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Estimation of the Standardized Mean Difference for Repeated Measures Designs 
 

Lindsey J. Wolff Smith S. Natasha Beretvas 
The University of Texas at Austin 

 
 
This simulation study modified the repeated measures mean difference effect size, dRM

= , for scenarios 

with unequal pre- and post-test score variances. Relative parameter and SE bias were calculated for dRM
≠  

versus dRM
= . Results consistently favored dRM

≠  over dRM
=  with worse positive parameter and negative SE 

bias identified for dRM
=  for increasingly heterogeneous variance conditions. 

 
Key words: meta-analysis, repeated measures, effect size 
 
 

Introduction 
Meta-analysis (Glass, 1976) entails pooling of 
results from related studies in an effort to 
synthesize the research results. Studies typically 
use various experimental designs and thus 
various effect size measures. In quantitative 
meta-analysis, a primary goal is to combine 
effect sizes to produce an overall effect size. 

An effect size (ES) index is used to 
quantify the strength of the relationship between 
two variables. Each study’s finding can be 
represented as an ES. The use of the ES is 
important as it allows for the comparison of 
multiple studies’ results. ES indices do, 
however, differ depending on the type of study 
performed (e.g., repeated measures, independent 
groups, etc.). Although multiple effect sizes can 
be handled using meta-analysis, the effect size 
of interest in this study is the standardized mean 
difference for repeated measures designs, δRM. 
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The formula for the δRM and its 

associated variance have been derived by Becker 
(1988) and Morris and DeShon (2002). The δRM 
is necessary for summarizing results from a 
repeated measures (RM) design in which the 
same subjects are measured before and after a 
treatment is administered. Many primary studies 
employ the RM design. This design allows the 
researcher to assess change in an outcome that 
occurs within a subject as a result of what 
happens between a pre- and post-test. Little 
research has been done to assess the relative 
parameter and standard error bias of δRM 
estimates. 

In the RM design, one group of subjects 
is measured before and after a treatment is 
administered. The RM design’s ES measure is 
defined as follows: 
 

post pre D
RM

D D

−
= =

μ μ μδ
σ σ

             (1) 

 
where μpre and μpost are the population means of 
the pre- and post-test scores, respectively, μD is 
the population mean difference in the pre- and 
post-test scores, and σD is the standard deviation 
of change scores (Gibbons, Hedeker, & Davis, 
1993). The associated sample estimate is 
calculated as follows: 
 

post pre
RM

D

X X
d

s
−

= ,                  (2) 



WOLFF SMITH & BERETVAS 
 

601 
 

where X pre  and X post are the sample means of 

the pre- and post-test scores, respectively, and sD 
is the sample standard deviation of difference 
scores. 

The sampling variance formula for δRM 
is: 

( )
( )

2
2 2

2

1 1
1

3 1
RM

RM
RM

n n
n n c n

−  = + −  −   −  
δ

δσ δ  

(3) 
 
where n is the number of paired observations in 
the RM design study (Morris & DeShon, 2002) 
with a corresponding formula used for sample 
estimates: 
 

( )
( )

2
2 2

2

1 1
1

3 1
RM

RM
d RM

dns nd .
n n c n

−  = + −  −   −  
 

(4) 
 
Equations 3 and 4 also contain the bias 
correction factor, c(n − 1), that is approximated 
by 

( ) ( )
3

1 1
4 1 1

c n
n

− = −
− −

             (5) 

 
(Hedges, 1982). 

Calculation of σD is necessary to obtain 
δRM (see Equation 1). Morris and DeShon (2002) 
presented the following relationship between the 
standard deviation of difference scores, σD, and 
the standard deviation of the original scores, σ: 
 

( )2 1D
= = −σ σ ρ                      (6) 

 
where ρ is the correlation between the pre- and 
post-test scores. The corresponding sample 
estimate is: 

2(1 )Ds s r= = −                       (7) 

 
with r representing the sample correlation. Both 
formulas (Equations 6 and 7) are founded on the 
assumption that the population standard 
deviations for the pre- and post-test scores are 
equal (i.e., pre postσ =σ =σ ). Thus, the notation of 

including a superscript with = was adopted to 

distinguish the relevant formula when 

pre postσ =σ  is assumed from scenarios in which 

pre postσ σ≠  is assumed. 

