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1. Background and scope of thesis 

1.1. Necessity of vaccine adjuvant development 

In 2005, 7.6 million people died by cancer out of 58 million deaths worldwide.1, 2 Based 

on projections, cancer deaths will continue to increase with an estimated 9 million people 

dying from cancer in 2015, and 11.4 million in 2030 (World Health Organization, 2006a). 

Cancer can be treated by surgery, chemotherapy, radiation therapy and immunotherapy.3, 4 

Complete elimination of the tumor without damage to the rest of the body would be the ideal 

aim of treatment. Sometimes this can be achieved by tumor tissue surgery, but the propensity 

of cancers to spread adjacent tissue by microscopic metastasis often limits its effectiveness. 

There are side effects associated with chemotherapy and radiotherapy that can have a 

negative effect on normal cells near the cancer. On the other hand, Immunotherapy has great 

potential to treat cancer and prevent future relapse by triggering the immune system to 

recognize and kill cancer cells. A variety of strategies are continuing to evolve in the 

laboratory and in the clinic, including therapeutic non-cellular (vector-based or subunit) 

cancer vaccines4, dendritic cell vaccines5, 6, engineered T cells7-9, and immune checkpoint 

blockade10-12. Despite their promising approaches, much more research is needed to address 

problems in immunology such as how and why certain cancers fail to respond to 

immunotherapy. The newly emerging field of immune-engineering is exploring some of 

these challenges, and there is ample opportunities for engineers to contribute their ideas and 

tools to mediate cancer regression in preclinical and clinical models.13, 14 

To understand how immunotherapy works, it is necessary to know how the immune system 

protects our body against disease. Vertebrates are emerged with two complementary immune 

systems, the innate immune system and the adaptive immune system.15 The adaptive immune 

system is equipped with two key weapons: antigen-recognizing lymphocytes, B cells and T 
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cells, which specifically target the invader, and provide a memory response to prevent a 

repeat of the infection.16, 17 The innate immune system, in contrast to the adaptive system, is 

the first defense line, eliciting inflammatory response at the early stage.18 To protect the host 

from succumbing to infections, the innate immune system phagocytoses the pathogen, 

recruits natural killer cells (NK cells), and maturates dendritic cells. Those innate immune 

responses are linked to adaptive immune responses following four fundamental tasks. First, 

innate immune system must rapidly detect any infectious agent, regardless of whether it is a 

fungus, virus, bacteria, or parasite. Second, innate immune cells need to rapidly categorize 

the type of invading infectious agent. Third, innate immune defenses eliminate the pathogen 

or internalize the categorized infectious agents. Fourth, innate immune cells induce the 

appropriate type of adaptive immune response, thereby eradicating the infection and 

preventing its recurrence. 

 The primitive part of innate immune cells that enables them to recognize conserved 

pathogen seems to be their repertoire of what have been termed pattern-recognition receptors 

(PRRs), which lead to transcriptional expression of inflammatory mediators that coordinate 

the elimination of pathogens.19 The toll-like receptor (TLR) is one of the best-characterized 

PRR families and 10 types of TLR are known in humans.20 TLRs that are responsible for 

sensing molecule’s characteristic of extracellular pathogens are expressed on cell surface, 

whereas TLRs that detect intracellular pathogens are expressed within innate immune cells. 

For example, TLR9 detects unmethylated CpG dinucleotides, which are relatively common 

in bacterial DNA.21, 22  

Most types of immune cells do not express TLR9, and thus are not activated directly by 

CpG oligonucletodes (ODNs). CpG ODNs only activate cells expressing TLR9 receptors. In 

mice, plasmacytoid dendritic cells (pDCs) activated through TLR9 create a TH1-like cytokine 

milieu by secreting INF-α/β, IL-12, TNF-α. These cytokines are considered to be important 
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in triggering TH1 responses, which may explain why administration of mice with this TLR9 

ligand gives a higher level of antigen-specific IFN-γ secretion and CD8+ T cells.13 CpG 

ODNs enhance the number and function of tumor-specific cytotoxic CD8+ T cells.23 The 

TH1-like cytokine milieu also activate NK cells, secreting IFN-γ and gaining lytic activity. In 

addition, the B cells turn to more sensitive to activation through their antigen receptor, and 

both B cells and pDCs can trigger expression of costimulatory molecules, enhancing their 

ability to activate T cell responses.15 All of the cellular immune effects of CpG ODNs are 

thought to result from TLR9- stimulated B cells and pDCs, showing expression of co-

stimulatory molecules and co-activation of naive T cells and germinal center or memory B 

cells through their antigen receptor (Figure 1-1).24 

 

 

Figure 1-1. CpG cellular mechanism of action. 

 

CpG ODNs are easy to synthesize in the lab and are used as vaccine adjuvants to augment 

the immune responses (Figure 1-1). To avoid the rapid enzymatic degradation in vivo, CpG 
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ODNs are most often made with a nuclease-resistant phosphorothioate backbone. They are 

effective for preventing and treating infectious diseases, allergies, and cancers by activating 

host defense mechanisms which elicit innate and acquired immune responses.25 Thus, CpG 

ODNs have been widely used as an effective therapeutic tool to enhance immune responses 

through the activation of TLR9. However, parenteral administration of unformulated CpG 

ODNs fails to reach lymph nodes (LNs), the anatomic organ where the primary functions of 

immune cells are orchestrated. LNs are highly organized structures where the interaction 

among T cells, B cells, and APCs are hosted in a stromal cell matrix. They are thus central 

targets in antigen presentation and immune activation.26 Adjuvants fail to reach the LNs often 

lead to unacceptable systemic side effects, which have limited the advance of adjuvants in 

vaccine applications. Thus, approaches that target vaccine components to LNs play key 

roles in promoting immune activation and have the great potential in transforming disease 

treatment. 
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1.2. Scope and outline of thesis 

In this thesis, we introduced therapeutic applications of activating TLR9 with synthetic 

CpG oligodeoxynucleotide (ODN) agonists in nanoparticle or molecular form to activate 

immune responses in animal models. As a nanoparticle deliver platform, positively charged 

silica nanoparticles (SiNPs) were explored to load immunomodulators that are capable of 

targeting the draining LNs (dLNs) and mimicking the size, geometry and surface feathers of 

live viral pathogens. We next demonstrated the use of microneedles arrays as a transdermal 

delivery platform prepared by a water-soluble polymer to release molecular vaccines in 

epidermis and target them to draining lymph nodes. 

Chapter 2 describes lipid coated SiNPs for targeting CpG DNA to dLNs. Immunization 

with nanoparticles showed potent cellular and humoral immunity superior to vaccination 

with soluble CpG ODNs. We systematically characterized electrostatic charge interactions 

between SiNPs and CpG ODNs, and explored the optimum loading ratio of CpG ODNs on 

SiNPs, which lead to high colloidal stability with enhanced lymphatic uptakes. We then 

compared immunogenicity profiles of nanoparticle and soluble CpG ODN in vaccination. 

In Chapter 3 we explored the transdermal delivery platform using dissolving microneedle 

arrays (MNs), which can penetrate the skin and facilitate the rapid release of vaccine 

components in epidermis. We combined this strategy with an albumin ‘hitchhiking’ approach 

that can promote interaction with and uptake across the lymphatic endothelium. Vaccination 

via MNs generated robust immune responses, showing enhanced T cell and antibody 

responses. We characterized the morphology and vaccine loading capabilities of MNs, and 

systematically explored how the transdermal delivery of molecular vaccines impacted 

cellular and humoral immunities. 

Chapter 4 is the conclusion and future work. 
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2. Lipid coated silica nanoparticles as a pathogen mimicking platform for 

lymph node targeting 

 

2.1. Introduction 

Vaccination is to stimulate the immune system by administration of antigenic materials 

in order to develop adaptive immunity to diseases. It represents the single most effective 

medical intervention in modern medicine. Traditionally, attenuated live or killed whole 

pathogens were administrated into human body to trigger protective immune responses 

without causing illness. Recent advances in immunology have led to the development of 

more defined synthetic subunit antigens (proteins, peptides or nucleic acids) to improve 

vaccine stability, safety and tolerability. More importantly, subunit vaccines are able to elicit 

selective immunity to a particular antigen, avoiding activation of unrelated immunity. 

Subunit vaccines have received great enthusiasm in attempt to develop vaccines for chronic 

infectious diseases such as HIV and cancer, where cytotoxic CD8+ T cells responses are 

needed. Unfortunately, subunit vaccines are usually poorly immunogenic and require co-

administration of adjuvants and/or delivery carrier to generate an effective immune response. 

Synthetic particulate delivery systems combined with immunological cues which mimic the 

natural pathogens are of particular interest in vaccine applications. In the past three decades 

numerous delivery systems based on nano- or micro-sized particles have been investigated 

preclinically and technologies have already been introduced to the clinic. Particle-based 

delivery systems have significant advantages over their nonformulated counterparts. For 

example, nanoparticles can protect antigen from degradation, co-deliver antigen and immune 

stimulatory signals, and enhance antigen uptake by targeting the immune system.27-30 It has 

been demonstrated that the cell-mimicking approach enables cellular endocytotic pathways 
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to be optimized in the lysosomes entry to uptake nanoscale particles31-34, and the resulting 

biomimetic nanoparticles have been used for various biomedical functions, including 

bioscavenger applications for toxin neutralization35, 36 and antibacterial vaccine strategy for 

immunomodulation37-40. Previous studies also showed biomimetic nanoparticles containing 

both tumor-specific antigen and adjuvant generated strong antigen specific immune 

responses41 and potent anti-tumor efficacy.42, 43 

Despite intensive research, only a few of the particulate system reach clinical trials and 

the results are rather disappointing, especially for cancer vaccines. This highlights the needs 

for new system which can efficiently target vaccine components to antigen presenting cells 

(APCs) and elicit the desired immune responses. An important mechanism underlying the 

use of nanomaterials in vaccine is that of functional mimicry of natural pathogens. 

