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A Comparison Of Methods For Longitudinal Analysis With Missing Data 

 

 
 
In a longitudinal two-group randomized trials design, also referred to as randomized parallel-groups design or 
split-plot repeated measures design, the important hypothesis of interest is whether there are differential rates 
of change over time, that is, whether there is a group by time interaction. Several analytic methods have been 
presented in the literature for testing this important hypothesis when data are incomplete. We studied these 
methods for the case in which the missing data pattern is non-monotone. In agreement with earlier work on 
monotone missing data patterns, our results on bias, sampling variability, Type I error and power support the 
use of a procedure due to Overall, Ahn, Shivakumar, and  Kalburgi (1999) that can easily be implemented 
with SAS’s PROC MIXED. 
 
Keywords: data, mixed models, split-plot design 
 
 

Introduction 
 
A randomized parallel-groups design in which 
participants are randomly assigned to treatments, 
measured on one pretreatment occasion, and on 
multiple post treatment occasions, is a common 
design for investigating treatment effects. One 
challenge facing researchers who use this design 
is how to analyze the data when there are 
missing observations. Little (1995), Overall, 
Ahn, Shivakumar, and Kalburgi (1999), Wang-
Clow, Lange, Laird,  and Ware (1995), and Wu  
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and Bailey (1989) have all suggested procedures 
for conducting such analyses. Algina and 
Keselman (2003) compared a number of these 
methods for designs in which two treatments 
( 1,2)k =  are compared. They concluded that 
while, in principle, if one has valid information 
about the type of missing data, the information 
should be taken into account in selecting a 
procedure, in practice it may be wise to select a 
method that performs well over a wide range of 
methods.  Based on their findings, which 
included empirical  estimates of bias, sampling 
variability, variations of a procedure suggested 
by Wu and Bailey (1989) might be considered. 
The principal shortcomings of these three 
procedures were Type I error rates above the 
nominal level in some conditions and, for two of 
the variations, a complicated method of 
estimation.   However, Algina and Keselman 
acknowledged that their study should be 
regarded as preliminary in that they studied a 
limited number of conditions. 
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One limiting factor in the Algina-
Keselman (2003) study, as well as in Overall et 
al. (1999), Wang-Clow et al. (1995), and Wu 
and Bailey (1989), was a monotone pattern for 
the missing data.  That is, once an observation 
was missing for a participant, no further 
measurements were available for that 
participant. Thus, a major purpose of the current 
investigation was to determine whether the 
Overall et al. procedure would continue to 
perform well when the missing data did not 
occur in a monotone pattern.  In addition, the 
influence of a wider variety of missing data 
mechanisms than were included by Algina and 
Keselman and the influence of planned sample 
size on the methods were investigated.  Prior to 
presentation of the new results, we review 
missing data mechanisms and the methods we 
investigated. 

 
Missing Data Mechanisms 

Little (1995) reviewed several 
mechanisms for missing data: missing 
completely at random (MCAR), covariate 
dependent (CD), and missing at random (MAR).  
Following Verbeke and Molenberghs (2000), 
when the mechanism is not MCAR, CD, or 
MAR, we refer to it as missing not at random 
(MNAR). The variables that predict which data 
are missing determine whether or not the data 
are MCAR, CD, MAR, or MNAR.  In this paper 
we are concerned with estimation and 
hypothesis testing when data are missing in a 
design in which participants in two treatment 
groups are measured on one pretreatment 
occasion and several post treatment occasions. 
In such studies, there are three types of variables 
that describe the participants. 

The first two are the potentially 
observable variables. These are the 
measurements on the variable of interest and the 
covariates. The latter variables include the 
occasion of measurement, the treatment 
indicator, and any other variables that are 
observed prior to the onset of the treatments. 
The third type comprises the parameters for a 
subject-specific within-subject model for scores 
on the repeated measurements. Variables in the 
third type are latent variables. 

When the pattern of missing data at a 
particular time point is unrelated to the 

potentially observable variables and to the latent 
variables, the data are MCAR. If the pattern of 
missing data is related only to the covariates the 
mechanism is CD.  It should be noted that some 
authors (see, for example Diggle & Kenward, 
1994) do not distinguish between MCAR and 
CD missing data mechanisms.  If the pattern at a 
particular time point is related to previous 
measurements on the variable of interest and the 
covariates in the model, but not to the actual 
data values that would have been observed at 
that time point had there been no missing data, 
nor to the latent variables, the data are MAR.  

 
Methods of Analysis  

In the presentation of the methods we 
use the following notation: ijkY , the score for the 

ith ( )1, ,= … ki n  of kn subjects in the kth 

( )1,2k =  group on the jth ( )1, ,= …j J  
occasion; jt , an index for the occasion of 

measurement, and ikt , the index value for the 
last measurement occasion at which the ith 
participant in the kth  group was observed. 