If σpre ≠ σpost , another formula for σD 

must be employed that does not assume equal 
variances, namely: 
 

2 2 2D pre post pre ,postσ σ σ σ≠ = + −     (8) 

 

where 2
preσ  and 2

postσ  are the population 

variances of the pre- and post-groups, 
respectively, and σpre,post is the covariance 
between the pre- and post-test scores such that: 
 

pre,post pre postσ =ρσ σ .                 (9) 

 
Therefore, the equation for σD

≠  (see Equation 8) 
becomes: 
 

2 2 2D pre post pre postσ = σ +σ ρσ σ≠ − .   (10) 

 
The corresponding sample estimate is then: 
 

2 2 2D pre post pre posts s s rs s .≠ = + −         (11) 

 
Note that when pre postσ =σ , Equations 10 and 11 

reduce to the corresponding (population and 
sample) homogeneous variances formula for σD 
(and sD) (see Equations 6 and 7, respectively). 

This leads to the two primary foci of this 
study. First, empirical research has not been 
conducted to assess how well the formulas for 

δRM and for 2

RM
σδ  work in terms of parameter 

and standard error (SE) bias when pre- and post-
test scores are and are not homogeneous. 
Second, applied meta-analysts assume the 
homogeneity of the pre- and post-test scores and 
use the sD

=  formula (Equation 7) as opposed to 

sD
≠  (Equation 11) when calculating the estimate 

of δRM  (Equation 2). Thus, this study also 
investigated the effect of using the conventional 
formula for sD

=  (Equation 7) when the 
homogeneity of variance assumption is violated 
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and the modified formula for sD (i.e., sD
≠

 in 
Equation 11) should be used. 

In the current simulation study, four 
design factors were manipulated, including: the 
true value of δRM, the correlation between pre- 
and post-test scores, sample size, and values for 
the pre- and post-test score standard deviations 
to assess the effect of these factors on parameter 
and SE estimates of δRM. Results were compared 
when the pre- and post-test scores were assumed 

to have equal variances ( 2 2
pre postσ σ= ), thus sD

=  

was used to calculate dRM  (i.e., providing dRM
= ) 

with the results based on the assumption that 
2 2
pre postσ σ≠  for which sD

≠  was calculated and 

used to obtain the associated dRM  (i.e., dRM
≠ ). 

 
Methodology 

A Monte Carlo simulation study was conducted 
to assess the relative parameter and SE bias of 
the two estimates of δRM. The two estimates, 
dRM

=  and dRM
≠ , are distinguished by the formula 

used to calculate the sample standard deviation 
of the difference (Equation 7 versus Equation 
11). Four design factors were manipulated in 
this study and are described in detail below. R 
software version 2.8.1 was used to generate the 
data and to estimate and summarize all relevant 
parameters. 
 
δRM 

True values of δRM were manipulated to 
assess their effect on parameter and SE 
estimation. These values included: no effect, and 
small, moderate, and large effects (δRM = 0, 0.2, 
0.5, and 0.8, respectively). 
 
Correlation Between Pre- and Post-Test Scores 

The following values of the true 
correlation, ρ, between pre- and post-test scores 
were manipulated to evaluate the effect of no, a 
small, moderate, and large correlation (ρ = 0, 
0.2, 0.5, and 0.8, respectively). 
 
Sample Size 

Sample size was investigated at three 
levels including a small, moderate, and 
moderately large sample size (n = 10, 20, and 
60, respectively). Note that the sample sizes 

used were the same for each of the pre- and 
post-test groups. 
 