Nanoparticles mimic the size, charge and surface features of pathogens and preferably 

captured by immune cells. Here we describe a lipid-coated silica nanoparticle (SiNPs) 

delivery system which can efficiently accumulate in the draining lymph nodes after injection. 

We hypothesize that immune signal decorated SiNPs, with optimized sizes (5-100 nm 

diameters), are capable of targeting the draining LNs (dLNs) and mimicking the size, 

geometry and surface features of live viral pathogens. After subcutaneous injection, these 

nanoparticles can accumulate in LNs, where a large portion of immune cells reside. We show 

that cationic silica nanoparticles can be efficiently loaded with CpG oligonucleotide adjuvant. 

Subsequent lipid coating on these nanoparticles not only improves their stability, but also 

markedly reduces the non-specific tissue interaction after injection. Immunization with lipid-

coated silica nanoparticles potentiates the in vivo generation of antigen-specific cytotoxic T 

cells and antibody response, which in turn, lead to enhanced anti-tumor efficacy. Our 

findings provide a simple, efficient and safe method to target molecular therapeutics to LN 

to modulate the immune system. 
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2.2. Materials and methods 

2.2.1. Preparation of CpG ODN loaded SiNPs (CS) and lipid-coated SiNPs (LCS) 

SiNPs were purchased from Sigma Aldrich that were initially functionalized by 

triethoxypropylaminosilane (density: 1.158 g/mL). Lipids were purchased from Avanti Polar 

Lipids except mPEG-DSPE (from Laysan Bio). The size of SiNPs was less than 30 nm and 

was confirmed by dynamic light scattering (DLS) measurements (Malvern Zetasizer). The 

SiNPs solution was diluted 10 times using D.I. water to decrease the nanoparticle density 

(0.116 g/mL) and added to desired amount of CpG to prepare CpG-loaded SiNPs with 

different weight ratios (SiNPs/CpG) such as 10, 30, 60, 90, and 150. The probe-sonication 

was performed for 1 min with 2/2s on/off working cycle at a power output of 4 joules. During 

encapsulation, CpG was fixed onto positively charged SiNPs and was subsequently coated 

with lipid. To coat the SiNPs with lipid bilayer, a mixed lipids 

(cholesterol/DOPC/DSPE/mPEG-DSPE at molar ratio of 31.5:45:13.5:10) were used. Lipids 

mixture were first suspended in chloroform and the solvent was evaporated to form a lipid 

film. These films were then placed in a chemical hood connected to a vacuum chamber over 

night to remove trace amounts of organic solvent impurities. Following the addition of the 1 

mL of particle suspension to the coated lipid film, probe-sonication was performed for 20 

min with 15/15s on/off working cycle at a power output of 4 joules. Since the suspension 

contained coated particles and can be separated by centrifugation, free liposomes were 

removed by centrifugation at 15,000 rpm for 10 min, followed by washing three times in 

saline. 
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2.2.2. Size and zeta potential measurements 

To measure the size and zeta potential of nanoparticles, Dynamic light scattering (DLS, 

Zetasizer, Malvern) was used with He-Ne laser (633 nm) at 90° collecting optics at 25 °C. 

The measurements were performed with the nanoparticles suspended in saline. The surface 

morphology and microstructures were analyzed using a high-resolution transmission electron 

microscopy (HR-TEM, JEOL 2010). For TEM analysis, microfilms were made by placing a 

drop of the respective nanoparticle suspensions onto a 200 mesh copper TEM grid (Ted Pella, 

CA) and then dried at room temperature for 3 h. To visualize the lipid bilayer on nanoparticles, 

2 % phosphotungstic acid (1:1 v/v) was used for negative staining. A minimum of four 

images for each sample was captured, and representative images were included in Figure 2-

7.  

 

2.2.3. In vitro characterization 

HEK-Blue™-mTLR9 cells were purchased from InvivoGen and were used to evaluate 

adjuvant activity in vitro. The cells were cultured in RPMI (Thermo Fisher), containing 10 % 

FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, and 2mM L-glutamine. Inducible SEAP 

(Secreted Embryonic Alkaline Phosphatase) level were detected by HEK-Blue™ detection 

kit from Invivogen. Mice TLR9 (mTLR9) cells were cultured in an incubator at 37 °C and 

then were transferred into a 96-well plate. Nanoparticles or soluble CpG were added to per 

well of 96-well plate and after 24 h incubation, the stimulation of mTLR9 cells was assessed 

by measuring the levels of SEAP secretion using QUANTI-BlueTM quantitatively measured 

by a spectrophotometer at 645 nm.  
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2.2.4. Analysis of cellular uptake 

DC 2.4 cells were kindly provided by Dr. Wei (Barbara Ann Karmanos Cancer Institute, 

Detroit, MI). To determine the intracellular delivery capacity of nanoparticles, the DC2.4 

cells were seeded on glass coverslips in 6-well microscopy chamber at a density of 2 x 104 

cells per well for 24 h at 37 °C. After 24 h, cells were treated with 10 μg/ml of fluorescence 

labeled CpG in soluble or in nanoparticle form for 2 h, and then washed with saline. For 

fixation, the glass that cells adhered on was immersed in 4 % paraformaldehyde in saline for 

10 min at room temperature. Following fixation, the glass was washed with saline and 

mounted on a slide with nuclei staining by DAPI. Fluorescence images were obtained using 

a confocal microscope (Zeiss LSM 510) with a filter set of DAPI and FITC 

excitation/emission. For the FACS analysis, DC2.4 cells were seeded on 6-well plates at a 

density of 4.5 x 105 cells/well in the culture medium. Fluorescently labelled CpG in soluble 

or in nanoparticle form were added to each well and incubated for 0.5 h, 1h, and 2 h, 

respectively. After washing with saline, the cells were analyzed using a flow cytometer 

(Attune Focus). A minimum of 100 events were collected. 

 

2.2.5. In vivo lymph node targeting 

All animal studies were approved by the division of laboratory animal resources (DLAR) 

and animals were cared in the DLAR animal facility under federal, state, local, and NIH 

guidelines for animal care. Groups of C57BL/6 (n=2) were injected subcutaneously with 3 

nmol of fluorescein-labelled CpG in soluble or in nanoparticle formulations. After 24 h or 30 

h, LNs were digested with 1.5 mL of freshly prepared enzyme mix comprised of RPMI-1640 

containing 0.8 mg/mL Collagenase/Dispase (Roche Diagnostics) and 0.1 mg/mL DNase 

(Roche Diagnostics) and LN cells were stained with antibodies against F4/80 and CD11c 
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versus CpG fluorescence in viable cells. Percentages of CpG+ cells in the LNs were 

determined by flow cytometry at 24 h or 30 h.  

 

2.2.6. Immunization 

Groups of C57BL/6 mice (n=3 per group) were immunized by subcutaneous injection on 

day 0 and day 14 with 10 μg ovalbumin (OVA) or 10 μg DSPE-PEG-OVA-II (amph-OVA-

II) plus CpG in soluble or in nanoparticle based adjuvants. Seven day after the final 

immunization (day 21), mice were bled and peripheral blood mononuclear cells were 

evaluated by SIINFEKL/H-2Kb peptide-MHC tetramers staining and intracellular cytokine 

(IFN-gamma and TNF alpha) staining. To assess the functionality of primed CD8+ T cells, 

peripheral blood mononuclear cells were stimulated ex vivo with 10 μg/mL OVA peptide 

SIINFEKL for 6 h with Brefeldin-A, fixed, permeabilized, stained with anti-IFN-γ, anti-

TNF-α, and anti-CD8α, and analyzed by flow cytometry. Anti-OVA IgG titers, defined as the 

dilution of serum at which 450 nm OD were determined by an enzyme-linked 

immunosorbent assay (ELISA) analysis. To determine antibody titers, ELISA plates 

(eBioscience) were coated with 10 μg/mL of OVA in saline overnight at room temperature. 

The plates were blocked with 200 μL of 1% bovine serum albumin (BSA) in saline for 1 h. 

Serum was serially diluted in saline between 1:102 and 1:107, and applied to the plate and 

incubated for 1 h at room temperature. Peroxidase-conjugated goat anti-mouse IgG (HþL) 

(1:5000 in 1% BSA-PBST, 100 μL/well) was then applied for 1 h, and the plates were 

developed using TMB substrate (100 μL/well, eBioscience). The reaction was stopped using 

50 μL of 1 M sulfuric acid and absorbance values were measured at 450 nm. Interlukin (IL)-

6 and IL12 were also analyzed using cytokine-specific ELISA (BD Biosciences) according 

to the manufacturer’s instructions. 
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2.2.7. Tumor model 

EG.7-OVA cells (Mouse thymoma EL4 cells) were purchased from ATCC and 2 x 106 cells 

were subcutaneously inoculated into the right flank of 5-6-week-old C57BL/6 mice. When 

the tumor mass became palpable (7-8 mm, typically 5 days later), mice were divided into 

five treatment groups (n=6) and the tumor-bearing mice were subcutaneously injected with 

20 μg OVA or 20 μg amph-OVA-II plus 1.24 nmol CpG in nanoparticle form. Survival and 

tumor size were measured everyday using a sliding caliper. The tumor volume was calculated 

using the following formula: tumor volume (mm3) = length x (width)2/2.44  

 

2.2.8. Statistical analysis 

To analyze the statistical difference between groups, a one-way analysis of variance 

(ANOVA) with Tukey’s HSD post-hoc test was used. All of the values are expressed as 

means ± standard deviations. GraphPad Prism software was used for all the statistical 

analyses. ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05. NS, not significant. 