All of the methods, except the endpoint 
method studied by Overall et al. (1999), assume 
that if the data were complete they would 
conform to the following model  

 
                  0 1ijk ik ik j ijkY tβ β ε= + +          (1) 
 
where  

( )2~ 0,ijk Nε σ  

 
and, depending on the method for analyzing the 
data 

( )0

1

~ ,ik
k

ik

N
β

θ
β
⎡ ⎤
⎢ ⎥
⎣ ⎦

D  

 
or 
 

( )0

1

~ ,ik
k k

ik

N
β

θ
β
⎡ ⎤
⎢ ⎥
⎣ ⎦

D . 

 
The parameters 0ikβ  and 1ikβ  are the subject-
specific intercept and slope, respectively, for the 
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within-subject regression of the dependent 
variable on time of measurement. 
 When participants are randomly 
assigned to groups and it is reasonable to assume 
that, for each participant, the within-subjects 
regression is well-described by the simple linear 
regression model, the test of the treatment effect 
focuses on the average slope (i.e., the population 
average) in each treatment.  Specifically, to test 
for a treatment effect one tests whether the 
average slopes are equal for the treatment 
groups.  

 
Mixed Model for MAR Data 

One method of analysis uses equation 
(1) as the level-1 model in a multilevel model 
and the following level-2 models: 

 
0 00 01 0ik ik ikZ uβ γ γ= + +                   (2) 

and  
1 10 11 1ik ik ikZ uβ γ γ= + + ,                   (3) 

 
where 1=ikZ if the ith participant is in treatment 
2 and 0 otherwise. The estimate of the treatment 
effect is 11γ̂  and testing 0 11: 0H γ =  provides a 
test of the treatment effect.  This procedure is 
known to give correct results provided the data 
are MCAR, CD, or MAR and, in the case of the 
latter two mechanisms, provided that the 
parameters of the missing data mechanism and 
the parameters of the data model are distinct 
(Little, 1995). This procedure can be 
implemented by using the following SAS (SAS, 
2000) PROC MIXED code:  
 
proc mixed method=ml; 
class id group; 
model score=time group group*time; 
random intercept time/type=un subject=id; 
 
The following are definitions of the variables 
used in this code: 

• time—a quantitative index of the time of 
measurement 

• id—a categorical variable identifying 
the participant 

• group—a categorical variable 
identifying the treatment group 

Pattern-Mixture Models (Unweighted Least 
Squares) 

A number of different strategies have 
been presented over the years to deal with data 
that are MNAR [see the references provided by 
Little (1995) and Hedeker & Gibbons (1997)]. 

Recently, Little provided a general class 
of models referred to as pattern-mixture models. 
As Little (1995, p. 1113) noted, “Pattern-mixture 
models stratify the population by the pattern of 
dropout, implying a model for the whole 
population that is a mixture over the patterns.”  
An advantage of this procedure is that the 
missing data mechanism is taken into account in 
the estimation, but a model for the pattern of 
missing data does not have to be explicitly 
introduced into the likelihood function.  

A pattern-mixture model due to Little 
(1995), for the design considered in this paper, 
yields valid estimates of the treatment effect 
even when the pattern of missing data is related 
to the covariates and the subject specific slopes 
and intercepts (a type of MNAR missing data 
mechanism). The reader should note that Little 
(1995, p. 1120) indicated that the unweighted 
least squares (UWLS) estimate of the slope 
difference is the maximum likelihood (ML) 
estimator for the pattern-mixture model he used 
[see Equation (17) in Little] for analysis of 
longitudinal missing data under normal 
distribution theory. We implemented the UWLS 
procedure as follows: 

1. Use ordinary least squares (OLS) to 
estimate the slope for each participant in each 
treatment group. 
 2. For each treatment calculate the 
unweighted average of the subject-specific OLS 
slopes,  

1
1

1

ˆ
ˆ

kn

ik
i

k
kn

β
θ ==

∑
, 

 
and calculate the treatment effect as the 
difference between these two averages. 
 3. Calculate the sampling variance of the 
estimated treatment effect by using the (2,2) 
element of 
 



ALGINA & KESELMAN 16

       
( ) l

12 11

12
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2 1
ˆ ˆ 2

1

ˆ −

=
−

=
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∑
∑

kn

ik ik
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k k

S
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where the first column of ikX is a vector of ones 
and the second column contains codes for the 
occasions on which participant i in group k had 
observed data.  Wang-Clow et al. (1995) also 
used this method, however, they used the 
method of moments to calculate 2σ̂ and lD .  We 
used ML estimation to calculate these quantities.  
Specifically, we used the PROC MIXED code 
used to implement the mixed model for MAR 
data. While these estimates assume that the 
missing data mechanism is not MNAR, 
comparison of the variance of 12 11

ˆ ˆ−θ θ , over 
replications of a condition, to the average value 
of 

12 11

2
ˆ ˆ−

S
θ θ

suggested that the method provides a  

consistent estimate of the sampling variance of 

12 11
ˆ ˆ−θ θ  for the conditions we studied. 