Ratio of the Pre- and Post-Test Scores’ Standard 
Deviations 

Five different values of the ratio of the 
pre- and post-test scores’ standard deviations 
were investigated. The following patterns were 
evaluated: σpre = σpost, σpre < σpost, and σpre > 
σpost. For the two unequal standard deviations’ 
conditions, the degree of the difference was also 
manipulated, with the following four unequal 
combinations of values for σpre:σpost 
investigated: 0.8:1.2, 0.5:1.5, 1.2:0.8, and 
1.5:0.5. For the σpre = σpost conditions, both pre- 
and post-test true standard deviations were 
generated to be one (i.e., σpre = σpost = 1). 
 
Repeated Measures Effect Size 

To manipulate the true value of δRM, the 
value of μpre was set to zero across conditions 
and the value of μpost was derived to result in the 
following values for δRM: 0, 0.2, 0.5, and 0.8. 
Specifically, μpost is a function of δRM, μpre, and 
σD (see Equation 1) and thus can be derived 
because 

( )( )post RM D preμ = δ σ +μ            (12) 

 
and the values of δRM and σD are determined by 
the relevant conditions with μpre always set to 
zero. 
 
Estimates of δRM 

For each generated dataset, Equation 2 
was used to calculate the sample standardized 
mean difference effect size for RM designs. Two 
values for sD ( sD

=  and sD
≠ ) were used with the 

former based on the assumption of equal pre- 
and post-test score variances (Equation 7) and 
the latter based on the assumption that 

2 2
pre postσ σ≠  (Equation 11). The resulting 

estimates were termed dRM
=

 and dRM
≠ , 

respectively. 
 
Data Generation 

For each set of conditions, a set of 
random, bivariate normally distributed scores 
(correlated in the population with the condition’s 
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value for ρ) were generated to provide the pre- 
and post-test scores for that condition’s 
replication. Two values of dRM ( dRM

=  and dRM
≠ ) 

were calculated using each dataset as described 
above. Ten thousand replication datasets were 
generated for each combination of conditions. 
 
Bias Assessment 

Relative parameter and SE estimation 
bias of each dRM ( dRM

≠  and dRM
= ) was 

summarized and assessed using Hoogland and 
Boomsma’s (1998) formulas and criteria. More 
specifically, relative parameter bias was 
calculated using the following formula: 
 

( ) ( )j j

j
j

θ̂ θ
ˆB θ =

θ

−
                      (13) 

 
where θj represents the jth parameter’s true value 

and ˆ θ j  is the mean estimate of parameter j 
averaged across the 10,000 replications per 
condition. Hoogland and Boomsma 
recommended considering a parameter’s 
estimate as substantially biased if its relative 
parameter bias exceeds 0.05 in magnitude. This 
cutoff means that estimates that differ from their 
parameter’s true value by more than five percent 
should be considered substantially biased. 

Hoogland and Boomsma’s (1998) 
commonly used formulation of relative standard 
error bias is as follows: 
 

( ) ( )j j

j

j

ˆ ˆθ θ

θ̂
θ̂

ŝ σ
B s =

σ

−
                   (14) 

 

where 
j

ˆŝθ
 

is the mean of the SE estimates 

associated with parameter estimates of θj and 

j
ˆσθ

 
is the empirically true standard error of the 

distribution of jθ̂ s calculated by computing the 

standard deviation of each conditions’ 10,000 

jθ̂ s. Hoogland and Boomsma recommended 

using a cutoff of magnitude 0.10 indicating 
substantial relative SE bias. Note that, for 

conditions in which the true parameter, δRM, was 
zero, simple parameter estimation bias was 
calculated. 
 

Results 
Results are presented in three sections, one for 
each of the three sample size conditions. Note 
that relative parameter bias is not calculable if 
the true parameter value is zero (see Hoogland 
& Boomsma, 1998), thus, simple bias rather 
than relative bias is calculated for conditions in 
which the true δRM is zero. 
 
