

fear 127 year 656 spoon 6 tune 10 
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English Rhyming Task- Phonological dissimilar 

English Rhyming Task- OSPD English Rhyming Task- ODPD 

probe f target f probe f target f 

cow 29 slow 60 lunch 33 maid 31 

paid 145 said 1962 meat 45 chair 66 

put 438 but 4383 foam 37 gate 37 

poor 113 floor 158 beer 35 fat 60 

youth 82 south 239 ball 110 hand 431 

five 289 give 389 deck 23 bowl 23 

deaf 12 leaf 13 couch 12 berry 9 

ski 5 hi 6 horse 117 news 102 

crow 2 brow 6 town 212 son 165 

love 232 move 171 part 499 help 311 

sown 3 crown 19 bug 4 cart 5 

soot 1 hoot 9 mash 1 frost 7 

does 485 goes 89 fuel 17 bow 15 

blown 9 clown 3 seed 40 tool 44 

lost 173 most 1159 tale 21 pack 25 

gasp 3 wasp 2 neck 81 king 88 

peach 3 poach 1 nut 15 pill 15 

pour 9 sour 3 kit 2 bland 3 

wear 31 ear 25 yard 35 van 32 

your 923 hour 145 boy 244 soon 199 

blind 47 wind 63 dear 54 foot 70 

drive 104 live 177 cave 9 bush 14 

card 26 ward 25 mood 37 beach 61 

gross 65 cross 54 paw 3 noose 3 

lose 58 nose 60 pole 18 juice 11 

word 265 lord 93 pat 35 sand 28 

cheat 3 sweat 23 hope 172 play 200 

blood 121 food 147 mint 7 stair 2 

stove 5 glove 9 fall 147 size 141 

hint 9 pint 13 shine 5 brake 2 
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Mandarin Homophone Task- Homophone 

Mandarin Homophone Task- OSPS Mandarin Homophone Task- ODPS 

probe f target f probe f target f 

狐 85 弧 42 頒 983 班 5168 

柱 354 注 3904 財 9377 裁 2586 

淑 1039 叔 258 酬 532 愁 148 

精 5319 睛 353 城 3340 程 16133 

青 4933 清 11820 持 15542 遲 1243 

聶 49 躡 11 膜 299 磨 448 

濃 1202 農 12696 距 1580 句 973 

維 6033 唯 2049 輝 2651 灰 592 

扭 443 紐 1043 叛 487 盼 941 

眉 481 楣 117 其 32547 齊 1235 

裡 4617 理 36671 陽 2492 洋 2646 

鈔 478 抄 192 風 9058 豐 4272 

玫 148 枚 397 服 8150 浮 774 

啤 136 脾 119 共 17387 貢 624 

洛 1230 絡 1550 悅 416 月 33109 

捕 3229 補 6426 脹 356 仗 209 

橋 3358 僑 1185 震 2118 鎮 11808 

蚊 167 紋 365 植 1319 執 8177 

椅 370 倚 107 價 18350 架 2028 

祇 624 紙 2210 劇 3082 聚 1688 

棉 421 綿 240 練 3141 戀 477 

紅 3632 虹 216 烈 3768 獵 224 

豬 1723 諸 1417 龍 5681 隆 5047 

笛 138 迪 535 欺 595 妻 1881 

冒 1112 帽 276 攤 2653 坍 179 

河 3006 荷 725 桃 3427 淘 334 

池 1341 馳 335 晚 5699 碗 183 

錶 413 表 44788 續 9537 序 2790 

沙 2481 砂 1341 惠 2174 匯 2828 

托 306 託 2112 飯 1772 犯 6095 
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Mandarin Homophone Task- Non-homophone 

Mandarin Homophone Task- OSPD Mandarin Homophone Task- ODPD 

probe f target f probe f target f 

柏 2317 怕 2068 爸 505 傻 116 

課 4938 裸 225 抹 203 硬 1514 

彬 369 淋 211 肌 207 玲 778 

鍋 394 禍 1187 杯 1161 山 14240 

貓 410 描 406 俊 2033 籠 475 

落 5979 客 8584 騎 1184 律 3793 

疏 1086 流 8690 罷 1226 燒 1566 

槍 6293 創 3585 訊 8963 殼 349 

村 8077 材 2617 畢 2193 鬆 1020 

促 3321 捉 381 隻 1383 梅 1607 

貧 527 貪 444 送 9174 扮 774 

哀 369 衷 284 貨 7474 知 10443 

狼 178 狠 199 末 934 紀 3821 

宮 1850 官 10246 斬 189 樣 5328 

旱 166 早 5623 博 2268 稍 1211 

喘 117 端 2522 菌 296 鳥 712 

倉 624 創 3585 家 34730 領 6553 

掌 2321 賞 1578 飲 1685 綠 1220 

住 8832 汪 471 伴 590 順 4313 

司 26120 可 42120 漢 1818 只 14311 

斯 6509 期 22594 營 14537 碑 327 

般 4367 船 6311 火 7553 指 25436 

席 6424 度 20312 悲 780 扇 141 

砰 19 秤 63 涼 319 島 2032 

巴 3200 已 33836 必 10482 押 1725 

谷 910 俗 1398 玻 614 抨 647 

亦 7901 示 34047 瞬 117 泊 305 

諒 446 京 2417 功 5385 訓 3592 

登 4502 澄 609 轟 553 佔 3090 

易 9396 踢 113 牙 941 牌 3330 
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Mandarin Tone Task- The same tone 