 
Linear Minimum Variance Unbiased Estimator 

Wu and Bailey (1989) presented a 
method which they called the linear minimum 
variance unbiased estimator.  Later Wang-Clow 
et al. (1995) referred to the method as the 
ANCOVA method and we use the latter term in 
this paper.  Wu and Bailey (1989) proposed 
using the following model within each group 
 

1 10 11
ˆ

ik k ik iktβ γ γ δ= + +                (4) 
 
where 1̂ikβ is the OLS estimate of the subject-
specific slope for participant i in group k.  Wu 
and Bailey propose testing for a treatment effect 
by calculating an estimate of the expected value 
of 1ikβ  
 

             l ( )1 10 11ˆ ˆik k kE tβ γ γ= + ,                    (5) 
 
where kt  is the average in group k of ikt , and 
comparing the estimates across treatment 
groups.  Noting that the variance of 1̂ikβ varies 
across treatment groups and the occasions on 
which the dependent variable was observed for 
participant i, Wu and Bailey proposed estimating 

the sγ by weighted least squares (WLS) with the 
weight equal to the inverse of the sampling 
variance of 1̂ikβ .  The sampling variance is the 

(2,2) element of ( ) l12ˆ kik ikσ −′ +X X D .  We 
implemented this WLS procedure. However, 
whereas Wu and Bailey and Wang-Clow et al. 
used method of moment estimators of 2σ̂ and 
l kD , we used ML estimators obtained by using 
the following code: 
 
proc mixed method=ml; 
class id group; 
model score=time group group*time/solution ; 
random intercept time/type=un subject=id 
group=group; 
 
In the random statement the code group=group 
specifies that the covariance matrix for the 
intercept and slope varies across treatment 
groups.  

The procedure described by Wu and 
Bailey (1989) is fairly complicated because of 
the necessity of estimating the weights used in 
the WLS procedure. However, Algina and 
Keselman (2003) reformulated the Wu and 
Bailey model as a multilevel model and 
estimated it by using PROC MIXED, thus 
eliminating the complication of estimating the 
weights. Their level-1 model is given by 
equation (1). The level 2 models are 

 
( )0 00 01 02 0ik ik ik k ikZ t t uβ γ γ γ= + + − +       (6) 

 
and  
 

( )1 10 11 12 1ik ik ik k ikZ t t uβ γ γ γ= + + − + .      (7) 
 
The estimate of the treatment effect is 11γ̂  and 
testing 0 11: 0H γ =  provides a test of the 
treatment effect. The approach presented by Wu 
and Bailey does not include an equation for the 
intercept. Nevertheless, Algina and Keselman 
included it because Bryk and Raudenbush 
(1992) have noted that omitting variables in one 
level-2 model can impact estimates in a second 
level-2 model because of the correlated error 
terms for the level-2 models. The model 
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represented by equations (1), (6), and (7) can be 
estimated by using the following PROC MIXED 
code:  
 
proc mixed method=ml; 
class id group; 
model score=lobsc group time time*lobsc 
time*group /solution; 
random intercept time/type=un subject=id 
group=group; 
 
In the preceding code, the variable lobsc is 
( )ik kt t− .  The inclusion of lobsc and time*lobsc 
is intended to improve estimation and testing 
when the missing data mechanism is MNAR and 
the missing data pattern is monotone. If the data 
are MAR, it is known that valid estimates can be 
obtained with these terms excluded. 
 
Analyses Investigated by Overall et al. (1999) 

The simplest method studied by Overall 
et al. (1999) is an endpoint analysis.  This 
analysis is a two-stage procedure. At stage one a 
simple change score from baseline to the last 
available measurement is calculated; at stage 
two the change scores are the dependent variable 
in an ANCOVA, using pretest score ( )1Y and 
time of the last observation as covariates and 
treatment group as the between-subjects factor.  
 Overall and his colleagues also used 
ANCOVA with PROC MIXED to examine the 
group by time effect (see Overall et al., 1999, 
pp. 205-209), using 1Y and ikt as covariates, 
though their approach differs from the Wu and 
Bailey (1989) approach. They use the following 
PROC MIXED code: 

 
proc mixed; 
class id group; 
model score=lobs y1 group time time*group 
/solution; 
random intercept time/type=un subject=id; 
 
There are three major differences between the 
Overall et al. code and the PROC MIXED code 
used by Algina and Keselman (2003) to 
implement the Wu-Bailey procedure. First the 
time of last observation (lobs) is not centered. 
Second 1Y , the pretest score, is included in their 

model but not in the Algina-Keselman code. 
Third, the time by lobs interaction is excluded in 
their model. The result of this exclusion is that 
the time code for the last observation on which 
the participant was observed is excluded from 
the level-2 model for the slope.  Thus, the 
Overall at al. PROC MIXED ANCOVA is based 
on the a multilevel model in which the level-1 
model is given by equation (1) and the level-2 
models are 
 

0 00 01 02 03 1 0ik ik ik ik ikZ t Y uβ γ γ γ γ= + + + +    (8) 
 
and  

1 10 11 12 1ik ik ik ikZ t uβ γ γ γ= + + + .            (9) 
 
The estimate of the treatment effect is 11γ̂  and 
testing 0 11: 0H γ =  provides a test of the 
treatment effect. 