Sample Size = 10: Relative Parameter Bias 

Substantial positive relative parameter 
bias was identified for all non-zero values of δRM 
and ρ. No substantial bias was found in the ρ = 0 
conditions. In all cases, the positive bias 
identified was greater when dRM

=  was used 

rather than dRM
≠  (see Table 1). No criterion 

exists to indicate whether simple bias is 
substantial or not, however, the simple bias 
values seem small for the δRM = 0 conditions. 
When dRM

=
 was used, the more the ratio of 

pre postσ : σ  values diverged from 1:1, the worse 

the bias. Similarly, the stronger the ρ, the worse 
the bias for the dRM

=
 estimate. 

The dRM
≠

 estimator was unaffected by 

the pre postσ :σ  and ρ values. However, 

substantial bias was detected for both dRM
≠

 and 

dRM
=  even when pre postσ :σ  was 1:1. Patterns of 

bias identified for a given pre postσ :σ  ratio 

closely mimicked patterns identified for the 
inverse ratio. Thus, across conditions, results 
found for the 1.5:0.5 ratio matched those for the 
0.5:1.5 ratio. Similarly, results for the 0.8:1.2 
ratio conditions matched those for the 1.2:0.8 
ratio. This result held across all conditions 
including the three sample sizes and thus will 
not be mentioned further. Parameter estimation 
performance of both the dRM

≠  and dRM
=  

estimators was unaffected by the true δRM value 
(see Table 1). The positive parameter estimation 
bias of the dRM

≠
 estimator was pretty 

consistently close to 10% across the n = 10 
conditions. 
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Table 2: Summary of Relative Standard Error Estimation Bias by Generating Condition for n = 10 Conditions 

Condition 

pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 
0 0.048 0.032 0.046 0.023 0.051 -0.012 0.051 0.027 0.049 -0.011 

0.2 0.048 0.062 0.046 0.039 0.051 0.048 0.051 0.053 0.049 0.047 
0.5 0.051 0.012 0.041 -0.034 0.046 -0.147 0.046 -0.028 0.039 -0.152 
0.8 0.043 -0.013 0.048 -0.112 0.056 -0.308 0.047 -0.110 0.042 -0.317 

δRM Value 
0 0.046 0.016 0.044 -0.031 0.043 -0.143 0.042 -0.032 0.038 -0.145 

0.2 0.041 0.011 0.036 -0.039 0.049 -0.135 0.042 -0.030 0.042 -0.142 
0.5 0.057 0.022 0.047 -0.025 0.049 -0.134 0.051 -0.023 0.046 -0.129 
0.8 0.060 0.020 0.046 -0.027 0.060 -0.111 0.061 -0.014 0.052 -0.120 

Overalla 0.051 0.017 0.043 -0.031 0.050 -0.131 0.049 -0.025 0.044 -0.134 
Notes: Substantial relative SE bias values are highlighted in the table; aOverall = mean relative SE bias across all 
δRM conditions excluding δRM = 0 conditions. 

Table 1: Summary of Relative Parameter Estimation Bias by Generating Condition for n = 10 Conditions 

Condition 

pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 
0 0.002 0.003 -0.003 -0.003 0.002 0.004 0.002 0.002 0.002 0.004 

0.2 0.090 0.106 0.097 0.130 0.096 0.199 0.093 0.125 0.087 0.190 
0.5 0.092 0.126 0.099 0.182 0.087 0.355 0.086 0.168 0.092 0.358 
0.8 0.105 0.165 0.097 0.325 0.100 0.896 0.088 0.311 0.089 0.866 

δRM Value 
0a 0.002 0.003 -0.003 -0.003 0.002 0.004 0.002 0.002 0.002 0.004 

0.2 0.103 0.133 0.104 0.194 0.091 0.397 0.090 0.178 0.072 0.360 
0.5 0.089 0.118 0.101 0.190 0.094 0.392 0.088 0.175 0.092 0.390 
0.8 0.092 0.121 0.093 0.181 0.093 0.394 0.088 0.176 0.096 0.399 

Overallb 0.095 0.124 0.099 0.188 0.093 0.394 0.089 0.177 0.087 0.383 
Notes: Substantial relative parameter bias values are highlighted in the table; aMean simple bias is presented for δRM 
= 0 conditions; b Overall = mean relative parameter bias across all δRM conditions excluding δRM = 0 conditions. 
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Sample Size = 10: Relative SE Bias 
No relative SE bias was found for dRM