Homophone with the same tone Non-homophone with the same tone 

probe f target f probe f target f 

金 24968 今 19780 肉 2006 熱 4853 

蜜 314 密 3656 琴 919 旗 1522 

鼠 326 屬 7260 倍 1370 畢 2193 

份 11062 憤  788 波 6113 撥 1398 

書 9328 舒 374 氣  10424 去 16165 

麵 544 面 24564 賭 2212 底 7095 

移 5705 宜 5600 繞 436 讓 7625 

地  55300 弟 2060 誠 1895 沉 316 

堡 294 保 20560 雞 1208 居 5995 

畫 9145 話 8922 嘗 382 廚 387 

球 8110 求 14712 坦 1672 躺 157 

秋 1730 丘 299 皮 1988 葡 294 

錢 4668 前 50655 昌 2014 初 6269 

欣 1394 心 25445 賣 5751 慢 1152 

欲 2376 玉 3475 穿 1560 春 4073 

汐 213 夕 663 簡 3496 緊 3636 

祖 1398 組 15363 笛 138 讀 2162 

扶 566 伏 781 短 4098 黨 21650 

陵 257 菱 161 湯 498 他 49438 

塵 506 臣 305 品 17493 敏 1438 

庫 2739 酷 189 車 28603 稱 6637 

協 11837 鞋 705 集 9984 局 30181 

僅 5973 錦 1817 批 4075 拍 2048 

規 13668 歸 2156 母 3193 米 1845 

權 14201 泉 1870 串 1663 創 3585 

隱 777 引 9066 庭 3995 糖 1237 

帆 189 繁 1452 海 14160 喊 1237 

瓜 914 刮 503 最 21422 造 12164 

鬥 1140 豆 793 果 15486 古 2898 

分 46884 芬 709 慎 1438 上 59278 
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Mandarin Tone Task- Different tones 

Homophone with different tones Non-Homophone with different tones 

probe f target f probe f target f 

販 3230 反 14983 抹 203 玲 778 

國 87186 過 32398 領 6553 知 10443 

回 13702 匯 2828  功 5385  紀 3821 

師 8974 史 2956 殼 349 押 1725 

窗 822 闖 480 佔 3090 營 14357 

划 225 花 7458 悲 780 湖 2968 

牛 2119 扭 443 隻 1383 末 934 

土 9679 兔 102 籠 475 價 18350 

水 23359 稅 6938 家 34730 柏 2317 

腿 556 退 4768 轟 553 送 9174 

信 11240 辛 1071 鬆 1020 傻 116 

促 3321 粗 403 貨 7474 排 5726 

猜 246 財 9377 扇 141 牙 941 

八 29615 壩 147 伴 590 可 42120 

必 10482 鼻 398 綠 1220 台 57187 

星 4335 行 60532 山 14240 訓 3592 

喝 1108 合 24693 漢 1818 博 2268 

洗 1361 西 8364 俊 2033 燒 1566 

麻 1590 罵 529 牌 3330 杯 1161 

四 38338 司 26120 順 4313 常 11207 

高 36004 告 10675 溪 3966 全 27249 

晚 5699 完 10112 袋 1071 娶 150 

有 106582 由 39598 火 7553 罷 1226 

是 90378 十 76679 只 14311 硬 1514 

打 10559 大 83354 節 8033 扮 772 

美 23111 妹 335 鐘 2010 菌 296 

把 6299 拔 870 享 1578 民 53007 

媽 1518 馬 6467 場 36564 刷 514 

任 19008 人 109366 共 17387 百 28979 

泛 554 煩 525 輛 3062 石 5765 
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Music Reading Task – the same pitch names 

The same location with the same pitch name Different location with the same pitch name 

file name probe file name target file name probe file name target 

11.jpg d 11.jpg d 192.jpg e flat 185.jpg E flat 

35.jpg a' 35.jpg a' 173.jpg f 511.jpg f 

51.jpg d 51.jpg d 149.jpg b 142.jpg B 

70.jpg c sharp 70.jpg c sharp 127.jpg G 532.jpg G 

81.jpg A 81.jpg A 104.jpg D 111.jpg d 

101.jpg A 101.jpg A 86.jpg F 551.jpg F 

126.jpg F 126.jpg F 63.jpg C sharp 70.jpg c sharp 

152.jpg e 152.jpg e 48.jpg a 573.jpg a 

175.jpg a' flat 175.jpg a' flat 22.jpg B 29.jpg b 

186.jpg F 186.jpg F 14.jpg g 585.jpg g 

505.jpg G 505.jpg G 51.jpg d 44.jpg D 

523.jpg E 523.jpg E 95.jpg a' 606.jpg a' 