Overall et al. (1999) also investigated a 
two-stage ANCOVA procedure. Like the Wu 
and Bailey (1989) approach, Overall et al. use 
OLS in stage 1 to estimate the subject-specific 
regression coefficients and then these estimates, 
weighted by lobs, are used in a second stage 
ANCOVA with 1Y and ikt  used as covariates. 
 Thus, the previously described analyses 
can be used to analyze the important group by 
time interaction effect in longitudinal designs in 
which data are missing. In this report we assess 
rates of Type I error and power in testing 
whether the average slopes are equal for the 
treatment groups, as well as the bias and 
variability (i.e., SD) in estimating the average 
slope difference. 
 

Methodology 
 

Algina and Keselman (2003) investigated three 
missing data mechanisms (CD, MAR and 
MNAR), but only considered monotone patterns.  
In the present investigation, whether or not data 
are missing for a participant is determined 
independently for each occasion. Therefore, the 
pattern of missing data is not monotone.  In 
addition, eight different missing data 
mechanisms were used:  
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1. MNAR-Direct Selection (DS) on jY . The data 
point for participant i was missing at occasion j 
if ijY δ> . The value of δ was selected so that 
the probability of missing data at time 3 was 5% 
for participants in treatment 2. This selection of 
δ determined the probability of missing data for 
both groups at time points 3 to 9.  Figure 1 
shows the probability of missing data at each 
occasion in treatments 1 and 2 in conditions in 
which there was a treatment effect. The sδ  for 
the other mechanisms were selected to yield the 
same probabilities of missing data. In conditions 
in which there was no treatment effect, the 
probability of missing data in treatment 1, at a 
particular occasion, was equal to the probability 
of missing data that is reported in Figure 1, at 
that occasion, for treatment 2. 
 

0 2 4 6 8
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Figure1. Probability of Missing Data by 
Occasion. 
 

2. CD. The data point for participant i 
was missing at occasion j if ijU  (a uniform 
random variable) was less than the probability 
determined for the MNAR condition with direct 
selection on Y.  

 
3. MAR-DS. The criterion used to 

determine whether the data point for participant i 
was missing at occasion j depended on whether 
the data point for participant i was missing at 
occasion 1j − :  When the data point for 
participant i at occasion 1j −  was not missing, 
the data point for participant i was missing at 
 

occasion j if ( ) 11 ji jY δ −− > .  When the data point 

for participant i at occasion 1j − was missing, 
the data point for participant i was missing at 
occasion j if ijU was less than the probability 
determined for the MNAR condition with direct 
selection on Y.   

If the first criterion had been used 
uniformly, the data would have been MNAR 
because, for a participant with missing data at 
occasion 1j − , whether the data were missing at 
occasion j would depend on the value of a 
missing score at occasion 1j −  rather than value 
of an observed score at occasion 1j − . 

4.  MAR-Probabilistic Selection (PS). 
Again the criterion used to determine whether 
the data point for participant i was missing at 
occasion j depended on whether the data point 
for participant i was missing at occasion 1j − : 
When the data point for participant i at occasion 

1j −  was not missing, the data point for 
participant i was missing  at occasion j if ijU <  

( )( )1 1j i jYφ δ − −+ , where ( )φ •  is the cumulative 

normal function. When the data point for 
participant i at occasion 1j − was missing, the 
data point for participant i was missing at 
occasion j if ijU was less than the probability 
determined for the MNAR condition with direct 
selection on Y.  

5. MNAR-DS on 1jY − . The data point 
for participant i was missing at occasion j if 

( ) 11 ji jY δ −− > .  This method employs the first 

criterion used in the MAR-DS mechanism. 
6. MNAR-PS on 1jY − . The data point 

for participant i was missing  at occasion j if 

ijU < ( )( )1 1j i jYφ δ − −+ . This method employs the 

first criterion used in the MAR-PS mechanism. 
7. MNAR-PS on jY . The data point for 

participant i was missing at occasion j if 
( )ij j ijU Yφ δ< + .   

8. MNAR-PS on Slope and Intercept 
(SI). The data point for participant i was missing 
at occasion j if ( )0 1.46 .14ij j ik ikU φ δ β β< + + .  
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The ijU  for the four probabilistic mechanisms 
were selected independently for each participant 
and time point.  
 It is impossible to know whether or not 
these eight missing data mechanisms are 
representative of those found in practice. 
However, these eight mechanisms represent a 
wider variety of mechanisms than have been 
included in previous research. 