≠  
for the n = 10 conditions (see Table 2). For 

,RMd =  however, substantial negative bias was 

identified in certain conditions. Substantial 

negative bias (i.e., ( ) 0 10
jθ̂

B s > . , see Equation 

14) was found at the most extreme pre postσ :σ  

values (i.e., when pre postσ :σ  = 1.5:0.5 and 

pre postσ :σ  = 0.5:1.5). This bias occurred for 

conditions in which ρ = 0.5 or larger and the 
magnitude of the bias seemed to be slightly 
larger for smaller δRM (see Table 2). Substantial 
negative parameter estimation bias was also 
detected for dRM

=  for pre postσ :σ  = 0.8:1.2 and 

for pre postσ :σ  = 1.2:0.8 for the largest ρ 

condition (i.e., when ρ = 0.8). 
 
Sample Size = 20: Relative Parameter Bias 

No substantial parameter bias was 
identified when dRM

≠
 was used to estimate δRM 

across the n = 20 conditions (see Table 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substantial positive relative parameter bias was 
found when dRM

=
 was used to estimate δRM, 

however, the degree of parameter bias was lower 
for the n = 20 conditions (see Table 3) than was 
observed for the n = 10 conditions (in Table 1).  

No substantial relative parameter bias 
was found in the ρ = 0 conditions for dRM

= . With 
the slightly larger sample size, no substantial 
bias was detected when the pre postσ :σ  ratio was 

1:1. Otherwise, the pattern of the bias found 
matched that noted for the n = 10 conditions. 
The more the value of the pre postσ :σ  ratio 

diverged from 1:1 (and for larger ρ values), the 
more the degree of substantial parameter bias 
increased. Values of δRM did not seem to affect 
the degree of bias (see Table 3). 
 
Sample Size = 20: Relative SE Bias 

The relative SE bias results for the n = 
20 conditions (see Table 4) very closely matched 
those described for the n = 10 conditions (see 
Table 2). No substantial relative SE bias was 
found when using dRM

≠  to estimate δRM. For 

dRM
= , however, in the most extreme pre postσ :σ   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Summary of Relative Parameter Estimation Bias by Generating Condition for n = 20 Conditions 

Condition 

pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 

0 -0.001 -0.001 -0.001 -0.001 0.001 0.002 0.002 0.002 <0.001 <0.001 
0.2 0.048 0.053 0.038 0.056 0.049 0.120 0.049 0.067 0.038 0.107 
0.5 0.034 0.046 0.043 0.097 0.036 0.253 0.043 0.097 0.042 0.258 
0.8 0.038 0.060 0.042 0.219 0.043 0.724 0.039 0.216 0.041 0.722 

δRM Value 

0a -0.001 -0.001 -0.001 -0.001 0.001 0.002 0.002 0.002 <0.001 <0.001 
0.2 0.037 0.047 0.031 0.094 0.040 0.285 0.040 0.103 0.037 0.283 
0.5 0.043 0.053 0.045 0.110 0.043 0.290 0.048 0.112 0.044 0.288 
0.8 0.045 0.055 0.040 0.103 0.041 0.286 0.042 0.105 0.042 0.288 

Overallb 0.041 0.052 0.039 0.102 0.041 0.287 0.043 0.106 0.041 0.287 
Notes: Substantial relative parameter bias values are highlighted in the table; aMean simple bias is presented for δRM 
= 0 conditions; bOverall = mean relative parameter bias across all δRM conditions excluding δRM = 0 conditions. 
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ratio value conditions, substantial negative bias 
was again found for the stronger ρ conditions 
(i.e., when ρ = 0.5 and 0.8). The negative 
relative SE bias was slightly worse for smaller 
δRM values (see Table 4). Last, substantial 
negative SE bias was also identified for the 

pre postσ :σ
 

= 0.8:1.2 and pre postσ :σ  = 1.2:0.8 

conditions in the ρ = 0.8 conditions. Again, 
slightly worse substantial negative bias was 
noted for lower true δRM values. 
 