 

2.3. Results and discussion 

2.3.1. Design of LN-targeting CpG loaded SiNPs 

A major obstacle in subunit vaccines is the insufficient delivery of the vaccine components 

to the lymph nodes. Vaccine delivery by nanocarriers could make a big impact on the 

treatment of infectious diseases as well as on cancer immunotherapy. Properties of nano-

sized vaccine carrier are highly tunable. For example, surface of nanocarriers can be easily 

modified to expose either antigen or adjuvant (or both), allowing co-delivery of antigen and 

immune signal to LNs, which result in greater lymphocyte priming. In this respect, porous 
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nanoparticles such as mesoporous SiNPs45 or nanoporous polymer-based spheres46 have been 

employed with some success for vaccine delivery. However, extra steps are needed to 

fabricate the templates, which involve complex chemical and physical process occurring at 

several times. It is also costly for the fabrication of large-scale mesoporous SiNPs with 

controlled pore orientations.47-49 In addition, the vaccine encapsulation efficiency and the 

bioaccessibility of loaded vaccine also need to be addressed in more detail.45 Although drug 

delivery systems via nanoparticles50-54 has been gaining momentum in the past decade, the 

development of simple and efficient delivery vehicles for in vivo applications, especially for 

delivery to LNs, has remained a major challenge.   

To prepare the pathogen mimicking SiNPs with stimulatory DNA encapsulated, we choose 

a cationic silica nanoparticle. Cationic nanoparticles have been widely used to condense 

DNA in transfection. Briefly, amine modified SiNPs (30 nm) were complexed with CpG 

DNA, a single-stranded synthetic oligodeoxynucleotides with cytosine-phosphate-guanine 

motifs that can activate the APCs expressing the pathogen recognition receptor Toll-like 

receptor 9 (TLR9). We first prepared fluorescein amidite (FAM)-labelled CpG-loaded SiNPs 

(CS) with different weight ratios (SiNPs/CpG) of 10, 30, 60, 90, and 150 to find the optimum 

loading ratio of CpG DNA on SiNPs, focusing on the nanoparticle’s stability (Figure 2-1a 

and b). The desired amount of SiNPs were simply added to fluorescence labelled CpG 

solution and briefly probe-sonicated, following 1 h incubation at room temperature (figure 

2-1c). 10, 30, 60, and 90 ratio CS showed a precipitated layer on the bottom of 1.5 mL 

microcentrifuge tubes, emitting green fluorescence under the UV lamp, implying that the 

interaction between SiNPs and CpG DNA was sufficient to promote significant aggregation 

of nanoparticles (defined here as formation of clusters of three or more nanoparticles). In 

contrast, soluble 3’-FAM CpG DNA and 150 ratio CS showed uniform green fluorescence, 

indicating a formation of stabilized NPs.To further confirm their soluble stability, brief 
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centrifugation (5,000 rpm for 5 s) was performed for all samples and 150 ratio CS showed 

excellent solution stability (no precipitate layer) that was similar to soluble 3’-FAM CpG 

DNA (Figure 2-1d). To quantify the amount of CpG DNA absorbed onto the SiNPs surface, 

the supernatant after centrifugation was analyzed by UV-vis measurement (Figure 2-1e). The 

amount of CpG DNA in the supernatant decreased with increasing the SiNPs/CpG weight 

ratio from 10 up to 60, but it was increased when the surface coverage of CpG DNA on SiNPs 

was reduced (90 and 150 ratio CS). Those two 90 and 150 ratio CS showed a characteristic 

DNA adsorption curves under the UV region, which also were slightly lifted up compared to 

other curves, indicating detected CpG DNA from 90 and 150 ratio CS were originated from 

the surface of SiNPs, not from soluble CpG DNA. In particular, 150 ratio CS showed the 

equivalently same level of peak intensity measured from soluble CpG DNA, indicating 150 

ratio CS was uniformly distributed in the solution. The saturation point was found at 60 ratio 

CS, representing the loss of CpG DNA from SiNPs was less than 5 %. At this ratio, SiNPs 

were expected to be fully covered by CpG DNA, enabling high loading of CpG DNA per 

nanoparticle, but 150 ratio CS looked more reasonable for vaccine delivery in terms of their 

colloidal stability. The 150 ratio CS was relatively stable in serum, releasing 20 % of the 

adsorbed CpG DNA when incubated in the presence of 10 % serum at 37 oC for 3 days 

(Figure 2-1g). 
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Figure 2-1. a) Illustration of FAM CpG-SiNPs preparation based on their charge interactions. 

b) Table showing CS with their different weight ratios in the study. c) Fluorescent image 

showing CS samples after incubation at room temperature for 1 h. d) Image showing CS 

samples after brief centrifugation (5000 rpm for 5 second). e) UV-vis absorbance from the 

supernatant of CS samples. f) FAM CpG concentration measured from the supernatant of CS 

samples. g) Kinetics of FAM CpG DNA release from nanoparticles incubated in saline 

containing 10 % serum at 37 oC. 
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Motivated by above findings, the aggregation of nanoparticles was ascertained by DLS 

measurements. In view of the results shown in Figure 2-2a, the size of CS decreased with 

increasing SiNPs/CpG DNA weight ratio, indicating their aggregation was more significant 

when SiNPs were fully covered by CpG DNA. Only 150 ratio CS showed monodisperse in 

size (45 nm) and uniform in loading, two features of utmost importance for reliable adjuvant 

dosage. The results from zeta-potential measurements showed a positively charged surface 

feature from bare SiNPs, which reflects strong electrostatic interactions with negatively 

charged CpG ODN (Figure 2-2b). The surface saturation point shown in Figure 2-1f was 

corroborated by zeta-potential measurements, which showed a progressive decrease in 

surface potential from 31 mV for SiNPs to 4 mV for the 60 ratio CS. Since the 10, 30, 60, 

and 90 ratio CS gave very large aggregates, the 150 ratio CS was selected for further vaccine 

studies. The potential profiles in the stern layer and the diffusion layer are illustrated in Figure 

2c based on potential in SiNPs. The 150 ratio CS covered partially by CpG DNA has 

positively charged surface (~15 mV) and creates an electrostatic field that affects the ions in 

the bulk of the liquid, thereby creating an electric double layer. Thus it can be said that 

particles tend to segregate into a layer adjacent to the layer of surface charges in SiNPs, 

showing better colloidal stability of nanoparticles. 
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Figure 2-2. a) NPs size by volume. b) NPs zeta potential. c) Expected distance between two 

CS particles with low and high weight ratio, and its expected distance of diffusion layer. 

 

2.3.2. SiNPs formulation efficiently targets CpG to the LN. 

It is well known that the parenteral administration of unformulated CpG DNA fails to 

reach lymph nodes (LNs), the anatomic organ where the primary function of immune cells 

is orchestrated. Thus, efficient LN-targeting strategy has the key roles in promoting immune 

activation and has the great potential to transform disease treatment. To see whether 150 ratio 

CS reflect sufficient transport of CpG DNA to dLNs, we assessed LN accumulation following 

subcutaneous injection, using a fluorophore-conjugated derivative to enable detection of 

CpG in the tissue (Figure 2-3a). The CS with different weight ratios were injected in 



１８ 

 

C57BL/6 mice (n = 2 per group), and 24 h later, dLNs were excised (Figure 2-3b). The LNs 

from mice injected with 60, 90, and 150 ratio CS showed bigger inguinal or axillary LNs 

than LNs from mice injected with soluble CpG DNA or saline (Figure 2-3c). On the other 

hand, mice injected with 180 ratio CS showed swelling at the injection site and it last one 

week from the day of administration (Figure 2-3d). By injecting 300 ratio CS into mice, 

inflammation occurred in response to redness and tissue damage. Strongly cationic particles 

are known to be toxic and to interact more favorably with the tissue thereby inducing 

inflammation.55, 56 However, in contrast to the results above, mice injected with 150 ratio CS 

showed a semblance of normality. By flow cytometry, 30, 60, and 180 ratio CS exhibited low 

accumulation in CD11c+ DCs or F4/80+ macrophage, whereas 150 ratio SiNPs showed 

marginally increased uptake in inguinal or axillary LNs (Figure 2-3e, f, and g). This results 

implies that 150 ratio CS has a reasonable fit of surface charge that can enhance delivery of 

CpG DNA to lymphatics and promote their capture in dLNs without any inflammations at 

the injection site. Inefficient capture of CpG DNA in LNs is consistent with the low molecular 

weight of soluble CpG DNA, big size of lower weight ratio CS, and swelling or tissue damage 

from the injection of 180 ratio CS, which will be capable of absorption directly into blood 

capillaries at the injection site. 
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Figure 2-3. a) Quantification of CpG DNA in LNs after injection of fluorescent-labeled CpG 

DNA in soluble or nanoparticle form. b) image showing excised draining LNs from C57BL/6 

mice (n=2 LNs per group) injected with fluorescent-labeled CpG DNA (3 nmol) in soluble 
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or in nanoparticle form. c) size of inguinal and axillary lymph nodes measured by image J. 

d) image showing injection sites of 150, 180, and 300 ratio CS measured two weeks after 

injection. e) CpG+ cells determined by flow cytometry at 24 h compared with soluble CpG 

DNA. f) representative flow cytometry plots of F4/80 staining and g) CD11c staining.  