Seven methods of examining the group 
by time interaction effect in a randomized 
parallel groups design were examined; these 
methods were also examined by Algina and 
Keselman (2003). Specifically, the methods 
(with their acronyms) were: 

1. Overall et al.'s (1999) two-stage 
endpoint ANCOVA (OEPAOC), 

2. an unweighted least squares (pattern-
mixture) analysis (UWLS),  

3. the ANCOVA presented by Wang-
Clow et al. (1995) (See Section 3.6 in their 
paper), where the weights for the WLS part of 
the analysis were obtained from PROC MIXED 
(WLSAOC),  

4. Wu and Bailey's (1989) two-stage 
ANCOVA implemented in PROC MIXED 
(WBPMAOC), 

5. Overall et al.'s (1999) PROC MIXED 
analysis that uses 1Y  and ikt as covariates  
(OPMAOC), 

6. Overall et al.'s (1999) two-stage 
ANCOVA (OTSAOC), and 

7. The mixed model analysis, 
implemented in PROC MIXED, that presumes 
the data are missing at random (PMMAR).  

Theory presented in Little (1995) shows 
that the UWLS estimator of the treatment effect 
is consistent when the data are CD or MNAR 
with missingness (i.e., whether a particular data 
point is missing) predicted by the slope and 
intercept.  PMMAR is known to yield a 
consistent estimator when the data are CD or 
MAR. OEPAOC, WLSAOC, and WBPMAOC 
were designed to improve performance of the 
treatment effect estimator when the data are not 
MCAR or CD, but proofs of consistency have 
not been presented.  Similarly, OPMAOC and 
OTSAOC were designed to improve control of 
the Type I error rate and power when the data 
are not MCAR or CD. 

In addition to the eight types of missing 
data mechanism and the seven tests of the 
treatment effect, number of planned 
observations per group ( 100=kn and 200=kn ) 
was also investigated.  Overall and his 
colleagues (see Ahn, Tonidandel & Overall, 
2000; Overall et al., 1999; Overall et al., 1996), 
as well as Algina and Keselman (2003), 
examined the group by time interaction effect in 
a parallel-groups design containing a baseline 
score and eight repeated measurements; thus, for 
comparative purposes we had nine levels for our 
number of repeated measurements.  

To compare the procedures, we 
simulated data for a situation in which 
participants are randomly assigned to treatments. 
We used the following equation to generate data 
for the ith participant in group k on the jth 
occasion:  
 

0 1ijk ik ik j ijkY tβ β ε= + + .             (10) 
 
The equation states that the data for the ith 
person on nine occasions has a linear 
relationship to the time of measurement.  The i 
subscripts on the intercept ( )0ikβ  and slope 

( )1ikβ  indicate that the intercept and slope vary 
across participants. We assumed  
 

0 0

1 1

~ ,ik k

ik k

N
β θ
β θ

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠
D . 

 
The mean for the intercept was 50 in both 
groups ( )01 02θ θ= , implying that both treatment 
groups had the same population pretest mean. 
For Type I error data, the mean for the slope was 
9.0 in treatments 1 and 2.  That is, 12 11 0θ θ− = , 
indicating identical average rates of increase 
over time, hence a null condition. For our power 
comparisons, the mean for the slope was 4.5 in 
treatment 1 and 9.0 in treatment 2. Thus, 

12 11 4.5θ θ− = . The errors ijkε  were assumed to 
be uncorrelated for different times of 
observation. This does not imply that the scores 
were uncorrelated over time. Allowing the slope 
and intercept to vary across participants implies 
that scores were correlated over time. In all 
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cases the covariance matrix (D) for the intercept 
and slope was 

15.21 12.42
12.42 82.81
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

D . 

 
The correlation between the slope and intercept 
was .35, indicating that participants with higher 
pretest status increased more rapidly. The 
variance for the residuals, conditional on time 
was 240.  Algina and Keselman (2003) also 
studied  

15.21 12.42
12.42 82.81

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

D , 

 
but performance of WLSAOC and WBPMAOC 
was worse when 12 0D > , and so we have only 
included 12 0D > .  The variable jt  is an index 
for observation time and was coded (0, 0.23077, 
0.46154, 0.69231, 0.92308, 1.15385, 1.38462, 
1.61538, 1.84615). The design of the simulation 
was based on Wang-Clow et al.'s (1995) study. 
In their study they had 14 time points, coded 
from 0 to 3.  Our results would also have been 
obtained if we had coded jt  from 0 to 8 and had 
multiplied the 1ikβ by 1.84615 8 .  

Algina and Keselman (2003) also 
studied experiments with five time points. The 
performance of WLSAOC and WBPMAOC was 
worse with nine points and so we have elected to 
study only nine time points.  Without further 
complications to the methods, the methods can 
only be applied to participants who have at least 
two observations. Therefore in our simulated 
data, every participant had an observation at the 
pretest and the first follow-up occasion. Each 
condition was replicated 1000 times. All 
hypothesis tests were conducted with a nominal 
alpha of .05. 
 

Results 
The slope difference ( )12 11θ θ−  can be 
estimated by all procedures except OTSAOC 
and OEPAOC. For each condition in the study 
the slope difference was estimated by using each 
of the remaining five methods. Table 1 contains 
means and standard deviations of these estimates 
for the CD and MAR mechanisms.  Comparison 

of the means to 0 when 12 11 0θ θ− =  and to 4.5 
when 12 11 4.5θ θ− =  provides an indication of 
bias in the estimates. The standard deviations 
provide a measure of sampling variability of the 
estimates.  The results indicate that all methods 
yielded unbiased estimators of the treatment 
effect when the missing data mechanism was 
CD and when the missing data mechanism was 
MAR and 12 11 0θ θ− = . However, when the 
missing data mechanism was MAR and 

12 11 4.5θ θ− =  only PMMAR and OPMAOC 
yielded unbiased estimators. For a fixed sample 
size and a fixed value for the treatment effect 
there were no notable differences among the 
methods in the standard deviations of the 
estimates.  