Sample Size = 60: Relative Parameter Bias 

With the larger sample size (n = 60) 
conditions, the degree of bias decreased further 
(see Table 5). As with the n = 20 conditions, no 
substantial bias was detected when dRM

≠
 was 

used to estimate δRM. Substantial positive 
relative parameter bias was only found in certain 
conditions when using dRM

=
 to estimate δRM. 

Specifically, substantial positive bias was found 
in the most extreme pre postσ :σ  ratio value 

conditions (i.e., when pre postσ :σ  = 1.5:0.5 and 

pre postσ :σ  = 0.5:1.5) and for the ρ = 0.8 

conditions when σpre :σpost  = 1.2:0.8 and  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
σpre :σpost  = 0.8:1.2. 

The positive bias for ρ  = 0.5 paired 
with the pre postσ :σ  = 1.2:0.8 and pre postσ :σ  = 

0.8:1.2 conditions only just exceeded Hoogland 
and Boomsma’s substantial relative parameter 
bias criterion. The magnitude of the bias 
increased for larger ρ values and was unaffected 
by δRM values. 
 
Sample Size = 60: Relative SE Bias 

For the n = 60 conditions, no substantial 
relative SE bias was found with dRM

≠  (see Table 
6). The same pattern and degree of substantial 
negative relative SE bias as was found for the n 
= 10 and n = 20 conditions was noted when 
using dRM

=  to estimate δRM. Consistent bias was 

found for the most extreme pre postσ :σ  values 

when ρ = 0.5 and 0.8 and in the pre postσ :σ  = 

0.8:1.2 and pre postσ :σ  = 1.2:0.8 conditions when 

ρ = 0.8. The bias was worse within pre postσ :σ  

values for higher ρ conditions. There seemed to 
be a very slight effect of δRM value on the bias 
with lower δRM values associated with slightly 
larger degrees of negative bias (see Table 6). 

Table 4: Summary of Relative Standard Error Estimation Bias by Generating Condition for n = 20 Conditions 

Condition 

pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 

0 0.020 0.016 0.017 0.007 0.027 -0.006 0.030 0.019 0.010 -0.024 
0.2 0.020 0.018 0.017 0.023 0.027 0.010 0.030 0.016 0.010 0.018 
0.5 0.017 0.003 0.017 -0.034 0.018 -0.151 0.019 -0.031 0.016 -0.150 
0.8 0.023 0.001 0.011 -0.118 0.013 -0.330 0.018 -0.115 0.018 -0.329 

δRM Value 

0 0.018 0.008 0.020 -0.034 0.017 -0.144 0.021 -0.034 0.010 -0.152 
0.2 0.020 0.010 0.010 -0.044 0.016 -0.144 0.014 -0.039 0.012 -0.145 
0.5 0.015 0.003 0.013 -0.041 0.011 -0.142 0.021 -0.033 0.019 -0.135 
0.8 0.025 0.011 0.025 -0.025 0.024 -0.120 0.028 -0.026 0.021 -0.127 

Overalla 0.019 0.008 0.017 -0.036 0.017 -0.138 0.021 -0.033 0.016 -0.140 
Notes: Substantial relative SE bias values are highlighted in the table; aOverall = average relative SE estimation bias 
across δRM and ρ conditions. 
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Table 5: Summary of Relative Parameter Estimation Bias by Generating Condition for n = 60 Conditions 

Condition 

pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 

0 <0.001 <0.001 -0.001 -0.001 <0.001 <0.001 -0.001 -0.001 -0.001 -0.001 
0.2 0.015 0.017 0.018 0.030 0.007 0.061 0.010 0.022 0.010 0.065 
0.5 0.012 0.016 0.010 0.053 0.011 0.204 0.013 0.055 0.007 0.200 
0.8 0.015 0.021 0.012 0.165 0.010 0.643 0.009 0.162 0.014 0.647 