 

Given the enhanced delivery of CpG DNA by 150 ratio CS, we examined LN accumulation 

again after 30 h using same SiNPs. We questioned ourselves that they may have nonspecific 

interaction with serum protein/matrix because of their positively charged surface, and hence 

the rate of uptake may slow, compared to negatively charged free CpG DNA. The 150 ratio 

SiNPs were injected in C57BL/6 mice, and 30 h later, dLNs were excised (Figure 2-4a). 

Nanoparticles showed 1.6-fold greater accumulation in CD11c+ DCs and also in F4/80+ 

macrophage in inguinal node (Figure 2-4b, c, and d). This results implies that 150 ratio CS 

may move slower than negatively charged CpG ODN to reach dLNs. Further studies are 

under investigation whether their slower kinetic is beneficial for vaccine delivery. 
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Figure 2-4. a) Imaging of excised draining LNs at 30 h from C57BL/6 mice (n=2 LNs per 

group) injected with fluorescent-labeled CpG (3 nmol) in soluble or nanoparticle form. b) 

CpG+ cells determined by flow cytometry at 24 h. Representative flow cytometry plots of 

F4/80 staining and CD11c staining from c) Inguinal node and d) Axillary node. 

 

2.3.3. Design of LN-targeting lipid coated SiNPs and pathogen mimicking composite 

materials. 

It is well known that PEGylated lipid nanoparticles that can mimic the natural pathogens 

enable better retention of encapsulated drugs, and modestly enhance their lymphatic uptake.57 

To prepare lipid coated SiNPs, we used a coated lipid film method49 in which nanoparticles 
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were added to a continuous lipid film coated onto a round-bottom small tube surface, 

allowing uniform coating. This method leads to complete nanoparticle coating, providing 

effective vaccine sealing without the necessity to conduct an extrusion or multiple washing 

procedures. For LCS fabrication (Figure 2-5a), The 31.5:45:13.5:10 molar ratio of 

cholesterol/DOPC/DSPE/mPEG-DSPE in chloroform was dried under nitrogen followed by 

incubation under vacuum at room temperature overnight. The resulting lipid films were 

resuspended to a concentration of 0.116 g/ml nanoparticles and probe-sonicated for 20 min 

with 15/15s on/off working cycle. It has been demonstrated that cholesterol can enhance 

transfection efficiency in liposome-based formulations, and PEGylated lipid reduces 

nonspecific interactions of vesicles with serum proteins/matrix, enabling better retention of 

encapsulated vaccine.58-60 Importantly, the majority of the lipids were found to coat the SiNPs 

instead of forming empty liposomes, as rhodamine labeled lipid settled along with the SiNPs 

on the bottom of the tube after brief centrifugation (Figure 2-5c). In contrast, sample prepared 

without CS showed no sediment layer after centrifugation (Figure 2-5b). We suspected the 

positive amines on the surface of SiNPs might interact with lipids and initiate the lipid bilayer 

formation.  
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Figure 2-5. a) Schematic diagram of LCS and structure of DOPC, DOPE, mPEG-DSPE, and 

Cholesterol. b) Image showing rhodamine-conjugated lipid and c) rhodamine-conjugated 

lipid with nanoparticles dissolved in saline after centrifugation (21 G for 10 min), the 

majority of the lipids settled along with CS nanoparticles.  

 

The surface of LCS was further functionalized with OVA-II peptide that can efficiently 

delivery OVA-II antigen and adjuvant to APCs at the same time. An ideal vaccine is one that 

is able to mimic the immunological response by a naturally occurring infection. This surface 

functionalization makes nanoparticles more “pathogen-mimicking” in respect to their 

intracellular fate, persistence and APC activation compared to Yersinia pestis or Escherichia 

coli.61 The amphiphilic antigen was anchored on the lipid-coated SiNPs using a post insertion 

method.62 We first prepared amph-OVA-II (Figure 2-6a) using a method described 

previously63 and added it into LCS solution to prepare OVA-II functionalized LCS (Figure 

2-6b). In short, Maleimide-PEG2000-DSPE and OVA-II peptide were dissolved in 

Dimethylformamide (DMF) separately, and they were mixed and agitated at room 

temperature for 24 hours, following the addition of Triethylamine (TEA) for their coupling 

(Figure 2-6a). The prepared amph-OVA-II was added to LCS solution and probe-sonicated 

for 1 min with 2/2s on/off working cycle. This nanoparticle will be demonstrated as a 
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multifunctional carrier for co-delivery of both OVA-II antigen and CpG ODN adjuvant to 

APCs in stimulating antigen-specific CD4+ T cell responses. 

 

 

Figure 2-6. a) OVA-II peptide with amino-terminal cysteines were conjugated to maleimide-

PEG2000-DSPE. b) OVA-II functionalized LCS (LCS composite combined with amph-OVA-

II). 

 

The surface morphology and microstructures of nanoparticles were analyzed using HR-

TEM. To visualize the lipid bilayer, 2 % phosphotungstic acid (1:1 v/v) was used for negative 

staining. Figure 2-7a showed SiNPs with an overall spherical shape and some surface 

roughness (black dots). The image of SiNPs without staining showed its smooth surface (no 

black dots), implying that black dots were originated from aminosilane functional groups on 

the surface of SiNPs (data not shown). The CS image showed no difference in their 

morphology compared to bare SiNPs (Figure 2-7b). However, the SiNPs from LCS were 

found to be surrounded by a continuous ring of ~ 4 nm distance which is consistent with the 

known thickness of a lipid bilayer.64, 65  
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Figure 2-7. Transmission electron microscopy (TEM) images of a) SiNPs, b) CS, c) LCS. 

 

2.3.4. Lipid coated SiNPs formulation efficiently targets CpG to the LN. 

We prepared fluorescence-labeled LCS (Figure 2-8a) based on the procedure described in 

section 2.3.3 to measure their LN accumulation. It showed ~ 110 nm size, which is little 

bigger than CS and almost zero surface charge measured by DLS measurements (Figure 2-

8b). The LCS loaded with fluorescently labeled CpG DNA were relatively stable in serum, 

releasing only 5 % of the encapsulated CpG DNA when incubated in the presence of 10 % 

serum at 37 oC for 3 days (Figure 2-8c). This result implies that nanoparticles were 

surrounded by lipid bilayer, enabling better retention of encapsulated CpG DNA. We next 

investigated LN accumulation of CpG DNA following subcutaneous injection using a 

fluorescence-labeled LCS. Mice treated with LCS showed bigger LNs (Figure 2-8d) and 

enhanced lymphatic uptakes compared to results measured by CS administration (Figure 2-

8e). In addition, CpG DNA delivered via LCS platform was detected in approximately 40 % 

(2-fold higher than CS) of LN macrophages and DCs from axillary node. 
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Figure 2-8. a) Fluorescent images of CS and LCS samples. b) Z-Average and zeta potentials 

of CS and LCS measured by DLS c) excised LNs image from C57BL/6 mice (n=2 LNs per 

group) injected with CS and LCS. d) size of inguinal and axillary lymph nodes measured by 

image J. e) CpG
+
 cells determined by flow cytometry at 24 h. Representative flow cytometry 

plots from cells stained withCD11c and F4/80 f) in inguinal node and g) in axillary node. 
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Figure 2-9 showed immunofluorescent images of inguinal LN section. Mice were injected 

subcutaneously with 3 nmol of fluorescein-labelled CpG DNA, CS, or LCS. After 24 h, LNs 

were sliced by a cryostat and LN cells were stained with antibodies against B220 and CD3. 

Histological sections of dLNs showed little detectable CpG DNA, whereas CS and LCS 

represented marginally increased CpG DNA accumulation in the subcapsular sinus and 

interfollicular areas. 

 

 

Figure 2-9. Immunohistochemistry of inguinal LNs 24 h after injection (CD3, blue; B220, 

pink; CpG, green). 
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2.3.5. SiNPs enhances cellular uptake and immune stimulation of CpG in vitro. 