Table 2 contains estimated Type I error 
rates and power for the CD and MAR 
mechanisms. For CD data, all procedures had 
estimated Type I error rates near the nominal 
value  and  power differences were  small  but in 
favor of OEPAOC (Overall et al.’s, 1999 two-
stage end-point procedure).  For MAR data, 
WBPMAOC and WLSAOC had estimated Type 
I error rates above the nominal level. These two 
procedures are variations on the method 
suggested by Wu and Bailey (1989).  For MAR 
data, OEPAOC and OTSAOC tended to have 
lower power than the other procedures. UWLS, 
WBPMAOC, and WLSAOC tended to have the 
best power, but this reflects the positively biased 
estimator produced by these three procedures. 
Comparing the two procedures that produced 
unbiased estimators of the treatment effect, 
PMMAR tended to have slightly better power 
than OPMAOC. 

Tables 3 and 4 contain means and 
standard deviations of the estimated treatment 
effect for conditions in which the missing data 
mechanism was MNAR. Table 3 contains results 
for 12 11 0θ θ− =  and Table 4 contains results for 

12 11 4.5θ θ− = . In both tables bold values 
indicate mean treatment effects that were 
significantly different from the population 
treatment effect.  In Table 3, there was only one 
estimated treatment effect that was significantly 
different from 0 [ ( )999 1.962 t = for 
WBPMAOC and 100kn = ]. 
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Table 1. Means and Empirical Standard Errors of Test Statistics for CD and MAR Conditions 
 

  
12 11 0θ θ− =  12 11 4.5θ θ− =  

  CD MAR-DS MAR-PS CD MAR-DS MAR-PS 

kn  Test MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD 

100 PMMAR -0.014 1.863  -0.037 1.924 0.056 1.887 4.418 1.846 4.539 1.854 4.569 1.838 

 UWLS -0.013 1.881  -0.034 1.990 0.062 1.940 4.417 1.862 4.858 1.914 4.878 1.894 

 OPMAOC -0.016 1.863  -0.035 1.924 0.056 1.885 4.417 1.846 4.546 1.855 4.576 1.839 

 WBPMAOC -0.013 1.863  -0.046 1.995 0.052 1.948 4.420 1.851 4.911 1.915 4.952 1.881 

 WLSAOC -0.013 1.864  -0.044 1.997 0.055 1.954 4.417 1.852 4.932 1.921 4.973 1.890 

200 PMMAR -0.040 1.349  -0.024 1.296  0.043 1.284 4.501 1.251 4.451 1.310 4.492 1.303 

 UWLS -0.036 1.374  -0.028 1.354  0.049 1.327 4.505 1.259 4.755 1.357 4.793 1.353 

 OPMAOC -0.040 1.350  -0.025 1.296  0.044 1.284 4.501 1.251 4.457 1.310 4.496 .306  

 WBPMAOC -0.039 1.349  -0.026 1.359  0.054 1.330 4.503 1.251 4.828 1.355 4.864 1.347 

 WLSAOC -0.038 1.350  -0.027 1.364  0.054 1.335 4.503 1.250 4.848 1.358 4.884 1.353 
 
 

Note: PMMAR-Proc Mixed MAR analysis; UWLS-Unweighted least squares analysis which is ML for 
pattern-mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et al.’s (1995) 
ANCOVA analysis. Bold values indicate a statistically significant difference between the mean of n12 11θ θ−  
and 12 11θ θ− . 
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Table 2. Estimated Type I Error Rates and Power 
 