δRM Value 

0a <0.001 <0.001 -0.001 -0.001 <0.001 <0.001 -0.001 -0.001 -0.001 -0.001 
0.2 0.014 0.017 0.010 0.062 0.007 0.229 0.009 0.061 0.013 0.235 
0.5 0.016 0.019 0.014 0.066 0.009 0.229 0.012 0.065 0.012 0.232 
0.8 0.013 0.016 0.014 0.067 0.013 0.235 0.010 0.062 0.012 0.233 

Overallb 0.014 0.017 0.013 0.065 0.010 0.231 0.011 0.063 0.012 0.233 
Notes: Substantial relative parameter bias values are highlighted in the table; aMean simple bias is presented for δRM 
= 0 conditions; bOverall = mean relative parameter bias across all δRM conditions except for δRM = 0 conditions. 

Table 6: Summary of Relative Standard Error Estimation Bias by Generating Condition for n = 60 Conditions 

Condition 
pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 

0 0.001 0.001 0.009 0.004 0.004 -0.016 0.015 0.009 -0.003 -0.023 
0.2 0.001 0.009 0.009 0.003 0.004 0.004 0.015 0.005 -0.003 0.010 
0.5 0.001 -0.003 0.010 -0.030 0.007 -0.148 0.001 -0.039 0.009 -0.146 
0.8 0.014 0.007 0.006 -0.114 0.005 -0.338 0.013 -0.109 0.005 -0.336 

δRM Value 

0 0.004 0.001 0.011 -0.036 0.004 -0.148 0.008 -0.038 0.008 -0.142 
0.2 0.006 0.003 0.005 -0.041 0.005 -0.144 0.005 -0.042 0.003 -0.147 
0.5 0.006 0.003 0.010 -0.035 0.012 -0.132 0.009 -0.035 0.004 -0.139 
0.8 0.009 0.005 0.002 -0.040 <0.001 -0.134 0.010 -0.033 0.006 -0.129 

Overalla 0.006 0.003 0.007 -0.038 0.005 -0.140 0.008 -0.037 0.005 -0.139 
Notes: Substantial relative SE bias values are highlighted in the table; aOverall = average relative SE estimation bias 
across δRM and ρ conditions. 
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Conclusion 
The purpose of this study was to compare 
estimation of the repeated measures design 
standardized mean difference effect size, δRM, 
using the conventional dRM

=
 estimator with the 

newly derived dRM
≠

 modification under a variety 
of conditions including unequal pre- and post-
test score variances. The dRM

≠
 estimator was 

designed to correct the standard deviation of the 
difference scores used in the calculation of δRM 
(see Equation 1). The correction recognizes 
potential differences in the population variances 
of the pre- and post-test scores. Most statistical 
tests of differences are based on the assumption 
that pre- and post-test score variances are equal. 
However, it is reasonable to assume that this 
assumption is commonly violated. This study 
assessed the robustness of the dRM

=  and dRM
≠

estimates of δRM in scenarios with unequal 
variances. 

Overall, the results convincingly 
supported use of the suggested modification, 
dRM

≠ , as an improved estimator of δRM. Neither 
substantial parameter nor SE bias was noted for 
this estimate for sample sizes of 20 or 60 across 
the spectrum of δRM and ρ values investigated. In 
comparison, use of the conventional dRM

=  
estimator, however, cannot be recommended. 
Substantial positive parameter estimation bias 
was noted when using the dRM

=  estimator even 
in the equal variance conditions (i.e., when 

pre postσ =σ ) for n = 10 and n = 20. Substantial 

bias was also found across the unequal variance 
conditions. Negative standard error bias was 
noted when using the dRM

=  estimator regardless 
of sample size. Given the consistency of the 
degree of SE bias across sample sizes of 10, 20, 
and 60 for the dRM

=  estimator, it is anticipated 
that this pattern would be maintained for 
samples larger than 60. 