The development of ideal vaccines depends on an efficient means of transfer of vaccine 

components into a cell. We next studied the effect of our nanoparticle on the transfection 

efficiency. For the analysis of confocal laser scanning microscopy, DC2.4 cells were first 

seeded on glass coverslips for 24 h at 37 °C and after 24 h, cells were treated with 10 μg/ml 

of fluorescence labeled CpG DNA, CS, or LCS for 2 h. Following fixation, the glass was 

washed with saline and mounted on a slide with nuclei staining by DAPI. Bright green 

fluorescence was observed for cells treated with CS and LCS when excited at 435 nm, 

suggesting those nanoparticles could be taken up rapidly by cells (Figure 2-10a). It was also 

clearly observed from confocal images that LCS were more closely translocated into the 

perinuclear zone. By contrast, the cells that treated with soluble CpG DNA showed only 

weak green fluorescence. The kinetics of CpG uptake were quantified by FACS analysis 

(Figure 2-10b). Consistent with confocal results, free CpG showed little uptake by DC2.4 

cells, in contrast, both LCS and CS nanoparticles had markedly improved uptake, though the 

uptake appeared to be more rapid in LCS treated cells. This results suggest that CpG DNA 

in nanoparticle form allowed more efficient delivery with minimal leakage into the culture 

medium. The SiNPs are known to have a great affinity for the head-groups of a variety of 

phospholipids.45 Therefore, the high affinity for adsorbing on cell surfaces may cause 

enhanced endocytosis. These observations are consistent with the results of previous studies, 

showing that SiNPs are attractive carriers for gene transfection to cells, because the SiNPs 

DNA complex has a high transfection efficiency and a low toxicity.45, 66-70 
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Figure 2-10. Nanoparticle delivery studied by confocal fluorescence microscopy. a) 

Representative confocal microscopy images of DC 2.4 cells. Cell nuclei were stained with 

DAPI (blue) and fluorescent-labeled CpG (green) was used to detect CpG uptake. DC 2.4 

cells were incubated with adjuvants for 2 h. b) Flow cytometry assay of the uptake. DC 2.4 

cells were incubated for 0.5, 1.0, or 2.0 h.  

 

To evaluate the adjuvant activity of nanoparticles, the activation of TLR9 by different CpG 

formulations were measured 24 h after incubation. Both Raw-Blue and mTLR9 cells express 

TLR9 and are transfected with a secreted embryonic alkaline phosphatase (SEAP) reporter 

induced by NF-ĸB. Raw-Blue and mTLR9 cells were incubated with free CpG DNA, CpG 

with CS, or CpG with LCS at 37 oC. After 24 hours, 20µL supernatants of cells were 

transferred to 200µL Quanti-Blue solution and further incubated for 1 h. The SEAP levels 

were determined colorimetrically at 620 nm by UV-Vis. As shown in Figure 2-11, CS and 
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LCS stimulated higher level of TLR receptor activation than soluble CpG DNA, which 

reflects nanoparticulate CpG modification do not compromise the immunostimulatory 

activities of CpG DNA, instead, it enhances the level of stimulation. 

 

 

Figure 2-11. a) TLR9 cells and b) alkaline phosphatase activity in PBS, CpG DNA, CS, and 

LCS, measured from supernatants of cell cultures by Quanti-Blue. 

 

2.3.6. SiNPs formulations trigger potent antigen-specific immune responses.  

CpG DNA has been reported to activate cells expressing TLR9 receptor and to promote 

expression of costimulatory molecules from APCs that can activate T cell responses.24, 71 To 

first measure the impact of nanoparticle delivery on T cell priming, C57BL/6 mice were 

immunized subcutaneously on day 0 and day 14 with ovalbumin (OVA) protein alone or 

adjuvanted by 1.24 nmol CpG DNA in soluble or in nanoparticle form. The cellular immunity 

was monitored by measuring OVA-specific CD8+ T cell proliferation in peripheral blood 

using SIINFEKL/H-2Kb peptide-MHC tetramers. As expected, soluble CpG DNA induced 

relatively weak antigen-specific CD8+ T cell responses, showing less than 4% OVA-specific 

CD8+ T cells in blood. In contrast, LCS elicited 8-fold higher CD8+ T cell proliferation 
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(Figure 2-12a and b). Intracellular cytokine staining was also carried out at 7 days after boost 

on peripheral blood mononuclear cells restimulated with SIINFEKL peptide to identify 

cytokine-producing antigen-specific T cells. LCS-adjuvanted vaccines induced 3-fold and 

3.5-fold greater total cytokine+ production in CD8+ and CD4+ T cells, respectively, compared 

with vaccination by soluble CpG DNA adjuvant (Figure 2-12a). These results imply that 

nanoparticle delivery generate a higher frequency of CD8+ T cells producing both IFN-γ and 

TNF-α, which are critical for innate and adaptive immunity against intracellular antigens.72 

We further assessed IL-6 and IL-12 production in the sera of immunized mice. Nanoparticle 

delivery induced higher IL-6 and IL-12 production compared to vaccination with soluble 

CpG DNA (Figure 2-12c). IL-6 has been reported to be involved in the generation of Th2 

immune response.73 In contrast, IL-12 production involves multiple signaling pathways in 

the production of IFN-γ and TNF-α from T cells and natural killer (NK) cells.22 They mediate 

enhancement of the cytotoxic activity of NK cells and CD8+ cytotoxic T lymphocytes.74 Our 

result suggests that CpG DNA in nanoparticle form induce a potent immune response through 

cell-signaling pathway including MyD88-dependent nuclear factor-κB (NK- κB)75 and 

mitogen-activated protein kinase (MAPK)76 pathways, which can induce the secretion of 

proinflammatory cytokines such as TNF-α, IL-6, and IL-12.15  

Additionally, we evaluated the functional capacity of amphiphilic OVA-II peptide 

functionalized LCS elicited T cell response through detection of IFN-γ production following 

re-stimulation of peripheral blood mononuclear cells on day 21 with OVA-II peptide (Figure 

2-12d and e). The results showed enhanced cytokine production by CD4+ T cell induced by 

OVA-II functionalized LCS adjuvanted administration for specific antigen dependent 

production of IFN-γ.  
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Figure 2-12. Groups of C57BL/6 mice (n=3 per group) were immunized subcutaneously on 

day 0 and day 14 with 10 μg OVA and 1.24 nmol CpG DNA, CS, or LCS formulations. 

PBMCs were restimulated ex vivo with CD8+ and CD4+ OVA epitopes and analyzed by flow 

cytometry for intracellular cytokine staining. a) Mean percentages of OVA specific CD8+ T 

cell and TNF-α+ or IFN-γ+ T cell frequencies. b) Representative flow cytometry plots of 

OVA-specific CD8+ T cells. c) Levels of IL-6 and IL-12 productions in mice sera detected 3 

weeks after immunization. de) IFN-γ+ CD4+ T cell frequencies from each group of C57BL/6 

mice (n=3 per group) immunized subcutaneously on day 0 and day 14 with 10 μg Amph-

OVA-II and 1.24 nmol CpG DNA, CS, or LCS formulations. 

. 
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We measured the level of OVA-specific IgG in the sera of immunized mice to compare the 

capacity for generating humoral immunity. Measurement of the IgG level gives insight into 

the types of T helper cell immune responses. It is well known that the immune system 

responds to CpG motifs by activating potent Th1-like immune responses.21 To evaluate the 

antibody response elicited by soluble CpG DNA or CpG DNA in nanoparticle form, sera 

from immunized mice were collected on day 21 following a prime on day 0 and boost on day 

14. ELISA measurements of serum titers of OVA-specific IgG showed higher levels of anti-

OVA IgG in mice immunized by nanoparticle formulations (Figure 2-13a). Mice immunized 

by OVA-II functionalized nanoparticles showed significant increases in serum titers against 

anti-OVA-II IgG (Figure 2-13b). These nanoparticle-mediated CpG DNA with antigen 

delivery enable robust humoral immune responses with higher levels of antigen-specific 

antibody productions. 
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Figure 2-13. Anti-OVA IgG were measured by ELISA, a) Groups of C57BL/6 mice (n=3 per 

group) were immunized subcutaneously on day 0 and day 14 with 10 mg OVA and 1.24 nmol 

CpG DNA, CS, and LCS. b) Groups of C57BL/6 mice (n=3 per group) were immunized 

subcutaneously on day 0 and day 14 with 10 mg DSPE-PEG-OVA-II and 1.24 nmol CpG 

DNA, CS, and LCS. 
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2.3.7. SiNPs vaccination elicit a protective anti-tumor immune response. 

Several studies have previously shown that in the EG.7-OVA murine lymphoma model, 

CpG DNA vaccination resulted in significant regression of tumor growth.44, 77-82 Therefore, 

we next compared the anti-tumor vaccine adjuvant activities of CpG DNA in nanoparticle 

form by therapeutically vaccinating C57BL/6 mice bearing OVA-expressing EG.7 thymoma 

tumors with no treatment group. A total of 2× 106 EG.7-OVA cells were subcutaneously 

inoculated into mice. When the tumor mass became palpable (7-8 mm), mice with established 

EG.7-OVA tumors were vaccinated on day 5, 11, and 18 with 20 μg OVA plus 1.24 nmol 

CpG DNA in nanoparticle form or controls. Nanoparticle delivery containing amph-OVA-II 

suppressed tumor growth in the early stage, but differences over the control condition were 

lost with time. The CpG DNA in both nanoparticle form plus OVA protein resulted in similar 

tumor initiation on day 7 as no treatment group, but delayed tumor growth significantly over 

time. The corresponding survival rate also supports the potential utility of our nanoparticle 

strategy for prophylactic cancer vaccines (Figure 2-14b). Notably, 2 or 3 mice showed a 

drastic inhibition of tumor growth and full recovery from OVA plus CS or OVA plus LCS 

group (Figure 2-14c and d). The nanoparticle-adjuvanted vaccine are more effective than 

soluble CpG DNA in stimulating tumor-specific cytotoxic T cells responses. 
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Figure 2-14. C57BL/6 mice (n=6 per group) were inoculated with 2 × 106 EG.7-OVA cells 

s.c. on day 0 and then vaccinated with 20 ug OVA mixed with 1.24 nmol SiNPs based CpG 

formulation on days 5, 11, and 18. a) tumor size over time. b) survival over time. c) individual 

tumor growth curves. d) An image represents the progression in tumor volume on day 15. 