  CD MAR-DS MAR-PS 

kn  Test α̂  ˆ1 β−  α̂  ˆ1 β−  α̂  ˆ1 β−  

100 PMMAR 0.044 0.670 0.053 0.685 0.048 0.711 

 UWLS 0.048 0.661 0.063 0.738 0.057 0.745 

  OPMAOC 0.039 0.646 0.044 0.664 0.038 0.687 

 WBPMAOC 0.045 0.667 0.084 0.789 0.083 0.799 

 WLSAOC 0.044 0.667 0.079 0.787 0.081 0.795 

 OEPAOC 0.053 0.694 0.061 0.508 0.047 0.518 

 OTSAOC 0.054 0.647 0.059 0.448 0.051 0.468 

200 PMMAR 0.054 0.931 0.047 0.920 0.051 0.929 

 UWLS 0.052 0.935 0.059 0.935 0.059 0.947 

 OPMAOC 0.044 0.923 0.039 0.911 0.042 0.918 

 WBPMAOC 0.053 0.930 0.086 0.955 0.076 0.972 

 WLSAOC 0.052 0.929 0.082 0.956 0.076 0.971 

 OEPAOC 0.044 0.950 0.047 0.797 0.047 0.780 

 OTSAOC 0.058 0.919 0.040 0.742 0.043 0.745 

  
Note: PMMAR-Proc Mixed MAR analysis; UWLS-Unweighted least squares analysis which is ML for 
pattern-mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu 
and Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method of 
moments for estimation; OEPAOC- Overall et al.’s two-stage endpoint ANCOVA analysis; OTSAOC-
Overall et al.’s two-stage ANCOVA.  
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Table 3 Means and Estimated Standard Errors of Test Statistics: MNAR and 12 11 0θ θ− =  
  MNAR-DS- 1jY −  MNAR-PS- 1jY −  MNAR-DS- jY  MNAR-PS- jY  MNAR-PS-SI 

kn  Test MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD 

100 PMMAR 0.068 1.825  0.041 1.802  0.006 1.454  -0.086 1.524 -0.041 1.754  

 UWLS 0.077 2.064  0.041 2.090  0.062 1.561 -0.094 1.616 -0.070 3.110 

 OPMAOC 0.068 1.827  0.044 1.810  0.008 1.454 -0.086 1.522 -0.047 1.764 

 WBPMAOC 0.072 2.039  0.060 2.065  0.012 1.525 -0.098 1.572 -0.071 2.084 

 WLSAOC 0.073 2.045  0.064 2.078  0.013 1.519 -0.092 1.568 -0.073 2.019 

200 PMMAR -0.045 1.274  0.044 1.251  0.040 1.077  -0.013 1.048  0.012 1.284  

 UWLS -0.065 1.495  0.045 1.455 0.041 1.193 -0.023 1.146  0.009 2.165 

 OPMAOC -0.045 1.278  0.043 1.258 0.044 1.080 -0.015 1.046  0.019 1.291 

 WBPMAOC -0.050 1.460  0.027 1.432 0.048 1.130 -0.016 1.076  0.062 1.475 

 WLSAOC -0.051 1.468  0.030 1.437 0.049 1.128 -0.016 1.077  0.055 1.447 

 
Note: See note to Table 1.  
 
Table 4.  Means and Estimated Standard Errors of Test Statistics:  MNAR and 12 11 4.5θ θ− =  
 

  MNAR-DS- 1jY −  MNAR-PS- 1jY −  MNAR-DS- jY  MNAR-PS- jY  MNAR-PS-SI 

kn  Test MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD 

100 PMMAR 4.314 1.875  4.287 1.781  2.937 1.540 2.833 1.493 3.859 1.809

 UWLS 4.990 2.073  4.978 1.998 3.218 1.667 3.141 1.629 4.596 3.048

 OPMAOC 4.364 1.880  4.336 1.785 3.026 1.542 2.921 1.494 4.024 1.819

 WBPMAOC 5.165 2.051  5.132 1.990 3.419 1.589 3.310 1.552 4.992 2.077

 WLSAOC 5.182 2.059  5.149 2.000 3.396 1.585 3.289 1.552 4.845 2.045

200 PMMAR 4.305 1.269  4.294 1.328 2.879 1.007 2.873 1.073  3.815 1.218 

 UWLS 4.967 1.417  4.973 1.477 3.168 1.082 3.149 1.140  4.457 2.062 

 OPMAOC 4.351 1.272  4.342 1.333 2.970 1.005 2.961 1.067  3.988 1.236 

 WBPMAOC 5.140 1.394  5.128 1.455 3.366 1.037 3.340 1.079  4.933 1.458 

 WLSAOC 5.158 1.404  5.151 1.468 3.339 1.036 3.319 1.079  4.794 1.425
 

Note: See note to Table 1.  
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 UWLS, WBPMAOC, and WLSAOC 
tended to have slightly larger standard 
deviations than did PMMAR and OPMAOC. In 
Table 4 all treatment effects were significantly 
different from 4.5 except for UWLS under the 
MNAR-PS-SI condition. Again WBPMAOC 
and WLSAOC tended to have slightly larger 
standard deviations than did PMMAR and 
OPMAOC. Except in the MNAR-PS-SI 
conditions, UWLS tended to have standard 
deviations similar to those for WBPMAOC and  
WLSAOC. In the MNAR-PS-SI conditions 
UWLS had notably larger standard deviations 
than did the other procedures. 

 
 

 
 

Table 5 contains estimated Type I error 
rates and power for MNAR missing data 
mechanisms. With regard to Type I error control 
we note that, as was true with MAR data, 
WBPMAOC and WLSAOC did not control the 
Type I error rate.  

Of the methods that control their rates of 
Type I error, the methods divide into two 
groups: the more powerful methods (PMMAR, 
UWLS, and OPMAOC) and the less powerful 
methods (OEPAOC and OTSAOC). The 
difference in power between the two groups was  
quite substantial in most conditions.  When 
missingness was predicted by slopes and 

Table 5. Estimated Type I Error Rates and Power: MNAR Conditions. 
 