Substantial parameter bias was 
identified for the dRM

≠
 estimator in all of the 

smallest sample size (n = 10) conditions. (Note 
that no substantial standard error bias was noted 
across conditions for the dRM

≠  estimator.) The 

degree of parameter estimation bias in the dRM
≠  

estimator remained around ten percent across 

δRM and ρ values. In other words, the bias was 
unaffected by the degree of correlation between 
pre- and post-test scores and by the magnitude 
of the effect size. 

Across conditions, the degree of positive 
relative parameter bias noted for the dRM

=  
estimator was consistently greater than that 
noted for the dRM

≠  estimator. In addition, the 

bias detected for the dRM
=  estimator was affected 

by the magnitude of ρ. The larger the correlation 
between pre- and post-test scores, the worse the 
bias was in the dRM

=  estimate. The overall 

degree of positive bias found in the dRM
=

estimator was greater for smaller sample sizes. 
But even with samples as large as n = 60, 
substantial bias was still noted in certain 
conditions. 

The source of the bias noted for the 
dRM

≠
 estimator for samples of n = 10 (and not 

when n was 20 or 60), likely originates in the 
negative relationship between sample size and 
degree of bias in the estimation of ρ. 
Specifically, the conventional estimator, r, (the 
one used herein) is a biased under-estimate of ρ. 
Olkin and Pratt (1958) derived an unbiased 
estimate of ρ, ˆ ρ , that is closely approximated 
by: 

2(1 )
ρ̂

2( 4)

r rr
n
−= +
−

.                  (15) 

 
Clearly, the degree of bias exhibited when using 
r to estimate ρ is represented by 

2(1- )/[2( -4)]r r n  which becomes more 
substantial with smaller n. Small-sample bias in 
the estimation of ρ will negatively impact 

estimation of both Dσ
≠  (see Equation 8) and Dσ

=  

(see Equation 6), ultimately increasing bias in 
the estimation of δRM (see Equation 1) for both 
estimators. Bias in r’s estimation of ρ rapidly 
decreases for larger n which seems to explain 
the corresponding rapid decrement in the bias of 
dRM

≠ ’s estimation of δRM. However, while bias in 
r’s estimation of ρ contributes to the bias noted 
in dRM

= ’s estimation of δRM, it cannot fully 

explain it given dRM
= ’s bias decreases less 

rapidly than that of dRM
≠  for larger n. 
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Given the consistency in the degree of 
bias noted for dRM

≠  across conditions when n = 
10, applied researchers and meta-analysts using 
dRM

≠  as an estimate of δRM should recognize that, 
if it is necessary to calculate the repeated 
measures design standardized mean difference 
for a sample as small as 10, then it will be over-
inflated by about ten percent. Thus, optimally 
dRM

≠  should only be used with sample sizes 
larger than 10. 

Future research should extend this 
assessment of how well dRM

≠
 works with smaller 

sample sizes and should investigate other 
potential factors that might influence its 
performance. In addition, future research should 
extend formulation of the standardized mean 
difference effect size for repeated measures 
designs with heterogeneous variances for use 
with independent groups, repeated measures 
designs (i.e., for designs with pre- and post-test 
measures for the treatment and control groups). 

A current policy movement encouraging 
evidence-based practice is leading to an 
increased use of meta-analysis across the 
spectrum of medical, educational, and general 
social science research. Effect sizes 
summarizing results from studies that have been 
conducted using repeated measures research 
designs must also be synthesized to contribute to 
the evidence base for programs and 
interventions. While it is commonly assumed 
that interventions lead to changes in means, not 
in variances, this is not always the case. This 
study introduced and validated a correction to 
the estimate of δRM that can be used to handle 
potentially unequal pre- and post-test variances. 
The new estimator, dRM

≠ , was found to work  
 
 
 
 
 
 
 
 
 
 
 

better than the conventional one ( dRM
= ) across 

conditions including equal variance conditions. 
Given the consistently superior performance of 
dRM

≠  over that of the dRM
=

 estimate, applied 
researchers are encouraged to begin using the 
dRM

=
 estimator as a less biased estimate of δRM. 
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