548.jpg c 548.jpg c 125.jpg E flat 132.jpg e flat 

565.jpg G 565.jpg G 170.jpg c 628.jpg c 

594.jpg b flat 594.jpg b flat 181.jpg A flat 188.jpg a flat 

610.jpg e 610.jpg e 690.jpg e flat 165.jpg e flat 

627.jpg B flat 627.jpg B flat 673.jpg a flat 666.jpg A flat 

653.jpg a 653.jpg a 629.jpg d 151.jpg d 

661.jpg C 661.jpg C 644.jpg F sharp 651.jpg f sharp 

692.jpg g 692.jpg g 603.jpg E 145.jpg E 

4.jpg D 4.jpg D 595.jpg c' 588.jpg c 

34.jpg g 34.jpg g 571.jpg f sharp 113.jpg f sharp 

42.jpg B flat 42.jpg B flat 541.jpg C 555.jpg c' 

73.jpg f sharp 73.jpg f sharp 527.jpg B 22.jpg B 

93.jpg f 93.jpg f 512.jpg g 505.jpg G 

513.jpg a 513.jpg a 514.jpg b 69.jpg b 

522.jpg D 522.jpg D 542.jpg D 549.jpg d 

554.jpg b flat 554.jpg b flat 581.jpg C 130.jpg C 

563.jpg E 563.jpg E 626.jpg A flat 633.jpg a flat 

581.jpg C 581.jpg C 665.jpg G 87.jpg G 
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Music Reading Task- different pitch names 

The same location with different pitch names Different location with different pitch names 

file name probe file name target file name probe file name target 

5.jpg E 505.jpg G 81.jpg A 46.jpg F 

526.jpg A 26.jpg F sharp 115.jpg a' 7.jpg G 

52.jpg e 552.jpg g 90.jpg C 514.jpg b 

563.jpg E 63.jpg C 525.jpg G 588.jpg C 

84.jpg D 584.jpg F 625.jpg G 21.jpg A 

608.jpg c 108.jpg a 681.jpg C 47.jpg G 

130.jpg c 630.jpg e 1.jpg A 63.jpg c sharp 

651.jpg f sharp 151.jpg d sharp 22.jpg B 143.jpg c sharp 

169.jpg b flat 669.jpg d 155.jpg a' 163.jpg C 

690.jpg e flat 190.jpg c 144.jpg D sharp 114.jpg g sharp 

31.jpg d 531.jpg F sharp 6.jpg F 32.jpg e 

574.jpg b 74.jpg g 7.jpg G 69.jpg B 

13.jpg f 513.jpg a 502.jpg D 530.jpg e 

606.jpg A 106.jpg F sharp 510.jpg e 588.jpg c 

147.jpg G sharp 647.jpg B 127.jpg G 44.jpg D 

683.jpg e flat 183.jpg C 514.jpg b 523.jpg E 

164.jpg D flat 664.jpg F 67.jpg G 551.jpg f 

622.jpg D 122.jpg B flat 88.jpg A 114.jpg G sharp

95.jpg a' 595.jpg c' 1.jpg A 22.jpg B 

547.jpg B flat 47.jpg G 43.jpg C 64.jpg D 

65.jpg E 565.jpg G 87.jpg G 105.jpg E 

581.jpg C 81.jpg A 126.jpg F 148.jpg a 

109.jpg b 609.jpg d 501.jpg C 522.jpg D 

628.jpg c 128.jpg a flat 552.jpg G 573.jpg A 

174.jpg g  674.jpg B flat 601.jpg C sharp 583.jpg E flat 

642.jpg D 142.jpg B 195.jpg a' flat 174.jpg g 

181.jpg A flat 681.jpg C 153.jpg f sharp 89.jpg b flat 

513.jpg a 13.jpg f 3.jpg C 27.jpg G 

28.jpg a 528.jpg c 64.jpg D 89.jpg b flat 

652.jpg g sharp 152.jpg e 108.jpg a 132.jpg e flat 
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This dissertation explored the translation from print to sound of the tonal language 

Mandarin versus English versus musical notation in healthy volunteers. The performance of 

musicians and non-musicians was compared across a variety of reading tasks in an attempt to 

examine whether musical training can facilitate Mandarin tone or phonological processing. The 

effects of increasing working memory load on reading performance across tasks were also 

examined. Results showed that increasing demands on working memory in visual recognition 

tasks significantly decreased performance accuracy for both musicians and non-musicians across 

tasks. Significant differences in accuracy rates were observed between musicians and 

non-musicians. Although the tonal information in Mandarin is embedded in phonological 

information, the current study provided evidence that musicians are better able to extract this 

tonal information from print than are non-musicians, or to maintain it in working memory. Even 

in the Mandarin homophone task, which requires phonological judgments of print, the musicians 

demonstrated superior performance. The current study provides evidence that musical training 

facilitates phonological language processing.  
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