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Intermediate r Values for Use in the Fleishman Power Method 
 

Julie M. Smith 
Wayne State University 

 
 
Several intermediate r values are calculated at three different correlations for use in the Fleishman Power 
Method for generating correlated data from normal and non-normal populations. 
 
Key words: Fleishman Power Method, Monte Carlo simulation, correlation. 
 
 

Introduction 
As Headrick and Sawilowsky (1999) observed, 
“Monte Carlo simulations requiring correlated 
data from normal and non-normal populations 
are frequently used to investigate the small 
sample properties of competing statistics, or the 
comparison of estimation techniques” (p. 25). 
Fleishman (1978) introduced the power method 
for simulating univariate non-normal 
distributions. This method allows for the 
systematic control of skew (γ1) and kurtosis (γ2) 
needed in Monte Carlo studies. Fleishman power 
method models are able to approximate a variety 
of distributions and require few inputs: a normal 
random number generator, three constants and 
an intermediate correlation (Headrick & 
Sawilowsky, 2000). 

A normal random number generator is 
available as a FORTRAN subroutine, Headrick 
and Sawilowsky (2000) calculated and provided 
required constants for various distributions (see 
Table 1), and the intermediate correlation, r, is 
calculated using the formula 
 

2 2 2 2 2 2 4( 6 9 2 6 )xyr r b bd d a r d r= + + + + , (1) 

 
where a, b and d are constants and rxy is the 
correlation to which all data will be set. The 
formula, when solved, results in the graph of a  
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parabola. After graphing, the intermediate r 
value is obtained by determining the point at 
which the positive horizontal axis intercept is at 
zero. Establishing the intermediate r values may 
be accomplished via use of a graphing 
calculator. Values provided in this brief report 
were obtained using a Texas Instruments (TI) 
83-Plus Graphing Calculator by following a five 
step procedure: 
 
1. Clear all registers and engage the function 

editor; 
2. Enter formula (1) using appropriate 

constants and desired correlation; 
3. Graph the parabola; 
4. Use the trace function to position the cursor 

close to Y = 0 on the positive X-axis; 
5. Enlarge the graph using the zoom feature to 

obtain a precise reading of the positive X 
value at the point where Y = 0. 

 
Although simple, the process is time-consuming; 
for this reason several intermediate r values have 
been calculated at three different correlations 
(See Table 2). 
 
Example 

To create correlated data pairs (X, Y) at 
0.70 from an exponential distribution (Chi-
square, df = 2) with γ1 = 2 and γ2 = 6, using the 
constants from Table 1, equation (1) would be as 
follows: 
 
rxy = r2[(.8263)2+(6)(.8263)(.02271)+ 

(9)(.02271)2+(2)(−.3137)2r2+(6)(.02271)r4] 
 
rxy = r2[(.68278)+(.11259)+(.004642)+(.19682)r2 

+(.00309)r4] 
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rxy = r2[(.8000)+(.19682)r2+(.00309)r4] 
 

0 = .8000 r2+.19682r4+.00309r6 − 0.70 
 
The positive solution using the stated procedure 
is r = .859998. This intermediate r value is 
placed in the following two equations: 
 

2
1 21ix rz r z= + −                    (2) 

and 
2

1 31iy rz r z= + −                    (3) 

 
where z1, z2 and z3 are randomly selected 
standard normal z scores (generated using a 
random number generator). The data resulting 
from these equations are not the final correlates, 
but represent intermediate standard normal 
variates that will be used to generate the desired 
correlated data, thus xi and yi and the constants 
appropriate to the distribution are next 
substituted into the Fleishman equation to 
produce the final correlates as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2( )i i iX a bX a X dX= + + − +            (4) 

 
2 2( ) .i i iY a bY a Y dY= + + − +             (5) 

 
The algorithms above produce standardized data 
centered around μ = 0 and σ = 1. To realign the 
values to the χ2 distribution with df = 2, a simple 
transformation is performed so that μ = 2 and σ 
= 2 as follows: 
 

2 (2)( ) 2x Xχ = +                      (6) 

 
and for the Y correlate, 
 

2 (2)( ) 2x Yχ = +                      (7) 

 
The last step is optional, because computed 
values are accurate for the distribution. It is only 
necessary to perform this step if it is desirable to 
have values commonly found in the tables for 
the distribution of interest, such as χ2 (df = 2) in 
the example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Fleishman Power Constants for Various Distributions* 

Distribution 
Skew Kurtosis Constants 

γ1 γ2 a b d 
Chi-square (df=1) √8 12 −.5207 .6146 .02007 

Exponential/Chi-square (df=2) 2 6 −.3137 .8263 .02271 

Chi-square (df=3) 1.633 4 −.2595 .8807 .01621 

Chi-square (df=4) √2 3 −.2269 .9089 .01256 

Chi-square (df=8) 1 1.5 −.1632 .9531 .0060 

Normal 0 0 0 1 0 

Cauchy/t (df=1) 0 25 0 .2553 .2038 

t (df=3) 0 17 0 .3938 .1713 

t (df=7) 0 2 0 .8357 .05206 

Laplace/Double Exponential 0 3 0 .7284 .0679 

*From Headrick and Sawilowsky (2000), p. 427. 
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Table 2: Intermediate r Values for Various Distributions at Correlations 
0.70, 0.80 and 0.90 

Distribution 
Intermediate r Values at Correlation: 

0.70 0.80 0.90 

Chi-square (df=1) .88909 .92960 .96633 

Exponential/Chi-square (df=2) .85998 .91319 .95973 

Chi-square (df=3) .79989 .85067 .89771 

Chi-square (df=4) .87870 .93855 .99461 

Chi-square (df=8) .84466 .90058 .95271 

Normal .83666 .89443 .94868 

Cauchy/t (df=1) .88121 .92549 .96472 

t (df=3) .86665 .91814 .96118 

t (df=7) .84006 .89697 .95008 

Laplace/Double Exponential .84248 .89877 .95110 
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