  MNAR-DS-

1jY −  

MNAR-PS-

1jY −  

MNAR-DS-

jY  

MNAR-PS-

jY  

MNAR-PS-

SI 

kn  Test α̂  ˆ1 β−  α̂  ˆ1 β− α̂  ˆ1 β− α̂  ˆ1 β−  α̂  ˆ1 β−

100 PMMAR 0.041 0.661 0.051 0.665 0.058 0.509 0.066 0.477 0.045 0.586 

 UWLS 0.058 0.731 0.072 0.738 0.043 0.530 0.050 0.503 0.043 0.362 

 OPMAOC 0.034 0.633 0.041 0.641 0.049 0.498 0.060 0.465 0.033 0.580 

 WBPMAOC 0.111 0.825 0.116 0.825 0.064 0.632 0.083 0.607 0.092 0.756 

 WLSAOC 0.108 0.822 0.117 0.822 0.065 0.625 0.079 0.605 0.066 0.730 

 OEPAOC 0.048 0.500 0.047 0.498 0.048 0.484 0.042 0.427 0.037 0.521 

 OTSAOC 0.043 0.444 0.051 0.457 0.051 0.418 0.055 0.404 0.048 0.478 

200 PMMAR 0.054 0.924 0.048 0.906 0.067 0.762 0.044 0.769 0.039 0.849 

 UWLS 0.075 0.948 0.067 0.950 0.053 0.780 0.040 0.775 0.050 0.589 

 OPMAOC 0.043 0.912 0.036 0.893 0.050 0.764 0.035 0.775 0.033 0.863 

 WBPMAOC 0.115 0.976 0.111 0.978 0.076 0.876 0.056 0.886 0.092 0.957 

 WLSAOC 0.111 0.974 0.114 0.977 0.077 0.872 0.059 0.880 0.079 0.948 

 OEPAOC 0.042 0.792 0.048 0.797 0.058 0.737 0.051 0.732 0.037 0.836 

 OTSAOC 0.051 0.742 0.036 0.741 0.053 0.680 0.046 0.677 0.055 0.749 

Note. See note to Table 2. Bold values indicate ˆ .075α >  
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intercepts (MNAR-PS-SI), PMMAR and 
OPMAOC were more powerful than UWLS.  In 
the other MNAR conditions, UWLS was more 
powerful than PMMAR or OPMAOC. The 
power advantage in favor of UWLS was smaller 
than the power advantage for PMMAR and 
OPMAOC. 
 

Conclusion 
 

Presented and examined are methods of analysis 
that, according to the literature, should result in 
better estimation of unknown parameters and 
which take MNAR missingness into account in 
their analyses when data are missing in a parallel 
groups design.  In particular, we investigated 
methods due to Little (1995), Wu and Bailey 
(1988, 1989), Wang-Clow et al. (1995) and 
Overall et al. (1999). 
 The results, along with those in Algina 
and Keselman (2003), suggest that whether the 
pattern of missing data is monotone or not will 
influence the selection of a method for 
analyzing the data.  Based on bias, control of 
Type I error rate, and power, Algina and 
Keselman concluded that Overall at al.’s (1998) 
mixed model procedure (OPMAOC) is 
promising when the missing data pattern is 
monotone. 
 The present research suggests that 
OPMAOC works reasonably well when the 
missing data pattern is not monotone, but that 
the mixed model for MAR data (PMMAR) and 
UWLS are very competitive. Comparing 
OPMAOC and PMMAR, both controlled the 
Type I error rate in all conditions investigated 
and power differences were very small. The 
major difference was that under the MNAR 
missing data mechanism OPMAOC tended to be 
slightly less biased than PMMAR was. 
Comparing OPMAOC and PMMAR, both 
controlled the Type I error rate. Power 
differences depended on the missing data 
mechanism. 
 When missingness was predicted by the 
slope and intercept, the missing data mechanism 
for which UWLS was developed, UWLS was 
much less powerful then OPMAOC because its 
standard error was notably larger than the 
standard error for OPMAOC. In all other 
conditions, power for the two procedures was 

either quite similar or favored UWLS. Bias 
differences also depended on the missing data 
mechanism. When missingness was predicted by 
the slope and intercept, UWLS was unbiased but 
OPMAOC was not. When the data were MAR, 
OPMAOC was unbiased but UWLS was not. 
When missingness on jY  was predicted by 
scores on jY  (MNAR-DS- jY  and MNAR-PS-

jY ), UWLS was less biased than was 
OPMAOC. The opposite was true when 
missingness was predicted by scores on 1jY −  
(MNAR-DS- 1jY −  and MNAR-PS- 1jY − ).  

Considering the performance of 
OPMAOC in Algina and Keselman (2003) and 
in the present study, if a researcher wants to use 
a single procedure for monotone and non-
monotone patterns of missing data, OPMAOC 
appears promising.  Of course, as is true of all 
empirical studies, the generalizability of the 
results is limited by the design of the study.  The 
procedures may perform differently if different 
models for dropping out are adopted.  
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