 

2.4. Conclusion 

We used SiNPs as a platform for the efficient delivery of CpG DNA into dLNs for ensuring 

their immunostimulatory activity. This approach provides rapid and simple guidelines to 

fabricate effective vaccine carriers and understanding how the electrostatic charge interaction 

affects their vaccine loading, size, and surface charge. The optimum weight ratio between 

SiNPs and CpG DNA was explored, showing their high colloidal stability and efficient CpG 

DNA loading with minimal leakage into the medium. For better retention of CpG DNA in 
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nanoparticle form (CS), nanoparticles were coated with lipid bilayer, showing their better 

stability, enhanced delivery of CpG DNA to lymphatics, and cellular uptake efficiency. 

Immunization by nanoparticle delivery generated potent cellular and humoral immunity 

superior to vaccination by soluble CpG DNA. Nanoparticle delivery acts synergistically in 

suppressing tumor volume, outperforming the delivery of CpG DNA in animal model. Lipid 

coated silica nanoparticles revealed in this study can be used as efficient carriers to target 

vaccine adjuvants to dLNs, thereby modulating the immune system in safer and effective ways. 

We expect that the results of our work will contribute to the advancement of vaccine 

encapsulations via charge interactions and will help to develop more efficient therapeutics for 

treating cancer. 
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3. Dissolving microneedle arrays for transdermal delivery of molecular 

vaccines 

 

3.1. Introduction 

Delivery of vaccines via the skin is not a new phenomenon. Transdermal delivery through 

chemical permeation of the skin has advantages over hypodermic injections, which are 

painful, generate dangerous medical waste and spread of disease known to occur through 

needle-reuse. 83, 84 Many studies report a connection between unsafe needle-reuse and the 

transmission of infectious agents including hepatitis C virus (HCV), hepatitis B virus (HBV), 

or human immunodeficiency virus (HIV).85 This needle-based injection also requires 

refrigeration that increases costs and complexity of cold transportation (the “cold chain”), 

and requires trained health care personnel.86 Meanwhile, transdermal vaccine delivery 

systems represent noninvasive, potentially allowing for pain-free administration either by 

minimally trained health care providers or through self-administration. This system may 

improve safety for the vaccinator by reducing the generation of dangerous medical waste and 

inhibiting the spread of disease by needle re-use and needle-based injuries. However, 

transdermal vaccine delivery has yet to achieve its potential as an alternative to hypodermic 

injections. Perhaps only a limited number of vaccines or difficulties of controlled vaccine 

release are major hurdles to practical administration.87 With current delivery systems, 

successful transdermal vaccines have molecular masses that are only up to a few hundred 

Daltons.83, 88 It has been difficult to deliver hydrophilic vaccines such as DNA or small-

interfering RNA (sRNA) with antigen peptides. Therefore, an optimal approach for safe, 

convenient administration of molecular-based adjuvants with antigen peptides through t

he skin remains elusive.  
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Here we combined the transdermal vaccine delivery with an ‘albumin hitchhiking’63, 89 

approach that uses albumin binding lipids conjugates for the efficient delivery of vaccines 

consisting CpG DNA and antigens into dLNs to ensure their immunostimulatory activity. We 

first designed microneedle arrays (MNs) composed of a biocompatible polymer (poly(acrylic 

acid), PAA), and used them for rapid release of encapsulated vaccine components into 

epidermis. The MNs is a glassy hard solid, which has enough strength (Young’s modulus, E 

≈ 4 GPa)90 to penetrate the skin and water soluble, facilitating its rapid dissolution when 

inserted into skin. To show the utility of this approach, model vaccines composed of peptide 

antigen and diacyl lipid-CpG conjugate adjuvants (amph-vaccines) were loaded in MNs and 

administered in animal models. Due to the albumin binding nature of amph-vaccines, they 

form a complex of appropriate size through binding to albumin, and enhance their efficient 

drainage to lymphatics.63 Previous results showed 10-fold higher accumulation in lymph 

nodes, 30-fold increases in T cell priming, and enhanced anti-tumor efficacy following 

subcutaneous administration.63 In this study, use of MNs platform to deliver amph-vaccines 

resulted in enhanced antigen-specific T cell and antibody responses related to traditional 

needle-based immunization. This ‘albumin hitchhiking’ MNs delivery system can provide a 

simple and safer vaccination method with improved immunogenicity. We hypothesized that 

benefits of applying this platform are (i) safe and needle-free administration (no waste of 

biological waste and sharp disposal), (ii) no pain and needle phobia, leading to poor patient 

compliance, (iii) enhanced immune response through inflammatory cues and targeted 

delivery of amph-vaccines to response-governing antigen presenting cells (APCs) present at 

high density in the lymph nodes. 
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3.2. Background 

Our skin consists of three layers such as epidermis, dermis and subcutaneous fat layer.83, 

91, 92 In addition, there is an external physical barrier called the stratum corneum. Methods of 

transdermal permeation include hydration, mechanical disruption, and a combination of the 

two. It was found that the rate of water loss from skin increased dramatically when the 

stratum corneum was removed.88 Hydration of the stratum corneum with inflammatory cue 

causes keratinocytes to swell and fluid to pool in the intercellular spaces. This process allows 

antigens to pass the skin barrier more easily.93, 94 For such barrier-disruption systems, a si

mple application of MNs can be desired for physical or chemical disruption of the 

stratum corneum. Once they penetrate the skin, where immuno-component dendritic 

cells are densely distributed, skin permeability could be increased, allowing for trans

dermal delivery of large molecules.95 Ease of administration is also an advantage si

nce rapid and pain-free self-administration of therapeutics into the skin could be app

lied.  

Delivery from hypodermal administration results in the compound being deposited either 

intramuscularly (IM), subcutaneously (SC), or intradermally (ID). As capable of transporting 

nano-sized molecules are available, the larger length scales of needles are often unnecessary, 

causing pain and limit targeted delivery. MNs has ~500 μm length, which is enough to 

penetrate epidermis. The skin’s pain receptors are located slightly deeper than the length of 

MNs so that the delivery using MNs is pain-free in comparison to hypodermic needles. Due 

to these property, therapeutics can be delivered precisely into the epidermis without pain or 

discomfort.  

MNs are specifically designed and developed according to their use and needs.91 Solid 

MNs often used to pretreat the skin prior to the administration of therapeutics. It is also used 
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to deliver microgram quantities of the substance which may not be suitable for controllable 

delivery and could pose disposal or re-use hazards.92 Vaccine-coated and hollow MNs are 

used for drug dissolution in the skin. Hollow MNs allows their drug diffuse in deeper later. 

Nonetheless, their application is limited as the risk of needle breakage for the injection of 

vaccine solutions and also they may leave sharp wastes. Thus, dissolving MNs were 

developed as a solution to safety and sharp waste issues. These MNs undergo complete 

dissolution in the skin and are typically made of water soluble polymer that dissolve once 

exposed to the skin. 

 

3.3. Materials and methods 

3.3.1. DNA Synthesis and lipophilic conjugation  

All reagents for DNA synthesis were purchased from Chemgenes. G2-CpG (5’-

GGTCCATGACGTTCCTGACGTT-3’) was first synthesized using an ABI 394 synthesizer 

(Applied Biosystems) on a 1.0 micromole scale. Lipophilic phosphoramidite was conjugated 

as a final ‘base’ on the 5’ end of G2-CpG (Lipo-G2-CpG63). In this process, lipophilic 

phosphoramidite was dissolved in dichloromethane and coupled to G2-CpG using the so-

called syringe synthesis technique or using the DNA synthesizer 63. After the synthesis, Lipo-

G2-CpG was cleaved form the solid support by AMA solution (methylamine:acetic 

acid=50:50) at 65 oC, and purified by reverse phase high performance liquid chromatography 

(HPLC). The schematics of Lipo-G2-CpG is illustrated in Figure 3-1. 
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Figure 3-1. Structure of synthesized diacyl lipid conjugated CpG ODN (Lipo-G2-CpG). 

 

3.3.2. Synthesis of peptide amphiphile 

Maleimide-polyethylene glycol (PEG)2000-DSPE (Laysan Bio) and OVA-II peptide 

(Genescript) were dissolved in Dimethylformamide (DMF) separately. They were mixed 

together in the ratio of 2:1 chemical equivalent and small amount of Triethylamine (TEA) 

was added for their coupling. The mixture was agitated at 25 oC for 24 hours. The coupling 

process and structure of DSPE-PEG2000-OVA-II (amph-OVA-II) are described in Figure 3-2. 

The PEG spacer with optimized length between the albumin-binding tail and the OVA-II 

antigen was chosen to increase conjugate solubility as well as to promote albumin-binding. 

 

 

Figure 3-2. OVA-II peptide with amino-terminal cysteines were conjugated to maleimide-

PEG2000-DSPE. 
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3.3.3. Purification of synthesized DNA 

Lipo-G2-CpG was purified using reverse phase HPLC (Agilent Technologies 1220 Infinity 

LC) on a reverse phase C4 (BioBasic-4, 200 mm × 4.6 mm, Thermo Scientific) column. 

The mobile phase consisted of 100 mM trimethylamine-acetic acid buffer (TEAA, pH 7.5) 

and methanol (MeOH) as an eluent. The gradient linearity changed from 50:50 

(MeOH:TEAA) to 0:100. The total run time was 20 min. The injection volume was 100 μl 

and Lipo-G2-CpG was monitored using UV-Vis absorption. Data were collected using 

Agilent Rapid Res software. 

 

3.3.4. Design and preparation of MNs 

Silicone templates were purchased from Micropoint Technologies Pte Ltd. Templates were 

fabricated by casting room temperature vulcanizing silicon over a stainless microneedle 

master mold. The template has 10×10 array sharp cavities with 200 μm width and 500 μm 

height. They were used to build MNs delivery system through a simple fabrication process 

as shown in Figure 3-3a. The dissolving polymer was deposited to the template surface and 

centrifuged to compact them into template cavities. Following removal of residual material 

from the template surface, templates were dried at room temperature. In this process, vaccine 

components remained in not only MNs tips but also MNs body part (pedestal). To avoid this, 

the deposition process comprised two stages as shown in Figure 3-3b.  
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Figure 3-3. a) Schematic of simple dissolving microneedle fabrication. b) Fabrication of 

PAA MNs. 

 

The template was cleaned first by washing with mild soap and letting them air dry 

completely, and small amount of PAA-vaccine solution was deposited onto the microneedle 

catchment. The PAA (250 kDa, 35 %) was added to soluble OVA and Lipo-G2-CpG mixture 

at desired concentrations (generally ~ 40 mg/ml OVA, 32 mg/ml) to prepare the PAA-vaccine 

solution. The templates were centrifuged for 20 minutes at rcf ≈  450 and excess PAA-

vaccine solution was removed from the template surface for potential reuse. The templates 

containing PAA-vaccine were then dried at 25 oC for 24 hours. The PAA pedestals were 

formed via addition of 35 % PAA to the template surface, followed by centrifugation (20 min, 

rcf ≈ 450), the samples were dried at 25 oC for 48 h, before removing from the template.    

 

3.3.5. Characterization of MNs 

MNs were characterized by optical and confocal microscopy using a EVOS AMF4300 and 

a Zeiss LSM 510 respectively. The array morphology was further characterized by scanning 

electron microscopy (FE-SEM) using a JSM-7600 field effect-SEM and a JSM-6510LV SEM. 

Total vaccine loading was determined through brief exposure of fabricated arrays to 
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deionized water, followed by an ultraviolet-visible spectroscopy (UV-Vis). 

 

3.3.6. In vivo MNs application and vaccine release 

All animal studies were approved by the division of laboratory animal resources (DLAR) 

and animals were cared in the DLAR animal facility under federal, state, local, and NIH 

guidelines for animal care. The capability of MNs delivery system were tested on 

anesthetized C57BL/6 mice at the tail based area. Skin was rinsed briefly with PBS and dried 

before application of MNs by gentle pressure. After application, mice were euthanized at 

subsequent time points and the application site was dissected. Treated skin and MNs were 

imaged by confocal microscopy to assess transcutaneous delivery of PAA-vaccine implants. 

For histological analysis, excised skin was embedded in optimal cutting temperature medium 

(OCT, Tissue-Tek) and used for sectioning on cryostat (Thermo Fisher HM525 NX). 

Histological sections were then imaged using an EVOS AMF4300 imager. 

 

3.3.7. Immunizations  

Groups of C57BL/6 mice (n=3 per group) were immunized by ID injection or by MNs 

patch (5 min application) on day 0 and day 14 with 10 μg ovalbumin (OVA) including Lipo-

G2-CpG formulations as shown in Figure 3-4a. Groups from 1 to 3 were selected as control 

groups to compare immune responses from MNs application with that from ID injections as 

shown in Figure 3-4b. Seven days after the final immunization, mice were bled and 

peripheral blood mononuclear cells were evaluated by SIINFEKL/H-2Kb peptide-MHC 

tetramers staining and intracellular cytokine staining.  
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Figure 3-4. a) Mice immunization via ID injection or MNs delivery system (5 min 

application), and b) groups of C57BL/6 mice (n = 3 per group). 

 

To assess the functionality of primed CD8+ T cells, peripheral blood mononuclear cells 

were stimulated ex vivo with 10 μg/mL OVA peptide SIINFEKL for 6 h with Brefeldin-A and 

then fixed, permeabilized, stained with anti-IFN-γ, anti-TNF-α, and anti-CD8α, and analyzed 

by flow cytometry. Anti-ovalbumin IgG titers, defined as the dilution of serum at which 450 

nm OD will be determined by an enzyme-linked immunosorbent assay (ELISA) analysis. To 

determine antibody titers, ELISA plates (eBioscience) were coated with 10 μg/mL of OVA 

peptide in PBS 1X overnight at room temperature. The plates were blocked with 200 μL of 

1% BSA in PBS (FACS buffer) for 1 h. Serum was serially diluted in PBS 1X between 1:102 

and 1:109 and applied to wells for 1 h at room temperature. Peroxidase-conjugated goat anti-

mouse IgG (HþL) (1:5000 in 1% BSA-PBST, 100 μL/well) was then applied for 1 h, and the 

plates were developed using TMB substrate (100 μL/well, eBioscience). The reaction was 

stopped using 50 μL of 1 M sulfuric acid, 100 μL of the solution and absorbance values were 

measured at 450 nm.  
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3.3.8. Statistical analysis 

To analyze the statistical difference between four groups, a One-Way Analysis of Variance 

(ANOVA) with Tukey’s HSD post-hoc test was used. All of the values are expressed as 

means ± standard deviations. GraphPad Prism software was used for all the statistical 

analyses. ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05. NS, not significant. 

 

3.4. Results and Discussion 

3.4.1. Preparation of MNs 

We first designed microneedle geometry and device fabrication process to encapsulate 

vaccine components in tips of MNs. To facilitate reliable insertion of MNs into skin, each 

was designed to be 500 μm long, which can provide sufficient mechanical strength. To 

prepare vaccine loaded MNs, we pursued a double-layered MNs design (Figure 3-3b) using 

PAA polymers. First, the PAA solution (250 kDa, 35 %) was mixed with OVA plus TLR9 

agonist diacyle lipid conjugated oligo guanine (n=2) repeated CpG DNA (amph-CpG) to 

prepare PAA-vaccine solution. Silicone templates were then cast with small amount of PAA-

vaccine (≈ 5 μl) solution and centrifuged to infiltrate the template cavities. After removing 

excess PAA-vaccine solution, templates were allowed to dry at room temperature overnight 

to form solid vaccine loaded PAA tips within cavities of templates. Following the dry process, 

35 % PAA was added to the template surface and centrifuged to compact the PAA into the 

cavities to form PAA pedestal structure. MNs were dried in the template at room temperature 

for 48 h (at least 24 h) and removed for future MNs applications (Figure 3-5a).  
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Figure 3-5. (a) Face view of dissolving PAA MNs. (b) SEM images of resulting MNs (scale 

bar 100 μm) and (c) side view of MNs. 

 

The resulting MNs were reliably produced repeatedly and measured 500 μm tall with sharp 

tips as shown in FE-SEM and optical microscope images in Figure 3-5b and c. We further 

confirmed this MNs using confocal microcopy to observe the localization of the vaccine 

cargo in the tips.  

 

2.4.2. Insertion and dissolution of MNs in skin 

The resulting MNs were able to be inserted into murine skin of C57BL/6 mice with gentle 

force applied by the thumb (Figure 3-6a and b). To confirm release kinetics of encapsulated 

vaccines in MNs, we fabricated rhodamine dye loaded MNs and applied these arrays to the 

murine skin for 5 minutes. Confocal imaging on excised skin where patches were applied 

represented overlaid punctate fluorescent signal from rhodamine dye at individual sites of 

microneedle insertion. It indicates the effective delivery of PAA-loaded vaccine components 

upon microneedle penetrations into the cutaneous space (Figure 3-6b). Confocal imaging of 

MNs before and after application revealed complete loss of PAA-associated rhodamine dye 

signal from the length of each microneedle (Figure 3-6c). We further observed the loss of 

tips that were probably dissolved in the skin (Figure 3-6d and e). Upon insertion into murine 
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skin, MNs penetrated to a depth of approximately 150 μm and deposited their encapsulated 

rhodamine largely within the epidermis (Figure 3-6f). 

 

 

Figure 3-6. (a) En face view of murine skins after insertion and removal of MNs. (b) 

Confocal microscopy image of skins, showing deposition of rhodamine at needle penetration 

sites directly following MNs application for 5 min. (c) Confocal microscopy image before 

application (upper) and following a 5 min application to murine skin. (d) SEM image and (e) 

side views of MNs after applications. (f) Histological structure of mammalian skin after MNs 

application. 

 

Together these results confirm MNs can effectively penetrate into murine skin with rapid

 dissolution of PAA-vaccine tips upon exposure to skin fluids. Once they penetrate the sk

in, skin permeability could be increased, allowing for targeted delivery of antigen a

nd adjuvant to LNs. 
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3.4.3. MNs vaccination  

The efficacy of skin immunization with dissolving MNs was determined in C57BL/6 mice 

that received encapsulated amph-vaccines. For comparison to parenteral administration, we 

performed ID injection of dose-matched OVA plus soluble CpG or amph-CpG formulations 

in the murine skin. Mice were immunized on day 0 and boosted on day 14 with 10 μg OVA 

plus 1.24 nmol CpG or amph-CpG by ID injection or by MNs administration at the tail base. 

The cellular immunity was monitored by measuring OVA-specific CD8+ T cell proliferation 

in peripheral blood using SIINFEKL/H-2Kb peptide-MHC tetramers. In view of the results 

shown in Figure 3-7, ID injected soluble CpG induced extremely weak antigen-specific CD8+ 

T cell responses while ID injected amph-CpG elicited stronger CD8+ T cell proliferation. 

This amph-CpG promotes binding to albumin in the interstitium and accumulates in antigen 

presenting cells in the LNs via albumin trafficking pathways, in turn lead to greatly improved 

immune responses as a lymph-directed vaccine carrier.96 Increased access to the lymph and 

LNs promotes antigen processing with immune cells compared to free vaccine. MNs 

vaccination carrying amph-CpG also showed higher level of CD8+ T cell proliferation, 

suggesting MNs delivery provided similar initial immunogenicity compared with traditional 

parenteral immunization strategies. We also evaluated the functionality of these expanded T 

cells through detection of inflammatory cytokine production following re-stimulation of 

peripheral blood mononuclear cells on day 21 ex vivo with SIINFEKL peptide. Flow 

cytometric analysis from intracellular staining indicated high frequencies of antigen-

dependent functional cytokine-secreting CD8+ T cells by MNs vaccination. These results 

suggest that MNs delivery can generate a higher frequency of CD8+ T cells producing both 

IFN-γ and TNF-α, which are critical for innate and adaptive immunity against viral 

infections.72 
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Figure 3-7. a) Frequency of tetramer+ CD8+ T cells in peripheral blood producing IFN-γ and 

TNF-α, and CD4+ T cells producing IFN- γ following SIINFEKL restimulation assessed by 

flow cytometry. b) Representative flow cytometric dot plots. 

 

Additionally, we evaluated the functional capacity of lymph node targeting CD4 epitope 

(amph-OVA-II) elicited T cell response through detection of IFN-γ production following re-

stimulation of peripheral blood mononuclear cells on day 21 with OVA-II peptide (Figure 3-

8). The results revealed enhanced cytokine production by CD4+ T cell can be induced by 

MNs administration of amph-vaccines for specific antigen dependent production of IFN-γ.  

 



５２ 

 

 

Figure 3-8. Groups of C57BL/6 mice (n=3 per group) were immunized subcutaneously on 

day 0 and day 14 with 10 μg amph-OVA-II plus 1.24 nmol CpG or amph-CpG by ID or MNs 

vaccination. 

 

Finally, we measured the level of OVA-specific IgG in the sera of immunized mice to compare 

the capacity of generating humoral immunity. Measurement of the IgG level gives insight into 

the types of T helper cell immune responses. It was reported that the immune system responds 

to CpG motifs which is part of CpG ODN by activating potent Th1-like immune responses.21 

To evaluate the antibody response elicited by ID or MNs vaccination, we collected sera from 

immunized mice on day 21 following a prime on day 0 and boost on day 14 by ID or MNs 

vaccination. Here, ELISA measurements of serum titers of OVA-specific IgG showed the 

presence of similarly high levels of anti-OVA IgG in mice immunized by ID and MNs 

administration of amph-CpG (Figure 3-9a). When animals were immunized by amph-OVA-II 

plus amph-CpG formulation, MNs induced significant increases in serum titers for anti-OVA 

IgG (Figure 3-9b), similar to amphiphilic vaccines with ID injection. 



５３ 

 

 

Figure 3-9. Anti-OVA IgG were measured by ELISA, a) Groups of C57BL/6 mice (n=3 per 

group) were immunized on day 0 and day 14 with 10 μg OVA plus 1.24 nmol CpG or amph-

CpG by ID or MNs vaccination. b) Groups of C57BL/6 mice (n=3 per group) were 

immunized on day 0 and day 14 with 10 μg amph-OVA-II plus 1.24 nmol CpG or amph-CpG 

by ID or MNs vaccination. 

 

These increases in the magnitude of cellular immune responses suggest that MNs delivery 

can provide systemic dispersion of amph-vaccines released upon skin insertion and plays a 

critical role in the adaptive cellular immune response. These results demonstrated the 

effectiveness of using MNs as a route for delivering “albumin hitchhiking” vaccines. 

Immunization through skin may target vaccine compounds to innate dendritic cells directly 

via lymphatic from proximal dLNs in parallel with activating the rich dendritic cell 

populations that reside in skin (Figure 3-10). The physical disruption of the epidermal/dermal 

tissues during MNs delivery is also considered to be a pivotal role in mediating enhanced 

immunity via the recruitment and maturation of APCs.97, 98 
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Figure 3-10. Schematic diagram of ‘albumin hitchhiking’ MNs delivery system in relation 

to immunology of the skin. The amph-vaccines and antigen internalized dendritic cells traffic 

to local lymph nodes to induce an immune response related to T and B cells.  
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3.5. Conclusions 

We have demonstrated the utility of MNs designed for the systemic dispersion of amph-

vaccines released upon skin insertion. This approach can provide a number of safety and 

immunological advantages compared to hypodermic needles. First, dissolving MNs generate 

no biohazardous sharp wastes because the MNs dissolve and disappear upon insertion. The 

pedestal part of MNs is also made of water-soluble polymer so that it can easily be eliminated 

by dissolving in water. 99 This safety feature removes the risk of accidental needle-stick injury 

or intentional reuse of needles, which is common in some developing countries and is 

responsible for close to one million deaths per year due to transmission of hepatitis B, HIV 

and other infectious diseases.100 Second, the MNs delivery enhances the immune response 

through inflammatory cues and targeted delivery of antigen and adjuvant to high density of 

APCs in LNs. This approach can greatly increase the safety profile of administered vaccines 

by effectively guiding them to dLNs, reducing systemic dissemination. 

In conclusion, ‘albumin hitchhiking’ MNs delivery system may provide not only practical 

advantages compared to hypodermic needles but also better humoral and cellular immunity. 

This strategy can be used as an effective platform for straightforward and robust 

transcutaneous vaccine delivery. 
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4. Conclusion and future work 

We have designed and characterized a system for vaccine delivery that utilizes several 

advantages of nanoparticles: surface display of antigen, efficient lymphatic drainage, and 

versatile packaging of immunomodulating adjuvants via strong electrostatic surface charge 

interactions and T-helper peptides through a membrane post insertion method. We used lipid 

coated SiNPs as a platform for the efficient delivery of CpG DNA into dLNs for ensuring their 

immunostimulatory activity. This approach showed enhanced delivery of CpG DNA to 

lymphatics, and cellular uptake efficiency. Immunization by nanoparticle delivery generated 

potent cellular and humoral immunity superior to vaccination by soluble CpG DNA. In addition, 

nanoparticle delivery demonstrated improved therapeutic benefits in suppressing tumor growth, 

outperforming soluble CpG DNA in animal model. We expect that lipid coated silica 

nanoparticles can be used as efficient carriers to target vaccine adjuvants to dLNs, thereby 

modulating the immune system in safer and effective ways.  

We have also demonstrated the utility of transdermal delivery platforms (microneedle arrays 

(MNs)) designed for the systemic dispersion of amph-vaccines released upon skin insertion. 

This approach showed a number of safety and immunological advantages compared to 

hypodermic needles. MNs delivery enhanced the immune response through inflammatory cues 

and targeted delivery of antigen and adjuvant to high density of APCs in LNs. This strategy 

can provide not only practical advantages compared to hypodermic needles but also better 

humoral and cellular immunity.  

Although we observed enhanced efficacy and safety in mice with lipid-coated SiNPs, there 

are several important features that have not been addressed in this thesis. For example, the 

vaccine kinetics was not fully controlled by our current method. Future studies might focus on 

how to maximize the efficacy of adjuvant immunotherapy by controlling the kinetics of 
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vaccines exposure in LN. We are currently exploring the possibility of combining nanoparticle 

with layer by layer technique to achieve the kinetics control. Additionally, microneedle arrays 

might be an ideal approach to facilitate the layer-by-layer delivery of nanoparticles with kinetic 

control. 
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Adjuvants are immunomodulators which enhance immune responses to vaccines. However, 

parenteral administration of unformulated adjuvants fails to reach lymph nodes (LNs), the 

anatomic organ where the primary functions of immune cells are orchestrated. The LN-

targeting delivery plays the key roles in promoting immune activation and has the great 

potential to transform disease treatment. The main goal of this thesis is to develop efficient 

vaccine delivery systems to target therapeutics into draining lymph nodes (dLNs) for ensuring 

their immunostimulatory activity. We introduced therapeutic applications of activating TLR9 

with synthetic CpG oligodeoxynucleotide (ODN) agonists in nanoparticle or molecular form 

to activate immune responses in animal models. As a nanoparticle deliver platform, positively 

charged silica nanoparticles (SiNPs) were explored to load immunomodulators that are capable 

of targeting dLNs and mimicking the size, geometry and surface feathers of live viral pathogens. 

Immunization with nanoparticles showed potent cellular and humoral immunity superior to 

vaccination with soluble CpG ODNs.  

We next explored the transdermal delivery platform using dissolving microneedle arrays 

(MNs), which can penetrate the skin and facilitate the rapid release of vaccine components in 

epidermis. We combined this strategy with an albumin ‘hitchhiking’ approach that can promote 
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interaction with and uptake across the lymphatic endothelium. Vaccination via MNs generated 

robust immune responses, showing enhanced T cell and antibody responses. We characterized 

the morphology and vaccine loading capabilities of MNs, and systematically explored how the 

transdermal delivery of molecular vaccines impacted cellular and humoral immunogenicity. 

We expect that the results of our work will contribute to the advancement of vaccine delivery 

systems and will help to develop more efficient therapeutics for treating disease or cancer. 
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